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1 ABSTRACT

2 A facile method for fabricating intelligent microwave absorber of vapor grown carbon 

3 fibers/Polydimethylsiloxane–epoxy resin shape memory composites (VGCFs/PDMS–SMEP) 

4 composites was proposed to deliver intelligently tunable and broadband microwave 

5 absorption performance. The maximal absorption intensity was regulated by varying the 

6 deformation of the composites driven by the superior shape memory property of SMEP, 

7 where practical the minimum reflection loss (RLmin) reaches -55.7 dB at 16.0 GHz with the 

8 thickness of 2.0 mm. The effective absorption bandwidth (EAB) reached 9.8 GHz, which 

9 covered the whole applied frequency range (8.2–18.0 GHz). The intelligent microwave 

10 absorption performance of the sample was attributed to robust conductive loss and dielectric 

11 loss enhanced by the dipole relaxations and multi-reflections. Thus, VGCFs/PDMS–SMEP 

12 composites serves as the key that really opens up opportunity for the application as flexible, 

13 shape memory and tunable high performance broadband microwave absorption absorber in 

14 frontiers such as wearable electronic devices, chips protection, stealth technology and 

15 information security. 

16

17 Keywords: Tunable microwave absorption, frequency regulation, shape memory, wearable 

18 microwave absorber, VGCFs/PDMS. 



3

1 1. Introduction

2 With the significant advance in recent development of portable electronic devices, high–

3 performance microwave absorption materials (MAMs) [1,2] with broadband and tunable 

4 microwave absorption (MA) capabilities is highly demanded to address the challenges such 

5 as to protect electronic devices and absorb adverse electromagnetic waves [3,4]. The 

6 conventional microwave absorption strategy is to apply solid powdered absorbers, i.e. ferrites, 

7 ceramics, carbon materials and their hybrids as coatings or fillers into matrices to fulfill the 

8 microwave absorption functions [5,6], which is normally fixed on certain microwave 

9 broadband and less adaptive to respond to the changes of microwave direction due to 

10 structural limitation (coating thickness) of absorber [7]. 

11 To address above challenges, some attempts have been made to achieve tunable MA 

12 performance by chemically or physically adjusting electromagnetic parameters [8], realigning 

13 the absorbers to improve impedance matching characteristic [9], changing the moisture 

14 content [10] and controlling the thickness of absorbing layer to broaden the effective 

15 absorption bandwidth (EAB) [11], etc. However, these practices haven’t resolved the 

16 drawbacks, such as non-adaptivity for smart MA, low integrability to scale-up production, 

17 and poor stability, therefore, microwave absorbing technology with tunable and broadband 

18 MA performance remains yet to be fully explored [12]. 

19 Shape memory polymer (SMP) can be activated by various external stimuli, such as 

20 thermal, electric, light, and pH, etc [13–16], where structure geometry can be tuned and 

21 programmed via designing a shape recovery performance [17]. Comparing with the 

22 conventional absorbers with fixed loading ratio, extra controllability can be achieved by this 
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1 autonomous recovery feature of SMP to regulate the MA performance [4]. Such continuous 

2 shape deformation ability of SMP endows its’ geometrical effect, which facilitate SMP to be 

3 used as intelligent MAMs to respond to electromagnetic waves with diverse frequencies. To 

4 date, the efforts to enable microwave absorber with tunable MA properties by using SMPs, 

5 haven’t reported elsewhere. 

6 Herein, we fabricated a VGCFs/PDMS–SMEP composites structure consisting of 

7 broadband and tunable high microwave absorbing performance. Empowered by shape 

8 memory effect, the VGCFs/PDMS–SMEP composites exhibits state-of-the-art tunable MA 

9 ability. The maximal absorption capability was well–regulated by programming the 

10 deformation of composites under thermal stimuli, where we achieve a broad EAB covering 

11 the whole testing frequency range of 9.8 GHz (8.2–18 GHz). We anticipate this shape 

12 recovery based autonomous microwave absorption structure to find future applications in 

13 wearable devices, chips protection, and information security.

14 2. Experimental section

15 2.1. Materials: 

16 Commercially available water-borne epoxy resin (WEP, AB–EP20 emulsion, 50% solid 

17 content) and amine based waterborne curing agent (AB-HGF) were purchased from Zhejiang 

18 An bang New Material Development Co., Ltd, China. Vapor grown carbon fiber (VGCF, 

19 Showa Denko K.K., Japan) was fabricated by thermo-chemical vapor deposition. 

20 Polydimethylsiloxane (PDMS) was obtained from Shenzhen Hongyejie Technology Co. Ltd. 

21 Ultra-pure water were obtained from commercial sources. All reagents were used as obtained 

22 without further purification. 
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1 2.2. Fabrication of shape memory epoxy sheet:

2 Shape memory epoxy sheet (SMEP) was fabricated based on our previous reported work 

3 [16]. Briefly, water-borne epoxy resin and amine based waterborne curing agent were mixed 

4 to homogeneity at room temperature under vigorously stirring, where the weight ratio of 

5 WEP to curing agent was 4:1. Then, the above mixture was frozen in liquid nitrogen, and 

6 subsequently dried in a Labconco Free Zone freeze-drier operated at 0.1 mbar and –15°C for 

7 two weeks. Finally, the resulting compound powder was compressed into sheet (25 cm*18 

8 cm length by width) at 120°C under a pressure of 10 MPa for 2 h. The resulting shape 

9 memory epoxy sheet was obtained with the thickness approximately 0.5 mm.

10 2.3. Fabrication of VGCFs/PDMS–EP shape memory composites:

11 Different weight of VGCFs (2 g, 4 g, and 6 g) was added to 40 g liquid PDMS with 

12 continuously stirring for 30 min to uniformly dispersed, respectively. The mixture was 

13 poured into a 260*190*2 mm mold (L*W*H), then the as-prepared SMEP was immersed into 

14 the liquid VGCFs/PDMS mixture. Finally, VGCFs/PDMS-EP shape memory composites 

15 were obtained after curing 6 h under a pressure of 5 MPa at room temperature.

16 2.4. Thermal mechanical cycle test:

17 A thermo-mechanical analyzer (TMA, TA Instruments Q400) was used to measure the 

18 shape memory properties of VGCFs/PDMS–EP shape memory composites under dynamic 

19 DMA mode. The sample was stretched with an increasing stress from 0 to 0.3 MPa at 80°C (> 

20 Tg). Then, it was stretched isothermally with a constant force of 0.3 MPa for 5 min. The 

21 sample was subsequently cooled down to 20°C (< Tg) to fix the temporary shape with the 

22 external force, after which the load was released at 20°C (the loading and unloading speed 
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1 was 0.1 MPa/min). Then, the samples were heated from 20°C to 80°C without load and held 

2 for 10 min, resulting in the recovery of the samples’ strain. A residual strain would remain 

3 when this cycle was finished. The heating or cooling speed was 10 °C/min.

4 2.5. Practical microwave absorption performance from arch method measurement:

5 In the measurement of practical performance, the as–fabricated artificial sandwich 

6 structures (250 × 180 mm2 in planar size) were placed on the holder of the arch setup. In the 

7 investigation region from 8.2 to 18 GHz, the setup was performed on VNA (N5222A, 

8 Keysight). 

9 2.6. Waveguide measurement for complex permittivity:

10 VGCFs/PDMS–EP shape memory composite was cut into 10×20 mm, and the 

11 electromagnetic parameters were measured by VNA measurement working in the frequency 

12 range of 8.2–12.4 GHz. 

13 2.7. Characterization

14 The morphology of samples was observed by scanning electron microcopy (FE–SEM, 

15 Ultra55, Zeiss, Germany). Fourier transform infrared spectoscopy (FT–IR) is recorded on a 

16 Nicolet 5700 FT–IR spectrometer. The crystal structure was characterized by X–ray 

17 diffraction (Bruker AXS D8-Discover, Cu–Kα radiation). The shape memory performance of 

18 the composite was conveniently measured by thermal–mechanical cycle tests conducted on 

19 the TMA Q400 (TA Instruments), and tensile mechanical property was measured by Instron 

20 3367 tensile test instrument (USA) at 25±1°С room.

21
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1 3. Results and discussion

2 3.1. Structures of VGCFs/PDMS–SMEP composites

3 The preparation of VGCFs/PDMS–SMEP composite structure is illustrated in Fig. 1a. 

4 SMEP was firstly obtained by frozen drying and thermal compression method with the length 

5 by width of 25 cm*18 cm. Different amount of VGCFs (microwave absorb component [18]) 

6 were added into liquid PDMS for mixing and poured into casting mold to form 

7 VGCFs/PDMS–SMEP composite. The cross-section FE–SEM images in Fig. S2 identify an 

8 uniform distribution of VGCFs in PDMS at a loading ratio of 10 wt%. For pristine PDMS, 

9 the cross section view shows wrinkled structure (Fig. 1b, c). However, the wrinkled surface 

10 turned into smooth after hybridized with VGCFs (Fig. 1d, e), indicating the formation of 

11 dense structure [16]. 

12 The XRD pattern of PDMS–SMEP spike four weak peaks at 38°, 44.2°, 64.6°, and 77.8°, 

13 representing the low crystallization of silicon rubber [19,20]. For VGCFs/PDMS-SMEP 

14 composites, the structure of PDMS was well-maintained, with an new peak at 27° emerged to 

15 show the intrinsic ordered crystal structure of VGCFs [21]. FT–IR spectrum (Fig. 1g) 

16 suggested peaks at 1080 cm-1 and 1016 cm-1 for Si–O–Si asymmetrical stretching vibration, 

17 peaks at 1259 cm-1 and 793 cm-1 for the stretching vibration of Si–CH3 and the blending of 

18 C–H in the chain segments of PDMS [22].
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1

2 Fig. 1. (a) Schematically illustration of synthesis process and cross section polarizing 

3 microscope image of VGCFs/PDMS–SMEP composite. Cross section FE–SEM images of 

4 PDMS (b) low resolution and (c) high resolution, VGCFs/PDMS (d) low resolution and (e) 

5 high resolution, respectively. (f) XRD patterns, and (g) FT–IR spectra of as–fabricated 

6 samples. 

7 3.2. Shape memory effects of VGCF/PDMS–SMEP composites

8 Shape memory performance of VGCF/PDMS–SMEP composites can be evaluated by the 

9 shape fixity ratios (Rf, the capacity to maintain the temporary shape) and shape recovery 

10 ratios (Rr, the capacity to recover the initial shape), which can be expressed by the following 

11 equations [23]:
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1 Where εf0, εm, εf and εr are the strain of original, maximum elongated, fixing, and recovery, 

2 respectively. In the first cycle, the shape recovery ratio of composites is 95.0%. Interestingly, 

3 the shape recovery ratios of the composites rises to more than 99.0% after the second cycle 

4 (Fig. 2) [24]. The superior shape memory performance endorse the composites with 

5 reversible deformation and maintain a permanent shape, which is potential to be used as an 

6 intelligent microwave absorber. 

7

8 Fig. 2. Thermal mechanical cycles of VGCFs/PDMS–SMEP composites.

9 The shape recovery testing of VGCFs/PDMS–SMEP composites is performed at 80°С (Fig. 

10 3a), benefited from the excellent shape memory property, the sample can be recovered from a 

11 large bending deformation after being endowed with a temporary shape under thermal stimuli 

12 [25]. Furthermore, the shape fixity and recovery ratios of the sample are also calculated as the 

13 following equations [26]: 

14
1180

180fR 


              (3)

15 2 1

1180rR  





               (4)

16 Where θ1 and θ2 are degree of fixing and recovery, respectively, which are illustrated in Fig. 

17 3b. Both fixity and recovery of VGCFs/PDMS–SMEP show the obvious increase trend with 
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1 the cycles. The shape fixity and recovery ratio are maintained at 97% and 87% after several 

2 repeatedly deformation, respectively, which are lower than the calculated values from TMA 

3 instruments. This phenomenon is attributed to the large scale sandwich-like structure, where 

4 the thick elastic PDMS layer force SMEP back to initial state and decrease θ1 values, thus 

5 diminishing the shape fixity and recovery ratio of SMEP [16].

6

7 Fig. 3. (a) Shape memory behavior of VGCFs/PDMS–SMEP composites at 80°С. (b) 

8 Calculated fixity and recovery of VGCFs/PDMS–SMEP composites. 

9 3.3. Microwave absorption properties of VGCFs/PDMS–SMEP composites

10 The measured real part (ε') and imaginary part (ε'') of complex permittivity εr (εr=ε'–jε''), 

11 are determined for as–prepared samples in the frequency range of 8.2–12.4 GHz, where the ε' 

12 and ε'' represent the storage and loss of electric energy, respectively (Fig. 4a, b) [27]. For the 

13 VGCFs/PDMS–SMEP composites, the values of ε', ε'', and tanδε are increased with the 

14 addition of VGCFs. Whereas to the as–prepared samples, the values of real part (μ') and 

15 imaginary part (μ'') of complex permeability μr (μr=μ'–jμ'') are maintained at 1.0 and 0.0, 

16 respectively (Fig. S3), indicating that the MA of samples is mainly dependent on dielectric 
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1 loss [28]. In addition, it is found that several resonance peaks exist in the dielectric loss 

2 curves of VGCFs/PDMS–SMEP composites, implying the raise of multiple relaxation 

3 processes. Based on the Debye relaxation theory, the relaxation process can be analyzed by 

4 Cole–Cole semicircle (Fig. 4d–f), which is calculated by the following equations [6]: 

5 r
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8 Where f, τ0, εs and ε∞ are the frequency, relaxation time, static dielectric constant and 

9 dielectric constant at infinite frequency, respectively. Equation (2) and (3) were deduced from 

10 equation (1) and the relationship between ε' and ε" was further deduced from equation (2) and 

11 (3), which are given below:

12 ( ) ( ) ( )2 2 2s s' ''
2 2

      
  

       (8)

13 From equation (8), the curves of ε' and ε″ form single semicircle, each of which contributes to 

14 one Debye relaxation process. In Fig. 4d and e, PDMS–SMEP and VGCFs/PDMS possess 

15 similar curves variation trend, which simultaneously immersed several Debye–like relaxation 

16 processes. Moreover, VGCFs/PDMS–SMEP composites displayed more regular Cole–Cole 

17 semicircles, revealing the presence of more Debye polarization relaxation processes (Fig. 4f), 

18 which coincided with the results of dielectric loss in Fig. 4c. Hence, the addition of VGCFs 

19 and construction of sandwich–like structure of the composites enhanced dielectric loss in the 

20 form of multiple relaxation processes [11].
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1

2 Fig. 4. (a) Real part and (b) imaginary part of complex permittivity and (c) dielectric loss of 

3 samples, typical Cole-Cole semicircle of (d) PDMS-SMEP, (e) VGCFs/PDMS and (f) 

4 VGCFs/PDMS-SMEP (filler loading of 10 wt% with VGCFs). 

5 Microwave absorption property represented by reflection loss (RL) could be calculated 

6 based on the above measured electromagnetic parameters using the following equations. 

7
120log
1

in

in

ZRL
Z




                     (9)

8 The normalized input impedance (Zin) is calculated by the equation:

9
2tanhr

in r r
r

fdZ j
c

   

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10 Where, f is the frequency of incident wave and d is the thickness of the absorber; c is the 

11 velocity of light electromagnetic waves in free space. 

12 In Fig. 5a, the MA property of composites reaches –48.3 dB at 12.0 GHz with the 

13 thickness of 7.2 mm. In addition, VGCFs/PDMS exhibits enhanced MA performance with 

14 the RLmin values of –27.5 dB at 11.3 GHz, revealing that the addition of VGCFs in PDMS 

15 plays a salient role in enhancement in dielectric loss and MA properties of the composites 

16 [29]. It should be pointed out that wave–transparent SMEP was hybridized with 
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1 VGCFs/PDMS, thus forming sandwich–like absorption structure, inside which the incident 

2 microwave can be efficiently consumed in form of multiple reflections [4]. Impedance 

3 matching ratios Z (|Zin/Z0|) of specimens are calculated and shown in Fig. 5b. It is clear that 

4 the RL peak of VGCFs/PDMS–SMEP composites is in good accordance with the peak of 

5 impedance matching ratio curve, which is comparatively stable and closer to 1. These results 

6 implying that microwaves favorably propagate into the composites instead of being reflected, 

7 thus resulting in enhanced MA properties.

8

9 Fig. 5. (a) Calculated reflection loss values, (b) impedance matching ratio of PDMS-SMEP, 

10 VGCFs/PDMS, and VGCFs/PDMS-SMEP at the thickness of 7.2 mm (filler loading of 10 wt% 

11 of VGCFs).

12 The assessment of practical MA abilities of VGCFs/PDMS–SMEP composites are 

13 performed and illustrated in Fig. 6. As shown in Fig. 4a and b, the RLmin of the composites 

14 with flat deformation reaches –23.5 dB (12.1 GHz) at the thickness of 2.0 mm at the incident 
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1 wave angle of 10°. Whereas, the RLmin values are decreased with the incident wave angle 

2 increase. Furthermore, comparing with flat deformation, it is worth noting that the RLmin 

3 values of arch–like–deformed composites are obviously increased with the increased incident 

4 microwave angle (Fig. 6d–f). For the incident microwave angle of 80°, the composites 

5 possess multiple band microwave absorption properties with the RLmin values of –34.0 dB, –

6 37.4 dB, and –42.7 dB at 8.8 GHz, 13.1 GHz, and 16.2 GHz, respectively. In addition, after 

7 propelling the composites toward irregular deformation, the robust microwave absorption 

8 abilities of the composites are significantly boosted to –39.0 dB, –40.4 dB, and –55.7 dB at 

9 8.6 GHz, 12.9 GHz, and 16.0 GHz, respectively, where the absorption peaks slightly shifted 

10 0.2 GHz to the low frequency (Fig. 6g–i). Hence, VGCFs/PDMS–SMEP composites with 

11 different deformations have potential to be used in precious devices, where flexible and shape 

12 diversity are requested. 

13

14 Fig. 6. (a, b) RL curves, (c) schematically illustration of measurement mechanism for 
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1 VGCFs/PDMS–SMEP composites with flat deformation under varying measurement angles 

2 (from 10 to 80°). (d, e) RL curves, (f) measurement mechanism of VGCFs/PDMS–SMEP 

3 composites with arch-like deformation under varying measurement angles. (g, h) RL curves, 

4 (i) measurement mechanism of VGCFs/PDMS–SMEP composites with irregular deformation 

5 under varying measurement angles. 

6 Based on the aforementioned results, the MA ability of VGCFs/PDMS–SMEP composites 

7 is enhanced after propelling the composites toward irregular deformation. For further 

8 analyzing the deformation effect of SMEP on MA properties, the VGCFs/PDMS–SMEP 

9 composites is deformed in regular shape with the bending angle from 120° to 60°. As shown 

10 in Fig. 7a, and b, the incident microwave angle was set as 10° to evaluate the practical MA 

11 performance of different deformed VGCFs/PDMS–SMEP composites. The as–fabricated 

12 composites maintain an EAB larger than 9.7 GHz (8.3–18.0 GHz) when the bending angle at 

13 60°. Moreover, the EAB is regularly decreased with the increase of bending angles. 

14 Meanwhile, when the incident wave angle is fixed as 30° (Fig. 7d–f), it is observed that the 

15 composites hold the adjustable MA intensity, where the RLmin peaks are regularly shafted by 

16 controlling bending angle from 60° to 120°. The RLmin value reaches –28.1 dB at 12.0 GHz 

17 with the bending angle of 120°. Broadband MA performance is clearly observed with the 

18 EAB covered the frequency range of 9.8 GHz (8.2–18.0 GHz). Thus, owning to the effective 

19 dielectric loss property and sandwich–like structure, as–prepared composites possess 

20 sustainable broadband MA ability. More importantly, the MA intensity can be intelligently 

21 regulated via controlling the different permanent deformation of VGCFs/PDMS–SMEP 

22 composites, resulted from the superior shape memory capability of SMEP [2,30]. Hence, 
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1 according to the frequency of incident electromagnetic waves, the VGCFs/PDMS–SMEP 

2 composites can be utilized as intelligent MAMs to absorb the adverse and complex 

3 electromagnetic waves radiation by programming the deformation of composites under 

4 thermal stimuli. 

5

6 Fig. 7. (a, b) RL curves, (c) schematically illustration of measurement mechanism for 

7 VGCFs/PDMS–SMEP composites with varying bending deformation at incident microwave 

8 angle of 10°. (d, e) RL curves, (f) measurement mechanism for VGCFs/PDMS–SMEP 

9 composites with varying bending deformation at incident microwave angle of 30°.

10 Based on the above analysis, a probable microwave absorption mechanism is proposed in 

11 Fig. 8. Owing to the addition of VGCFs, VGCFs/PDMS–SMEP composites possess 

12 enhanced conductivity loss, dielectric loss and impedance matching performance, which 

13 result in the enhanced microwave absorption performance. For dielectric loss, it can be 

14 deeply analyzed by electronic transport modes existed in VGCFs/PDMS composites, 

15 involving the migration and hopping of electrons [6]. The migrating electrons endow the 

16 VGCFs/PDMS–SMEP composites with high conductivity, coupling with enhancing the 

17 dipole polarization between VGCFs. The hopping electrons could enhance the micro-current 
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1 in the VGCFs network, which provides excellent dielectric loss. In addition, the non-

2 conductive network of VGCFs lead to the formation of capacitor-like structures at the 

3 interfaces between VGCFs and PDMS matrix. The capacitor-like structures performed as 

4 conductivity loss may attenuate the intensity of incident microwaves [12]. Moreover, the 

5 sandwich–like structure enabled by wave–transparent SMEP favors the multiple reflection of 

6 incident microwave. Finally, the incident microwave can be efficiently absorbed and 

7 converted into thermal or other forms of energy [27].

8

9 Fig. 8. Possible microwave absorption mechanism of VGCFs/PDMS–SMEP composites.

10 Based on above analysis, VGCFs/PDMS–SMEP composites is expected to be used as 

11 functional building materials for practical applications, where shape memory, intelligent 

12 absorption frequency regulation, and multi–functional absorbers are required. As shown in 

13 Fig. S4, VGCFs/PDMS–SMEP composites shows the maximum tensile stress of 40.0 MPa at 

14 the strain of 13.8%. At mean time, the SMEP layer in the composites is fractured, resulting in 

15 interfaces separation and sharp decrease of tensile stress. With the continued stretching of 

16 VGCFs/PDMS, the composites is completely fractured at the maximum tensile strain of 

17 103%. Moreover, VGCFs/PDMS also possesses expected microwave absorption capabilities, 
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1 as well as superior mechanical property. VGCFs/PDMS composites can be simply stretched 

2 several times to its initial state, which the corresponding strain–stress curve is shown in Fig. 

3 S5. Due to the cross–linked networks of O–Si–O and the enhancement of VGCFs, 

4 VGCFs/PDMS own enough flexibility with maximum tensile strain of 640% at tensile stress 

5 of 1.8 MPa. Thus, VGCFs/PDMS is potential to design of “wearable” absorbers for 

6 equipment and human beings. Therefore, our fabricated composites are expected to be used 

7 as multi–functional absorbers in wearable electronic devices, chips protection, and stealth 

8 technology (Fig. 9) [31]. 

9

10 Fig. 9. Illustration of representative properties for the multi–functional broadband shape 

11 memory absorber.

12 4. Conclusion

13 In conclusion, we describe an intelligent microwave absorption technology using 

14 VGCFs/PDMS–SMEP as absorber. The VGCFs/PDMS–SMEP composites delivers smart 

15 tunable microwave absorption capability, where the RLmin peaks are regularly shafted by 
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1 morphing the composites deformation. The RLmin value reaches –55.7 dB at 16.0 GHz with 

2 the thickness of 2.0 mm under a manipulated irregular arch-like deformation. While, the EAB 

3 is also reaches 9.8 GHz, which covered whole applied microwave frequency (8.2–18.0 GHz). 

4 Such a smart microwave absorber is enabled by superior shape memory effect of SMEP, 

5 conductivity loss and dielectric loss properties of VGCFs/PDMS, and well–constructed 

6 sandwich–like structure. The dielectric loss performance of the composites is enhanced by 

7 the dipole relaxation in form of migration and hopping of electrons between VGCFs. 

8 Therefore, the VGCFs/PDMS–SMEP composites serves as the key that really opens up 

9 opportunity for the application in wearable devices, chips protection, and information 

10 security. 
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Fig. S1. Photographs of arch method measurement. 

Fig. S2. FE-SEM images of VGCFs/PDMS hybrids with VGCFs loading (a) 2 g (5 wt%), (b) 

4 g (10 wt%), and (c) 6g (15 wt%), scale bar is 2 μm. 

Fig. S3. (a) real part (μ') and (b) imaginary part (μ'') of complex permeability, and (c) 

magnetic loss values (μ''/μ') of PDMS-SMEP, VGCFs/PDMS and VGCFs/PDMS-SMEP. 
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Fig. S4. Strain-stress curve of VGCFs/PDMS-SMEP. 

Fig. S5. (a, b, and c) tensile process of VGCFs/PDMS with stretching velocity of 10 mm/min, 

(d) strain-stress curve of VGCFs/PDMS. 




