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1. INTRODUCTION 

 

Glacial activity leaves geomorphological imprints on carbonate rock bodies isolated at high 

altitudes, resulting in what is known as the island type glaciokarst (Veress et al., 2019). 

Glaciated karst is a complex landscape, sensitive to climate change and capable of preserving 

unique evidence of past environmental change in alpine regions (Žebre and Stepišnik, 2015). 

The presence of speleothems, the most used paleoenvironmental archive found in karst, often 

indicate the existence of periods with optimal environmental conditions for their deposition, 

which at mid- and high-latitudes are restricted mostly to warm periods (McDermott, 2004). 

The initiation of cave formation itself, as resulting from a complex feedback between geology, 

geomorphology, climate, hydrology, and organic activity, is difficult to date but can be 

constrained using speleothem or clastic sediment deposition events (Polyak et al., 1998; 

Sasowsky, 1998; Stock et al., 2006; Häuselmann et al., 2015). The most common dating 

technique uses uranium series in speleothems (Richards and Dorale, 2003; Dorale et al., 2004; 

White, 2007; Scholz and Hoffmann, 2008), but trapped charge techniques such as OSL have 

also been used (Constantin et al., 2014). 

In a glaciated environment, caves can be either truncated or completely removed by glaciation 

(Mais, 1999; Klimchouk et al., 2006), or be buried and preserved by infilling with glacial till 

(Cooper and Mylroie, 2015). They can also preserve morphological traits and sediments that 

could offer information useful for the reconstruction of mountain uplift (Meyer et al., 2011). 

Alpine caves and their associated sedimentary deposits brought more light onto the Quaternary 

evolution of the Alps (Spötl et al., 2002, 2007; Häuselmann et al., 2015), Apennines (Columbu 

et al., 2015), Norwegian Alps (e.g., Lauritzen, 1995; Berstad et al., 2002), or the Cantabrian 

Mountains (Ballesteros et al., 2015, 2019). 
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In Romania, glaciokarst does not reach a significant extent (Telbisz et al., 2019), but a 

handful of glaciokarst islands developed on carbonate rocks in the Rodnei and Parâng massifs 

(Teodorescu and Mitrofan, 1999), as well as Făgăraș (Mihai and Moldoveanu, 2006; Nedelea, 

2006), and Piule-Iorgovanu (Ardelean, 2010) Mountains. However, especially owing to its 

scarcity, the Carpathian glaciokarst is significant due to the fact that it may preserve unique 

information about its tectonic and climatic history. 

Late exhumation episodes during the Pleistocene favored a significant extent of glaciations in 

the Carpathians (Urdea, 2004). Glacial geomorphology of the Făgăraș Mountains supports 

the notion of at least two Pleistocene glacial phases (Florea, 1998; Mîndrescu and Evans, 

2014). 

Results of tectonic and thermochronological studies have shown that the paleoaltitudes were 

high since the latest Sarmatian (e.g., Răbăgia and Ma enco, 1999; Merten, 2011), but 

equilibrium line altitude (ELA) lowering earlier than the Middle Pleistocene was unlikely. 

The first evidence of two distinct glacial phases in the Bucegi Mountains were inferred by 

Micalevich (1959) from cave deposits in the Ialomi a Cave. 

Moreover, the inner-outer cirque pairs identified in several Carpathian massifs represent 

evidence of glaciations older than 130 ka (Mîndrescu, 2016). Nonetheless, the best-preserved 

glacial deposits date only since the Last Glacial Period (Reuther et al., 2007; Urdea et al., 

2011; Kuhlemann et al., 2013; Ruszkiczay-Rüdiger et al., 2016). The last deglaciation has 

significantly contributed to the development of present-day alpine landscape in the central 

Făgăraș Mountains (Kuhlemann et al., 2013; Popescu et al., 2017). 
10

Be analysis of the 

glacial moraines from Capra Valley indicated exposure ages of 17 ± 3.1 ka in the frontal part 

to 12.6 ± 2.0 ka in the glacial cirque (Kuhlemann et al., 2013). 

This study focuses on the geological conditioning of karst and glacial relief development on 

the marble stripes of the central Făgăraș Mountains in the high-altitude South Carpathians 

(>2000 m), defined by present-day average uplift rates of about 2-3 mm yr
-1

 (Zugrăvescu et 
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al., 1998). We investigated tectonic features at different scales, as well as geomorphological 

traits based on a high-resolution digital elevation model (DEM). 

We present uranium-thorium ages and carbon stable isotope data from several speleothems 

retrieved from caves from around 2400 m altitude, and radiocarbon dates of a doline’s 

sedimentary infill.  

In addition to bringing new data on the morphology and genesis of the Carpathian 

glaciokarst, our study also evaluates the reliability of karst sedimentary archives for future 

paleoenvironmental studies.  

 

2. GEOLOGICAL AND GEOMORPHOLOGICAL FRAMEWORK 

 

The central Făgăraș Mountains host an isolated marble karst with superimposed glacial 

features in the Mușeteica-Buda area, where dolomitic-calcitic marbles outcrop on an area of 

about 3 km
2
 (Fig. 1). The karst morphology of the Mușeteica glacial valley was preliminarily 

investigated by Mihai and Moldoveanu (2006). These karst landforms developed under 

particularly high-alpine climate conditions, typical for the South Carpathians. Currently, 

mean annual temperatures are 0.8 °C at Bâlea Lake weather station, located at 2060 m 

elevation in a north-facing glacial cirque (National Meteorological Administration, 2017), 

and 2.5 °C on the south-facing ridge crest at ~2400 m (Drăgușin et al., 2019). Average 

precipitation amount is ~1300 mm/y, and snow cover usually persists from November until 

June. The marble bedrock is covered by a thin, discontinuous soil layer. 

 

2.1. Lithology, tectonics, and structure 

 

The Mușeteica-Buda area is defined by NE-SW-oriented marble stripes of the Făgăraș terrane 

in the South Carpathian orogen, comprised of a polymetamorphic sequence of sedimentary 
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origin (Balintoni and Pană, 1993) of late Neoproterozoic-early Paleozoic age (Giușcă et al., 

1977; Kräutner, 1980; Balintoni, 1986; Gheuca, 1988; Pană, 1990; Balintoni et al., 2014). Up 

to four metamorphic events affected the Făgăraș unit and were recognized in rock structure 

and texture (Stelea, 1992). The 
40

Ar/
39

Ar ages obtained by Dallmeyer et al. (1998) fall mostly 

within the 320-300 Ma range, showing the Variscan metamorphic imprint. The low-grade 

metamorphism was related to contraction and crustal thickening during the Aptian 

emplacement of Supragetic Nappes and Maastrichtian overthrust of the Getic-Supragetic 

nappe stack over the Danubian nappe complex (Iancu et al., 2005, and references therein). 

The lithology of the central part of Făgăraș Mts consists of gneiss, micaschists, amphibolitic 

schists, amphibolites, and marbles. The latter are arranged in stripes and lenses ranging from 

30 to 250 m in thickness, and up to 5 km in length. The marble sequence hosting the karst of 

Mușeteica is the thickest (850 m) and longest of all (10 km). It consists of dolomite and 

calcite across a perpendicular NW-SE transect. The caves formed exclusively in calcite 

marbles, rich in quartz (0.72% to 18.57%) and micas (C. Marin, pers. comm.). Orientation of 

the stress field during metamorphism determined a banded texture of marbles, similar to the 

general structural assemblage of the Făgăraș terrane. The average dip of foliation planes 

ranges between 30º and 45º, locally exceeding 50º. It corresponds to the S2 foliation, which is 

the major structural feature of the entire polymetamorphic sequence of the Făgăraș Unit 

(Stelea, 1992). 

Faults and related fracture systems generally fall within two major structural sets, oriented 

NE-SW, and NW-SE, respectively. The first set could be attributed to Late Cretaceous to 

Early Burdigalian transtension-extension and the clockwise rotation of the South Carpathians 

(Ma enco et al., 1997; Schmid et al., 1998), whereas orientation of the second set suggests the 

effect of strike-slip movements during the Sarmatian tectogenetic events (Gheuca, 1988; 

Mațenco and Schmid, 1999). 
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Figure 1. A. Geographic setting of the Făgăraș Mountains (terrain map created from SRTM3 

data, courtesy of USGS); Inset showing the location of the South Carpathians (SC) in Europe; 

B. Geological map of the Făgăraș Mountains modified from Dessila-Codarcea et al. (1968) 

and location of marble caves (Silvășanu, 1982; Giurgiu, 1990; Drăgușin et al., 2019); C. 

Geological and topographic setting of Mușeteica marble karst in the Făgăraș Mountains – 

modified from Schuster (1977); CNES/Airbus satellite image courtesy of Environmental 

Systems Research Institute (ESRI) (2-column fitting image) 

 

 

2.2. Cave setting  

 

The Făgăraș Mountains host several small caves developed in marbles at elevations of 1200 m 

(five caves in the Capra Valley at Piscu Negru), and 2080-2430 m (one cave near Budislavu 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

7 
 

Lake, five caves in the Ciortea Mt, and six caves in the Mușeteica Mt). To the east, four caves 

developed in the Prislop-Coți area, at 1500-1600 m (Silvășanu, 1982). 

The presence of ridge-top caves and cave remnants on the Mușeteica-Râiosu crest is a typical 

feature of glaciokarst landscapes (Smart, 2004). M1 Cave is a former ponor (Giurgiu, 2006) 

developed in the glacial cirque bottom at ~2100 m, whilst M3-R2, M4, and M5 caves are 

found on the ridge top, at 2400-2430 m a.s.l. (Fig. 2). One of the collapse dolines (D2) is an 

unroofed cave remnant, a former passage infilled with sediments (M6 Cave). All the ridge-

top caves and dolines are clustered within a 5540-sqm area of triangular shape. They all host 

flowstones and stalagmites, some of which were progressively exposed by slope retreat. In 

contrast, speleothems are absent in M1 Cave. 

 

 

Figure 2. Location of ridge-top caves and dolines (cave remnants) in the Mușeteica area on 

the UAV oblique aerial photograph. Elevation of summits (m a.s.l.) are given in meters. The 

white rectangle is about 30 m in width, and the dolines in the inset are ~7 m in width. 

(2-column fitting image) 
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3. METHODOLOGY 

 

3.1. Aerial photogrammetry 

 

We surveyed a 1-km
2
 area of the Mușeteica glacial cirque using a DJI Phantom4 unmanned 

aerial vehicle (UAV). A total of 1,314 aerial images were collected at a speed of 5 m/s, with a 

vertical angle of 90, and a side and forward overlap of 70%. To increase the horizontal and 

vertical accuracy, four ground control points were positioned using a Trimble GeoXH 2008 

DGPS. The root mean square error for all the points was 0.21 m. A high-resolution digital 

surface model (DSM) and digital elevation model (DEM) of 50 cm/pixel, and an orthoimage 

of 10 cm/pixel were generated by using the Drone2Map™ software.  

 

3.2. Geomorphological mapping and morphometry 

 

A detailed geomorphological map was created on a 1:5,000 scale to identify different genetic 

types of landforms: structural, petrographic, glacial, periglacial, and gravitational. Contour 

lines were automatically generated from the DSM at different scales to match the mapping 

purpose. The 5-m contour interval served as a mapping support of all other geomorphic 

features on the 1:5,000 scale. 

The glacial morphometry of Mușeteica cirque was used in order to determine data on the 

average glacial erosion rate during the Last Glacial Period, the event which left the only 

physical markers with this respect. In the lack of other evidence, we presumed that the cirque 

started forming at the beginning of MIS 4 (~70 ka). Five topographic transects were extracted 

across the cirque, perpendicular to its longest axis at approximately equal intervals, and used 

to calculate the height range. The cirque height (H) is the difference between the lowest 
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(Hmin) and the highest (Hmax) altitude within a glacial cirque (e.g., Federici and Spagnolo, 

2004). We calculated the cirque height as the maximum difference in altitude on each profile, 

then we used the average of these values and the time lapse between the beginning and the 

end of the Last Glacial Period (LGP) to estimate the maximum glacial erosion rate (Eg) 

within the cirque, according to the formula below.  

   (
 
 ⁄ ∑  

 

   

)  ⁄    

where n is the number of calculated height range values (here, n=5),    is the value of each 

calculated item (i.e., the cirque height), and T is the estimated LGP time lapse. The duration 

of the LGP was estimated at ~59 ka, according to Lisiecki and Raymo’s (2005) MIS 5-4 age 

boundary of ~71 ka, and the deglaciation age for the Făgăraș Mountains of ~12 ka provided 

by Kuhlemann et al. (2013). The maximum glacial erosion rate is assumed to have occurred 

along the lowermost points on the cirque floor, and gradually decreased up the headwall 

towards the crest. 

 

3.3. Structural measurements and orientation analysis 

 

We performed a comparative orientation analysis of cave passages and structural features 

(joints, faults and fractures). Results were plotted on rose diagrams with a bin width of 10° 

and on equal-area projection spheres on Schmidt stereonet. 

Three sites ranging in size from 50 to 100 m
2
 were selected for microtectonic measurements 

on marble outcrops in the vicinity of caves. We sampled 50─60 joints/site and measured the 

joint azimuth and dip. The best fit great circles of joint families were compared to 

stereographic projections of cave passages in order to compare each joint family with cave 

conduit data. 
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Fault and fracture sets were digitized from various sources at different scales, and plotted 

against each other on rose diagrams (half circles) to explore the regional and local controls of 

structural assemblages on cave development. Over 500 fault and fracture segments were 

extracted in the central Făgăraș Mts from CNES/Airbus satellite images (courtesy of Digital 

Globe). Documented faults (Dessila-Codarcea et al., 1968; Schuster, 1977) were plotted 

against the manually-extracted fault set. A supplemental set of fractures and fault segments 

was extracted from the high-resolution DSM of Mușeteica glacial cirque, and compared to 

those mentioned above.  

Orientation data of underground and surface karst features were either collected during field 

survey or extracted from the DSM. Cave passages, ridge-top dolines, and shaft entrances 

were analyzed together, to better constrain the cave system’s structural arrangement. The 

lengths of cave passages rather than frequencies were considered meaningful for analysis, 

allowing for better highlighting the cave development on preferential orientations.  

 

3.4. Cave morphology 

 

We surveyed the M1, M3-R2, M4, and M5 caves using a modified Leica™ Disto X310 range 

finder. The processed data were used to extract segments of cave passages, and calculate their 

morphometry and orientations. We then calculated the pattern morphometric indices (Table 

1), synthesized by Piccini (2011), suitable for characterizing the geometry and morphometry 

of short alpine caves typical to stripe karst (Lauritzen, 2001). The focus was placed on 

indices’ reliability for highlighting the most important morphometric features of a cave, and 

that they should be selected according to cave geometric properties and spatial complexity 

(Piccini, 2011). We therefore avoided to use indices that would be better fit for maze or 

horizontal caves. 
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Table 1. Morphometric parameters and indices calculated for Mușeteica caves 

No. Parameter Abbr. Description/Formula (from Piccini, 2011) 

1 Real length Lr Real development of the cave, cumulating all the 

passages, including branches and pits. 

2 Plan length Lp Total length of the plan view of all the cave passages. 

3 Vertical range Rv Sum of negative and positive drops. 

4 Extension Ex Horizontal distance of the most far-away points of the 

cave. 

5 Verticality index Vi Rv/Lr 

6 Horizontality index Hi Lp/Lr 

7 Linearity index Li (Ex
2
-Rv

2
)

1/2
/Lr 

8 

Horizontal complexity 

index 

Hci Lp/Ex 

 

The length of M3-R2 Cave was conventionally calculated as the sum of all its passage 

segments (n=10), although the lengths of ridge-top branches (n=3), accessible only via the D1 

collapse doline (Fig. 6), were not initially added (Tîrlă et al., 2016). However, for analytical 

purposes these branches will be considered in this study and their lengths cumulated to that of 

the cave itself. Vertical range coincides with negative drop, since no cave in the Mușeteica 

system has positive altitude difference.  

Cave morphology was analyzed in relation to the three main genetic groups of erosive 

features and deposits considered relevant for cave development: erosive, chemical, and 

breakdown forms (Ballesteros et al., 2015). These were illustrated on the geomorphological 

maps scale 1:300. 

 

3.5. Speleothem U-Th dating and stable isotope analysis 
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Three flowstone samples and a stalagmite were collected from M3-R2, M5 and M6 caves for 

U-Th dating. Stalagmite M3-R2-1 was collected from the main chamber of the M3-R2 Cave, 

at 15 m from the entrance. It is 5-cm long and composed of densely compacted, white 

translucent calcite and presents a thin outer clayey crust. Seven samples for U-Th dating, 

averaging 100 mg, have been hand drilled at equal intervals along the growth axis and 

measured at CENIEH (Burgos, Spain). A total of 197 samples were micro-milled along the 

growth axis and their stable isotope composition (δ
13

C and δ
18

O) was measured on a Thermo 

Delta V Advantage mass spectrometer coupled with a Kiel IV carbonate device, at the 

University of Oxford. 

Flowstone M3-R2-3 was collected from the middle of the main chamber of M3-R2 Cave. Its 

basal 3 cm are composed of dark brown calcite with two thin moonmilk layers and two 

clayey detrital layers. The next 1.7 cm are composed of lighter, more amorphous calcite with 

distinct light brown lamina and is finally followed by 1.2 cm of moonmilk. Four U-Th sub-

samples were hand-drilled: one from the base, two bracketing the petrographic transition at 3 

cm and one from the top of the second section, just below a thick moonmilk layer that forms 

its top. 

Flowstone M5-1 is 13-cm thick and composed of a succession of light and dark calcite, with 

two thin moonmilk layers in its upper part. Several oxide-rich layers can also be 

distinguished in the section. Three U-Th samples were retrieved from base, top, and above a 

transition from light to brown calcite, at 8 cm from the base. 

Flowstone M6-1 (Fig. 3B) was collected from the western wall of the M6 collapse doline, 

after the excavation of ~1 m of infilling material. Two U-Th samples were taken from its base 

and top. 

All flowstone U-Th samples were prepared and analyzed at the Max Planck Institute for 

Evolutionary Anthropology (Leipzig, Germany) following the procedures of Hoffmann et al. 
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(2007) and Hoffmann (2008), and at the University of Melbourne (Australia) according to the 

procedure of Hellstrom (2003). 

Samples for low resolution isotope profiles were hand-drilled at 5 mm distance for M3-R2-3 

(n=12) and M5-1 (n=27). Powder samples were also taken by hand drilling from three host 

rock samples from near the ridge-top caves, labeled M5-3, M3-R2-1, and M3-R2-2 (should 

not be confused with speleothem labeling). They were analyzed at Northumbria University, 

using a Thermo Delta V Advantage coupled with a GasBench II sample preparation device. 

 

3.6. Sediment infill of doline D2 – stratigraphy, 
14

C dating and pollen content 

 

The clastic sediment infill of the D2 doline was excavated to a depth of ~2 meters, without 

reaching the bottom. Stratigraphy was described based on field observations.  Bulk samples 

were taken at 10-cm intervals, on thicknesses of around 2-4 cm, and kept refrigerated in 

plastic bags. Grain size content of seven global samples was analyzed at the Geotechnics 

Laboratory of the University of Bucharest, following the standard procedure STAS 1913/5-

85. First the samples were weighed and introduced into the oven at 105C for 24 hours, to 

remove the organic matter. water and lithium carbonate were added in the dry samples and 

left for 24h, then the cement was separated using the 0.063 mm sieve. The mass of the 

cement resulting from washing exceeded 10% of the sample and was further analyzed by 

applying the sedimentation and Sieve-pipette methods for the fine fractions and sieving only 

for the coarse fractions (Gee and Bauder, 1986). Based on the data obtained, particle size and 

percentage were determined for each of the following Udden-Wentworth classes: a) larger 

than 2 mm; 2-0.063 mm; c) 0.063-0.004 mm; d) smaller than 0.004 mm (Wentworth, 1922). 

Three samples for optically stimulated luminescence dating were taken by hammering a 20 

cm long plastic tube into the sediment and were analyzed at the Babes-Bolyai University in 
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Cluj-Napoca, Romania. No age estimation could be obtained, possibly due to a very young 

age of the deposition (A. Gabor, pers. comm.). 

Following the indication of a very young age and in order to obtain a preliminary chronology 

for the sediment infill, we performed radiocarbon measurements on three bulk samples (M6-

4, M6-10, and M6-19) taken from depths of 37-40 cm, 98-100 cm, and 188-192 cm 

respectively. Samples were prepared and measured at the Horia Hulubei National Institute for 

Physics and Nuclear Engineering (RoAMS) in Măgurele, Romania, following the procedures 

described in Sava et al. (2018). The samples were first observed under optical microscope to 

check for the presence of macrofossils (i.e., seeds, twigs, plant remains). Since no 

macrofossils were identified, we decided to separate the organic carbon fraction by leaching 

the inorganic carbon from the bulk sample. This operation was done by dissolving the 

carbonate with 0.5 M HCl during three days of treatment, with ultrapure water rinsing in 

between the acid steps. At the end of the procedure, the pH was set to neutral adding 

ultrapure water, followed by sample drying at 60C. The organic carbon was then collected 

for the graphitization step. The 
14

C ages were calibrated using the Oxcal online program 

(Bronk Ramsey, 2009), based on the IntCal13 calibration curve of Reimer et al. (2013). 

One random 2-cm³ sediment sample (M6-16, from ~140 cm deep) was selected and prepared 

in order to extract and assess the quality of preservation of pollen and spores, following the 

procedure described in Moore et al. (1991). Pollen and microspore identifications were made 

under 400x magnification using the descriptions and identification keys in Moore et al. 

(1991) and Beug (2004), and by comparison to reference collections. 

 

4. RESULTS 

 

4.1. Glaciokarst landforms 
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4.1.1. Alpine karst  

Apart from caves, the most common karst landforms are dolines, karren, ponors, and dry 

valleys. Three dolines (D1-D3) lined up on the NNW-SSE-oriented fracture that dissects the 

Mușeteica Mt. formed by the collapse of cave passages, thus being genetically different from 

the rest of twenty-two dolines (Fig. 4A). These dolines formed by dissolution, and twelve 

formed partially by the subsidence of glacial till. Such dolines are typical to covered karst 

morphology (Veress, 2016). Their position indicates a possible origin of subglacial 

streamflow subsapping, the cuvettes evolving into dolines during postglacial dissolution. 

Seven additional dolines have developed by dissolution, atop or amongst the roches 

moutonnées. The largest solution doline (D20, Fig. 4F) preserves a functional ponor and 

suggests that an important karst conduit developed underground, to the north of M1 Cave, on 

the same N-S direction. Both doline D20 and M1 Cave close the valley line right above the 

plucking slope face which marks the threshold between the cirque and the glacial valley. 

Karren are best developed on the western-facing side of the glacial cirque, cutting 

perpendicularly on foliation, on the lee sides of roches moutonnées (Fig. 4G). 
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Figure 3. Karst and glacial landforms with cave deposits in the Mușeteica area. A. Ridge-top 

dolines and M6 Cave; B. Stalactites and flowstones discovered in the unroofed M6 Cave; C. 

The entrance of M5 Cave, yellow square indicates the extent of flowstone in Fig. 3D; D. 

Exposed flowstones near M5 Cave (GPS receiver is 10 cm in length); E, F. Glaciokarst 

landforms in the Mușeteica cirque (Dn – dolines; Rm – roches moutonnées); G. Kluftkarren 

formed on roches moutonnées (the size of rock hammer is 40 cm). (1.5-column fitting 

image) 
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4.1.2. Glacial and periglacial landforms 

Inherited glacial features include the Mușeteica cirque, the Mesteacănu, Robița, Mușeteica, 

and Râiosu pyramidal peaks, and the interconnecting crests. Mușeteica and Râiosu glacial 

cirques developed entirely on marbles. The boundary between the cirque and the glacial 

valley consists in a 15-meters high plucking slope face, which matches the lithologic contact 

between marbles and the more friable actinolite schists. 

Morphometric parameters of the Mușeteica glacial cirque reflect a pronounced allometry, 

which is typical for the cirques of the Făgăraș Mountains (Mîndrescu and Evans, 2014): 1 km 

in length, 524 m in width, and an amplitude of 280 m, resulting a length/width ratio of 1.9. 

The height range is 2100 to 2380 m, and the headwall height is 120 m. It is a valley-head 

cirque with an area of 0.49 km
2
, comparably larger than the Râiosu cirque to the east (0.12 

km
2
), and the small, nested cirques (0.02-0.08 km

2
) hanging on the western and northern 

slopes of Mușeteica Mountain at ~2000 and ~2200 m a.s.l.  

The values used for calculating the average glacial erosion rate are given in Table 2. The five 

topographic profiles across the Mușeteica glacial cirque along which we calculated the cirque 

height are illustrated in Figure 4.  

 

Table 2. Morphometric parameters of the Mușeteica glacial cirque, calculated from DEM-

derived values. (1-column fitting table) 

Profile Max. elevation (m 

a.s.l.) 

Min. elevation (m 

a.s.l.) 

Cirque height (m) 

A 2295 2255 40 

B 2235 2175 60 

C 2240 2154 86 

D 2220 2128 92 
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E 2175 2094 83 

 

 

Figure 4. Topographic profiles across the Mușeteica glacial cirque. Double arrows indicate 

the cirque height for each profile.  (1.5-column fitting image) 

 

The cirque height varies in thickness from 40 m in the vicinity of upper crest to more than 90 

m near the threshold, resulting in an average height of 72.2 m. 

Roches moutonnées have distinct morphologies in the upper cirque compared to those in the 

lower cirque. The former features are smaller, more discrete (1-2 meters in height) and 

generally subsequent to marble foliation. The latter group comprises well-developed features 

(5-10 m in height), with well-preserved lee side facets due to ice flowing in the same 

direction as the dip of marble foliation. Glacial till is preserved only on the western side of 

the cirque bottom. Lateral moraines reach between 5 and 20 meters in height and host 

subsidence dolines. Avalanche channels are well developed on the steep, eastern-facing side 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

19 
 

of the cirque headwall. These channels end with imbricated triangular marble scree cones, 

which partly cover the lateral moraines. 

 

4.1.3. Gravitational landforms 

A large, meter-deep mass movement breaks the continuity of the glacial rim to the NW. Field 

observations show that it is a massive consequent rockslide, seeming to have been driven 

parallel to the marble foliation dip plane. A rockslide deposit is superimposed on the lateral 

moraines accumulated on the right side of the cirque bottom. Another distinctive linear 

feature was observed at the glacial headwall base, striking on a NW-SE direction, 

perpendicularly to the direction of cirque development. It has a sackung-like morphology, 

more similar to a smoothed slope break along an inherited fracture. Sackungs (sackungen) are 

upslope-facing scarps formed in (but not restricted to) glaciated mountains near the ridge 

crest in postglacial time intervals due to gravitational spreading (e.g., Gutiérrez-Santolalla et 

al., 2005). In Mușeteica Mt., both gravitationally developed landforms are deep-seated 

gravitational slope deformations, an evidence of postglacial unloading. These can be 

observed on the digital surface model as smooth terrain discontinuities. 

The geomorphological map of the area that hosts the caves (Mușeteica ridge crest and the 

cirque from the SW slope) shows the variety of genetic types of landforms which could have 

influenced the conduit development and cave deposit formation to some extent (Fig. 5). 

Surface deposits like talus scree, glacial till and rockslide deposits increase the landscape 

complexity, but these also cover, destruct or hinder surface karst development. Triangular 

talus scree deposits with angular marble fragments fringe at the base of snow avalanche 

channels, developed only on the eastern-facing cirque headwall. 

The glaciokarst is divided into two areas: a) the area above the trimline containing the ridge-

top caves and collapse dolines; b) the relict glacial cirque with solution and subsidence 

dolines, ponors, karren-incised roches moutonnées, and dry valleys. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

20 
 

 

 

Figure 5. Geomorphological map of the Mușeteica glaciokarst (scale 1:5,000). The average 

strike and dip of marble bedrock is indicated to the upper-left corner of the map. Truncated 

and unroofed ridge-top caves are shown to the right-up corner. (2-column fitting image) 

 

4.2. Cave geometry, morphometry and geomorphology 

 

The caves have a single level, are very short and have a simple orthogonal pattern, imposed 

by the structural control of joint and fault network (Fig. 6). The highest caves (M3-R2, M4, 

and M5) developed perpendicularly to the marble foliation dip, along a NE-SW direction (40-

50°). Only the upper part of the M3-R2 Cave, the M6 unroofed cave and the ridge-crest 

collapse dolines are oriented NNW-SSE, conformably to foliation dip. Cave passages usually 

developed along fractures and were widened along foliation planes.  
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M1 Cave developed preferentially at the contact between marbles and an amphibolite stripe 

(more easily weathered), with subsequent thin actinolite- and biotite-rich sheets interlayered 

within the marble. The cave has the steepest profile of all the caves in the area, about 45-53° 

on the foliation planes and 70-90° on the fault cross-cuts (Fig. 7). It is nearly a subvertical 

cave with limited development, a feature which is typical for stripe karst (Lauritzen, 2001). In 

the first section, large chambers are filled with breakdown deposits, which often form the 

walls and even ceiling of adjoining passages. The walls of the primary tube, covered by 

scallops, were only partially preserved. A very low and narrow tube (W=1 m, H=0.3 m) links 

the upper chambers to the lower passage of the deepest section (Fig. 8). This last passage also 

has a tube morphology with an ellipsoidal profile evidencing the structural control of 

foliation planes upon the cave passage enlargement under pressure flow. Consequently, the 

passage is very wide (~7 m) compared to its height (0.3 to 1 m) and no breakdown evidence 

was observed along this part. Overall, tube morphology is pervasive in the M1 Cave, except 

for the frontal part, recently collapsed and filled with breakdown. Unlike the ridge-top caves, 

where they are abundant, speleothems are absent in the M1 Cave, indicating different 

environmental conditions which inhibited their growth.  

M3-R2 Cave is very wide and deep, in contrast to its shortness (Table 2), showing a 

preferential development along the marble foliation plane. A detailed description was made 

by Tîrlă et al. (2016). Its main passages intersect at 90º angle and are separated only by 

breakdown walls. The passage ends with a large breakdown blocks accumulation, which may 

indicate a possible continuation. The morphology and orientation of exposed cave remnants 

are somehow different, controlled by the NW-SE fracture that crosses through the Mușeteica 

north-western nested cirques and the ridge crest. 

M4 and M5 are truncated caves located next to each other (~15 m apart), and very close to 

M3-R2 Cave. M4 Cave (25 m in length) is filled with breakdown, mostly unstable, 

preserving only a thin (1-2 cm) flowstone fragment on the outer wall, at the base of the 
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entrance. M5 is the shortest remnant cave (16 m in length) consisting in a simple passage 

opened upwards through a 2.7-m shaft. Flowstone sample M5-1 was retrieved just outside the 

cave entrance – indicating a past larger extent of this cave, since speleothems of this kind 

could have formed only underground.  

M6 is an unroofed cave passage found after excavating into the D2 ridge-top doline. The 

doline is filled with more than 2 meters of sediment and seems to continue with a small 

passage, although exploration work is still needed to access it. The walls at the western end 

host well-preserved speleothems, while many speleothem fragments can also be found within 

the clastic infill. 

Morphometric indices are typical for alpine small caves (e.g., Piccini, 2011) and have 

comparable values influenced mostly by the geological conditions (Table 3). 

 

Table 3. Morphometric parameters and indices of Mușeteica marble caves. Dimension values 

are given in meters and angles in degrees. 

Cave 

name 

Geographic 

coordinates 

Elevation 

(m asl) 

No. of 

passage 

segments 

Lr Lp Rv Ex Vi Hi Li Hci Strike Dip 

M1** 

45°34'0.68"N 

24°38'19.63"E 
2106 15 132 104 -70.6 85.4 0.53 0.78 0.36 1.22 18.3 43 

M3-R2* 
45°34'25.11"N 

24°38'57.69"E 

2430 13 55 48 -18.2 25 0.36 0.87 0.11 1.92 40 45 

M4** 
45°34'22.95"N 

24°38'55.56"E 

2401 4 25 14 -11.5 23.5 0.46 0.56 0.15 0.90 37 45 

M5** 

45°34'22.18"N 

24°38'55.75"E 

2396 5 16 14 -3.7 11.3 0.23 0.88 0.08 1.24 52 42 

M6** 

45°34'23.15"N 

24°38'58.79"E 

2417 1 13 13 5? 13 - - - - 152 - 

*Tîrlă et al., 2016; **This study 
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Figure 6. The geomorphological map of the Mușeteica caves and cave remnants. Arrows 

indicate speleothem sampling sites (sample names in black framed text). Sample M3-R2-1 

was analyzed and discussed by Drăgușin (2013). Rose diagrams show orientations of passage 

ways (black arrays) and joint sets (grey) for each site. (2-column fitting image) 
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Figure 7. Unfolded longitudinal profiles of the M1, M3-R2 and M4 caves. Passage 

inclination is displayed below the profiles, and cave depth at the ends.  (1-column 

fitting image) 

 

The highest contrast is shown by the value of Li, which is much higher for M1 Cave than for 

the ridge-top caves (0.36 vs >0.15, respectively). Hi should be similar considering the dip of 

the main passages (42-45º), which is conformable to the dip of marble foliation. However, the 

Hi value of M3-R2 Cave is high (0.87) due to low-dipping branches and upper passages. The 

cave has the highest Hci (1.92) and a low Li (0.11) due to its complex areal development, 

which could be an evidence of a formerly longer conduit network. 
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Figure 8. Morphological features of the M1 (A-G) and M3-R2 caves (H). A. Passage ways 

developed along foliation planes; B. Weakness planes along the marbles - amphibolitic 

schists contact; C-D. Pressure tube morphology; E-F. Wall and ceiling pockets formed in the 

frontal cave sector by late-stage condensation corrosion due to invasion of warm air during 

the summer season; G. The lowermost point of M1 Cave (-70 m); H. Speleothem decorations 

in M3-R2 Cave. (1.5-column fitting image) 
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4.3. Orientations of structural and karst features 

 

4.3.1. Fault and fracture system 

Three main orientations of the major faults were distinguished: NW-SE, W-E, and NE-SW 

(Table 4). With small differences, this pattern matches orientations of the medium-scale fault 

and fracture set extracted from the CNES/Airbus imagery (Fig. 9A).  

The NE-SW and N-S oriented fractures are the most frequent, in contrast to the regional 

tectonic system. Several NNW-SSE-oriented faults and fractures cross the upper part of the 

Mușeteica glacial cirque and the Mușeteica-Robița ridge. The latter partially controlled the 

development of the M3-R2 Cave and the passages which were subsequently unroofed and 

infilled with sediments (e.g., M6 Cave). This major fracture crosses the Mușeteica Peak and 

is visible on the NW-facing slope. Recent dissolution and collapse occurred along it between 

the M3-R2 and M6 caves, where it intersects the main fracture of M4 Cave (Fig. 9B). Two 

NW-SE oriented main fractures cross the upper part of the glacial cirque transversally. The 

easternmost one forms the boundary between the cirque floor and the headwall, and favored 

the opening of a shallow trench of 0.5-1 m in depth (Fig. 5). 

The preferred orientations for development of underground karst conduits in the Mușeteica 

area were NE-SW and NW-SE. The two passage sets normally intersect under 90º angles, 

forming orthogonal networks. Cave passages having a cumulative length of 114 m out of a 

total of 236 m are NE-SW oriented, while those oriented NW-SE are 55 m in length. The 

WNW-ESE and NNE-SSW passages sum 22 m and 18 m, respectively. 

 

Table 4. Main orientations of joints, faults, fractures, and cave passages 

Structural / karst features (lettered a-e in Fig. 9D) Sample size Orientations 

a. Major faults (Făgăraș Mts) 36 NE-SW, W-E, NW-SE 

b. Faults and fractures (Făgăraș Mts) 540 NE-SW to ENE-WSW, and WNW-
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ESE to NW-SE 

c. Local faults and fractures (Mușeteica cirque) 137 NE-SW, NW-SE, WNW-ESE 

d. Local joint sets, cumulated (Mușeteica caves) 162 NE-SW, NNE-SSW, NW-SE 

e. Cave passages (length distribution) 40 NE-SW, NW-SE 

 

 

Figure 9. Structural framework of the central Făgăraș Mountains (A), and Mușeteica cirque 

(B). Orientation rose diagrams of faults, fractures, joints, and cave passages (C). Data source: 

A. Documented major faults and fault segments extracted from medium-resolution DEM 

(courtesy of Digital Globe); C. Large-scale fault segments and fractures extracted from high-

resolution DSM (hillshade); D. Explanation of letters (a-e) in Table 3. (2-column fitting 

image) 
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4.3.2. Types of joints and the joint families 

The joints generally form two systematic sets forming an orthogonal network (Fig. 9B), 

close-fitting a tension joint system (Passchier and Trouw, 2005). Shear joints form conjugate 

sets that intersect the former under a sharp angle (30-60º). This pattern is better observed on 

the ridge, near the entrance of M3-R2 Cave. Frost-weathering joints developed on preferred 

detachment planes of the minerals and have sub-decimetric to sub-centimetric densities. They 

distinguishable by their high density compared to that of schistosity and shear joints, the 

latter being strictly controlled by tectonics. The joint sets measured near the caves fall into 

four families (Fig. 10), of which only one (J1) seems to be common to the entire study area. 

Another three joint groups were identified, two on the ridge-top (J2, J3) and one on the valley 

bottom (J4). Results show that the J1 joint family is responsible for the development of 

Mușeteica caves. The main passages of M1, M3-R2, M4, and M5 caves developed along 

NW-SE-oriented joints and fractures. 

 

 

Figure 10. Stereograms of joint and foliation planes combined with cave passages (best-fit 

great circles and poles to planes). Contour levels show the density of points representing 

polar projections of cave passages.  (1.5-column fitting image) 
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4.4. Speleothem U-Th ages 

 

Results of U-Th dating are given in Table 5 and plotted in Figure 11. A low concentration of 

uranium can be seen across all sub-samples of the four speleothems, with an average value 

below 20 ng/g, a maximum of ~50 ng/g (sample M6-1) and a minimum of ~10 ng/g (sample 

M3-R2-3). Stalagmite M3-R2-1 seems to have formed during a short, 2000-year period, 

roughly between 125 ka and 123 ka.  

Flowstone M3-R2-3 has a base age of 329.8±11.1 ka and a top age of 97.6±26.6 ka. The 

middle samples taken across the petrographic transition at 3 cm are within the error bars of 

each other. The base and top ages of the M5-1 flowstone are 440.2±36.8 ka and 398.8±29.8 

ka, respectively, with high uncertainties, of about 8%. The sample in the middle returned a 

31% uncertainty (542.9±168.7 ka), being nevertheless within the uncertainty of the other two. 

The base age of M6-1 flowstone is older than 560 ka, beyond the limit of U-Th dating 

method, and its top age is 526 (+97/-52) ka. 

 

Table 4. Results of the U-Th measurements. Letters 
a
,
b
, and 

c
 in the column Sample ID 

indicate the place of analysis: 
a
 - CENIEH, Burgos, Spain, 

b
 - University of Melbourne, 

Australia and 
c
 - Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. 

Age uncertainties are reported at 2σ confidence interval. 

Sample ID 

238U 

(ng/g) 

232Th 

(ng/g) 

[230Th/

232Th] 
(232Th/238U) (230Th/238U) (234U/238U) age (ka) 

(230Th/23

8U) 

correcte

d 

(234U/238U) 

corrected 

Corrected 

age (ka) 

(234U/238U) 

initial 

aM3-R2-1 

- I 

19.77 

±0.12 

0.23 

±0.00 

284.96 

±2.54 

0.00381 

±0.00004 

1.0857 

±0.0075 

1.5106 

±0.0055 

125.0 

±1.7 

1.0860 

±0.0076 

1.5122 

±0.0056 

124.9 

±1.7 

1.729 

±0.007 

aM3-R2-1 

- II 

20.48 

±0.26 

0.29 

±0.00 

236.83 

±2.47 

0.00466 

±0.00010 

1.1052 

±0.0145 

1.5155 

±0.0289 

128.2 

±5.5 

1.1056 

±0.0145 

1.5174 

±0.0290 

128.0 

±5.5 

1.743 

±0.032 

aM3-R2-1 19.80 0.23 285.14 0.00381 1.0871 1.5230 123.4 1.0874 1.5246 123.2 1.743 
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- III ±0.13 ±0.01 ±3.28 ±0.00013 ±0.0110 ±0.0084 ±2.5 ±0.0110 ±0.0084 ±2.5 ±0.010 

aM3-R2-1 

- IV 

19.92 

±0.11 

0.24 

±0.00 

266.18 

±2.17 

0.00397 

±0.00004 

1.0574 

±0.0062 

1.4787 

±0.0056 

124.4 

±1.5 

1.0576 

±0.0062 

1.4802 

±0.0057 

124.2 

±1.5 

1.682 

±0.007 

aM3-R2-1 

- V 

19.14 

±0.10 

0.25 

±0.00 

250.23 

±2.64 

0.00423 

±0.00008 

1.0592 

±0.0090 

1.4927 

±0.0059 

122.6 

±2.0 

1.0594 

±0.0090 

1.4944 

±0.0060 

122.4 

±2.0 

1.699 

±0.008 

aM3-R2-1 

- VI 

18.03 

±0.10 

0.22 

±0.00 

274.19 

±3.37 

0.00402 

±0.00006 

1.1023 

±0.0085 

1.5204 

±0.0071 

126.8 

±2.0 

1.1027 

±0.0086 

1.5220 

±0.0071 

126.6 

±2.1 

1.747 

±0.009 

aM3-R2-1 

- VII 

20.12 

±0.10 

1.14 

±0.01 

59.33 

±0.46 

0.01851 

±0.00015 

1.0984 

±0.0067 

1.5302 

±0.0059 

124.5 

±1.6 

1.0999 

±0.0069 

1.5382 

±0.0072 

123.6 

±1.7 

1.763 

±0.008 

cM3-R2-

3-I 

23.21 ± 

0.08 

7.78 

±0.03 

8.47 

±0.04 

0.11009 

±0.00020 

0.9299 

±0.0051 

1.0674 

±0.0033 

212.9 

±4.3 

0.9231 

±0.0069 

1.0739 

±0.0054 

204.0 

±5.6 

1.131 

±0.009 

cM3-R2-

3-II 

11.34 ± 

0.04 

5.15 

±0.02 

6.40 

±0.05 

0.14908 

±0.00029 

0.9512 

±0.0083 

1.0896 

±0.0042 

211.3 

±6.2 

0.9446 

±0.0105 

1.1017 

±0.0088 

199.5 

±8.0 

1.179 

±0.013 

bM3-R2-3 

III 

35.70  

54.90 

±1.50 

0.0207 

±0.0004 

1.1383 

±0.0057 

1.1464 

±0.0026 

329.86 

±11.33 

  
329.8 

±11.1 

1.3714 

±0.0105 

bM3-R2-3 

IV 

9.66 

±0.73 

12.81±

1.02 

2.30±0

.07 

0.4327 

±0.0113 

0.9788 ± 

0.0267 

1.3125 ± 

0.0088 

137.4 

±7.3 

0.9789±

0.0268 

1.3126±0.

0088 

97.4 

±25.9 

1.412 

±0.031 

cM5-1-I 

14.33 ± 

0.05 

0.59 

±0.00 

76.15 

±0.47 

0.0135 

±0.00006 

1.0245 

±0.0049 

1.0310 

±0.0031 

441.3 

±36.7 

1.0248 

±0.0050 

1.0313 

±0.0031 

440.2 

±36.8 

1.109 

±0.009 

cM5-1-III 

14.76 

±0.06 

0.34 

±0.00 

137.23 

±0.93 

0.0076 

±0.00003 

1.0386 

±0.0061 

1.0484 

±0.0039 

399.4 

±29.7 

1.0388 

±0.0062 

1.0487 

±0.0039 

398.8 

±29.8 

1.150 

±0.010 

bM6-1-I 23.62  

14.9 

±1.50 

0.0716 

±0.0014 

1.0661 

±0.0081 

1.0442 

±0.0038 

717.11 

±301.70 

  >560.0 

1.3861 

±0.5799 

bM6-1-II 50.90  

59.90 

±1.50 

0.0188 

±0.0004 

1.1232 

±0.0058 

1.0941 

±0.0026 

531.31 

±77.04 

  
526.0 

+97/-52 

1.4235 

±0.0951 
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Figure 11. Sampling of speleothem calcite for U-Th dating and stable isotope analysis. 

Sample names are bolded, and the ages with corresponding uncertainties are given in ka.        

(2-column fitting image) 

 

4.5. Stable isotope results 

 

In stalagmite M3-R2-1, δ
13

C values range between a minimum of -8.51‰ and a maximum of 

-6.05‰. In flowstone M3-R2-3 values range between -9.96‰ and -4.11‰, with an 

exceptional value of -2.70‰ measured within a moonmilk layer. Flowstone M5-1 has values 

between -9.30‰ and -4.49‰. The values of δ
13

C in the host rock are positive, around 1‰: 

1.15±0.04‰ in M5-3, 0.87±0.03‰ in M3-R2-1, and 1.49±0.07‰ in M3-R2-2. 
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4.6. Age and pollen content of D2 doline (M6 Cave) infill 

 

The sedimentary infill of ridge-top doline D2 down to the depth of 2.10 m consists in three 

distinct layers (I-III) separated by brownish-black clayey horizons (Fig. 12). Three global 

samples analyzed for grain size, one from each layer (M6.a, M6.b, and M6.c), were plotted 

on pie charts. Grain size analysis shows a slight increase in clay content (11% to 15%) and 

decrease of sand (53% to 43%) downwards. The lower layer III (cm 210-110 on the profile) 

is a 1-m thick, fine-grained massive sediment with very loose rock fragments. The middle 

layer II (cm 110-75) contains denser and larger lithoclasts of 5-20 cm in size, and is overlain 

by a 5-cm thick black clayey layer. The upper layer I (cm 70-15) contains more sand 

compared to lower layers. The greenschist clasts are angular or subangular, whereas the 

marble clasts are either subangular or subrounded. A 15-cm regosol is developing atop of the 

sedimentary deposit. 

Radiocarbon dating of the three samples returned 
14

C age estimates that are in stratigraphic 

order: 2,589±28 years BP, 1,221±26 years BP, and 1,069±26 years BP. The calibrated ages, 

reported at 95.4% probability level, are as follows: between 2.77 and 2.55 ka for M6-19, 

between 1.26 and 1.07 ka for M6-10, and between 1.05 and 0.93 ka for M6-4. 

In sample M6-14, a total of 250 pollen grains were counted and identified (excluding spores) 

along with 42 coniferous fragments (Pinus/Picea). The pollen is dominated by alpine steppe 

taxa: Asteraceae (44%), Poaceae (20%), Cyperaceae (18%), and Apiaceae (4%). The 

arboreal taxa are represented by Alnus (14%), Tilia (2%), and the coniferous fragments. As 

well, the Ericaceae family taxa represent 4% of the total identified pollen grains. 
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Figure 12. Sediment profile showing position of the analyzed samples and basic stratigraphy. 

The sediment is sloping from left to right, towards the flat bottom of the doline. Black dots 

represent the sub-samples collected for grain size analysis, and the white rectangles indicate 

the three most representative global samples with their grain size percentage plotted on the 

charts to the right.  (1-column fitting image) 

 

 

5. DISCUSSION 

 

5.1. Relations between karst, glacial and periglacial processes 

 

The last glaciation left recognizable geomorphic evidence in the Făgăraș Mountains (Urdea et 

al., 2011; Kuhlemann et al., 2013; Mîndrescu, 2016). The crest, headwall and bottom of the 
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Mușeteica relict cirque, like elsewhere, are well-defined features which evolved little since 

the last deglaciation, affected only by erosion and local gravitational unloading. 

The higher occurrence of dolines and ponors on the cirque bottom delineates an important 

area of dissolution and water infiltration in a concentrated flow, and the probable existence of 

an organized subterranean network. The glacial infill of covered paleodolines would have 

been subsequently affected by subsidence due to underground drainage, a process often seen 

in glaciokarst landscapes (Veress, 2016; Veress et al., 2019). During the last glacial period, 

the fossil ridge-top caves (M3-R2, M4, M5, and M6), located in the area above the trimline, 

were not directly influenced by glaciers, being subjected only to periglacial processes.  

Such caves most probably formed during interglacials, when waters were more aggressive 

and able to enlarge cave passages (Häuselmann et al., 2007). Glaciers do not have a 

significant impact on dissolution speleogenesis (Audra, 2001; Häuselmann et al., 2002), due 

to the saturation in Ca
2+

 ions of the subglacial waters via incorporation of finely ground 

calcite eroded by the glacier (Bini et al., 1998), and due to a smaller CO2 concentration that 

should have originated only from the atmosphere, in the absence of soil. 

Under the influence of cold surface temperatures, ice could have formed in the frontal parts 

of the caves, contributing to passage enlargement during freeze-thaw cycles. This might 

explain for example the morphological differences between the front and the back of the M1 

Cave. 

 

5.2. Structural control 

 

The cirque distribution in the Mușeteica-Buda area is highly controlled by geological 

structure. Nested cirques are aligned at 2000 and 2250 m a.s.l. on the northern slope, leaning 

against interlayered marbles and schists. Mușeteica cirque is subsequent in relation to marble 
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structure (NE-SW strike, Fig. 5), whereas Râiosu cirque is consequent, with direct 

implications on their comparably different shapes and sizes.  

Arrangement and shape of dolines and roches moutonnées, the plan shape of the dry valley, 

and kluftkarren development on the lower cirque bottom corresponds to orientations of local 

faults and fractures (Fig. 5). Dry valleys developed subsequently on foliation at the contact 

between marbles and silicate rock bands. The stepped profile of the main dry valley is due to 

numerous swallow-holes formed on the foliation planes, favoring the access of stream water 

into the underground. 

Some faults and fractures fitting the major NE-SW and NW-SE orientations, which define the 

structural framework of the Făgăraș Mountains, were crucial for underground karst 

development. The frontal part of M3-R2 Cave and the former ridge-top cave remnants (one 

of which is M6 Cave) are aligned on the NW-SE fault which crosses through the Mușeteica 

peak (2442 m). Further two NW-SE-oriented fractures which cross perpendicularly on the 

Mușeteica cirque are tension fractures formed due to postglacial rebound and gravitational 

spreading, as suggested by the presence of a discrete sackung-like feature and the position of 

these fractures within the glacial cirque (Gutiérrez-Santolalla et al., 2005). However, the 

unloading fractures inherited some older dextral transpression faults formed during the Late 

Miocene (Mațenco and Schmid, 1999). Subsidiary fracture sets (WNW-ESE and NNE-SSW) 

are less abundant, but perceptible at regional and local scales. 

Still, not all fractures have a tectonic trigger at the origin. Locally, where slope 

disequilibrium was reached due to glacial lateral sapping, followed by glacier retreat, it 

prompted massive rockslides oriented conformably to marble foliation.  

 

5.3. Speleogenetic stages 
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The observed speleogenesis in this area consists of three development stages: 1) texture- and 

fabric-controlled dissolution on foliation planes and tension fractures; 2) structurally-

controlled breakdown; 3) cave unroofing and sediment infilling. 

 

5.3.1. Texture- and fabric-controlled dissolution (M1 Cave) and distension (ridge-top caves) 

The importance of contact planes between banded minerals with different physical and 

chemical properties in metamorphic rocks as speleoinception horizons plays a similar role 

with that of bedding planes in sedimentary rocks (Lowe and Gunn, 1997). Mineral 

segregation and recrystallization followed the direction imposed by the tectonic stress during 

metamorphism on the penetrative S2 foliation.  

The caves developed in schistose impure marbles containing thin silicate bands which have 

controlled the spatial development of fissure aquifers inside the bedrock. The banded fabric 

determined primary calcite dissolution preferentially along the silicate-carbonate contact 

planes, intersected by faults or pinnate fractures. The weakness of mineral cohesion resulted 

in the development of plane-parallel systematic joints (J3), related to the S2 foliation. 

Exhumation of the metamorphic rocks, followed by erosion, gradually released the pressure 

from the overburden, and probably caused the formation of J3 plane-parallel distension joints. 

Thereafter, the central role on conduit development seems to have been played by the tension 

fractures that cross marbles perpendicularly on the S2 foliation. These fractures correspond to 

the J1 joint family, which is the dominant joint system in the regional tectonic system (Fig. 

9). Evidence of pressure flow can only be observed in the M1 Cave, but none in the ridge-top 

caves. These caves could have developed by diffuse water infiltration along the joint 

network, although organized water flow at low discharge could have played a role. Where 

fissure aquifers were intersected by faults or fractures, these evolved into karst conduits as 

pressure tubes (M1 Cave). 
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5.3.2. Structurally-controlled breakdown  

In a later stage, enlargement of karst conduits caused breakdown due to decreasing stability 

of the ceiling, as described by White and White (2000). Breakdown, comparable to rock 

dissolution, occurred preferentially along the marble-schist contacts. Schist bands on the cave 

ceilings or ceiling edges were found in M3-R2 and M1 caves, which are larger and their 

morphology is better highlighted. The process is active and contributes to enlargement of 

chambers and passages and even to passage unroofing (surface breakdown). 

Development of M1 Cave progressed along two main directions: NW-SE and NE-SW, 

intersecting in a 90º angle, conformably to local fractures geometry. The NW-SE passage 

depicts mostly a breakdown morphology, which is abruptly replaced by a pressure tube 

morphology in case of the NE-SW passage (Fig. 4A). This change in cave morphology could 

be attributed to tectonics: distension caused breakdown, whereas compression (or 

transpression) favored pressure tubes forming. 

The breakdown-dissolution couple has gradually determined subsurface karst development 

along the marble foliation planes, whereas the surface components are mostly represented by 

dolines with ponors. M1 Cave is an exception, because it opens out on a roche moutonnée, 

partially collapsed due to subsurface breakdown. 

 

5.3.3. Truncation, unroofing, and sediment infilling 

The entrance of the M3-R2 Cave hangs above the Râiosu cirque on the eastern slope of 

Mușeteica Mt, indicating it was truncated by slope retreat, which generated the present-day 

shape of the Râiosu upper basin. As well, morphology of the D2 doline is evidence that 

former cave passages (M6 Cave) collapsed and were filled with sediment washed in from the 

surrounding slopes. The sediment infill has preserved the collapse morphology and in situ 

speleothems. 
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All the studied caves except M1 are arranged into a very small, 5,500-m
2
 area on the 

mountain ridge top (Fig. 5). M4 and M5 caves, located very close to each other (~15 m), 

were undoubtedly truncated as inferred from the existence of in situ flowstones outside their 

entrance. Given their close position, we propose that these caves are remnant segments of a 

single network, whose interconnecting passages are probably obstructed by breakdown and 

sediment infill. Dissolution by percolating water was favored by the local tension fracture 

system and slowly modeled the cave walls under lithologic control, producing alternating 

sharp edges on the silicate sheets and corrosion grooves on the marble bands. No scallops 

were observed on the passage walls, indicating the lack of pressure flow. During cold periods 

(both periglacial and glacial conditions), cryoclastic phenomena would have played a role in 

developing the joint network. Some dissolution of weathering and breakdown material during 

warmer and wetter climate phases might have contributed to cave development, a process 

which can be observed today. On the contrary, there is no evidence for an old age or 

truncation of the M1 Cave.  

 

5.4. Speleothem growth phases 

 

Overall, the chronology of speleothem growth is generally well constrained given the 

limitations of the U-Th dating method. The largest age errors given by flowstones M6-1 and 

M5-1 are due on the one hand to the very low uranium content (between 14 and 51 ng/g), and 

on the other to the closeness of the U-Th dating limit, of ~500,000 years. 

Speleothem formation seems to have occurred during at least five distinct phases (or 

episodes). The first phase was recorded by flowstone M6-1, which started growing before 

560 ka, although this age estimate does not benefit from error assessment. The top of this 

flowstone has an age of 526 ka with an error defined as +97/-52 ka, which is not unusual for 

samples of similar age and with such low uranium content. A second phase is identified in 
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flowstone M5-1, which appears to have grown between 440 ±37 ka and 399 ±30 ka, roughly 

overlapping marine isotope stages 10 to 13 if uncertainties are considered in full. The third 

phase took place during MIS 9 and is identified at the base of sample M3-R2-3, at 330 ±11 

ka. Also, in flowstone M3-R2-3, we can identify the fourth phase around 200 ka. Here, a 

change in petrography from dark brown to white, opaque calcite is defined by two age 

estimates of 204 ±6 ka and 200 ±8 ka, during MIS 7a-7c. Taking into account the error 

estimates, there could have been no hiatus at all between them, or a hiatus of at most 14 ka. 

One could speculate that it might have been caused by detrimental environmental conditions 

for speleothem formation during MIS 7b. A fifth phase is clearly defined by stalagmite M3-

R2-1, which grew only during the warmest part of the last interglacial (MIS 5e), between 

124.9 ±1.7 ka and 123.6±1.7 ka (Drăgușin, 2013). Moreover, the top of flowstone M3-R2-3 

was dated at 97.6 ±26.0 ka, restricting its deposition to sometimes during MIS 5. 

The U-Th ages fall mostly within interglacials (MIS 9, 7, and 5), except for M6-1 and 

possibly M5-1, where large age uncertainties hamper a good chronological control (Fig. 13). 

M3-R2-3 seems to even span several glacial cycles and we suspect that there should be 

hiatuses within the sample that cover the intervening glacial periods. 

This might be due to the fact that mid-latitude speleothems form generally during 

interglacials, whereas formation ceases during glacials (Gordon et al. 1989; Baker et al. 1993; 

Lauritzen, 1995; Hercman, 2000; Spötl et al., 2007). Continuous deposition throughout 

glacial periods is characteristic only at circum–Mediterranean and sub–tropical sites 

(McDermott, 2004). 

At sites similar to ours, for example at high elevation in the Alps, Spötl et al. (2002) and 

Holzkämper et al. (2005) showed that speleothems formed only during interglacials. 

Similarly, Norwegian speleothems were found to have formed during interglacials (Lauritzen 

et al., 1990; Lauritzen, 1995; Berstad et al., 2002; Lauritzen and Lundberg, 2004). In 

Søylegrotta (N Norway), the formation of stalagmite SG92-2 was restricted to MIS 15, 13, 
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11, and 9 (Berstad et al., 2002). Also in N Norway, flowstone LP6 from Laphullet Cave grew 

mostly during the MIS 11 interglacial (Lauritzen et al., 1990; Lauritzen and Lundberg, 2004). 

This speleothem is very similar with our sample M3-R2-3 with respect to its 

geomorphological and climatic setting. Laphullet Cave developed on a ridge-top in marble 

bedrock in an area with mean annual temperature of 2.8°C, near the Arctic Circle, and was 

repeatedly affected by glacier advance and retreat. 

 

 

Figure 13. U-Th dates and their respective error bars from speleothems and the benthic δ
18

O 

record of Lisiecki and Raymo (2005) in black. Marine isotope stages representing 

interglacials and their warming peaks are indicated by odd numbers and accompanying letters 

below the age plots. For the M6-1 flowstone, only the top age is shown, as the bottom age 

was out of U-Th dating range.   (1.5-column fitting image) 

 

Stable carbon isotope values (δ
13

C) from these speleothems can help in discerning if calcite 

was deposited during warm periods, when soil plant and microbial activity were high, for 

example during interglacials. In our speleothems the lowest values are close to -10‰. They 
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can be the result of a mixing between organically derived CO2 which usually has a δ
13

C value 

of about -23‰ (in a C3 dominated plant association), and carbonate host rock (around 1‰ in 

our case), which usually gives a δ
13

C speleothem value of around -11‰ (see for example the 

review work of McDermott, 2004). The highest values that we measured can be given by a 

wide range of processes intervening between host rock dissolution and speleothem 

deposition, but is not the aim of this work to discuss them. The most important information 

we want to convey is that values of -10‰ cannot be produced in the absence of plant and soil 

microbial activity specific to warm periods. 

 

5.5. Significance of clastic sediment infill 

 

The young age of the sediment infill, inferred both from the direct radiocarbon dating of bulk 

organic matter but also from the failure of obtaining OSL ages, implies that the collapse of 

the M6 Cave ceiling took place very recently, during the Holocene or, in any case not during 

the last glaciation. If the collapse doline generated by ceiling collapse would have been 

exposed to intense periglacial conditions during a glacial period, it would have been filled 

with cryoclasts and largely expanded outwards, whereas what we see at the moment are 

vertical walls, some of them even retaining flowstones. The angular to subangular shape of 

silicate rock clasts found in the sediment indicates little or no transport, and therefore an in 

situ gravitational infill following the cave ceiling collapse. Further excavation of the sediment 

in order to reach the bottom of the deposit will shed more light onto the collapse and 

sedimentation processes. At the moment we see no explanation for the infill provenance in 

such high quantities in such a short time interval. 

Pollen preservation is rather poor given the presence of many degraded and unidentified 

degraded grains (15%), and a rather low number of taxa. Nevertheless, the sediment infill of 

the M6 Cave (doline D2) provides a good opportunity for future studies on vegetation 
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reconstructions considering the abundance of grains. The availability of large sample 

amounts that could be analyzed for a wide range of biogeochemical proxies offers an 

opportunity that is not available for the study of lake sediments, that relies on coring, and 

could be a welcomed addition to such type of Holocene archives from high elevation. 

Further improvements in pollen and spore retrieval could be achieved by changes in the 

preparation protocol (e.g., removing the acetolysis step and reducing the HF treatment). 

 

5.6. Regional landscape evolution and reconstruction of cave assemblage  

 

The U-Th ages of our speleothems indicate that underground voids developed in the 

Mușeteica area before ~560 ka. As the sample yielding this age was retrieved from a wall, it 

also shows that this section of M6 Cave did not suffer from breakdown processes since its 

formation.  

Evolution of the Mușeteica caves in a cold, glaciated environment was most likely dependent 

on surface erosion (via cirques development and increased lateral migration of the crests 

under the ice dynamics), coupled with water availability and soil development. The most 

important effect on surface topography was glacial and periglacial modelling, 

counterbalanced by mountain tectonic uplift, and to a lesser extent by fluvial erosion and 

marble dissolution. 

 

5.6.1. Glacial erosion 

The morphology of the Mușeteica glacial cirque itself is likely the result of several glacial 

phases during the Pleistocene. Studies have shown that the necessary time for cirques to form 

may be between 125 ka and beyond 400 ka (Barr and Spagnolo, 2015, and references 

therein). Therefore, it is likely that the glaciers have eroded the bedrock at least during the 

penultimate glaciation, MIS 6 (191-130 ka), and the Last Glacial Period, MIS 4-2 (70-12 ka). 
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The exact time of ice formation during the LGP is unknown. Based on the widely accepted 

fact that speleothems grow mostly during the interglacials/warm periods, and that our 

youngest speleothem age is 97.6±26.0 ka, we presume that local glaciation should have 

initiated sometimes between 115 and 70 ka. However, isotopic studies have shown that 

conditions for ice formation or advance were met mostly towards ~70 ka, given that the last 

warming peak of the MIS 5 interglacial (5a) was at 82 ka (Lisiecki and Raymo, 2005). The 

approximate age of deglaciation in the nearby cirques was around 12 ka (Kuhlemann et al., 

2013). We can estimate that, over the cumulated intervals of the penultimate and last 

glaciations (~120 ka), glacial erosion could have removed a maximum of 72 m of bedrock, 

resulting in an average erosion rate of 0.6±0.02 mm yr
-1

. If the Mușeteica glacier melted 

earlier than 12 ka, then we may allow for a slightly higher value of the glacial erosion rate, 

probably no more than 0.65 mm yr
-1

. Temperate glaciers are able to erode the bedrock at rates 

between 0.1 and 10 mm yr
-1

 (Swift et al., 2015, and references therein). In the European Alps, 

Valla et al. (2011) have shown a minimum mean erosion rate of 1 mm yr
-1

. Yet, the Alpine 

glaciers are better developed and more aggressive compared to former Carpathian glaciers, 

considering the cirque size of the latter (Mîndrescu and Evans, 2014).  

 

5.6.2. Estimation of dissolution rates 

During periods with no glacier presence, the dominant processes which might have lowered 

the topographic surface were karst dissolution and fluvial erosion. These processes must have 

contributed considerably less than the glaciers to surface erosion. 

Regarding dissolution rates, Bögli (1971) reported values between 0.014 and 0.071 mm yr
-1

 

for the bare karst in Muotatal (Switzerland), while Lauritzen (1990) found values between 

0.013 and 0.023 mm yr
-1

 for Norway karst. For a moderate climate with effective 

precipitation of 1000 mm yr
-1

 and bare karst area, Gabrovšek (2007) has calculated a 

limestone dissolution rate of 0.04 mm yr
-1

. At Innerbergli in the Swiss Alps, under climatic 
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and karst conditions similar to those in the Făgăraș Mountains, the average value is 0.014 ± 

0.007 mm yr
-1

 (Häuselmann, 2008). According to these studies, marble dissolution rates do 

not exceed 0.1 mm yr
-1

 in such conditions, much lower than our calculated glacial erosion 

rate of ~0.6 mm yr
-1

. 

 

5.6.3. Mountain uplift estimates 

Mountain uplift rates covering the Pleistocene epoch were not reported to date. Significant 

uplift events during the Upper Badenian, Upper Sarmatian, and uppermost Pannonian were 

recorded in the sediments of southern Transylvanian Basin, as shown by the sequence 

stratigraphy results (Mațenco et al., 2010), and show average uplift rates of 1, 0.8, and 1.88 

mm yr-1, respectively. Modern geophysical measurements indicate higher uplift rates of 2-3 

mm yr
-1

 (Zugrăvescu et al., 1998). Despite the apparent increase of the uplift rates since the 

Upper Miocene until present, such a large time gap confines the arguments on paleoaltimetry 

only to rough estimations, and therefore we excluded it from the proposed scenario below. 

 

5.6.4. Sequence chronology of cave development and landscape evolution 

The scenario proposed below is based on speleothem ages, and the assumption that the caves 

must be older than the deposits within. We describe six time periods in the evolution of this 

landscape during the past >560 ka, illustrated in Figure 14: 

I) Before ~560 ka. The minimum estimated age of M6 Cave is provided by the U-Th dates 

of M6-1 sample, falling roughly within the MIS 15-13 interglacial. At this point, there is 

no evidence about the existence of any other cave nearby. 

II) At ~400 ka. Most probably during the MIS 11 interglacial, M5 Cave was already formed 

and was probably longer, allowing for the deposition of flowstone M5-1. No datable 

cave deposit from the M4 Cave could provide insights into its age. 
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III) At ~330 ka. The first evidence for the existence of M3-R2 Cave during MIS 9 was the 

commencement of M3-R2-3 speleothem growth. Meanwhile, the intervening surface 

erosion, enhanced during the cold periods by glacial/periglacial conditions, should have 

thinned the overburden of M6 and M5 caves. 

IV) At ~70 ka. Speleothems grew during the last interglacial perhaps only in the M3-R2 

Cave. So far, we found no evidence of speleothem formation at this stage in the other 

ridge-top caves (M4, M5, or M6); therefore, we may assume that these caves had already 

been strongly truncated by erosion at that time, and speleothem growth was not possible 

anymore in the nearly exposed passages or chambers. 

V) Last Glacial Period (~70 ka – 12 ka). The area above the trimline was subjected to 

periglacial processes, being close to erasing all the cave passages from the ridge. The 

Mușeteica glacier has removed a large amount of bedrock and dropped the altitude of 

land surface by a maximum of ~70 m. M1 Cave was probably invaded by ice in its 

frontal part, causing extensive breakdown, and received periodically a water influx from 

the glacier above, which subsequently modelled the tube in the back section. 

VI) Late Holocene. Mountain uplift and erosion resulted in the present-day morphology and 

altitudes. The landscape should not have changed too much since the last deglaciation, 

except for gravitational spreading and partial modeling of karst landforms and glacial 

deposits. The ridge-top caves are subjected to slow dissolution, and passage enlargement 

by breakdown. M1 Cave is no longer enlarged by water flow under pressure, but shows 

multiple evidence of wall modelling by condensation corrosion in its frontal part. The 

roof of M6 Cave probably collapsed during the Holocene and was filled with clastic 

sediments washed from the nearby slopes, and is capped by active soil layers. 
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Figure 14. Evolution scenario of the Mușeteica glaciokarst: 1 – surface topography; 2 – 

hypothetical paleotopography; 3 – cave section; 4 – truncated cave; 5 – speleothem; 6 – 

mountain glacier; 7 – slope erosion; 8 – marble; 9 – greenschist; 10 – amphibolitic schist; 11 

– strike and dip of rock foliation.  (2-column fitting image) 
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The interpretation regarding the progress of glacial erosion illustrated in Figure 14 is based 

on a geomorphological foundation. Morphometry of the glacial cirques suggests that erosion 

progressed rather headward in the Mușeteica cirque, whereas in the smaller cirques around it 

(including the Râiosu cirque to the east) it acted mostly downward at least during the last 

glacial period. The hosted ice could not have removed enough material from the bedrock of 

these small cirques to force a significant headwall erosion compared to Mușeteica cirque. 

Here, the former glacier seems to have described a clockwise 70º–90º rotation from south 

towards the east, imposed by the geological structure of marbles.  

 

6. CONCLUSIONS 

 

This study provides new geomorphological and geochronological information on the 

evolution of the Făgăraș Mountains (Romania) marble karst and gives new insights into the 

relationship between karstification and Pleistocene environmental changes in the central 

South Carpathians. Our results show how the alpine karst and sedimentary archives such as 

speleothems and clastic infills have recorded these changes in an isolated high-altitude 

setting.  

Geological structure seems to have controlled the spatial development of karst and glacial 

landforms, primarily through the layered structure of calcite marbles and the preferred 

orientation of faults and fractures. The primary tectonic directions are NE-SW and NW-SE, 

while WNW-ESE and NNE-SSW are secondary. Cave formation was related to four joint 

families measured on the marble bedrock, with the NW-SE-striking joint family being 

dominant in the entire area. 

The Mușeteica glaciokarst contains two distinct zones: a) the level above the trimline 

comprises collapse dolines and cave remnants with speleothems; b) the glacial cirque hosts 

solution dolines, dry valleys, ponors, kluftkarren, a valley-bottom cave lacking speleothems 
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(M1 Cave), roches moutonnées, and plucked slope facets. Morphological evidence and lack 

of speleothems suggest that the M1 Cave is younger than the caves above the trimline and 

developed under the glacier during the last glaciation (MIS 4‒2). 

The ridge-top caves and former passages were truncated due to slope retreat under glacial and 

periglacial erosion, throughout the Middle and Late Pleistocene. We discovered a cave 

remnant (M6) by excavating the siliciclastic sediment infill of a ridge-top doline.  

Three speleogenetic stages were outlined: 1) texture- and fabric-controlled dissolution and 

distension; 2) structurally-controlled breakdown; 3) cave truncation, unroofing, and sediment 

infilling. 

We reported the first speleothem U‒Th dates from the alpine karst in the Romanian 

Carpathians, that range between ~70 ka and more than 560 ka, spanning the Middle and Late 

Pleistocene. U-Th dating shows that speleothem deposition was limited mostly to interglacial 

periods. Stable carbon isotope values of these speleothems have a minimum around -10‰, 

indicating the presence of sustained activity from plant and soil microorganisms, consistent 

with environmental conditions of warm periods. 

Based on speleothem ages and glaciokarst geomorphology, we proposed a landscape 

reconstruction scenario comprising six time slices, at >560 ka, 400 ka, 330 ka, 70 ka, 70 to 12 

ka, and at present. Each chronological sequence illustrates changes that occurred in cave 

development, speleothem growth, and glacial/periglacial erosion. 

The sediment accumulation we identified in the ridge-top dolines has a late Holocene age, 

preliminary radiocarbon dating showing it started depositing before ~3 ka. We showed that it 

preserved pollen from a mostly herbaceous plant association. Combined with other 

biogeochemical proxies and a possibility for large sample availability, these sedimentary 

archives can be a welcome complement to lake sediment cored from the region.  
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Abstract 

 

The Carpathian island-type glaciokarst has a great potential of preserving signals of past 

environments, archived in cave deposits like speleothems and clastic infills. We present here 

the geomorphology and structural control of several relict alpine caves and the surrounding 

glaciated marble karst in the Făgăraș Mountains. Four truncated and partially unroofed caves 

remained on the ridge-top of Mușeteica Mountain, above the glacial cirque, while a ponor 

cave that developed on the cirque bottom could be related to the Last Glacial Period. 

Structural measurements and cave morphology showed that the conduits formed at the 

intersection of foliation planes and tectonic fractures on the NE-SW and NW-SE directions. 

Cave development reflects three speleogenetic stages: 1) texture- and fabric-controlled 

dissolution and distension; 2) structurally-controlled breakdown; and 3) truncation, 

unroofing, and cave infilling with sediments. Slow diffuse dissolution was typical for the 

ridge-top caves, whereas M1 Cave developed by pressure flow. 

Further, we report the first U-Th speleothem ages, related to the evolution of alpine caves and 

island glaciokarst in the South Carpathians during the Middle and Late Pleistocene. Dating 

results show a minimum estimated age of ~560 ka for the ridge-top caves, and that 

speleothem deposition met optimal conditions only during warmer periods, largely 

corresponding to interglacials. Stable carbon isotope values in speleothems range between -

9.96‰ and -4.11‰, indicating the presence of plant and soil organic activity at the time of 

deposition. In total, five speleothem growth phases were distinguished during the last ~560 

ka. 

We excavated the sediment infill of a ridge-top doline down to a 2-m depth. Radiocarbon 

dating revealed that it was deposited during the Late Holocene, and preliminary pollen 

analysis identified a plant assemblage dominated by grasses. 
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Using the relationships between karst development, glaciation, and cave sedimentary 

archives, we present a time slice chronology of alpine landscape evolution at >560 ka, ~400 

ka, ~330 ka, the Last Glacial Period (70-12 ka), and the Late Holocene. Our 

geomorphological, isotopic, and geochronological results also support the existing hypothesis 

that the South Carpathians may have experienced at least two glacial phases during the 

Pleistocene. Glacial erosion rate during the Last Glacial Period, and most likely during the 

penultimate glaciation, averages around 0.6 mm yr
-1

. 

 

Keywords:  

Carpathians; Speleothem; Glaciated karst; High-altitude cave. 
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Highlights 

 We investigated glaciokarst morphology in the Făgăraș Mountains, Romania 

 We provide the first speleothem ages of alpine caves in the South Carpathians 

 The minimum estimated age of ridge-top caves is ~560 ka 

 Speleothem growth was limited only to warm periods 

 Sedimentary infill of dolines unravels Late Holocene environmental conditions 
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