
Northumbria Research Link

Citation: Zhou, Yi, Yeoh, Phee Lep, Pan, Cunhua, Wang, Kezhi, Elkashlan, Maged, Wang, Zhongfeng, 
Vucetic, Branka and Li, Yonghui (2019) Offloading Optimization for Low-Latency Secure Mobile Edge 
Computing Systems. IEEE Wireless Communications Letters. ISSN 2162-2337 (In Press) 

Published by: IEEE

URL: https://doi.org/10.1109/LWC.2019.2959579 <https://doi.org/10.1109/LWC.2019.2959579>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/41922/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/286270354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


2162-2337 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2019.2959579, IEEE Wireless
Communications Letters

1

Offloading Optimization for Low-Latency Secure Mobile Edge
Computing Systems

Yi Zhou, Phee Lep Yeoh, Cunhua Pan, Kezhi Wang, Maged Elkashlan,
Zhongfeng Wang, Branka Vucetic, and Yonghui Li

Abstract—This paper proposes a low-latency secure mobile
edge computing (MEC) system where multiple users offload com-
puting tasks to a base station in the presence of an eavesdropper.
We jointly optimize the users’ transmit power, computing capac-
ity allocation, and user association to minimize the computing
and transmission latencies over all users subject to security
and computing resource constraints. Numerical results show
that our proposed algorithm outperforms baseline strategies.
Furthermore, we highlight a novel trade-off between the latency
and security of MEC systems.

I. INTRODUCTION

W ITH the imminent deployment of 5G networks, a wide-
range of advanced applications such as mobile gaming

and virtual reality are rapidly emerging [1], [2]. A major
challenge in realizing these computing-intensive immersive
applications is the low computing capability of user devices.
To alleviate computing capacity constraints and reduce latency,
mobile edge computing (MEC) has emerged as a promising
platform for users to offload computing tasks via high-speed
wireless links to nearby macro base stations (MBS) equipped
with high-capacity computing resources [3], [4]. In [5], the
offloading latency of a multi-user MEC system was minimized
by jointly optimizing the time slot and computing capacity.
In [6], an energy-minimization framework focused on the
computing capacity was developed for a two-tier MEC system.

Due to the open nature of wireless links, the security
performance is another important consideration in wireless
communication networks [7], [8]. To address this, physical
layer security (PLS) techniques have been proposed to protect
legitimate transmissions in MEC systems from being over-
heard by an eavesdropper. Recently in [9], the sum-energy
of the computing tasks was minimized subject to a secrecy
offloading rate and computation latency constraints.

In this paper, to achieve a low-latency secure MEC system,
we jointly optimizing the users’ transmit power, computing
capacity allocation, and user association where only a subset
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Fig. 1. System model.

of users offload to the MBS. We consider the users that are
not associated with the MBS can execute their tasks locally
with perfect security but may suffer from higher latency due
to their limited computing capacity compared with the MBS.
This results in a fundamental trade-off which is the main focus
of this paper. We summarize our contributions as follows:
• We formulate a latency minimization problem of an MEC

system by jointly optimizing the users’ transmit power,
computing capacity allocation, and user association sub-
ject to security and computing resource constraints.

• We design a low-complexity algorithm to solve this
optimization problem by applying the block coordinate
descent (BCD), successive convex approximation (SCA),
and branch-and-cut methods.

• We show that our proposed algorithm outperforms base-
line strategies and highlight a fundamental trade-off be-
tween latency and security via numerical results.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, we formulate
the optimization problem and propose an algorithm to solve
it. Section VI shows the simulation results and Section V
concludes the paper.

II. SYSTEM MODEL

We consider an MEC system with N users, one MBS and
one eavesdropper, where the set of users is defined as N .
We consider the users can either process their tasks locally
or offload their tasks via uplink channels to the MBS in
the presence of an eavesdropper. To satisfy a given security
constraint, we assume that the non-offloading users transmit
jamming signals to interfere the eavesdropper.

A. Communication Model

Define ai = {0, 1}, i ∈ N as the offloading user association
variable where ai = 1 when the i-th user offloads its
computing task to the MBS, while ai = 0 when the i-th
user executes the computing task locally. We further define
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Nas = {i|ai = 1,∀i ∈ N} as the set of associated users
and him as the channel power gain between the i-th user and
the MBS, which is perfectly known at each user. If the i-th
user is associated with the MBS, the data rate of the uplink
transmission is given by

rim = log2

(
1 +

pihim∑
k∈N ,k 6=i pkhkm + σ2

)
, ∀i ∈ Nas, (1)

where pi is the transmit power at the i-th user, σ2 is the noise
power, and

∑
k∈N ,k 6=i pkhkm is the interference from all the

other users except i.
We denote hie as the channel power gain between the i-th

user and the eavesdropper, which can be imperfectly estimated
from the local oscillator power leaked from the eavesdropper’s
front end [9]. To do so, we consider a bounded channel power
gain uncertainty model given by hie ∈ Hie , {|hie − h̃ie| ≤
δ}, where h̃ie is the corresponding estimated channel power
gain and δ is the maximum estimation error. The data rate
at the eavesdropper for eavesdropping the i-th offloading user
can be written as

rie = log2

(
1 +

pihie∑
k∈N ,k 6=i pkhke + σ2

)
, ∀i ∈ Nas. (2)

Based on (1) and (2), the secrecy capacity of the i-th
offloading user associated with the MBS is given by

Ci = [rim − rie]+, ∀i ∈ Nas, (3)
where [x]+ , max(x, 0). We note that the uncertainty of
the eavesdropper’s channel power gains makes it challenging
to obtain a mathematically tractable expression of secrecy
capacity in (3). To do so, we consider the eavesdropper’s
channel gains that result in the worst-case lower bound on the
secrecy capacity of the i-th offloading user, which is given by

Clb
i =

rim − log2

(
1 +

pih
max
ie∑

k∈N ,k 6=i pkh
min
ke + σ2

)
︸ ︷︷ ︸

rub
ie


+

, (4)

where rubie is the upper bound of rie which can be achieved
by satisfying hmaxie = h̃ie + δ and hminke = h̃ke − δ.
B. Offloading Model

We denote Di as the task size and Fi as the number of
CPU cycles required to compute each bit of task Di. In
the following, we define the latency for local computing or
offloading of task Di at the i-th user.

1) Local Computing: Denote f0 as the computing capacity
at each user. If the i-th user executes its task locally, the local
computing time TLi can be expressed as [6]

TL
i =

DiFi

f0
, ∀i ∈ N/Nas. (5)

2) Offloading to MBS: For task offloading, the offloading
transmission time for the i-th associated user is given by [6]

TTr
i =

Di

Brim
, ∀i ∈ Nas, (6)

where B is a fixed bandwidth and rim is given in (1). Let
fim denotes the MBS computing capacity assigned to the i-th
associated user. The computing time for the i-th offloading
task at the MBS can be expressed as

TO
i =

DiFi

fim
, ∀i ∈ Nas. (7)

Finally, based on (5)-(7), the latency for executing the task
of the i-th user is defined as

Ti = (1− ai)TL
i + ai(T

Tr
i + TO

i ), ∀i ∈ N . (8)
Similar to [9], we ignore the time required for transmitting

the computation results from the MBS to the users.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION
Our aim is to minimize the overall latency consumption

among all users by jointly optimizing the users’ transmit
power P , {pi,∀i ∈ N}, computing capacity allocation
F , {fim,∀i ∈ Nas}, and user associationA , {ai,∀i ∈ N}
subject to a minimum security constraint Cmin for all associ-
ated users and a maximum computing requirement fmax for
the MBS. By introducing a set of auxiliary variables T̂ ,
{T̂i,∀i ∈ N}, the optimization problem can be formulated as

min
P,F,A,T̂

N∑
i=1

T̂i (9a)

s.t. (1− ai)TL
i + ai(T

Tr
i + TO

i ) ≤ T̂i, ∀i ∈ N (9b)

Clb
i ≥ Cmin, ∀i ∈ Nas (9c)
N∑
i=1

aifim ≤ fmax (9d)

ai = {0, 1}, ∀i ∈ N . (9e)

We note that problem (9) is non-convex and the non-
convexity arises from the binary user association variables
A and the non-convex constraints with respect to P in (9b)
and (9c). To solve (9), we apply the BCD method [10] and
decouple problem (9) into three subproblems to iteratively
solve P,F , and A.

A. Users’ Transmit Power Subproblem
For any given F and A, the users’ transmit power of

problem (9) can be optimized by solving

min
P,T̂

N∑
i=1

T̂i (10a)

s.t. log2

( ∑
i∈N pihim + σ2∑

k∈N ,k 6=i pkhkm + σ2

)
︸ ︷︷ ︸

rim

≥ Di

B(T̂i − TO
i )

, ∀i ∈ Nas

(10b)

rim − log2

pih
max
ie +

∑
k∈N ,k 6=i

pkh
min
ke + σ2

∑
k∈N ,k 6=i pkh

min
ke + σ2


︸ ︷︷ ︸

rub
ie

≥ Cmin, ∀i ∈ Nas, (10c)

where the constraints (10b) and (10c) correspond to (9b) and
(9c), respectively. Due to the non-convexity of rim and rubie ,
problem (10) is non-convex. In the following, we apply the
SCA solution to solve (10). We begin by re-expressing rim as

rim = log2(
∑
i∈N

pihim + σ2)︸ ︷︷ ︸
L

− log2(
∑

k∈N ,k 6=i

pkhkm + σ2)

︸ ︷︷ ︸
Ii

,

(11)
where both L and Ii are concave in terms of P . Recall that
any concave function is upper-bounded by its first-order Taylor
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expansion at any point. Thus, for Ii, with the fixed users’
transmit power in the m-th iteration, pk[m], we adopt the first-
order Taylor expansion and derive the corresponding convex
upper bound Iubi as

Iubi = log2(
∑

k∈N ,k 6=i

pk[m]hkm + σ2)

+

∑
k∈N ,k 6=i hkm(pk − pk[m])

(
∑

k∈N ,k 6=i pk[m]hkm + σ2) ln 2
.

(12)

Next, we reexpress rubie as

rubie = log2(pih
max
ie +

∑
k∈N ,k 6=i

pkh
min
ke + σ2)

︸ ︷︷ ︸
Si

−Wi,

(13)

where Wi = log2(
∑
k∈N ,k 6=i pkh

min
ke +σ2). For Si, we apply

similar approach to derive its convex upper bound Subi as

Sub
i = log2(pi[m]hmax

ie +
∑

k∈N ,k 6=i

pk[m]hmin
ke + σ2)

+

hmax
ie (pi − pi[m]) +

∑
k∈N ,k 6=i

hmin
ke (pk − pk[m])

(pi[m]hmax
ie +

∑
k∈N ,k 6=i

pk[m]hmin
ke + σ2) ln 2

.

(14)

According to (12) and (14), the users’ transmit power
subproblem in the m-th iteration can be approximated as

min
P,T̂

N∑
i=1

T̂i (15a)

s.t.L − Iubi ≥
Di

B(T̂i − TO
i )

, ∀i ∈ Nas (15b)

L − Iubi − Sub
i +Wi ≥ Cmin, ∀i ∈ Nas, (15c)

which is now a convex problem that can be efficiently solved
by general convex optimization solvers.
B. Computing Capacity Allocation Subproblem

For any given P and A, the computing capacity allocation
can be optimized by solving the following problem

min
F,T̂

N∑
i=1

T̂i (16a)

s.t. fim ≥
DiFi

T̂i − TTr
i

,∀i ∈ Nas (16b)

N∑
i=1

aifim ≤ fmax, (16c)

where the constraint (16b) corresponds to (9b). We note
that (16) is a convex optimization problem which can be
efficiently solved by general convex optimizer.
C. User Association Subproblem

For any given P and F , the user association variables can
be optimized by solving the following problem

min
A,T̂

N∑
i=1

T̂i (17a)

s.t. aiξi + (1− ai)M ≥ Cmin, ∀i ∈ N (17b)
(9b), (9d), (9e), (17c)

where ξi = rim − rubie and M is a sufficiently large number
which is greater than Cmin to ensure that the constraint (17b)
is satisfied when ai = 0. Due to the linearity of the objective
function and all constraints, problem (17) is a binary linear
programming. We note that such problem can be efficient-
ly solved by applying the branch-and-cut method, which

combines the branch-and-bound and cutting plane algorithms
to branch possible solutions and tight linear programming
relaxations, respectively.

D. Proposed Iterative Algorithm

Our proposed algorithm is detailed in Algorithm 1. Denote
T (P,F ,A) and Tup(P,F ,A) as the objective values of
problem (9) and (15), respectively. The convergence of Algo-
rithm 1 is proved as follows. First, in step 3 of Algorithm 1,
since the first-order Taylor expansions in (12) and (14) are
tight at the given local points pi[m] and pk[m], we have
T (P[m],F [m],A[m]) = Tub(P[m],F [m],A[m]) in (15).
Notice that the users’ transmit power solution P[m+1] for (15)
is optimal with given {F [m],A[m]}, then it follows that

Tub(P[m],F [m],A[m]) ≥ Tub(P[m+ 1],F [m],A[m])

≥ T (P[m+ 1],F [m],A[m]),
(18)

where the last inequality holds since the objective value of (15)
is the upper bound of the original problem in (10). Next,
since F [m + 1] and A[m + 1] are the globally optimal
solutions for (16) and (17), respectively, we have T (P[m +
1],F [m],A[m]) ≥ T (P[m+1],F [m+1],A[m]) ≥ T (P[m+
1],F [m+ 1],A[m+ 1]). Therefore, we can conclude that

T (P[m],F [m],A[m]) ≥ T (P[m+ 1],F [m+ 1],A[m+ 1]),

(19)
which shows that the algorithm yields a non-increasing se-
quence of the objective value. In addition, we see that the
objective value is lower bounded by zero. Hence, the proposed
algorithm is guaranteed to converge.

Algorithm 1 Proposed Iterative Optimization for Problem (9).
1: initialize m = 0, P[m],F [m], and A[m].
2: repeat
3: Given {F [m],A[m]}, find the optimal users’ transmit power
P[m+ 1] by solving (15);

4: Given {P[m+1],A[m]}, find the optimal computing capac-
ity allocation F [m+ 1] by solving (16);

5: Given {P[m+1],F [m+1]}, find the optimal user association
A[m+ 1] by solving (17);

6: Update m = m+ 1;
7: until convergence.

IV. SIMULATION RESULTS

We consider N = 8 users and one eavesdropper that are
randomly distributed within a 400 m × 400 m square area.
The MBS is fixed at the center of the square. We consider
all channels are Rayleigh fading channels and assume that
the average channel power gains follow the path loss model
β1(d/d0)

−α, where d is the distance between nodes, α = 3
is the attenuation factor and β1 = −50 dB corresponds to the
reference path loss at distance of d0 = 1 m. The maximum
estimation error δ is set to be 10% of the corresponding path
loss [9]. Other simulation parameters are shown in Table I.

Fig. 2 shows the convergence of Algorithm 1 with different
local computing capacity f0. The plot shows that our proposed
algorithm quickly converges within six iterations. Furthermore,
we find that the latency consumption decreases as f0 increases.
This is due to the fact that with higher local computing capac-
ity at each user, the local computing latency will be reduced
and further results in a lower overall latency consumption.
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TABLE I
SIMULATION PARAMETERS [5], [10]

Noise power σ2 = −110 dB
Task size Di ∼ U [10, 40] KB
CPU cycles per bit Fi ∼ U [10, 50] Kcycles/bit
Maximum MBS computing capac-
ity

fmax = 4 GHz

User computing capacity f0 = 0.4 GHz
Minimum secrecy capacity Cmin = 0.1 bps/Hz
Transmission bandwidth B = 1 MHz

1 2 3 4 5 6
Number of iterations

5.5

6

6.5

7

7.5

8

8.5

9

La
te

nc
y 

(s
)

f
0
 = 0.3 GHz

f
0
 = 0.4 GHz

f
0
 = 0.5 GHz

Fig. 2. Latency versus number of iterations with different local computing
capacity f0.

Fig. 3 plots the latency versus the maximum computing
capacity at MBS fmax. We compare our proposed joint opti-
mization in Algorithm 1 with the following four benchmark
schemes: 1) Fixed transmit power: We set pi = pi[1],∀i ∈ N
and all other variables are optimized using Algorithm 1; 2)
Equal computing capacity (ECC): We assume that the MBS
equally allocates the computing capacity to associated users
and all other variables are optimized using Algorithm 1;
3) All offloading: All users offload their tasks to the MBS
and other variables are optimized using Algorithm 1; 4) All
local computing: All users choose to self-execute their tasks.
Fig. 3 shows that our proposed joint optimization algorithm
outperforms all other benchmark schemes over a wide range
of fmax. Moreover, we observe that the latency is independent
of fmax in “All local computing” scheme, while it keeps
decreasing with increasing fmax for all other strategies. This
is intuitive that with higher computing capacity at MBS, the
computing capacity allocated to each associated user will be
higher, which reduces the computing latency and results in a
lower overall latency. In addition, we note that the secrecy
performance in “All offloading” scheme cannot be guaranteed
since all users are associated with the MBS even if they have
a degraded channel gain compared to eavesdropper.

Fig. 4 shows the trade-off between the latency and the min-
imum secrecy capacity requirement Cmin. It shows that our
proposed joint optimization algorithm outperforms all other
benchmark schemes over a wide range of Cmin. Moreover, we
note that the latency is an increasing function in terms of Cmin
and the remarkable jump, i.e., when Cmin = 0.125 bps/Hz,
corresponds to a decrease in the number of associated users.
This is because when the secrecy capacity requirement is strict,
more users choose to self-execute their packets in order to
meet the security constraint, which results in a higher latency
consumption due to the limited local computing capacity
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Fig. 3. Latency versus the maximum MBS computing capacity fmax.
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Fig. 4. Latency versus the minimum secrecy capacity requirement Cmin.

equipped on them.
V. CONCLUSIONS

We have proposed a new MEC framework to minimize the
latency by optimizing the users’ transmit power, computing
capacity allocation, and user association subject to security and
computing resource constraints. Numerical results have shown
that our proposed algorithm outperforms baseline schemes and
highlighted a trade-off between the latency and security of
MEC systems. REFERENCES
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