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Using inventory to mitigate the Ripple
effect
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Abstract: A single disruption at a single location within a supply chain may effect many other
locations of a the supply chain through the Ripple effect (Ivanov et al., 2014). In this article
we focus on the role of inventory to mitigate the Ripple effect. Our main finding states that
operational decisions (such as safety inventory level or service level) are highly interrelated
with decisions that mitigate the Ripple effect (such as a high Resilience of the supply chain).
Specifically, we find: 1) An increase in demand volatility may lead a firm to invest more in
operational safety stock as well as in dedicated Risk Mitigation Inventory. 2) A high service
level and high resilience of a supply chain can be conflicting objectives. Copyright c© 2019 IFAC
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1. INTRODUCTION

A single disruption at a single location within a supply
chain may effect many other locations through the Ripple
effect (Ivanov et al., 2014). In this article we want to
discuss various levers that mitigate the Ripple effect.
Broadly speaking there are two kind of operational risk
mitigation levers available to a firm: (i) to hold additional
capacity at a reliable source, so called reserve capacity
(Lücker et al., 2018b) and (ii) to hold inventory that can
be used to meet demand in the event of a disruption. In
this article we want to further specify inventory as a risk
mitigation lever. A broad stream of literature assumes that
firms hold so-called Risk Mitigation Inventory (RMI). RMI
is designed to be used to meet customer demand in the
event of a supply disruption (Lücker et al., 2018a). As it is
not designed to be used to mitigate demand uncertainty,
RMI is different from safety inventory and is often held in
addition to safety inventory. However, it is important to
recognize that any available inventory will be used in the
event of a disruption to supply the disruption demand.
In particular, safety inventory and cycle inventory (if
available) will be used as risk mitigation levers even though
they are not designed a priori to serve in the event of a
disruption.

Pharmaceutical firms often produce large batch seizes of
the active pharmaceutical ingredient (API) of a drug.
Such batches may supply more than a year of demand
for the API. Clearly, in the event of a disruption, the
pharmaceutical firm would use all available cycle inventory
to mitigate the disruption.

With this explorative research we want to better under-
stand the roles of safety and cycle inventory on the optimal
risk mitigation strategy.

To illustrate our insights, this analysis focuses on a single
echelon where inventory is replenished according to the
popular (Q, R) policy. We conduct extensive numerical ex-

periments to find that operational decisions (such as safety
inventory level or service level) are highly interrelated with
decisions that mitigate the Ripple effect (such as a high
Resilience of the supply chain). Specifically, we find:

(1) An increase in demand volatility may lead the firm
to invest more in operational safety stock as well as
in RMI.

(2) A high service level and high resilience of a supply
chain can be conflicting objectives.

Finding 1 reveals the counter-intuitive result that the
operational safety stock and RMI can sometimes be com-
plementary as RMI and operational safety stock may both
be increasing in demand volatility. Finding 2 underlines
that a resilient supply chain may not necessarily operate
at a high service level. This is interesting because such a
supply chain may be capable to deal with severe supply
disruptions, but not necessarily with demand uncertainty.

2. RELATED WORK

The research topic of supply chain risk management has
recently been explored by Ivanov and Dolgui (2018) who
suggest to emphasize uncertainty in the supply chain
rather than certain assumptions. In this line of research the
authors identify key characteristics of these low-certainty-
need supply chains.

The ripple effect was introduced by Ivanov et al. (2014).
This effect suggests that the impact of a disruption propa-
gates across an entire supply chain, affecting performance
metrics along various dimensions. In (Ivanov et al., 2019)
the authors combine findings on the ripple effect with
supply chain digitization.

The work of Scheibe and Blackhurst (2018) studies dis-
ruption propagation in multi-tier supply chains. Based on
grounded theory, the authors identify key themes that are
relevant for decision-makers when being exposed to sup-
ply disruption risk. Further related literature focuses on



resilience in the procurement process. Based on developing
resilience-based supplier selection criteria, Hosseini and
Barker (2016) proposes a new Bayesian network paradigm.

3. METHODS

Let us briefly restate key elements of the (Q,R) policy:
This continuous-review policy is based on ordering Q units
when on-hand inventory hits a reorder point R. Key as-
sumptions include that demand is stochastic and station-
ary and that the lead time T for placing an order is positive
and constant. Although exact solutions are known, often
heuristics are applied. Hadley and Whitin (1963) find an
iterative heuristic solution, where the inventory holding
costs h are approximated and where they assume that the
lead time demand does not exceed the order quantity Q.
This heuristic is based on the expected average annual cost
given by
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(Q
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where λ is the demand rate, K the setup cost for placing
an order, and p the backlog cost per unit of unsatisfied
demand. The expected number of shortages that occur in
one cycle is

n(R) =
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R
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where fT (x) describes the probability density function of
the lead time demand. The operational safety stock SS is

SS = R− λT. (3)

Let us extend this policy to include disruptions by combin-
ing the total cost function for a disruption with the total
cost function for the (Q,R) policy:
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In above total cost function, the first term G(Q,R)
(
1 −

ωτ
)

represents the expected cost function if no disrup-
tion occurs (costs for the undisrupted (Q,R) policy). No
disruption occurs with probability (1 − ωτ ). The second
term represents the the expected costs if a disruption
occurs. The disruption probability is ωτ . We refer to the
literature (Lücker et al., 2018b) for a detailed discussion
of the expected costs in the event of a disruption. We note

that the first of these terms represents the penalty cost,
the second the RMI holding costs, the third and fourth
the reserve capacity production costs. The last term rep-
resents the reserve capacity reservation cost and is always
incurred regardless of whether a disruption takes place.
ξ(I) represents the probability distribution density for the
inventory level I (e.g. on-hand inventory minus stockouts).

Using the truncated normal distribution we can rewrite
the terms as follows:
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To further evaluate this objective function, we perform
a numerical analysis of key parameters with MATLAB
(fmincon optimizer).

We measure supply chain resilience with the risk measure
conditional value at risk CV aRα with threshold α. We
consider two types of uncertainty in our supply chain:
demand uncertainty and inventory uncertainty (only an
uncertain amount of the total cycle inventory can be
used in the event of a disruption). CV aR is then given
by the expected shortages beyond a threshold. A low
expected shortfall (CV aR) corresponds to a high supply
chain resilience, whereas a high expected shortfall (CV aR)
corresponds to a low supply chain resilience.

4. EXPERIMENTAL RESULTS

In the following we provide numerical results for the ex-
tended (Q̂, R̂) policy. We focus on realistic scenarios with
parameters that were aligned with the pharmaceutical
company: K = 100, λ = 1, p = 40, h = 1, T = 1, cA =
20, ĉA = 2, τ = 10, ωτ = 0.05, α = 0.95 and a normally
distributed demand with µ = 1 and σ = 0.3. Throughout
the experiments we find consistent results along a wide
range of parameter choices that support the observations
below. We analyze how the decision variables Q̂, R̂ and a∗

as well as CV aRα depend on key model parameters.

First, we describe the behavior of our decision variables
and CV aRα in various cost parameters:

Proposition 1. Sensitivity in various cost parameters:

• Q̂ increases in cA, ĉA and may decrease or increase in
h, p.

• R̂ decreases in h and increases in cA, ĉA, p.
• a∗ decreases in cA, ĉA and increases in h, p.
• CV aRα increases in h, cA and ĉA, but may increase

or decrease in p.



Coefficient of variation CV :
CV = 0.1 CV = 0.15 CV = 0.2 CV = 0.25 CV = 0.3

R 1.08 1.13 1.17 1.21 1.25

R̂ 1.19 1.28 1.37 1.45 1.54

Q 13.57 13.52 13.47 13.43 13.40

Q̂ 10.04 10.07 10.09 10.11 10.14

Table 1. Sensitivity of R and R̂ in the coeffi-
cient of variation of demand CV

These observations are in line with the Hadley-Whitin
(Q,R) policy.

Next, we elaborate on the role of the coefficient of variation
of demand CV :

Proposition 2. Sensitivity in the coefficient of variation of
demand CV :

• Q̂ decreases in CV .
• R̂ and CV aRα increase in CV .
• a∗ may decrease or increase in CV .

Table 1 shows how R̂ increases in CV . We also display the
increase in the reorder point R from the Hadley-Whitin
(Q,R) policy. Interestingly, the reorder point increases

even more strongly in the case of a disruption (R̂ increases
by 29.8% over the range CV = 0.1 to CV = 0.3) than
without disruptions (R increases by 15.3% over the range
CV = 0.1 to CV = 0.3). Since the lead time is constant,
the increase in R entails an increase in the safety stock.
At the same time, in the case of a disruption, R̂ increases
more strongly, indicating that safety stock and RMI can
be complements rather than substitutes.

Table 1 also shows that Q̂ increases in CV , whereas Q is
approximately constant in CV .

In contrast to previous analytical results (Lücker et al.,
2018b), the reserve capacity production rate a∗ may de-
crease in the coefficient of variation of demand CV . As
demand volatility increases, more safety stock is built up.
Hence, a lower reserve capacity production rate is optimal.

Next, we elaborate on the role of disruption probability
ωτ :

Proposition 3. Sensitivity in the disruption probability
ωτ :

• Q̂, a∗ and CV aRα may increase or decrease in ωτ .
• R̂ increases in ωτ .

In order to provide intuition behind this Proposition, we
plot how the batch size (Figure 1), the reorder point (Fig-
ure 2), the reserve capacity production rate (Figure 3), and
CV aRα (Figure 4) depend on the disruption probability

ωτ . In Figure 1 we observe that Q̂ varies strongly with
the disruption probability ωτ . Clearly, as the disruption
probability increases, it is helpful to hold more inventory
in the supply chain. As long as the disruption probability
remains low (below 6%) it is cheaper to substantially
increase the batch size rather than substantially increasing
safety inventory. However, once we pass a threshold (6% in
the numerical example), it becomes cost-efficient to sub-
stantially increase the reorder point (see Figure 2) because
RMI and safety inventory provide the best buffer against
the very likely disruptions (rather than the highly variable
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Fig. 1. Batch size Q̂
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Fig. 2. Reorder point R̂

cycle inventory). However, since it is optimal to hold large
amount of RMI and safety inventory, it is optimal to reduce
the batch size for high disruption probabilities. This dis-
cussion shows that supply chain resilience can effectively
be improved by not only holding RMI and safety inventory,
but also by setting optimal batch sizes. These results
contrast with the practice of some companies, which focus
exclusively on stocking RMI without taking the batch size
into account.

Regarding the reserve capacity, we observe that the reserve
capacity is switched on only for disruption probabilities of
ωτ ≥ 0.2. Then a∗ increases in ωτ until it reaches its max-
imum at ωτ ≈ 0.06 because low probability disruptions
are better mitigated with reserve capacity than inventory.
Once we pass the threshold of ωτ ≈ 0.06, it is optimal
to reduce the reserve capacity because it is cheaper to
mitigate disruptions with inventory rather than reserve
capacity.

The dependency of CV aRα on the disruption probability
ωτ can be explained as follows. CV aRα increases in
the disruption probability ωτ until ωτ ≈ 0.02 as the
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Fig. 3. Reserve capacity production rate a∗
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likelihood of not being able to supply in the case of a
disruption increases. We have the maximum CV aRα ≈
0.042. Afterwards CV aRα decreases in ωτ until ωτ = 0.1
as more RMI and reserve capacity are built up. For ωτ >
0.1 CV aRα increases slightly in ωτ .

Next, we elaborate on the role of the disruption time τ :

Proposition 4. Sensitivity in the disruption time τ :

• Q̂ and R̂ increase in τ .
• a∗ and CV aRα may increase or decrease in τ .

In order to provide intuition behind this Proposition, we
plot how the batch size (Figure 5), the reorder point
(Figure 6), the reserve capacity production rate (Figure
7), and CV aRα (Figure 8) depend on the disruption time

τ . We find that the batch size Q̂ and reorder point R̂
increase in τ throughout the parameter range. It is very
intuitive that more inventory of any kind is needed when
disruptions tend to last longer. Note that when disruptions
tend to be short (τ < 20), it is optimal to increase the
reserve capacity substantially, whereas the reorder point
increases only slightly because it is more cost-efficient
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mitigating short disruptions using reserve capacity rather
than inventory. In contrast, when disruptions tend to be
longer (τ > 20), the reorder point increases whereas
reserve capacity decreases. Note that these results are in
line with the analytical results of Lücker et al. (2018b).

CV aRα increases in τ until τ = 5 as the potential loss
increases‘. Afterwards CV aRα decreases in τ because the
potential total penalty cost increases, and it therefore pays
off for the firm to invest in RMI and reserve capacity.

Finally, we elaborate on the role of the fixed costs K:

Proposition 5. Sensitivity in the fixed costs K:

• Q̂ increases in K.
• R̂ and a∗ decrease in K.
• CV aRα may increase or decrease in K.

As with the Hadley-Whitin (Q,R) policy, the batch size
increases in K and the reorder point decreases in K. The
decrease in R̂ also entails a decrease in the service level as
the lead time is kept constant. Given that CV aRα may
increase or decrease, keeping a high service level and high
supply chain resilience as measured by CV aRα can be
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Fig. 7. Reserve capacity production rate a∗
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conflicting objectives. In particular, keeping a high service
level does not necessarily entail high supply chain resilience
as measured by CV aRα.

5. CONCLUSIONS

This research suggests that operational decisions such as
batch size or safety inventory levels are highly interrelated
with decisions that deal with disruption risk (RMI and
reserve capacity).

As avenues for future research we suggest to develop
further insights on how these dependencies affect each
other in more complex settings (multi-echelon, multi-
product supply chains) and to provide a more rigorous
modeling foundation.
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