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Abstract

Future heat stress under six future global warming (A Tgyy) scenarios IPCC RCP8.5) in an Asian megacity
(Osaka) is estimated using a regional climate model with an urban canopy and air-conditioning (AC). An
urban heat ‘stress’ island is projected in all six scenarios (ATgy = +0.5 to +3.0 °Cin 0.5 °C steps). Under
ATgw = +3.0 °C conditions, people outdoors experience ‘extreme’ heat stress, which could result in
dangerously high increases in human body core temperature. AC-induced feedback increases heat stress
roughly linearly as AT,y increases, reaching 0.6 °C (or 12% of the heat stress increase). As this increase is
similar to current possible heat island mitigation techniques, this feedback needs to be considered in urban
climate projections, especially where AC use is large.

Abbreviations and notation used

AC Air-conditioning

AC—FB Simulation with AC feedback (FB)

AC=FB Simulation without AC FB (no-Qg, a¢)

BEP+BEM  Building effect parameterisation and building energy model
C Commercial and office

C, Sensible heat flux from the globe surface (W m ™)
Ios Specific heat at constant pressure (J K~ ' kg™ ")
CM-BEM Urban canopy model and building energy model
CMIP Climate model intercomparison project

Ccop Coefficient of performance

COST Cooperation in science and technical development
D Diameter of the globe (m)

FB Feedback

GCM Global climate model

GHG Greenhouse gas

GIAJ Geospatial Information Authority of Japan

GIS Geospatial information system

IPCC Intergovernmental Panel for Climate Change
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1. Introduction

In 2018, Japan had the second hottest July on record (since 1883, Japan Meteorological Agency (JMA) official
home page: https://www.data.jma.go.jp), with a mean monthly temperature in Osaka 1.63 °C higher than the
11 year (July 2000-2010) mean. These elevated temperatures resulted in the highest on record hospitalisations
(54,220) and heat stroke deaths (133) (Ministry of Internal Affairs and Communications, Japan 2018). This
period was designated a ‘heat wave natural disaster’ (Nikkei 2018), similar to disasters from typhoons, heavy
rainfall and snowfall, and floods.

Heat waves are expected to become more common and more intense with greenhouse gas (GHG)—induced
global warming (e.g. IPCC 2013), exacerbated in cities by the urban heat island effect (e.g. IPCC 2014). With
cities being home to more than 66% of the population by 2050 (United Nations 2014), the impact of urban
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climate on public health and energy supply/demand is critical. Already 30% of the world’s population are
exposed to deadly heat thresholds on at least 20 days per year, and this may increase to ~74% by 2100 if GHG
emissions increase (Mora et al 2017).

To prepare for future heat waves, it is critical to understand how urban heat stress will change and to identify
potential feedbacks from GHG-induced global warming and human activities. Although future urban air
temperatures have been explored both globally and locally (e.g. Adachi et al 2012, Kusaka et al 2012, Kusaka et al
2016, Hamdi et al 2014, Grossman-Clarke et al 2016, Conlon et al 2016, Krayenhoff et al 2018, Tewari et al 2019,
Darmanto etal 2019, Takane et al 2019, Lipson et al 2019), few studies have examined the impact on human heat
stress in cities. As global climate model (GCM) simulations (e.g. Delworth et al 1999, Willett and
Sherwood 2012, Coffel et al 2018) still do not resolve most cities, it is difficult to predict urban heat stress.

A GCM (1° horizontal resolution) with an Urban Canopy Model (UCM) calculated the wet-bulb globe
temperature (WBGT) heat stress metric (Fischer et al 2012), but this is too coarse for within-city variations. High
resolution simulations using dynamical downscaling with a regional climate model (RCM) have allowed heat
stress studies at 20 km (e.g. Mediterranean Diffenbaugh et al 2007) and 3 km resolution (e.g. Japan Kusaka et al
2012). Higher-resolution (a few kilometres) heat stress studies have addressed cities in Asia (Takane et al 2015,
Suzuki-Parker and Kusaka 2015, 2016, Yang et al 2016, Kikumoto et al 2016, Doan et al 2016, Doan and
Kusaka 2018, Yamamoto et al 2018), Europe (Altinsoy and Yildirim 2014), North America (Oleson et al 2015),
and Oceania (Argtieso et al 2015).

In Japan, WBGT is the official thermal stress index (since 2006, Ministry of the Environment, http: //www.
wbgt.env.go.jp/en/). Although it is correlated with both the number of heatstroke patients (heat disorder risk)
(Ohashi et al 2014, Yamamoto et al 2018) and excess deaths (Takaya et al 2014), it does not have a clear
relationship with human physiological responses (Yaglou and Minard 1957). However, the Universal Thermal
Climate Index (UTCI) (Fiala et al 2012, Btazejczyk et al 2013) is derived from human physiology experiments
(Brode et al 2012a), physiological modelling, meteorology, and climatology (Btazejczyk et al 2013). It has been
applied in a range of climate conditions (Btazejczyk et al 2012, Schreier et al 2013, Blazejczyk et al 2014) and
applications (Fiala eral 2010, 2012). Heat stress also depends on micro-scale variations in urban morphology
(e.g. shading) and differences in individuals (e.g. age, size, movement, activity). Hence, local-scale grid globe
temperatures do not capture micro-scale variability or range of values from shading, but rather the mean for the
area (section 2.3). However, grid mean heat stress can indicate the most dangerous conditions that outdoor
workers will be exposed to, helping risk assessments for human health.

Japan’s many megacities have high population densities (e.g. Tokyo and Osaka) where people are exposed to
both high temperature and humidity. Hence, there is high risk of both heat stress and heatstroke during heat
waves. Additionally, Japanese cities already use air-conditioning (AC) extensively with the associated release of
anthropogenic heat (Qp i.e. Qf, 4c). With warmer temperatures, Qr, ¢ can increase causing a positive feedback
leading to additional urban warming and energy consumption (e.g. Ashie et al 1999, Kikegawa et al 2003,

Sailor 2011, Li etal 2014, Kikegawa et al 2014, Salamanca et al 2014, Takane et al 2017, Ginzhurg and
Demchenko 2019, Takane et al 2019). In Osaka, this positive feedback is predicted to cause 0.6 °C additional
warming in early morning August temperatures (based on a four-GCM ensemble for +3.0 °C (cfto current)
global warming scenario, ~2070 s). Given this is a similar size to differences or uncertainties within GHG
emission scenarios, RCMs, and urban planning scenarios, this feedback need to be considered (Takane et al
2019).

Our objectives are to predict the impacts on heat stress from future climate at 1-km horizontal resolution,
considering the feedbacks from Qp, 4c. We focus on Osaka, the second largest city in Japan (figure 1), as it has
experienced the hottest mean summer temperatures in Japan in the past 30 years (Takane et al 2013). Osaka’s
humid climate results in greater daytime urban heat island intensities than cities with drier climates (Zhao et al
2014). Moreover Osaka, already a major tourist destination, will host the 2025 World Expo, thus thermal stress is
of concern to both local citizens and global visitors.

2. Methods

In this study we indicate differences between the current and future climate as A (e.g., AT); and with (—) and
without (=) air-conditioning (AC) feedback (FB) as 6 (e.g., bUTCI is the UTCI difference between AC—FB
and AC=FB).

Feedback from AC use (SUTCI ¢ _gp) on future urban climates under future global warming scenarios
(ATgw) and changes in SUTCI ¢, pp related to ATy are estimated. All methods (numerical model, model
setup, and climate projections) are as in Takane et al (2019), except for the UTCI and WBGT calculations. The
latter are described within the Supplemental Materials.
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Figure 1. The study area. (a) domains (d01, d02), (b) topography (contour 150 m), and land use in (c) the Osaka Plain (d02) and (d)
Osaka with reference areas for urban land-use categories, including commercial and office buildings (C, blue circle), concrete fireproof
apartments (Rr, blue square), and detached wooden dwellings (Rw, blue triangle). Locations of the JMA Automated Meteorological
Data Acquisition System (AMeDAS) sites in Osaka (star), Nara (diamond), and Kyoto (circle).

2.1. Model settings

Following Takane et al (2017, 2019) dynamic downscaling is undertaken using the Advanced Research WRF
model (ver. 3.5.1) (Skamarock et al 2008) with model parameters as indicated in table S1 (Supplemental
Material) and the following physics schemes: updated Rapid Radiation Transfer Model (RRTMG) short-wave
and longwave radiation (Iacono et al 2008); WREF single-moment three-class (WSM3) cloud microphysics
(Dudhia 1989, Hong et al 2004); Mellor-Yamada—Janjic (MY]) atmospheric boundary-layer (Mellor and
Yamada 1982, Janjic 1994, 2002); Noah land surface model (Chen and Dudhia 2001); and BEP +BEM urban
canopy parameterisation (Martilli er al 2002, Salamanca and Martilli 2010, Salamanca et al 2010). At each time
step, Qr, acis calculated from electricity consumption using BEP+-BEM for each 1 km grid. Summertime near
surface air temperature and AC electricity consumption skill have been assessed for Osaka considering diurnal
and spatial variations (Takane et al 2017, 2019).

Two model domains (d01 and d02, figure 1(a)) have 126 x 126 grid points (x, y) at 5- and 1-km resolution,
respectively. Vertically, the 35 sigma levels go up to 50 hPa. Land use, land cover (LULC) and topography data
are from the Geospatial Information Authority of Japan (GIAJ). In d02, the GIA] LULC and Osaka geographical
information system (GIS) building footprint (polygon) data (figures 1(c), (d)) are used to classify the urban grids
into (i) commercial and business (C); and residential with predominantly (ii) concrete fireproof apartments (Rr)
or (iil) detached wooden dwellings (Rw). In d01, all urban areas are assumed to be Rw.

Initial and boundary conditions use NCEP-NCAR (National Centers for Environmental Prediction—
National for Atmospheric Research) reanalysis (Kalnay et al 1996) and merged satellite - in situ global daily sea
surface temperature (MGDSST) (Kurihara et al 2006) data. As 11 Augusts are sufficient for climatological
impacts and effects to be considered (Takane eral 2017, 2019), the time integration for each year is from 00:00
UTC July 27 to September 1, with model spin-up. The 2000-2010 period is treated as the control simulation
(case AC —FB) (figure 2, red arrow).

The no-Qp, 4¢ (feedback) simulation (case AC=FB) differs from the control simulation as Qr, 4cis assumed
tobe 0 W m 2 (figure 2, blue arrow); i.e. the larger difference in UTCI between AC=FB and AC—FB is the
Qr, acfeedback effect (SUTCI,c gp). Additionally, six future climates are simulated (section 2.2). We estimate
SUTClsc_ppfrom AUTClsc _pp — AUTClycpp (figure 2), with SUTCI 4 g for the current climate being
0 °C as we assume no long-term climate change (decades) (i.e., no increase in forcing temperature, and
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Figure 2. Numerical experiments. Control (AC — FB)and no-Qp, ¢ (feedback) (AC==FB) for current and future climates. Trends
(arrows) caused by global warming (ATgw) (grey); UTCl increase calculated by AC —FB (AUTCI ¢ _rp) (red) and AC=FB
(AUTCIyc-¢) (blue) and UTCl increase if Qx,_scor Qpin the future is the same as in the current climate (AUTCl o, Q) (black).
UTCI changes with AC use (orange), anthropogenic heat emitted by AC use without feedback (purple), and additional impact of Qp,
aconthe UTCL(8UTCI ¢ _pp), which are affected by the additional UTCI difference between AC—FB and AC=FB (AUTClc_.rp
and AUTCI¢.rp) (green). Simulations for eleven Augusts under seven climates with AC —FB (red circles) and AC=FB (blue circles).
Inset: feedback process caused by the interaction between urban warming from climate change and air-conditioning (AC) use.
Modified from Takane et al (2019).

AUTCIy¢_.pgand AUTCl¢.ppare 0 °C). To determine SUTCIL ¢, we assume that all conditions (e.g. urban
structures and human activities) remain constant except for background climate change. Although unrealistic,
this allows the specific impact of interest to be investigated.

2.2. Climate projection
Six future climates with background temperature increases (global warming with ATy = +0.5,+1.0, +1.5,
+2.0,+42.5,and +3.0 °C) relative to the current climate are simulated. The ensemble mean from four global
climate models (GCMs) that participated in the Climate Model Intercomparison Project (CMIP5) (Taylor et al
2012): CCSM4 (Gentetal 2011), CESM1 (CAM5) (Meehl et al 2013), GFDL-CM3 (Donner et al 2011), and
INM-CM4 (Volodin et al 2010); simulations for the representative concentration pathway [RCP] 8.5 are used.
These are the highest Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenario.
The climate variables (i.e. wind components, geopotential height, and temperature) differences between the
current and future scenarios are estimated (figure 3). For each ATy case, the climate difference for each
variable is added to the NCEP-NCAR and MGDSST data (figure 3) but with the relative humidity kept the same
as the current climate. Advantages of this regional climate projection (so-called pseudo-global warming (PGW))
method (Kimura and Kitoh 2007, Sato et al 2007) is that it bias-corrected (e.g. Xu and Yang 2012, Bruyere et al
2014,2015), widely used (e.g. Hara et al 2008, Kawase et al 2009, Rasmussen et al 2011, Kusaka et al 2012, 2016,
Doan and Kusaka 2018, Takane et al 2019), and a verified (Kawase et al 2008, 2009, Yoshikane et al 2012)
method.

2.3.UTCI calculation

The hourly UTCl is calculated for 11 years for each climate scenario using the Fiala et al (2012) human
physiology polynomial parameterisation (Brode et al 2012a, Blazejczyk et al 2013) as it is computational efficient
(e.g. Brode eral 2012b, Blazejczyk et al 2013, Provengal et al 2016, Ohashi et al 2018). It is forced with the near
surface air temperature (2-m simulations or 1.5-m observations), relative humidity, black globe temperature
(T,), and wind speed (within the urban canopy layer) (figure 3). The mean radiant temperature (T, is
estimated from T, air temperature, and wind speed (Kinouchi 2001):

€n0 (Ture + 273.15)* = Cg + Ry (1)
Ry = gg0(Ty + 273.15)* (2)

where C, is the sensible heat flux from the globe surface (W m™?), R, is the longwave radiation emitted from the
globe surface averaged for the surface area (W m™?), and e and £, are the emissivities of the globe thermometer
(assumed to be 1.0) and human clothing (0.98), respectively. C, is a function of globe temperature and air
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Tmrt (Kinouchi 2001); T, (Okada et al. 2013); UTCI (Bréde et al. 2012a); WBGT (Supplementary Material)

Figure 3. Calculation flowchart for heat stress metrics under current and future climates.

temperature (Yuge 1960):

Cg = hcg(rg - Ta) (3)
h.,D 3
Ci -2+ 0.55Re°'5(%)3 (10 < Re < 1.8 x 10%) (4)
h., D ot \5
2 _ oy 0.34Re°-566("T“)3 (1.8 x 10° < Re<1.5 x 10% (5)

where Reis the Reynolds number (UD/v), Uis the wind speed, D the diameter of the globe (=0.15 m), vis the
kinematic viscosity of air (m?s™ 1), vis the viscosity coefficient of air (Pas), Ais the thermal conductivity of air
Wm™ 'K, and ¢, is the specific heat at constant pressure (J K 'kg ™.

T,is estimated using the (Okada and Kusaka 2013, Okada et al 2013) improvement:

(So — 38.5)

(0.0217Sy + 4.35U + 23.5)

Ty

where S, is the incoming shortwave radiation (W m ™). Okada et al (2013) determined the equation (6)
parameters from hourly observations (June-August 2006-2012, all weather conditions) at a Osaka site
surrounded by office buildings (RMSE (root mean square error) = 2.15 °C).

The grid average UTCI and WBGT calculated provide information on exposure for outdoor workers
allowing risk assessment for human health. Heat stress metrics for within shadow conditions (e.g. Ohashi et al
2014) can reduce UTCI by ~8 °C (WBGT by ~1.5 °C) in summer daytime in Tokyo (Honjo et al 2018).
However, most regional scale heat stress studies use mean radiative conditions (as we do) they allow the regional
scale distribution of heat stress or the heat ‘stress’ island (section 3.1) to be identified, and its change with climate
change to be assessed. Regional scale values provide useful initial and/or boundary conditions for higher
resolution building resolving models with street level shade and flows around building and trees.

2.4. Verification

The model setup (this section) verificiation is presented in Supplementary material (S1). As the urban
charactistics of Osaka (figure 1(d)) do not produce a large difference between the two types of residential area
(wooden detached dwellings and fireproof apartments), we only present the results for the area of wooden
detached dwellings (hereafter residential) and the commercial and office buildings (commercial).
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Figure 4. Eleven-year (2000-2010) mean UTCI for August at (a)—(g) 05:00 and (h)—(n) 12:00 under different climates: (a), (h) current
and ATgw (b), (i) +0.5 °C; (c), j) +1.0 °C; (d), (k) +1.5 °C; (e), (1) +2.0 °C; (f), (m) +2.5 °C; and (g), (n) 3.0 °C. All times are local
(UTC + 9 h);Japan does not use daylight saving time. For WBGT see supplemental material.

3. Results

The ATgy changes the temperature, wind, humidity, and radiation in WREF. In the results, wind speed and T,,,,;
increase a small amount with ATy at night but do not change during the day. Hence, their ATgy impact on
the UTCI could be small. Relative humidity changes a little from the temperature and specific humidity
increases.

3.1. UTCl increase (A UTCI) with global warming (A Tgyw)

The UTCl is greater in Osaka than in the surrounding land areas at 05:00 under all seven climates (current and
six future scenarios, figures 4(a)—(g)), we refer to these as urban heat ‘stress’ islands. In the current climate, Osaka
(white line, figure 4(a)) has moderate heat stress but with greater urban warming (A Tgyy), this area expands to
cover the entire plain when ATy = +1.5 °C (figure 4(d)), and extends to the low-mountain area (figure 4(g))
with additional warming. People outdoors in this moderate heat stress area will sweat (sweat rate >100 gh ")
and experience wet skin (Brode et al 2012a). The relatively higher heat stress area is in the coastal parts of Osaka
and Kobe (black line, figure 4(g)).

At12:00, UTCl increases with ATgyy, and feedback effects of AC are projected (figures 4(h)—(n)), but with
inland values expected to be higher than those in the coastal area. Under current climate conditions, the entire
area, except the high mountains, experiences very strong heat stress (figure 4(h)). When ATgy, = +1.5 °C, the
mountain area is included in that description (figure 4(k)). Under such conditions, the human body core
temperature of people outdoors for 30 min can increase (Brode et al 2012a). When ATy, =+2.0 °C, an extreme
heat stress area is projected inland from Osaka, covering Kyoto and Nara (black lines, figure 4(1)). When
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Figure 5. Diurnal variation in the (a) UTCl ¢ g and (b) UTCI5c_p categories calculated from AC—FB (red) simulations for the
current and six future climates simulated with ATy, for residential areas (figure 1d). For WBGT see supplemental material.

ATgw = +3.0 °C, it covers most of the plain (figure 4(n)). Under these conditions, people will sweat at more
than 650 gh ™', show large increases in their core temperature, and have a lower net heat loss (Brode et al 2012a).
The changes in the diurnal range of UTCI projected for the current and six future temperature scenarios are
similar, but the individual mean values of UTCI differ (figure 5(a)). In the current climate, there is 1 h with no
thermal stress (~05:00), but this disappears with only a small amount of warming (after ATy = +0.5 °C)
(yellow, figure 5(b)). The midnight-to-morning period of moderate heat stress remains almost constant with
ATy, unlike the evening-to-midnight period, which decreases with ATgy, from (orange, figure 5(b)). Notably,
the latter becomes a strong heat stress (red, figure 5(b)) period once ATy = +2.0 °C. Under ATgw
= +3.0 °C, the period is projected to persist until midnight. The very strong heat stress daytime period increases
with ATgw (dark red, figure 5(b)). Under ATy = +2.5 °C, extreme heat stress conditions are expected by
12:00, persisting longer with A Ty (black in figure 5(b)).

3.2. Impact of AC induced feedback on UTCI (§UTCI ¢ _,rp)
The feedback effects of air-conditioning on UTCI (8UTCIsc_rp) are much greater at night than during the day
in residential areas (figure 6(b)), with changing climate expected to have greater influence in the early morning.
The size of this feedback increases roughly linearly with the global temperature increases (figures 6(d), (e)). At
05:00, SUTCI g increases with ATgy (figures 7(a)—(f)) but is smaller in the centre of Osaka (figures 7(b)—
(f)). However, at 12:00, SUTCI ¢ _.pg does not change with ATgy (figures 6(b), (e)). These differences are
probably caused by the difference in mixed layer depth, as Takane et al (2019) proposed. In the middle of the day,
Qp, acislarge, but the deeper mixed layer reduces its impact on UTCI. At night, although Qp, 4cis smaller, the
mixed layer is much smaller. Consequently, Qr, 4c enhances the mixed depth, and there is a greater impact
on UTCIL.

Increased temperature from the nocturnal feedback causes an increase in T,,,,, which could contribute to an
UTClincrease. The contribution of SUTCI ¢ to AUTCI ¢ g (figure 6(c)) is influenced by the
dUTCl ¢ pp diurnal pattern (figure 6(b)), with the contribution for the night-to-morning period being larger
than that in the daytime. The early morning contribution is about 12% when ATy = +3.0 °C. These results
suggest that one reason for the relatively higher AUTCI,¢ g at night (figure 6(a)) is the feedback process. The
spatial distribution of the contribution of SUTCI ¢ g5 to AUTCIL,c . pp (figures 7(g)—(1)) is similar to that of
dUTCl g (figures 7(a)—(f)).
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Figure 6. Impact of feedback processes on UTCI (SUTCI 4. r) for residential areas in August. Diurnal variation in (a) AUTCI,c_rp,
(b) SUTCI 5 ¢_.pp, and (c) contribution of SUTCI 4 _.pg to AUTCI_ g for the seven climates (current = 0 °C and six future)
simulated using ATy (d)—(f) Relations between AT gy and AUTCI (QUTCl ¢ pp, green) calculated from the AC—FB (red) and
AC=FB (blue) simulations. At (d) 05:00 mean, (e) 12:00 mean, and (f) 24 h mean air temperatures. Regression lines (dotted). For
WBGT see supplemental material.

4. Discussion

4.1. Hot and cold summers: consideration of heat waves

Differences in UTCI diurnal pattern are expected in a warmer summer climate. From the 11 current summers,
we identify ahot (2010, figure 8(a)) and cold (2003, figure 8(c)) summer to compare to the mean (figure 8(b)).
The hot and cold summer temperatures are 30.5 °C and 28.3 °C, respectively, or 1.52 °C warmer and 0.68 °C
cooler than the 11-year mean. The August 2010 temperature roughly corresponds to the conditions expected
when ATgw = +1.5 °C (i.e. above the summer mean). These individual summers were selected for each of the
future climates for comparison (figure 8).

The patterns of the hot summer (figure 8(a)) diurnal UTCI classes when ATy, = 0.0 to +2.0 °C are similar
to the mean for ATy = +1.0 to +3.0 °C (figure 8(b), solid blue rectangle). Similarly, the cold summer
(figure 8(c)) UTCI patterns for ATgy = +0.5 to +3.0 °C are similar to the mean for ATy, = 0.0to 2.5 °C
(figure 8(b), solid green rectangle). Therefore, the hot summer UTCI patterns for ATgy = +2.5and 43.0 °C
provide some insight into more extreme mean climate (e.g. ATgw = +3.5and +4.0 °C, dashed blue rectangle).
Similarly, the cold summer UTCI pattern at ATgy, = 0.0 °Creflects the impact of an urban heat island
mitigation of about 0.5 °C using current techniques for the current climate (A TGy = 0.0 °C, dashed green
rectangle). Comparing these, the need to respond to or modify the future UTCI pattern caused by global
warming and urban heat island mitigation techniques can be considered, in addition to the inter-annual
summer variability within ATy

The August 2013 and July 2018 Japanese heat waves had monthly mean temperatures in Osaka of 30.0 °C
(0.99 °C warmer than the 11-year August mean (2000-2010)) and 29.5 °C (0.45 °C warmer), roughly
corresponding to ATy = 1.0 and 0.5 °C, respectively (figure 8(b), dashed pink rectangle). The observed
diurnal UTCI class patterns for the two heat waves (figure 8(d)) are similar to those of ATgy = 1.0and 0.5 °C
(figure 8(b), dashed pink rectangle).

This approach provides a rough estimate of the future climate UTCI for specific heat and cold waves using
pasthot and cold summers for comparison.

4.2. Heat stress metrics
Two heat-related physiological responses, sweat production and human body core temperature, increase non-
linearly once UTCI exceeds 40 °C (very strong and extreme heat stresses), whereas human thermal sensation
does not (Brode et al 2012a). In Osaka, daytime UTCI is projected to exceed 40 °C during current and future
climates (figure 5(b), table S2). The impact of the feedback on core temperature is estimated to be less than
0.05 °C (not shown) and is regarded as not significant in terms of heat stroke vulnerability.

As human thermal sensation does not continue to change with an increase in UTCI, there is the danger that
people will not feel the increasing heat stroke vulnerability. The critical UTCI range is 30 °C-36 °C (moderate to
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Figure 7. Impact of AC use in Osaka on the August monthly mean (11 years) at 05:00 (a—g) SUTCIc_.rp and (h—n) contribution of
SUTCIyc_.ppto AUTCl,¢ g for increases of (a, g) +0.5 °C, (b, h) +1.0 °C, (¢, 1) +1.5 °C, (d, j) +2.0 °C, (e, k) +2.5 °C,and (f, )
+3.0 °C. For WBGT see supplemental material.

strong, Brode et al 2012a), suggesting that awareness of the changes from early evening to morning (figure 5(b),
table S2) is critical for heat stroke prevention.

The diurnal variation and spatial patterns of UTCI in Osaka (figures 4—7) are similar to WBGT
(Supplementary material), as others have noted (Zare et al 2018). This suggests the widely available WBGT maps
can be roughly used to infer probable UTCI spatial patterns.

As the grid average heat stress metrics calculated in this study do not capture the intra-grid variability (e.g.
from shade), the values are more applicable to outdoor workers than to individuals who can seek shade outdoors
or go indoors to AC areas.

4.3. Relative impact of the AC feedback and thermal mitigation to heat stress metrics

The impact of the AC feedback (SUTCI,¢_gp) simulated when ATy = +3.0 °Creached 0.6 °C for UTCI and
0.4 °C for WBGT (Supplementary Material) with 24-h means 0.23 and 0.15 °C, respectively. These are of similar
size to some proposed thermal mitigation strategies. For example, the estimated decreases in UTCI with
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Figure 8. Diurnal variation in UTClI s _pp class between (a) hot (August 2010), (b) mean (eleven August 2000-2010, i.e. Figure 4b),
and (c) cold (August 2003) summers for residential areas, and the August 2013 and July 2018 heat waves (observation) for Osaka
(figure 1d, black star). For WBGT see supplemental material.

different strategies for residential Lyon in summer include 0.2 °C-0.4 °C from water aspersion and 0.4 °C—

0.7 °C from vegetation (Morille and Musy 2017). Similarly, facade greening (roofs and walls) are estimated to be
able decrease the August daytime maximum WBGT by 0.02 °C-0.03 °C, and the relocation of AC heat release
from walls to roofs by 0.03 °C~0.06 °C for the 23 wards of Tokyo (Ohashi eral 2016). However, our estimated
feedbacks would negate the mitigation benefits from these techniques in future climates, especially where AC use

ishigh.

4.4. Future work
Our results the impact of AC on future temperatures suggest is of sufficient importance that future work is

warranted:

(1) Here heat stress metrics are calculated at 1km scale but more detailed micro-scale variations (e.g.
accounting for shadow patterns from building and vegetation such as by SOLWEIG Lindberg et al 2008)
would allow human behaviour (e.g. movement) to be considered (e.g. Honjo et al 2018).

(2) Our estimates of the feedback on heat stress metrics may be low as a constant coefficient of performance
(COP) is assumed. A variable COP would be more realistic and should be considered in future studies (e.g.
CM-BEM Kikegawa et al 2014; TEB+BEM Bueno et al 2012; UCLEM Lipson et al 2018, 2019).

(3) Our focus has been on building energy emissions from AC but Qg sources from traffic, cooling towers, non-
work day energy use variation, and electric and gas AC in office areas should all be considered.

(4) Analysis of other regions using the same methods to generalise the feedback impact, as the impacts may
depend on climate, building type/materials, AC performance and human behaviours (e.g. how AC is used).

(5) The UTCI heat stress and physiological response is based on Europeans. Other regions and conditions need
to be studied: e.g. Asian city residents.

5. Conclusions

Effects of GHG-induced global warming on heat stress are considered by analysing RCM (with urban canopy
and building energy models) dynamically downscaled simulatons for current and six future climate scenarios
(global warming: ATgyy). For the latter, CMIP5 global climate model (GCM) simulations with the highest IPCC
greenhouse gas emissions scenario (RCP 8.5) are used. Two heat stress indices are calculated for Osaka during
August, when air conditioning (AC) use (hence energy consumption) is greatest. From this we conclude:

(i) Heatstress (e.g. UTCI) increases with ATgy, and with AC feedback. At night, an urban heat stress island (i.e.
higher UTCI in the urban area compared with the surroundings) is simulated in Osaka for the current and
six future climates. In the current climate, only 1 h of no thermal stress occurs near 05:00, but this disappears
with ATgw = +0.5 °C and warmer climates. Moderate heat stress extends across the entire Osaka plain

11



I0OP Publishing Environ. Res. Commun. 2 (2020) 015004 Y Takane et al

when ATgy = +1.5 °C. People outside under these conditions begin to sweat, and their skin wetness
increases.

(if) Daytime UTCI tends to be greater inland than in coastal areas. An extreme heat stress area appears when
ATgw= +2.0 °Cinland, affecting Kyoto and Nara. This extends over most of the plain when ATy,
= +3.0 °C. These are dangerous conditions for people outdoors, as they may experience large increases in
sweating and human body core temperature, and lose the ability to shed heat unless they seek opportunities
to reduce heat stress (e.g. shade outdoors, AC indoors).

(iii) The impact of AC-induced feedback on UTCI increases (OUTClc_.pp) roughly linearly with ATgy,. At
ATgw= +3.0 °C, this reaches 0.6 °C (12% of UTCl increase). This size is comparable to the suggested
benefits of thermal mitigation techniques reported in the literature. Hence, the feedback is significant and
could potentially cancel other mitigation benefits in the future, especially where AC use is large. This
feedback must not be neglected in future urban climate projections.

(iv) UTCI and WBGT, two independent heat stress metrics, have similar diurnal variation and spatial patterns.
As the latter is the official Japanese metric, it may be possible to roughly estimate diurnal variations in UTCI
from existing maps of WBGT.
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