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A Novel Cross Entropy Approach for Offloading
Learning in Mobile Edge Computing

Shuhan Zhu, Student Member, IEEE, Wei Xu, Senior Member, IEEE, Lisheng Fan, Member, IEEE,
Kezhi Wang, Member, IEEE, and George K. Karagiannidis, Fellow, IEEE

Abstract—In this paper, we propose a novel offloading learning
approach to compromise energy consumption and latency in a
multi-tier network with mobile edge computing. In order to solve
this integer programming problem, instead of using conventional
optimization tools, we apply a cross entropy approach with
iterative learning of the probability of elite solution samples.
Compared to existing methods, the proposed one in this network
permits a parallel computing architecture and is verified to be
computationally very efficient. Specifically, it achieves perfor-
mance close to the optimal and performs well with different
choices of the values of hyperparameters in the proposed learning
approach.

Index Terms—Mobile edge computing (MEC), cross entropy
(CE), computation offloading, probability learning.

I. INTRODUCTION

W ITH the rapid development of electronics and wireless
networks, various services are currently supported by

modern mobile devices (MD). However, most real-time appli-
cations require huge computation efforts from the MDs. Mo-
bile edge computing (MEC) is a very promising technology to
solve this dilemma for the next-generation wireless networks.
According to MEC, edge servers, which are used to connect
mobile terminals with a cloud server, provide high storage
capability as well as fast computation ability.

In a MEC architecture both latency and energy consumption
contribute to the network performance and it is of common in-
terest to investigate the problem of balancing these factors with
optimized offloading policies. Scanning the open literature, the
authors in [1] proposed to offload a task from a single MD to
multiple computational access points (CAP). Furthermore, a
weighted sum of energy and latency was optimized by using
convex optimization. This problem was recently extended in
[2] to a scenario where multiple MDs perform offloading. The
multiple tasks were scheduled based on a queuing state in

Manuscript received October 1, 2019; revised November 25, 2019; accepted
November 28, 2019. This work was supported by the National Key Research
and Development Program 2018YFA0701602, by the Natural Science Foun-
dation of Jiangsu Province for Distinguished Young Scholars under Grant
BK20190012, by the NSFC under grants 61871109 and 61871139, and by the
Royal Academy of Engineering under the Distinguished Visiting Fellowship
scheme(DVFS21819\9\7). (Corresponding author: Wei Xu.)

S. Zhu is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing, China (shzhu@seu.edu.cn).

W. Xu is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing, China, and also with Purple Mountain Labo-
ratories, Nanjing, China (wxu@seu.edu.cn).

L. Fan is with the School of Computer Science, Guangzhou University,
China (lsfan@gzhu.edu.cn).

K. Wang is with the Department of Computer and Information Sciences,
Northumbria University, Newcastle, UK (kezhi.wang@northumbria.ac.uk).

George K. Karagiannidis is with the Aristotle University of Thessaloniki,
Thessaloniki 54 124, Greece (geokarag@auth.gr).

order to adapt channel variations. Alternatively, in [3], the
latency was minimized with scheduling the MEC offloading,
while the energy consumption was considered as an individual
constraint in MDs.

Recently, machine learning (ML) attracts much attention
from both academia and industry, as an efficient tool to
solve traditional problems in wireless communication [4]-[7].
Specifically, the authors in [4] proposed a payoff game frame-
work to maximize the network performance through reinforce-
ment learning. Furthermore, a deep Q-network was utilized in
[5] to optimize the computational offloading, without a priori
knowledge of the network. Most of these methods, including
those which use deep learning network (DNN), focused on the
offloading design from a perspective of long-term optimization
and at the cost of complexity and robustness [6][7]. Moreover,
these methods can hardly track fast channel changes, due
to the requirement of offline learning. Thus, in general they
cannot be applied for real-time applications in time-varying
channel and it remains a problem of common interest to
optimize offloading policies with a time-efficient method,
which simultaneously ensures high-quality performance.

In this work, we introduce the cross entropy (CE) approach
to solve the offloading association problem, by generating
multiple samples and learning the probability distribution of
elite samples. In contrary to the conventional algorithms, the
proposed CE learning approach can use parallel computer
architecture to reduce computational complexity, and it works
for short-term offloading using online learning architecture,
which has a stringent requirement on real-time evaluation.
Our work generalizes the CE learning approach to solve
the offloading problem with low complexity. The proposed
approach is promising since it can effectively replace the
traditional convex optimization tools.

II. SYSTEM MODEL

We consider the problem of multi-task offloading in a
network with multiple CAPs, where the MD has access to
the CAPs. Each of the tasks can be selected to be executed at
the local MD or offloaded to the CAPs, while a CAP serves
only one task at each time. Since the index ‘0’ represents the
local CPU, N = {1, 2, · · ·N} and M = {0, 1, · · ·M} are
defined as the sets of tasks and CAPs, respectively. In order
to indicate the offloading status, we define the policy

xnm =

{
1, if task n offloads to CAP m
0, otherwise (1)
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and matrix X = [xnm|xnm ∈ {0, 1}]N×(M+1) ensembles all
the indices. Assume that each task can be offloaded to a single
CPU. In this case holds

M∑
m=0

xnm = 1. (2)

A. Latency

The execution latency consists of two components: trans-
mission latency and computation time. The transmission time
includes task data preparation at the MD, data transmission
duration over the air, and received data processing at CAP
before conducting computation. Also, the transmission time
depends on the achievable rate of physical links. The uplink
and downlink data rates can be defined as,

Ry1m = log2 (1 + Py2η) ,m = 1, · · · ,M, (3)

where y1 ∈ {UL,DL}, y2 ∈ {T,R}, η = hy1m/N0. PT (PR) is
the transmitting (receiving) power, and hy1m is the channel gain
between CAP and MD. When it turns to the specific RUL

0 and
RDL

0 , they are set infinitely large because computing at local
CPU leaves out the process of offloading. Let αn denote the
input data size in bits, γn is the computation data size (number
of cycles required for CPU) and βn is the output data size after
computation. Then, for the offloaded task n, the computation
time, the uplink and the downlink transmission time can be

tComp
nm =

γn
rm

, tUL
nm =

αn
RUL
m

, tDL
nm =

βn
RDL
m

, (4)

where the CAP m serves the tasks with a fixed rate of rm
cycles/sec.

In fact, the CAP can start computing after either one or all
scheduled tasks are offloaded. Here, we consider computation
after one task offloading completes. For this case, there is no
intra-CAP overlap when evaluating the overall latency. This
latency is simple in expression, but the following proposed
algorithm is still effective for other general expression. The
three steps, offloading, computing and transmitting, take place
sequentially, which results in the overall latency at CAP m as
follows

Tm (X) =
∑
n∈N

xnm

(
αn
RUL
m

+
βn
RDL
m

+
γn
rm

)
. (5)

Note that since all CAPs evaluate their tasks in parallel, the
delay is the maximum one, given as

T (X) = max
m∈M

Tm (X) . (6)

B. Energy Consumption

An MD consumes battery to compute the tasks locally or
to transmit and receive the task data. The energy consumption
in the two cases can be written as

E1 (X) = P0

∑
n∈N

xn0t
Comp
n0 , (7)

E2 (X) = PT

∑
m∈M\{0}

∑
n∈N

xnmt
UL
nm

+ PR

∑
m∈M\{0}

∑
n∈N

xnmt
DL
nm,

(8)

where P0 denotes the energy for local computation. Then, the
total energy consumption is

E (X) = E1(X) + E2(X). (9)

C. Optimization Problem

Low computational latency and energy consumption are
two main objectives of MEC. Unfortunately, these objectives
cannot be minimized simultaneously and the problem turns out
to be a multi-objective optimization. We define the weights, λt
and λe, to compromise the two objectives. Then, the weighted
objective can be defined as [1]

Ψ (X) =λtT (X) + λeE(X), (10)

where T (X) is defined in (6) as the maximum delay consumed
by all the CAPs instead of the sum or average one.

We aim to solve computation resource allocation scheme
under specific situation where λe and λt are fixed. The joint
minimization problem of both power and latency can be
formulated as

min
X

Ψ (X)

s.t.
∑
m∈M

xnm = 1,∀n ∈ N ,

xnm ∈ {0, 1}.

(11)

III. OFFLOADING LEARNING THROUGH CROSS ENTROPY

The problem in (11) is a binary integer programming
one, which can be optimally solved via the branch-and-
bound (BnB) algorithm with exponentially large computational
complexity, especially when X is large [7]. In future wireless
networks, the number of tasks will increase and more CAPs
will be involved. Then, the BnB algorithm can hardly satisfy
the requirements of real-time applications. Besides, there are
studies on trying to solve the problem by using conventional
optimization methods. The most popular solution is to use
convex relaxation, e.g. to relax xnm ∈ {0, 1} as xnm ∈ [0, 1]
through linear programming relaxation (LPr) or to relax

T (X) = max
m∈M

Tm (X) as T (X) ≥ max
m∈M

Tm (X)

by semidefine relaxation (SDR) [1]. The relaxation, however,
causes performance degradation compared to BnB algorithm.

Besides the above methods, the problem in (11) with
discrete optimization variables can be solved by using a
probabilistic model based method, in the way of learning
the probability of each policy xnm. The CE approach is a
probability learning technique in the ML area [9], [10]. To
solve (11), we propose a CE approach with adaptive sampling,
namely adaptive sampling cross entropy (ASCE) algorithm.

A. The CE Concept

Cross entropy, also known in probability theory as Kullback-
Leibler (K-L) divergence, serves as a metric of the distance
between two probability distributions. For two distributions,
q(x) and p(x), the CE is defined as

D(q||p) =
∑

q(x) ln q(x)︸ ︷︷ ︸
H(q)

−
∑

q(x) ln p(x)︸ ︷︷ ︸
H(q,p)

. (12)
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Note that in our proposed CE-based learning method p(x)
represents a theoretically-tractable distribution model that we
try to learn for obtaining the optimal solutions, while q(x) is
the empirical distribution which characterizes the true distribu-
tion of the optimal solutions. Particularly, in machine learning,
distribution q(x) is known from observations and H(q) is the
entropy of q(x), which leads to the equivalence of learning
the CE in (12) and H(q, p).

We are inspired by the definition of CE, a popular cost
function in machine learning, to solve problem (11) via prob-
ability learning. We learn p(x) by iteratively training samples,
and then generate the optimal policy of X according to p(x),
which is close to the empirical one, q(x).

B. The ASCE-based Offload Learning

For probability learning, the probability distribution func-
tion p(x) is usually introduced with an indicator u, e.g.,
p(x,u) can be a Gaussian distribution and u contains its mean
and variance [11]. Denoting that L equals to N × (M + 1),
the indicator u is a vector of L dimensions, defined as
u = [u1, u2, · · · , uL]

∆
= [uT0 ,u

T
1 , · · · ,uTM ] where uTm =

[u1m, u2m, · · · , uNm] and unm ∈ [0, 1] represents the proba-
bility of Pr(xnm = 1). With this method, we learn p(x;u)
by learning its parameter u. Accordingly, X is vectorized as
x =

[
xT0 ,x

T
1 , · · · ,xTM

]
where xTm = [x1m, x2m, · · · , xNm].

Following the Bernoulli distribution, we have the distribution
function p(x,u) as [13]

p (x,u) =

L∏
l=1

ul
xl(1− ul)(1−xl). (13)

According to (2), one task associates to at most one CAP.
Thus if a task is assigned to one CAP, its probability of being
associated to other CAPs becomes zero. Aiming to reduce
the redundancy of generated samples, we divide one sample,
i.e., a vector x of L dimensions, into M + 1 independent
blocks, x0, x1, · · · , xM , and each of them associates to one
CPU, e.g., the feasible block [x1m, · · · , xNm] indicates the
task assignment of tasks 1-N to CAP m. Let G denote the
set of indices of the selected blocks in sampling and T is
another set to store the samples satisfying the constraints in
each iteration. We first uniformly choose g, an index inM\G.
To generate an xg given g, we draw the entries of xg according
to the probability density function p(xg,u). For each ul in xg ,
it is drawn according to the Bernoulli distribution of parameter
ul. The indicator um of the remaining blocks inM\G is then
adjusted based on xg , that is, if xig = 1 we have uim = 0
for m ∈ M\G. When the cardinality of G, denoted as |G|, is
equal to M , one valid sample is generated. Note that we draw
the sample, while the non-feasible samples are excluded on
the way. All the valid samples gather in T and the sampling
repeats until the cardinality of T , denoted as |T |, reaches S.

In the proposed CE approach, computations in each iteration
can be conducted in parallel, while the iterations are imple-
mented in sequential. As will be shown later in the simulation
results, we can adjust the hyperparameters of the proposed
algorithm, including S, Selite, α, to compromise between the
amount of parallel computations per iteration and the number

Algorithm 1 : ASCE-based Offload Learning Algorithm
1 Initialize: G = T = [ ], u(0) = 0.5× 1L×1.
2 for t = 0 : T
3 While G 6=M and |T | < S
4 Select an index g from M\G;
5 Generate entries of xg based on p(x,u) and update G, T ;
6 Adjust um where m ∈ (M\G) based on xg;
7 end while
8 Calculate the objective {Ψ (xs)}Ss=1;
9 Sort {Ψ (xs)}Ss=1;

10 Select the minimum Selite xs as elites;
11 update u(t+1) according to (17);
12 end for
13 Output: x.

of iterations for convergence. This makes a flexible tradeoff
between performance and latency.

Now we take the CE in (12) as the lost function. It shows
that the smaller H(q, p) is, the smaller the distance between
q(x) and p(x) is. This implies

minH (q, p) = max
∑

q (x) ln p (x)

= max
1

S

∑
ln p (x,u),

(14)

where q(x) is 1
S , since the probability of each independent

solution in the set of samples is 1/S where S is the cardinality
of the set [9]. Regarding the problem in (14), the objective
is equivalently to finding the optimal indicator u minimizing
H(q, p). During the tth iteration, S series of random samples
x, serving as candidates, are drawn according to probabil-
ity p(x,u). The feasible samples generated by the adaptive
sampling are under evaluation. We evaluate the objective
{Ψ (xs)}Ss=1 of (11) and sort them as

Ψ
(
x[1]
)
≤ Ψ

(
x[2]
)
≤ · · · ≤ Ψ

(
x[S]

)
.

Then, Selite samples, i.e., x[1],x[2], · · · ,x[elite], yielding the
minimum objective, are selected as elites. Now, the best
indicator u for policy x can be determined as

u∗ = arg max
u

1

S

Selite∑
s=1

ln p
(
x[s],u

)
. (15)

Using (13) and (15) and by forcing ∂H(q,p)
∂ul

= 0, the saddle
point can be evaluated as

u∗l =
1

Selite

Selite∑
s=1

x
[s]
l . (16)

In the proposed learning algorithm, we choose the CE-
based metric for updating the probability. Considering the
randomness of sampling, especially when the number of
samples is small, we update u(t+1) in the (t + 1)th iteration
not only on the basis of u∗ which is handled with (15) and
(16), but also u(t) learned in the last iteration. It follows

u(t+1) = αu∗ + (1− α)u(t), (17)
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Fig. 1. Weighted objective against iterations with varying S and Selite

Fig. 2. Weighted objective under varying sizes of each task

where α ∈ [0, 1] is the learning rate [10]. In general, for
the CE-based method, the iterations converge to an optimized
solution of the problem [14].

The proposed algorithm is summarized in Algorithm 1. The
CE approach combining with the indicator updating mecha-
nism can replace conventional convex optimization methods,
to compromise complexity and performance.

IV. SIMULATIONS AND DISCUSSION

This section validates the efficiency of the proposed ap-
proach through simulations, by using the same parameters
as in [1]. The MD is equipped with a CPU and r0 = 200
Mcycles/sec, P0 = 0.8 W, PT = 1.258 W and PR = 1.181
W. The CPU frequencies of the three CAPs are r1 = 2× 109,
r2 = 2.2× 109 and r3 = 2.4× 109 cycles/sec. The data rates,
RULk and RDLk , are set to be 10 Mbps. The average objective
in the figure results is the average value of the objective in
(10) over a number of trials.

Fig. 1 shows the convergence of the proposed ASCE
algorithm under various choices of hyperparameters S and
Selite. From Fig. 1, it is evident that the algorithm converges
fast and the average objective reduces with Selite, which can
be considered as closer to the optimum one. Moreover, the
average objective converges to almost the same optimal value
for all the different choices of the values of hyperparameters.
We therefore conclude that, the proposed ASCE algorithm
performs robustly to different values of parameters.

In Fig. 2, we compare the proposed ASCE algorithm
with the LPr-based offloading algorithm in [1], BnB [7], No
MEC and Full MEC. Among them, No MEC and Full MEC
represent that all the tasks are arranged to local CPU and
CAP 1, respectively. The proposed ASCE algorithm greatly
outperforms the LPr method and it approaches the theoretically
globally optimal solution obtained by BnB. By contrast of
“Full MEC” and “No MEC”, “No MEC” is far inferior to “Full
MEC”, which implies that the MDs of multiple tasks can work
efficiently with the assist of MEC. From [12], the complexity
of the CE approach and BnB algorithm is O (L) and O

(
2L
)
,

Fig. 3. Impacts of ratio of λe to λt on the weighted objective

respectively. The latter is far larger because the CE-method of
parallel architecture optimizes L parameters in one iteration
while BnB solves parameters sequentially. Besides, the BnB
algorithm requires much more memory for storage.

The offloading policy is a tradeoff between latency and
energy consumption to a certain extent. The value of λe

λt
is

chosen to be 10q , where q grows from −1.8 to 2 with step
size 0.2. While T (X) plays an increasing role in the objective
function, the curve presents an increasing trend for M = 2, 3.
As for M = 1, there is only one CAP serving the MD, which
makes the minimized latency T (X) much higher than the cases
with multiple CAPs. Because the minimized E(X) reduces
to the energy consumption of all the tasks computed locally,
which is the same for all different values of M , the curve of
M = 1 finally decreases to the minimized E(X).

V. CONCLUSION

In this paper, we present an efficient computational offload-
ing approach for a multi-tier Het-MEC network. We propose
the ASCE algorithm, which occupies less memory and has
lower computational complexity than traditional algorithms.
The proposed algorithm performs robustly, while it approaches
closely to the optimal performance.
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