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ABSTRACT 26 

Tuberculosis still claims more lives than any other pathogen, and a vaccine better than BCG 27 

is urgently needed. One of the challenges for novel TB vaccines is to protect against all 28 

Mycobacterium tuberculosis lineages, including the most virulent ones, such as the Beijing 29 

lineage. Here we developed a live attenuated M. tuberculosis mutant derived from GC1237, 30 

a Beijing strain responsible for tuberculosis outbreaks in the Canary Islands. The mutant 31 

strain is inactivated both in the Rv1503c gene, responsible for surface glycolipid synthesis, 32 

and in the two-component global regulator PhoPR. This double mutant is as safe as BCG in 33 

immunodeficient SCID mice. In immune-competent mice and guinea pigs, the mutant is as 34 

protective as BCG against M. tuberculosis strains of common lineage 4 (Euro-American). By 35 

contrast, in mice the vaccine is protective against a M. tuberculosis strain of lineage 2 (East-36 

Asian, Beijing), while BCG is not. These results highlight differences in protection efficacy of 37 

live attenuated M. tuberculosis-derived vaccine candidates depending on their genetic 38 

background, and provide insights for the development of novel live vaccines against TB, 39 

especially in East-Asian countries where M. tuberculosis strains of the Beijing family are 40 

highly dominant. 41 

 42 

  43 



 

1. Introduction 44 

With an estimated 1.6 million deaths in 2017 according to the World Health Organization, 45 

tuberculosis (TB) is among the top 10 causes of death worldwide, and the leading cause of 46 

death from a single pathogen [1]. The only TB vaccine currently in use, Bacillus Calmette 47 

Guérin (BCG), is known to protect efficiently against disseminated forms of TB in infants [2], 48 

and even protects against other childhood infectious diseases, possibly through trained 49 

immunity-related mechanisms [3]. Due to their broad antigen content, long-lasting and 50 

natural adjuvant properties, live attenuated vaccines, such as BCG, are generally considered 51 

most promising for conferring durable immunity, compared to subunit vaccines [4]. 52 

Protection conferred by BCG was reported to last up to 10-15 years, and even longer in 53 

some instances [5-7].  Yet, the efficacy of BCG to prevent Mycobacterium tuberculosis 54 

infection or TB reactivation in adults is too variable, ranging from nil to 80%, and novel 55 

vaccines or vaccination strategies against TB are highly needed [2, 8, 9]. BCG revaccination at 56 

adolescence was long considered a possible strategy to boost protection conferred by BCG 57 

administered at birth. Several large-scale studies showed that BCG revaccination confers 58 

only modest, if any, improved protection [10, 11], most likely due to immune sensitization 59 

following pre-exposure to environmental mycobacteria [8, 12, 13]. These results were 60 

challenged by a recent study conducted in South Africa that reported BCG revaccination 61 

protected against sustained M. tuberculosis infection, as reflected by sustained 62 

QuantiFERON-TB Gold In-tube assay conversion, with an efficacy of 45% [14]. The apparent 63 

discrepancy between these results and those from previous studies are thought to be due, 64 

at least in part, to the low level of exposure to environmental mycobacteria in the Cape 65 

Town area. This will nevertheless need to be evaluated, and these results will need to be 66 

confirmed in other settings and on longer time periods. In the meantime, and given the 67 



 

variability of efficacy of BCG, there is a strong rationale for development of alternative live 68 

attenuated vaccines that would perform better than BCG. 69 

To be considered for advancing in the preclinical pipeline, live vaccine candidates other than 70 

BCG need to be at least as safe as BCG and more effective than BCG, considered as a 71 

benchmark, in small animal models of TB, such as mice and guinea pigs [15]. 72 

A few live vaccine candidates based on recombinant BCG and attenuated M. tuberculosis are 73 

currently in preclinical or clinical development [8, 16, 17]. These include VPM1002, a 74 

recombinant BCG strain expressing listeriolysin and lacking the urease component UreC [18-75 

21]; and MTBVAC, a M. tuberculosis mutant inactivated in FadD26, involved in the synthesis 76 

of the virulence lipids PDIM, and the master transcriptional regulator PhoP [22-25]. 77 

Noteworthy, such live vaccine candidates are also considered to be used as boosters, on the 78 

top of BCG, and MTBVAC already showed promise in this direction, significantly reducing TB 79 

disease [26].  80 

One of the major challenges in TB vaccine development is to develop a vaccine that confers 81 

protection against all M. tuberculosis strains, including the most virulent ones, such as those 82 

of lineage 2 (East-Asian or Beijing) [27-29]. Indeed BCG is thought to poorly protect against 83 

strains of the Beijing lineage, which might explain, at least in part, the global spread of this 84 

lineage [30, 31]. This hypothesis is supported by experiments in TB animal models in some 85 

reports [32, 33], but not in others [34, 35], which calls for more studies in this context. 86 

We recently isolated M. tuberculosis mutants generated in the GC1237 strain, which belongs 87 

to lineage 2, with an impaired capacity to prevent phagosome acidification in macrophages 88 

and to survive in these cells [36]. One of these mutants, inactivated in the Rv1503c gene, 89 

was affected in glycolipid synthesis and was found to be attenuated both in macrophages 90 



 

and in vivo in mice [36]. Here we exploited this mutant to generate a double mutant in both 91 

Rv1503c and the phoPR operon, involved in mycobacterial virulence [37]. The resulting 92 

double mutant was found to be as safe as BCG in immune-deficient SCID mice and as 93 

protective as BCG against common strains of lineage 4 (e.g. the laboratory strain H37Rv) in 94 

mice and guinea pigs. Strikingly, this mutant was protective against a Beijing isolate, while 95 

BCG was not. These results highlight the importance of taking the genetic background of M. 96 

tuberculosis into consideration when generating novel live attenuated M. tuberculosis-based 97 

vaccines, and provide clues for the development of TB vaccines with broader efficacy against 98 

multiple strains and lineages of the TB bacillus. 99 

 100 

  101 



 

2. Materials and methods 102 

2.1 Media and bacterial strains 103 

All M. tuberculosis strains and BCG (Danish strain 1331) were grown in Middlebrook 7H9 104 

culture medium (Difco, Sparks MD) supplemented with 10% albumin-dextrose-catalase 105 

(ADC, Difco), glycerol, 0.05% Tween 80, kanamycin (25 µg/mL) and/or hygromycin (50 106 

µg/mL) in the case of the mutants. M. tuberculosis GC1237 and the Rv1503c transposon 107 

insertion mutant (Rv1503c::Tn) were previously described [36]. 108 

2.2 Construction of the phoPR deletion mutant 109 

Construction of the GC1237 Rv1503c::TnphoPR double mutant was performed using the 110 

thermosensitive bacteriophage phWM27 constructed previously [38]. This construct 111 

harbours a DNA fragment overlapping the phoPR genes from H37Rv and carrying a 112 

deletion/insertion replacing the 3’ end of phoP and the 5’end of phoR by a hygromycin-113 

resistance marker. This fragment was cloned into the recombinant bacteriophage phAE87 114 

[39]. The phWM27 bacteriophage was transferred into the recipient strain GC1237 Rv1503 115 

::Tn as described previously [39] and hygromycin resistance colonies were selected on 7H11 116 

OADC Hyg (50µg/ml) agar plates incubated at 37°C. Six individual clones were analysed by 117 

PCR amplification using primers phoE (5’-CTTGTCGATCAGTCCGCCT-3’) and phoF (5’-118 

GACACGAAAGCAGCAACCC-3’), located upstream and downstream respectively on the M. 119 

tuberculosis genome from the DNA fragment carried by the phWM27 bacteriophage, and 120 

the hyg gene specific primers H1 (5’-GGGATCGCCAATCTCTACG-5’) and H2 (5’-121 

GCCTTCACCTTCCTGCAC-3’). One clone exhibiting the expected PCR amplification profile for 122 

allelic replacement was retained for further studies and named GC1237 Rv1503c::TnphoPR. 123 

2.2 Ethics and animal experiments 124 



 

Intranasal safety experiments in SCID mice and protection assays in C3H/HeNRj mice were 125 

conducted in strict accordance with French laws and regulations in compliance with the 126 

European community council directive 68/609/EEC guidelines and its implementation in 127 

France. All protocols were reviewed and approved by the Comité d’Ethique Midi-Pyrénées 128 

(reference MP/03/07/04/09) and the Comité d’Ethique FRBT (APAFIS #11404).  129 

Intravenous safety experiments in CB17 SCID mice and protection assays in CB6F1 mice and 130 

in guinea pigs were approved by the UK Home Office (HO) regulations for animal 131 

experimentation which requires a HO-approved licence and approval from local ethical 132 

committees of Public Health England, Porton Down (Licence number PPL30/3236) and 133 

London School of Hygiene and Tropical Medicine (LSHTM) Animal Welfare and Ethical 134 

Review Board (Authorization # 70/6934). 135 

Immunogenicity and efficacy experiments in C57BL/6J mice infected with Beijing and non-136 

Beijing TB strains, were carried out accordingly following the guidelines of the Korean Food 137 

and Drug Administration (KFDA). The experimental protocols used in this study were 138 

reviewed and approved by the Ethics Committee and Institutional Animal Care and Use 139 

Committee (Permit Number: 2015-0041) of the Laboratory Animal Research Center at Yonsei 140 

University College of Medicine (Seoul, Korea). 141 

2.3 Safety assays 142 

For intranasal testing of residual virulence, 3 groups of severe combined immunodeficient 143 

(SCID) mice were infected via the intranasal route with M. tuberculosis wild-type (GC1237, 144 

Beijing strain), or the Rv1503c::Tn (500 CFU/animal) or 1,000 CFUs BCG Pasteur. For 145 

intravenous assays, two groups of 8, female CB17 SCID mice were subjected to challenge 146 

with a single dose of bacteria (nominally 106 CFU/mouse) of either BCG Danish 1331 or the 147 

candidate vaccines GC1237 Rv1503c::Tn or GC1237 Rv1503c::TnphoPR, in a total volume of 148 



 

200 μL diluted in pyrogen-free sterile saline. Actual number of bacteria administered to each 149 

group was assessed by CFU counting of the diluted inocula on the day of challenge (see 150 

Figure legend). Percentage of body weight change was calculated over time. Data are 151 

presented as survival curves compared to the gold standard BCG Danish 1331 using the 152 

Kaplan-Meier method. Statistical differences were assessed using GraphPad Prism 7.01 153 

software using the Log-Rank (Mantel-Cox) test with Bonferroni correction with statistical 154 

significance considered to be a P value equal or smaller than 0.05. 155 

2.4 Protection assay in mice 156 

For protection assays in CB6F1/Crl mice, groups of 6, female mice aged 6-8 weeks were 157 

used. The following three experimental groups were evaluated: saline, BCG Danish 1331, 158 

and GC1237 Rv1503c::TnphoPR. Mice were vaccinated subcutaneously with 5x106 159 

CFU/mouse in 100 L pyrogen-free sterile saline. Six weeks after vaccination mice were 160 

subjected to an aerosol challenge with Mycobacterium tuberculosis H37Rv aiming for an 161 

infective dose level of 100 CFU/mouse. Lungs and spleens from mice infected with H37Rv 162 

were harvested 6 weeks after challenge. For logistic reasons lungs were homogenized and 163 

plated on the same day as harvest on complete 7H11 agar plates, while spleens were kept 164 

refrigerated overnight and homogenates were prepared prior to plating corresponding 165 

dilutions for CFU counting. The CFU data obtained were analysed using One-way ANOVA 166 

statistical test followed by Tukey’s test for multiple comparison tests to compare mean 167 

values of the various experimental groups. GraphPad Prism 7.01 software was used for the 168 

statistical analysis. A P value equal or less than 0.05 was considered significant. 169 

For protection assays in C3H/HeNRj mice, 3 groups of 6 8–10 weeks old females were 170 

vaccinated subcutaneously (100 μL) with 106 CFU of the vaccine strains in PBS (Saline, BCG 171 

Danish or GC1237Rv1503::TnphoPR). Eight weeks post vaccination, mice were intranasally 172 



 

challenged with 500 CFU of H37Rv in 25 μL of PBS. Bacterial burden was assessed 4 weeks 173 

post challenge by plating homogenized lungs on solid medium. 174 

For comparative protection assays against M. tuberculosis M2 and HN878, 6-7-week old 175 

female C57BL/6 mice were used. The following three experimental groups were evaluated 176 

against M. tuberculosis M2 and HN878: saline, BCG Pasteur 1173P2, and GC1237 177 

Rv1503c::TnphoPR. Mice were vaccinated subcutaneously with 1x106 CFU/mouse in 300 l 178 

pyrogen-free sterile saline. Nine weeks after vaccination mice were subjected to an aerosol 179 

challenge with M. tuberculosis strain M2 or HN878 aiming for an infective dose level of 200-180 

250 CFU/mouse.  The protective efficacy of BCG Pasteur 1173P2, and GC1237 181 

Rv1503c::TnphoPR  against M. tuberculosis strain M2 and HN878 was determined at 6 182 

weeks from challenge through analysis of the histopathology and bacterial growth in the 183 

lung and spleen. For the lung histopathology analysis, the right-superior lobes were 184 

preserved overnight in 10% formalin and embedded in paraffin. The lung was sectioned at 185 

4–5 μm and stained with H&E. For the bacterial growth analysis, the lung and spleen were 186 

homogenized, and serially diluted samples were plated onto Middlebrook 7H11 agar plates 187 

(Becton Dickinson, Franklin Lakes, NJ, USA) supplemented with 10% OADC (Difco 188 

Laboratories), 2 μg/ml 2-thiophenecarboxylic acid hydrazide (Sigma-Aldrich, St. Louis, MO, 189 

USA) and amphotericin B (Sigma-Aldrich). After incubation at 37°C for 3-4 weeks, the 190 

bacterial colonies were counted. The comparison of lung inflamed area and CFU data 191 

obtained were analysed using One-way ANOVA statistical test followed by Tukey’s test for 192 

multiple comparison tests to compare mean values of the various experimental groups. 193 

GraphPad Prism 7.01 software was used for the statistical analysis. A P value equal or less 194 

than 0.05 was considered significant. 195 

 196 



 

2.5 Protection assay in guinea pigs 197 

Animals were individually identified using subcutaneously implanted microchips (Plexx, the 198 

Netherlands) to enable blinding of the analyses wherever possible. Group sizes were 199 

determined by statistical power calculations (Minitab, version 16) performed using previous 200 

data (SD, approximately 0.5) to reliably detect a difference of 1.0 log10 in the mean number 201 

of colony-forming units (CFU) per millilitre. Groups of eight female Dunkin-Hartley guinea-202 

pigs (250 g) were s.c. vaccinated with saline, BCG Danish 1331 (5x104 CFU in 250 µl), or the 203 

GC1237 Rv1503c::TnphoPR  vaccine candidate (5x106 CFU in 100 µl). Six weeks after, 204 

animals were aerosol-challenged with a low dose (10–50 CFU/animal) of M. tuberculosis 205 

H37Rv, generated from a suspension at 3x106 CFU/mL using a modified Henderson 206 

apparatus and AeroMP control unit. Four weeks post-challenge, animals were euthanized by 207 

intraperitoneal injection of sodium pentobarbital (Dolethal, Vetoquinol UK Ltd) and lungs 208 

and spleen were removed aseptically. The spleen minus a small apical section and the 209 

combined left apical, cardiac, right cardiac and right diaphragmatic lung lobes were 210 

homogenized in 5 and 10 mL sterile water, respectively. Serial dilutions were plated (0.1 mL 211 

per plate, in duplicate) on Middlebrook 7H11 selective agar (bioMerieux UK Ltd). After 3–4 212 

weeks incubation at 37 °C, colonies were counted to measure CFU/mL of homogenate. Total 213 

CFU was calculated by multiplying CFU/mL by the homogenate volume. Where no colonies 214 

were observed, a minimum detection limit was set by assigning a count of 0.5 colonies, 215 

equating to 5 CFU/mL. Samples for histopathology were processed and analysed as 216 

described [40]. Pair-wise analysis of the log transformed CFU values was performed using 217 

the Mann-Whitney non-parametric test to compare between the groups. The histopathology 218 

scores for the lung were the product of a subjective scoring system [40]. Therefore, 219 



 

statistical analysis was not performed on these data, but a two-sample t-test was used to 220 

compare the number of lesions in the spleen. 221 

2.6 Immunogenicity assays in mice 222 

In order to evaluate immunogenicity of GC1237 Rv1503c::TnphoPR mutant, C57BL/6 mice 223 

were vaccinated with  BCG or GC1237 Rv1503c::TnphoPR mutant subcutaneously (1 x 106  224 

CFU/mouse). Nine weeks after vaccination, non-vaccinated, BCG- or GC1237 225 

Rv1503c::TnphoPR mutant-vaccinated groups were sacrificed for analysis. The lungs and 226 

spleens were removed and used for the preparation of single-cell suspensions. Lung cell and 227 

splenocyte were treated with 2 g/ml PPD for 12 h, and the level of IFN-γ secreted from the 228 

lung and spleen cells were measured with ELISA. For the analysis of functional CD4+ and 229 

CD8+ T cells secreting IFN-γ, TNF-α and IL-2 , individual lung and spleen cells were prepared 230 

and cultured with stimulation of with 2 µg/ml PPD for 12 h in the presence of GolgiPlug and 231 

GolgiStop (BD, Bioscience). First, the cells were washed with PBS, and the Fc receptor was 232 

blocked with anti-CD16/32 blocking antibody at 4°C for 15 min. Surface molecules were 233 

stained with fluorochrome-conjugated antibodies against Thy1.2, CD4, CD8 and CD44 and 234 

using the LIVE/DEADTM Fixable Dead Cell Kit for 30 min at 4°C. The cells were then washed 235 

with PBS, fixed and permeabilized with Cytofix/Cytoperm (BD Biosciences) for 30 min at 236 

4°C. The permeabilized cells were washed twice with Perm/Wash (BD Biosciences) and 237 

stained anti-IFN-γ  anti-TNF-α and anti-IL-2 Abs for 30 min at 4°C. Cells were washed 238 

twice with Perm/Wash and fixed with IC fixation buffer (eBioscience) for flow cytometry 239 

analysis. 240 

 241 

 242 

  243 



 

3. Results and Discussion 244 

We previously isolated several M. tuberculosis mutants defective for phagosomal 245 

maturation arrest and intracellular survival in macrophages [36]. These mutants were 246 

generated in a M. tuberculosis strain, GC1237, that belongs to the East-Asian/Beijing family 247 

(lineage 4), and which was responsible for TB outbreaks in the Canary Islands [41]. Two of 248 

these mutants, in Rv1503c and Rv1506c, were further characterized as defective in the 249 

biosynthesis of various surface glycolipids and were found attenuated in mice [36]. Based on 250 

these results, we sought to explore whether such mutants may represent promising live 251 

attenuated vaccine candidates for TB. 252 

We further explored the residual virulence of the Rv1503c-inactivated mutant in immune-253 

deficient SCID mice in two models: a mildly severe model of intranasal infection, and a more 254 

stringent model of intravenous infection. When given intranasally, the mutant was as safe as 255 

BCG over a 140-day period (Fig. 1A). However, the more stringent intravenous model 256 

revealed that this mutant retained significant virulence, with the infected animals starting to 257 

show signs of disease, as reflected by weight loss, and to die 40 days post-infection (Fig. 258 

1B,C). For this reason, we sought to further attenuate the Rv1503c-inactivated mutant 259 

through genetic deletion of the two-component system PhoPR, which regulates a  large 260 

number of virulence genes in M. tuberculosis [37, 42]. The double mutant was found as safe 261 

as BCG in the stringent intravenous model (Fig. 1D,E). 262 

Next, the protective efficacy of the Rv1503c/phoPR double mutant against M. tuberculosis 263 

laboratory strain H37Rv (lineage 2) was assessed in two mouse lines and in guinea pigs. In 264 

CB6F1 mice, a cross between BALB/c and C57BL/6 mice, the mutant was as protective as 265 

BCG (Fig 2A,B). We also used C3H/HeNRj mice, which were recently showed to exhibit better 266 

protection against M. tuberculosis than BALB/c or C57BL/6 animals when vaccinated with 267 



 

the live M. tuberculosis-derived vaccine MTBVAC [43]. In these mice, protection was 268 

observed with both BCG and the double Rv1503c/phoPR mutant (with P values of 0.09 and 269 

0.07, respectively), however the double mutant protected equally to BCG against H37Rv (Fig 270 

2C). Similar results were obtained in guinea pigs, a widely used animal model to evaluate 271 

protective efficacy of live and subunit TB vaccine candidates. In this model, the 272 

Rv1503c/phoPR double mutant protected equally to BCG against M. tuberculosis H37Rv (Fig. 273 

3). Altogether, these results indicate that the Rv1503c/phoPR double mutant is as protective 274 

as BCG against M. tuberculosis H37Rv in small rodent animal models. 275 

The H37Rv strain belongs to the Euro-American lineage (lineage 4) of M. tuberculosis. 276 

Because our vaccine candidate was generated in a Beijing background, we next sought to 277 

assess whether it could confer better protection than BCG against M. tuberculosis strains of 278 

this lineage. Indeed, BCG is was reported to poorly protect against M. tuberculosis Beijing in 279 

several animal models [32, 33], and it has been suggested that the same might happen in 280 

humans, which may explain, at least in part, the global spread of this lineage worldwide [30, 281 

31]. 282 

C57BL/6J mice were immunized with either saline, BCG or the Rv1503c/phoPR double 283 

mutant. Pre-infection immunogenicity analysis revealed that the double mutant induced an 284 

increased production of IFN, compared to BCG, in the lungs and spleen (Fig. 4A). The 285 

mutant also induced more TNF-producing effector CD4+ T cells in the lungs, and more 286 

multi-functional effector CD4+ T cells in the spleen, compared to BCG (Fig. 4B). More TNF-287 

producing CD8+ T cells were also observed in the spleen of mice vaccinated with the double 288 

mutant, compared to BCG (Fig. 4B). 289 

Nine weeks after vaccination, vaccinated mice were challenged with M. tuberculosis M2, a 290 

strain of the Euro-American lineage 4, or HN878, a Beijing strain of the East-Asian linage 4. 291 



 

Six weeks later, lungs and spleen were recovered for CFU and histo-pathological analyses. As 292 

previously reported [44], BCG did not confer significant protection against the Beijing strain 293 

of M. tuberculosis (Fig. 5A). Remarkably, the GC1237 Rv1503c/phoPR double mutant 294 

conferred significant long-term (15 weeks post-vaccination) protection to both the M2 and 295 

the HN878 strains (Fig. 5A). As previously reported [45], lung cells from mice infected with 296 

the HN878 Beijing strain produced less IFN than lung cells from mice infected with the non-297 

Beijing strain, when restimulated ex vivo with PPD (Fig. 5B). Nevertheless, increased 298 

protection against HN878 conferred by the Rv1503c/phoPR double mutant was 299 

accompanied by an increased production of IFN by lung cells from the mutant-vaccinated 300 

mice, compared to unvaccinated mice (P=0.0015) or to BCG-vaccinated mice (P=0.09; Fig. 301 

5B). In line with bacterial growth control results, Rv1503c/phoPR double mutant vaccination 302 

resulted in slightly better restoration of inflamed lesion than BCG vaccination in HN878 303 

infected mice, but BCG vaccination displayed more mitigated lung lesion than 304 

Rv1503c/phoPR double mutant vaccination in M2 infected mice compared to non-305 

vaccinated animals (Fig. 5C,D).  306 

 307 

4. Conclusion 308 

To our knowledge our report is the first to date of a live attenuated M. tuberculosis-derived 309 

vaccine candidate generated in a Beijing/lineage 2 background.  310 

Although this vaccine confers equal protection to BCG against M. tuberculosis H37Rv and M2 311 

strains, which both belong to lineage 4, in mice and guinea pigs, it confers protection against 312 

HN878, a Beijing strain, while BCG does not, at least in mice. This may be explained, in part, 313 

by differential antigen expression in M. tuberculosis Beijing and non-Beijing strains, such as 314 

that reported in the DosR regulon [46, 47], which will require further investigation. These 315 



 

results suggest that combining live attenuated TB vaccines generated in multiple genetic 316 

backgrounds might be a promising approach to develop a multivalent vaccine with broader 317 

efficacy against all M. tuberculosis strains, including the Beijing family that is particularly 318 

dominant in Eastern Europe and South-East Asia. 319 
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Legends to figures 469 

Figure 1. Safety of the vaccine candidates. (A) SCID mice (n=5 per group) were infected 470 

intranasally with 1,000 CFUs of BCG (Pasteur), 500 CFUs of the single mutant Rv1503c::Tn 471 

[36], or 500 CFUs of the GC1237 parental strain.  Mice were killed when reaching the 472 

humane endpoint, defined as the loss of >20% of bodyweight in accordance with ethics 473 

committee guidelines. The median survival time was of 62 days for mice infected with 474 

GC1237. (B,C) SCID mice (n=8 per group) were infected intravenously with saline, 106 CFUs 475 

of BCG Danish (1331) or 106CFUs of the single mutant Rv1503c::Tn.  Mice were killed (B) 476 

when reaching the humane endpoint, defined as the loss of >20% of bodyweight (C), in 477 

accordance with ethics committee guidelines. The median survival time was of 42 days for 478 

mice infected with GC1237 Rv1503c::Tn. (D,E) SCID mice (n=8 per group) were infected 479 

intravenously with 3x105 CFUs of BCG Danish (1331) or 7x105 CFU of the double mutant 480 

Rv1503c::TnphoPR.  Mice were killed (D) when reaching the humane endpoint, defined as 481 

the loss of >20% of bodyweight (E), in accordance with ethics committee guidelines. The 482 

median survival time was of 79 days for mice infected with BCG, and of 79.5 days for mice 483 

infected with GC1237 Rv1503c::TnphoPR. **, P<0.01; ***, P<0.001; ****, P<0.0001. 484 

 485 

Figure 2. Efficacy studies in mice against M. tuberculosis H37Rv infection. (A,B) CB6F1 mice 486 

(n=6 per group) were vaccinated subcutaneously with 1.3x106 CFU BCG Danish (1331) or 487 

7x106 CFU the GC1237 Rv1503c::TnphoPR strain. Control mice received saline. Six weeks 488 

after vaccination, mice were subjected to an aerosol challenge with M. tuberculosis H37Rv 489 

aiming for an infective dose level of 100 CFU/mouse. Lungs (A) and spleens (B) from infected 490 

mice infected were harvested 6 weeks after challenge and homogenates were prepared 491 

prior to plating onto 7H11 medium for CFU scoring. (C) C3H/HeNRj mice (n=6 per group) 492 



 

were vaccinated subcutaneously with 106 CFU BCG Danish (1331) in PBS (100uL) or 106 CFU 493 

the GC1237 Rv1503c::TnphoPR strain. Control mice received saline. Eight weeks after 494 

vaccination, mice were subjected to intranasal challenge with M. tuberculosis H37Rv aiming 495 

for an infective dose level of 200 CFU/mouse. Lungs from infected mice were harvested 4 496 

weeks after challenge and homogenates were prepared prior to plating onto 7H11 medium 497 

for CFU scoring. Data show mean and S.E.M. 498 

 499 

Figure 3. Efficacy studies in guinea pigs against M. tuberculosis H37Rv infection. (A, B) 500 

Dunkin Hartley guinea pigs (n=8 per group) were vaccinated subcutaneously with 5x104 CFU 501 

BCG Danish (1331) or 5x106 CFU GC1237 Rv1503c::TnphoPR strain. Control guinea pigs 502 

received saline. 16 weeks after vaccination, guinea pigs were subjected to a nose-only 503 

aerosol challenge with M. tuberculosis H37Rv aiming for an infective dose level of 10-20 504 

CFU/animal. Lungs (A and B left) and spleens (A and B right) from infected guinea pigs 505 

infected were harvested 4 weeks after challenge. Homogenates were prepared from lung 506 

and spleen prior to plating onto Middlebrook 7H11 agar medium for CFU scoring (A, left and 507 

right, respectively). Lung and spleen sections from the same animals were also taken for 508 

histological examination (B, left and right respectively)). Data show mean and S.E.M. ns, not 509 

significant; *, P<0.05; **, P<0.01. 510 

 511 

Figure 4. Immunogenicity studies in mice. C57BL/6 mice (n=6 per group) were vaccinated 512 

subcutaneously with 106 CFU BCG Pasteur (1173P2) or 106 CFU of the GC1237 513 

Rv1503c::TnphoPR mutant. Control mice received saline. Nine weeks after vaccination, 514 

lungs and spleen were harvested for immunogenicity study. (A) Lung and spleen cells were 515 



 

stimulated with PPD (2 g/mL) at 37°C for 12 h. IFN production was quantified by ELISA in 516 

the cell culture supernatant. (B) Lung (upper panels) and spleen (lower panels) cells were 517 

stimulated with PPD (2 g/mL) at 37°C for 12 hours in the presence of GolgiStop and 518 

GolgiPlug and stained for FACS analysis. The frequency of IFN-, TNF- and IL-2-producing 519 

CD4+CD44+ (left panels) or CD8+CD44+ (right panels) T cells was determined by intracellular 520 

cytokine staining. Data show mean and S.E.M. *, P<0.05; **, P<0.01; ***, P<0.001. 521 

 522 

Figure 5. Efficacy and immunogenicity studies in mice infected with M. tuberculosis M2 523 

and HN878. Mice were vaccinated as in Fig. 4. Nine weeks after vaccination, mice were 524 

subjected to an aerosol challenge with M. tuberculosis M2 or HN878 aiming for an infective 525 

dose level of 200 CFU/mouse. Six weeks after challenge, mice were sacrificed and lungs were 526 

collected for analysis. (A) Lungs were homogenized and plated onto 7H11 medium for CFU 527 

scoring. (B) IFN production by isolated lung cells was performed as in Fig. 4A. (C) The lung 528 

lesions were visualized by H&E staining of the superior lobe of the right lung. The percentage 529 

and area (mm2) of inflamed area was calculated and shown in dot graphs (D). Data show 530 

mean and S.E.M. **, P<0.01; ***, P<0.001. 531 
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