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Abstract

In this paper, we study the counting functions ψP(x), NP(x) and MP(x) of a generalized
prime systemN . HereMP(x) is the partial sum of the Möbius function overN not exceeding
x. In particular, we study these when they are asymptotically well-behaved, in the sense
that ψP (x) = x +O(xα+ε), NP(x) = ρx + O(xβ+ε) and MP(x) = O(xγ+ε), for some ρ > 0
and α, β, γ < 1. We show that the two largest of α, β, γ must be equal and at least 1

2
.
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1. Introduction

A Beurling generalized prime system P is an unbounded sequence of real numbers p1, p2, p3, . . .
satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pn ≤ · · · .
We call these numbers generalized primes (or g-primes), and from them we form the system N
of generalized integers (or g-integers) associated to P. These are the numbers of the form

pα1
1 pα2

2 · · · pαk
k

where α1, . . . , αk ∈ N0. In other words, N (viewed as a multi-set) is the semi-group generated
by the (multi-set) P under multiplication. Such systems were first defined and investigated by
Beurling [1] in 1937 and have been studied by many researchers since then (see for instance [2],
[5] and the numerous references therein). Attached to these systems are the counting functions

πP(x) =
∑

p ≤ x
p ∈ P

1, NP(x) =
∑

n ≤ x
n ∈ N

1, ψP(x) =
∑

pk ≤ x
p ∈ P
k ∈ N

log p,

which generalize the usual counting functions. In each case, the sum is over all possible elements
from the multi-set P or N with the given constraint. We are also interested in the generalized
Möbius function defined to be µP(1) = 1, µP(pi1 · · · pik) = (−1)k for distinct g-primes (i.e.
i1, . . . , ik are distinct) and zero otherwise. Strictly speaking this need not be a function if two
such products are numerically the same. In any case, we define the sum function

MP(x) =
∑

n ≤ x
n ∈ N

µP(n).
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This generalizes the usual M(x) =
∑

n≤x µ(n). The associated Beurling zeta function is defined
as usual by

ζP(s) =
∏

p∈P

1

1− 1
ps

=
∑

n∈N

1

ns
.

We are interested in systems for which one or more of ψP(x)−x, NP (x)−ρx, orMP(x) is O(xθ)
for some θ < 1 (and ρ > 0). More precisely, we define three numbers α, β, γ by the following:

ψP(x) = x+O(xα+ε) (1)

NP(x) = ρx+O(xβ+ε) (2)

MP(x) = O(xγ+ε) (3)

hold for all ε > 0 but no ε < 0. For example, for N = N, β = 0 while α = γ ≥ 1
2 due to the

Riemann zeros. At the outset we are only interested in those systems for which the abscissa of
convergence of the Dirichlet series for ζP is 1. Thus α, β, γ ∈ [0, 1] in any case.

For (1) and (2) to hold simultaneously for some α, β < 1 is akin to having a kind of Riemann
Hypothesis being true for such a system. In [11], it was shown that such a system does exist
with α, β ≤ 1

2 . On the other hand, in [6], it was shown that it is impossible to have both α and
β less than 1

2 .

We note that (3) is related to an interesting problem in its own right: how small can MP(x)
be made for a system with abscissa1 equal to 1? In other words, how much cancellation can
occur in the sum for MP(x)? Of course, for N = N, M(x) = Ω(

√
x) on account of the Riemann

zeros, but without this knowledge it is not clear how to even prove M(x) = Ω(xa) for some
a > 0. This is similar to a question of Kahane and Saias [9] who ask how small

∑

n≤x f(n) can
be for f completely multiplicative.

It is also related to the more general question of the size of MP(x) and how it relates to the
other functions. For example, much work has been done to determine under what conditions
one has MP(x) = o(x) (see for example Chapter 14 of [5]). Zhang [10] was the first to note that
PNT is not equivalent to MP (x) = o(x). For the most general results giving MP(x) = o(x), see
the very recent papers [3] and [4].

Our main result is the following:

Theorem 1

Of the numbers α, β, γ, the two largest must be the same and at least 1
2 .

This result implies that for MP(x) = O(xγ) with γ < 1
2 to hold, we need the system to have

somewhat chaotic g-primes and g-integers; i.e. the errors in (1) and (2) have to be Ω(x
1
2
−ε) for

every ε > 0. It may be conjectured that having γ < 1
2 is actually impossible.

2. Some Relevant Results

In order to prove the main result we shall need some relevant notions as well as existing results
about g-prime systems.

Let f(s) =
∑∞

n=1
an
bsn

be a generalized Dirichlet series where bn > 0 is strictly increasing
with finite abscissae of absolute convergence σa. Suppose f has a meromorphic continuation to
Hα := {s ∈ C : ℜs > α}. We say f has finite order in Hα if

f(σ + it) ≪ |t|λ (|t| ≥ 1)

1The abscissa of convergence of ζP(s). With abscissa σc, we trivially have MP (x) ≪ xσc+ε. Without the
condition on the abscissa, MP(x) can even be bounded: take P = {22

n

: n ∈ N0}. Then MP (x) = 0, 1 or −1.
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for σ > α. As such, we can define the Lindelöf function µf (σ) to be the infimum of such λ. It
is well-known that µf is non-negative, decreasing and convex and for σ > σa, µf (σ) = 0.

The following result about such Dirichlet series and “counting function”

A(x) :=
∑

bn≤x

an

was essentially proved in [6], Proposition 3 (see also [8], Theorem 2.1). It was proven for the case
where an ≥ 0 such that an ≪ nε for all ε > 0. This latter condition however is not necessary.
Also we shall require a particular case when an is also sometimes negative.

Theorem A

Let f(s) =
∑∞

n=1
an
bsn

have abscissa of convergence σc ≤ 1. Suppose that for some α ∈ [0, 1) and
c ∈ C, we have

A(x) = cx+O(xα+ε) for all ε > 0. (4)

Then f(s) has an analytic continuation to Hα \ {1} with a simple pole at s = 1 with residue2 c
and f has finite order; indeed µf (σ) ≤ 1 for σ > α.

Conversely, suppose that for some α ∈ [0, 1), f(s) has an analytic continuation to Hα except
for a simple pole at s = 1 with residue c. Further assume that µf (σ) = 0 for σ > α and either
(i) an ≥ 0 or

(ii)
∑

x−1<bn≤x

|an| = O(xα+ε) for all ε > 0. (5)

Then (4) holds.

Proof. The proof of the first part is standard and follows on writing

f(s) = s

∫ ∞

1

A(x)

xs+1
dx =

cs

s− 1
+ s

∫ ∞

1

A(x)− cx

xs+1
dx,

and noting that the integral on the right converges absolutely to a holomorphic function on Hα.

For the converse, we follow the proof of Proposition 3 in [6] as much as possible. This leads
to

A(x)− cx≪ x

T 1−ε
+ xα+εT ε +

x1+ε

T
+
x

T

∑

x
2
<bn<2x

|an|
|bn − x| (6)

for every T > 1 and ε > 0 — see equation (3.7) of [6].
Now, as in [6], consider x such that

(

x− 1

x2
, x+

1

x2

)

∩ {bk : k ∈ N} = ∅. (7)

For such x, |bn − x| ≥ 1
x2 for all n and the sum on the right in (6) is at most

x2
∑

x
2
<bn<2x

|an|.

In case (i), this is O(x3+ε), while in case (ii), it is O(x3+α+ε) by (5).
Taking T = x4 in (6) shows that (4) holds whenever x→ ∞ satisfying (7). As shown in [8]

(see (2.3)), for every x there exist x1 ∈ (x − 1, x), x2 ∈ (x, x + 1) such that x1, x2 satisfy (7).
Thus (4) holds for x1 and x2.

2Of course, if c = 0, the pole is removable.
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For case (i), positivity of an implies A(x1) ≤ A(x) ≤ A(x2). Hence (4) follows for x.
For case (ii), we use (5). We have

|A(x) −A(x1)| ≤
∑

x−1<bn≤x

|an| ≪ xα+ε

by (5). Hence (4) follows.
�

We also require the following result from [8] (Theorem 2.3).

Theorem B

Suppose (1) and (2) hold for some α, β < 1. Then for σ > Θ := max{α, β} and uniformly for
σ ≥ Θ+ δ (any δ > 0),

ζ ′P(σ + it)

ζP(σ + it)
= O

(

(log |t|)
1−σ
1−Θ

+ε
)

and ζP(σ + it),
1

ζP(σ + it)
= O

(

exp
{

(log |t|)
1−σ
1−Θ

+ε
})

for all ε > 0. In particular, for σ > Θ, the Lindelöf functions for ζP and 1
ζP

are zero.

Actually, the statement of Theorem 2.3 in [8] does not mention 1
ζP

but the proof, which

argues from log ζP clearly applies also to − log ζP = log 1
ζP

.

Also, we have the following two consequences as described at the end of section 2 in [8]:

(a) If α > β, then ζP has infinitely many zeros on, or arbitrarily close to, the line σ = α.

(b) If α < β, then ζP and 1
ζP

have infinite order in the strip {s ∈ C : α < ℜs < β}.

Proof of Theorem 1

Let Θ := max{α, β}. We use the converse part of Theorem A with f(s) = 1
ζP (s) . This function

has an analytic continuation to HΘ and, by Theorem B, has zero order here. Further, A(x) =
MP(x) and

∑

x − 1 < n ≤ x
n ∈ N

|µP(n)| ≤ NP(x)−NP(x− 1) ≪ xβ+ε ≤ xΘ+ε.

Thus (5), and hence (4), holds (with c = 0). That is, MP (x) = O(xΘ+ε); i.e. γ ≤ Θ.

Now suppose α > β. Then ζP has infinitely many zeros on, or arbitrarily close to, the line
σ = α. Thus γ ≥ α− δ for any δ > 0; i.e. γ ≥ α and so γ = α.

Now suppose α < β. Then the Lindelöf functions for ζP and 1/ζP are infinite for σ < β.
Thus we cannot have γ < β by the first part of Theorem A with A(x) =MP (x); i.e. γ = β.

Thus if α 6= β, then γ = Θ. Hence the two largest numbers are always equal. Finally, since
max{α, β} ≥ 1

2 , we see that in all three cases the largest pair is always at least 1
2 .

�

2. Systems with different α, β, γ.
It is perhaps of interest to see if it really is possible that each of α, β or γ can be strictly less
than the other two and whether it can be less than 1

2 .
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(a) β < α = γ. For N = N, we have β = 0 and, under the Riemann Hypothesis, α = γ = 1
2 .

Unconditionally, we only have α = γ = Θ where Θ = sup{ℜρ : ζ(ρ) = 0}.

(b) α < β = γ. In the final discussion of [6], a g-prime system was given with α = 0. Namely,
take pn = R−1(n), where R is the strictly increasing function on [1,∞) defined by

R(x) =

∞
∑

k=1

(log x)k

k!kζ(k + 1)
,

where ζ(·) is the Riemann zeta-function. As such, one has ψP(x) = x+O(log x log log x).
By Theorem 1, β = γ, but what this common value is is not clear, except that it lies in
[12 , 1].

(c) γ < α = β. For this we can use the example P = P⊔P
1/β with β ∈ (0, 1). Using Dirichlet’s

hyperbola method, we have

NP(x) =
∑

mn1/β≤x

1 = ζ
( 1

β

)

x+ ζ(β)xβ +O(x
β

1+β )

(see [7] where this calculation was done). Furthermore, ψP(x) = ψ(x) +ψ(xβ) = x+ xβ +

O(x
1
2
+ε) on RH. Thus α = β. But, with M(x) =

∑

n≤x µ(n),

MP(x) =
∑

mn1/β≤x

µ(m)µ(n) =
∑

n≤aβ

M
( x

n1/β

)

+
∑

n≤b

M
((x

n

)β)

−M(aβ)M(b)

for any ab = x. Putting a = xλ and using the bound M(x) ≪ x
1
2
+ε gives

MP(x) ≪
∑

n≤xλβ

( x

n1/β

)
1
2
+ε

+
∑

n≤x1−λ

((x

n

)β) 1
2
+ε

+ (xλβ)
1
2
+εx(1−λ)( 1

2
+ε)

≪
(

x
β
2
+λ(1−β

2
) + x

1
2
+(1−λ)(β− 1

2
) + x

λ
2
+(1−λ)β

2

)

xε.

Choosing λ = β
1+β optimally shows that MP(x) ≪ x

3β
2(1+β)

+ε
for all ε > 0. Thus γ ≤

3β
2(1+β) < β. Note that γ ≥ 1

2 , since
1

ζP (s) =
1

ζ(s)ζ(s/β) has poles on the 1
2 -line.

Open problems

1) From (a) and (b) above we have systems with (α, β, γ) = (a, 0, a) and (0, b, b) for some
a, b ∈ [12 , 1]. Can we find, unconditionally, such systems with a < 1 and b < 1?

2) In (c) above we have a system, conditional on RH, with (α, β, γ) = (c, c, d) with 1
2 ≤ d < c < 1.

Can we find one unconditionally, with d < 1. Furthermore, can we find one with d < 1
2?
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