
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

The Formyl Peptide Receptor 2 Regulates Microglial Phenotype 

Through Immunometabolism: Implications for Alzheimer’s 

Disease

Wickstead, E.

 

This is an electronic version of a PhD thesis awarded by the University of Westminster. 

© Dr Edward Wickstead, 2019.

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


 

 
The Formyl Peptide Receptor 2 Regulates 

Microglial Phenotype Through Immunometabolism: 

Implications for Alzheimer’s Disease 

 
Edward S. Wickstead 

 
Faculty of Science and Technology 

University of Westminster 

 

 
 
 
 
 
 
 
 

 
 

A thesis submitted to the University of 

Westminster for the degree of  

Doctor of Philosophy  

July 2019 
 

 
  



 1 

Abstract 
Microglia are key players in the pathology of Alzheimer’s disease (AD), driving chronic 

inflammation, oxidative stress, and the altered metabolism seen in the brains of patients. 

With clinical trials continuing to fail, new approaches towards drug development are critical. 

Strategies to reduce microglial activation may therefore be a viable therapeutic approach to 

tackling AD. Formyl peptide receptor 2 (Fpr2), which drives peripheral inflammatory 

resolution, is expressed in microglia. However, its functional role in neuroinflammation is 

unclear. This thesis provides evidence to support the peripheral findings of Fpr2 stimulation, 

wherein it may also hold promise for exploitation as a therapeutic for neurodegenerative 

disorders, including AD. We also highlight novel findings surrounding the modulation of both 

oxidative stress and microglial metabolism associated with Fpr2 activation. 

Under inflammatory conditions, we report that selective agonists for Fpr2 modulate the 

microglial inflammatory response, actively shifting from a pro-inflammatory to a pro-

resolving phenotype, emphasised by the reduction of pro-inflammatory cytokines and 

concomitant increases in both pro-resolving cytokines and phagocytosis. Metabolic shifting 

away from glycolysis was also observed for pro-resolving microglia. Moreover, we describe 

for the first time that Fpr2 completely reverses reactive oxygen species (ROS) production 

from the mitochondria and NADPH oxidase enzymes following an inflammatory stimulus.  

We also highlight that the toxic oligomeric amyloid β 1-42 peptide (oAβ) facilitates microglial 

ROS production and subsequent metabolic changes without triggering an inflammatory 

response. oAβ facilitated NADPH oxidase activation, which in turn resulted in the activation 

of glucose 6-phosphate dehydrogenase (G6PD), the rate limiting step for the pentose 

phosphate pathway. This metabolic pathway is responsible for producing NADPH, which in 

turn NADPH oxidases exploit for further ROS production. These changes resulted in 

noticeable reductions in both microglial glycolysis and oxidative phosphorylation. We 

present data underlining that Fpr2/3 stimulation reverses oAβ-induced ROS production, 

with a resultant reduction in G6PD activity and the return of homeostatic glycolysis. These 

oAβ-induced microglial changes triggered the apoptosis of SH-SY5Y cells in co-culture with 

BV-2 microglia. However, supporting our interest in Fpr2/3 for therapeutic approaches to 

neurodegenerative diseases, post-treatment with a select agonist for the receptor 

successfully prevented apoptosis of these neuronal like SH-SY5Y cells. 

 

This original data unveils novel functions of Fpr2/3 in the central nervous system (CNS), 

supplementing the well-established pro-resolving functions the receptor facilitates within the 

periphery. The combination of pro-resolving, anti-oxidative, immunometabolic and anti-

apoptotic functions of Fpr2/3 support the exploitation of this receptor for therapeutic 

research into multiple different CNS disorders, including AD.  
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AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA Analysis of variance 

AnxA1 Annexin A1 

AP Action potential 

APC Allophycocyanin 

APH-1 Anterior pharynx-defective-1 

APP Amyloid precursor protein 

ApoE Apolipoprotein E 

ATP Adenosine triphosphate 

BACE1 Beta-secretase 1 

BBB Blood-brain barrier 

BDNF Brain derived neurotrophic factor 

BSA Bovine serum albumin 

CAM Cell adhesion molecule 

CM-H2DCFDA Chloromethyl-dichlorofluores-cin-diacetate 

CNS Central nervous system 

CNV Copy number variant 

CSF Cerebral spinal fluid 

CSH Cyclosporin H 

CycD Cyclophilin D 

Cys Cysteine 

Cyt C Cytochrome C 

C43 Compound-43 

DAMP Damage associated molecular pattern 
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ddH2O Double distilled water 

DMEM Dulbecco’s Modified Eagle’s Medium 

DNA Deoxyribonucleic acid 

ECAR Extracellular acidification rate 

ECL Enhanced chemiluminescence 

EC50 Half maximal effective concentration 

ELISA Enzyme-linked immunosorbent assay 

EOAD Early-onset Alzheimer’s disease 

ERK Extracellular signal-regulated kinase 

Ex/Em Excitation/Emission 

FCS Fetal calf serum 

FITC Fluorescein isothiocyanate 

fMet N-formylmethionine  

fMLP N-formyl-methionyl-leucyl-phenylalanine 

FPR Formyl peptide receptor 

FPR1 Human formyl peptide receptor 1 

FPR2 Human formyl peptide receptor 2 

Fpr2 Murine formyl peptide receptor 2 

FPR3 Human formyl peptide receptor 3 

Fpr3 Murine formyl peptide receptor 3 

GPCR G-protein coupled receptor 

GSK-3β Glycogen synthase kinase 3-beta 

GWAS Genome wide association study 

G6P Glucose 6-phosphate 

G6PD Glucose 6-phosphate dehydrogenase 

HFIP Hexafluoro-2-propanol 

hiFCS Heat-inactivated fetal calf serum 

HPF Hydroxyphenyl fluorescein 

HO-1 Hemeoxygenase-1 

HRP Horseradish peroxidase 

HSD Honest significant difference 

H2O2 Hydrogen peroxide 

Iba1 Ionized calcium-binding adaptor molecule 1 

IC50 Half maximal inhibitory concentration 

IDE Insulin degrading enzyme 

IgG Immunoglobulin G 

IL-1 Interleukin-1 

IL-6 Interleukin-6 

IL-10 Interleukin-10 
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iNOS Inducible nitric oxide synthase 

JNK c-Jun N-terminal kinase 

kDa Kilodalton 

KO Knockout 

LPS Lipopolysaccharide 

LOAD Late-onset Alzheimer’s disease 

LTP Long-term potentiation 

LXA4 Lipoxin A4 

MHCII Major histocompatibility complex II 

MAP Microtubule-associated protein 

MAPK Mitogen activated protein kinase 

MCI Mild cognitive impairment 

MDA Malondiadehyde 

MPT Mitochondrial permeability transition 

Mφ Macrophage 

NADPH Nicotinamide adenine dinucleotide phosphate 

NaNO2 Sodium nitrite 

NEAA Non-essential amino acid 

NFT Neurofibrillary tangle 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NIH National Institute of Health 

NMDA N-Methyl-D-aspartic acid 

NMDAR N-Methyl-D-aspartic acid receptor 

NO Nitric oxide 

NOD Nucleotide-binding oligomerisation-domain protein 

NSAIDs Non-steroidal anti-inflammatory drugs 

OCR Oxygen consumption rate 

OH. Hydroxyl radical 

ONOO.- Peroxynitrite 

O2
- Superoxide radical 

PAGE Polyacrylamide gel electrophoresis 

PAMP Pathogen-associated molecular pattern 

PBS Phosphate buffered saline 

PE Phycoerythrin 

PEN-2 Presenilin enhancer-2 

PET Positron emission tomography 

PHF Paired helical filaments 

Pi Inorganic phosphate 

PMA Phorbol 12-myristate 13-acetate 
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PPP Pentose phosphate pathway 

PRF-DMEM Phenol red free 

PRR Pattern recognition receptor 

PS1 Presenilin 1 

PS2 Presenilin 2 

PVDF Polyvinylidene fluoride 

p3 p3 peptide/amyloid beta-peptide17-40/42 

QC1 Quin-C1 

rAAV Recombinant adeno-associated virus 

RAGE Receptor for advanced-glycation end-products 

REVIHAAP Review of the evidence on health aspects of air pollution 

RIPA Buffer Radioimmunoprecipitation Assay Buffer 

RLR RIG-I-like receptor 

RLU Relative luminescence units 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

RvD2 Resolvin D2 

sAPPα Soluble amyloid precursor protein alpha 

sAPPβ Soluble amyloid precursor protein beta 

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

SPMs Specialised pro-resolving mediators 

TBS Tris-buffered saline 

TBS-T Tris-buffered saline with TritonTM X-100 

TLR Toll-like receptor 

TNFα Tumour necrosis factor alpha 

tRA Trans-retinoic acid 

TREM2 Triggering receptor expressed on myeloid cells 2 

TX-100 Triton X-100 

T2DM Type 2 diabetes mellitus 

WRW4 WRWWWW 

WT Wildtype 

α7-nAChR Alpha7 nicotinic acetylcholine receptor 

Δψ Mitochondrial membrane potential 

3xTg Triple transgenic 

4-HNE 4-hydroxy-2-nonenal 
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 An Introduction to Innate 
Immunity and Alzheimer’s Disease 

1.1. Inflammation and the innate immune system 
 
Inflammation is a part of a complex biological system that is essential in responding to injury 

or infection. It is generally a protective process, which includes the involvement of cells from 

the immune system and vascular endothelium, but also a vast array of molecular mediators 

(Sansbury and Spite, 2016). It serves to eliminate the initial cause of cell injury, but also 

helps to remove necrotic cells and tissues damaged as a consequence of this insult. The 

response also has the capacity to stimulate initiation of tissue repair. A summary of the 

innate inflammatory response is shown in Figure 1.1 (Bell et al., 2006).  

An acute inflammatory insult therefore usually involves a biphasic innate immune response. 

Utilising an initial cascade involving the release of pro-inflammatory cytokines, chemokines 

and reactive oxygen species (ROS) amongst others, this contributes to facilitate the 

movement of immune cells such as neutrophils in the periphery and microglia in the central 

nervous system (CNS) towards the injury site, before pathogen killing commences. 

Following this preliminary response, cells are signalled towards a pro-resolving phenotype, 

resulting in degradation of cellular debris and apoptotic cells, alongside tissue reparation. 

When tissue damage is amended and the insult destroyed or removed, inflammation will 

begin to cease. If this does not occur, chronic inflammation can result (Heneka et al., 

2015b). In this case, during its development and propagation, inflammation can continue 

for months to years. The primary reason for this can be due to the inability of the body to 

eliminate the causing agent of the initial acute inflammatory response, impairing 

inflammatory resolution. This impaired resolution response is known to occur in 

neurodegenerative diseases such as AD (Wang et al., 2015; Zhu et al., 2016). ---------------

--------------------------------------------------------------------- 

1.1.1. The innate inflammatory process 
 
The immune system is activated through the identification of two groups of biomolecules: 

pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 

patterns (DAMPs). PAMPs are molecules present within diverse groups of pathogens, 

whilst also being absent in the host, providing exogenous signals that alert the immune 

system to the presence of pathogens; thereby stimulating immunity in the host (Akira and 

Hemmi, 2003; Tang et al., 2012). The prototypical PAMP is lipopolysaccharide (LPS), found 

in the outer-cell membrane of gram-negative bacteria, but others also include bacterial 

flagellin and peptidoglycan (Silhavy et al., 2010). DAMPs are endogenous damage/danger  
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Figure 1.1 A simplified diagram of the acute innate immune inflammatory response. 
The ideal outcome of an acute innate inflammatory response is complete resolution and 
repair of the damaged area. Generally, inflammation is divided into two primary phases: 
initiation and resolution. The earliest stage of this process can be identified by marked tissue 
oedema, caused by increased blood flow and microvascular permeability. This is a direct 
consequence of pro-inflammatory mediators such as certain leukotrienes and 
prostaglandins. Polymorphonuclear neutrophils (PMN) infiltrate the tissue in response and 
attempt to kill the pathogens. Next, PMN undergo apoptosis. This is in parallel to switching 
from releasing pro-inflammatory, to pro-resolving inflammatory mediators, contributing to 
the resolution of inflammation. These PMN send ‘eat me’ signals to macrophages (Mφ) in 
a process referred to as efferocytosis. Pro-resolution mediators are also essential for 
promoting a pro-resolving macrophage phenotype, a critical process for tissue repair. 
Figure based around Sansbury and Spite, 2016. 
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signals released by host cells which alert the immune system of invading pathogens (Bours 

et al., 2006; Mathew et al., 2012). They also provide alerts for unscheduled/unprogrammed 

cell death, and can be released in response to stress (Rubartelli and Lotze, 2007). 

Examples of DAMPs include but are not limited to, heat-shock proteins (Panayi et al., 2004) 

and non-protein molecules including ATP (Bours et al., 2006) and DNA (Farkas et al., 2007). 

Interestingly, amyloid-beta (Aβ), which is a central pathological protein in AD, has been 

suggested to be an endogenously produced DAMP (Clark and Vissel, 2015; Santoni et al., 

2015; Tang et al., 2012; Venegas and Heneka, 2017).  

 

Both signals are identified by pattern recognition receptors (PRRs) on immune cell 

membranes, such as toll-like receptors (Beutler et al., 2006) and in the cytoplasm including 

nucleotide-binding oligomerisation-domain protein-like receptors (NLRs) and retinoic acid-

inducible gene-I-like receptors (RLRs; Ting and Willams, 2005). Stimulation of these 

receptors on resident macrophages leads to the production and release of a battery of 

inflammatory mediators, including cytokines, chemokines and products of several 

proteolytic cascades. The primary and immediate effect of these mediators is the elicitation 

of a local inflammatory response centred in the periphery on neutrophils and macrophages, 

and on microglia in the CNS (Heneka et al., 2014; Rivera et al., 2016). 

 

Macrophages are responsible for the engulfment and digestion of microbes, foreign 

substances, cellular debris and cancer cells. Any structure that does not contain cell surface 

proteins that match those of healthy bodily cells are engulfed and digested through 

phagocytosis. They were first identified by the Russian zoologist, Élie Metchnikoff in the 

19th century (Underhill et al., 2016), and are located in essentially all tissues, whereby they 

constantly survey their surrounding environment for potential pathogens (Ovchinnikov, 

2008). Due to their heterogeneous nature, macrophages perform tissue-specific functions. 

Despite their physiological distinctions, alongside their differing transcriptional profiles and 

functional capabilities, all macrophage cells are required for the homeostatic maintenance 

of the tissues they reside in. These unique cells therefore have different names and slightly 

alternating functions. -------------------------------------------------------------------------------------------

-- 

1.1.2. Microglia 
 
Microglia are the resident macrophage-like innate immune cells of the CNS. Whilst often 

compared to macrophages, microglia (and also partially Langerhans cells) are the only 

myeloid cells which solely originate from erythromyeloid progenitors in the embryonic yolk 

sac under homeostatic conditions (Ginhoux et al., 2013; Ginhoux and Jung, 2014; Sheng 

et al., 2015). These progenitors then migrate into the developing neural tube before 

proliferating and maturing through the entire brain parenchyma. Their transcriptional 
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network is also unique, allowing for further distinguishability from tissue-resident 

macrophages (Gosselin et al., 2014; Kierdorf et al., 2013). Being the resident phagocytes 

of the CNS, microglia have critical roles in tissue maintenance, response to injury (Gyoneva 

and Ransohoff, 2015) and pathogenic defence (Ransohoff and El Khoury, 2015). Their role 

in neural circuit development, alongside synaptic pruning and removal of unwanted 

neurones is also essential for normal brain development (Figure 1.2; Paolicelli et al., 2011; 

Schafer et al., 2012). Additionally, microglia appear to be central regulators in activity-

triggered synaptic plasticity, neurogenesis, and consequentially, learning and memory 

(Gemma and Bachstetter, 2013; Rogers et al., 2011). 

 
In the healthy brain and spinal cord, microglial represent approximately 10% of the total 

cells in the CNS (von Bartheld et al., 2016), with cell maintenance not being dependent on 

circulating monocytes, but rather local self-renewal pools within the CNS (Bruttger et al., 

2015). In mice, multiphoton microscopy techniques revealed that neocortical microglia are 

long-lived, with a median lifetime of 15 months, thus highlighting the ability of these 

phagocytes to survive the entire mouse lifespan (Füger et al., 2017). In humans, it has been 

estimated that human microglia renew slowly at a median rate of 28% per year, live for an 

average of 4.2 years, and some survive for more than two decades (Réu et al., 2017). 

 

1.1.2.1. Microglial activation and immunity 
 
Microglia have highly dynamic processes and are responsible for constant local 

environment surveillance (Nimmerjahn et al., 2005). Because of this, they can respond to a 

large variety of environmental cues, with an often highlighted hallmark of the microglial 

response being their ability to alter their morphology (Kirkley et al., 2017; Wadhwa et al., 

2017). These changes were first described by Pío del Río Hortega over a century ago, 

correlating amoeboid-like morphological changes with pathology manifestation and disease 

(Sierra et al., 2016). However, we now know that microglial morphological changes only 

indicate a detectable change from homeostasis; this alone is not enough to inform us of a 

particular response or activity state in CNS disease (Boche et al., 2013). 

 
In more recent years, attempts have been made to classify microglial activation as a 

biphasic response, utilising the terms ‘M1’ and M2’ borrowed from the now-defunct 

terminology used for macrophage classification (Murray et al., 2014). However as with 

macrophages, microglia carry out diverse functions and likely change in a variety of different 

ways depending on the environmental cues. Recent transcriptional analysis of murine 

microglia confirms this, highlighting that at least nine transcriptionally distinct microglial 

states exist (Hammond et al., 2019), clearly underlining the shortcomings of the M1/M2 

system. 
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Figure 1.2 Different microglial functions involved in maintaining environmental 
homeostasis. Microglia have important physiological roles in synaptic pruning during 
development, alongside regulating neuronal plasticity. Microglia are also important for 
controlled apoptosis of neurones and other CNS residing cells, alongside removing cellular 
debris by phagocytosis. Neuroinflammation may disrupt these physiological functions, 
contributing to disease manifestation and progression. 
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Microglia express a wide variety of PRRs that detect both PAMP and DAMP signals, 

including TLRs and NLRs (Bordt and Polster, 2014; Yu and Ye, 2014) alongside scavenger 

receptors such as MARCO, CD36 and the receptor for advanced glycation end products 

(RAGE) which enable phagocytosis of apoptotic cells and protein aggregates (Yu and Ye, 

2014). Microglial activation usually follows a similar temporal formula as that discussed for 

macrophage innate immunity (Figure 1.1). In this case, macrophages are often the first line 

of defence following infection or injury. In injured brain tissue, microglia exist in various 

states with differing transcriptional profiles (Hammond et al., 2019) but also retain their 

capacity to shift their phenotype during the course of an inflammatory response (Gobbetti 

et al., 2014). Following injury or infection, microglia become polarised towards inflammatory 

phenotypes, releasing a battery of pro-inflammatory cytokines, alongside expressing high 

levels of inducible nitric oxide synthase (iNOS; Orihuela et al., 2016). This action is targeted 

towards killing and/or removing the responsible pathogen. Whilst extensively characterised, 

this is primarily associated with exposure to bacteria-derived products such as LPS 

(Orihuela et al., 2016).  

 
A sterile inflammatory response is more common in the CNS, often correlated to trauma, 

chemical exposure, ischaemic-reperfusion injury or neurodegenerative disease (Chamorro 

et al., 2016; Gyoneva and Ransohoff, 2015; Heneka et al., 2015; McPherson et al., 2014). 

This is usually associated with the release of a wide range of pro-inflammatory cytokines, 

chemokines and complement, alongside nitric oxide (NO) and ROS (Heneka et al., 2014b). 

Moreover, the overall outcome of a pro-inflammatory polarisation event depends on several 

factors, including the extend of ROS production or activation of NOD-like receptor family 

pyrin domain-containing 3 (NLRP3) inflammasome (Bordt and Polster, 2014; de Rivero 

Vaccari et al., 2014). A key component of the innate immune system, the inflammasome is 

a multiprotein complex which facilitates the activation of caspase-1 and consequential 

production of pro-inflammatory IL-1β and anti-inflammatory IL-18, a response which 

appears crucial to activate the full cytokine cascade (de Rivero Vaccari et al., 2014). This 

pro-inflammatory response can facilitate the death of damaged or diseased neurones, 

tagging them for apoptotic clearance, but it is also responsible for cognitive impairment in 

animal models (Chen et al., 2015). 

 
After this initial pro-inflammatory response, microglial phenotype shifts towards 

inflammatory resolution. During this switch, phagocytosis is employed as the crucial 

mechanism to facilitate the uptake, degradation and removal of apoptotic cells, cellular 

debris and protein aggregates, all of which are evident in neurodegenerative disease 

(Felsky et al., 2019; Ossenkoppele et al., 2016). Many PRRs facilitate this switch during 

acute inflammation, contributing to the delayed release of pro-resolving cytokines and 

neurotrophic factors such as IL-10 and TGF-β, consequentially contributing to the reduction 

of pro-inflammatory mediator release alongside increasing tissue repair (Heneka et al., 
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2014b; Lobo-Silva et al., 2016). IL-10 release also protects astrocytes from excessive 

inflammation alongside promoting neuronal survival, working to limit CNS damage following 

an inflammatory response (Balasingam and Yong, 1996; Zhou et al., 2009). Hence, some 

PRRs have a negative feedback system to regulate neuroinflammation. This inflammatory 

resolution switch helps to facilitate and re-establish homeostasis (Figure 1.3; Chang et al., 

2017; McArthur et al., 2010).  

 

1.1.3. Brain metabolism, aging and neuroinflammation 
 
 
The human brain is unique in terms of its particularly high reliance on glucose utilisation, 

accounting for approximately 20% of the total glucose consumption of the body 

(Mergenthaler et al., 2013). This is in spite of the brain only comprising 2% of the typical 

mass of the human body (Heymsfield et al., 2009; Mink et al., 1981). This may be associated 

with the fact that the brain doesn’t really contain any energy reserves compared to the rest 

of the body, despite its high-energy consuming nature (Mireille et al., 2011). Thus, the brain 

is dependent on the uninterrupted supply of energy substrates from the circulation. This 

explains why diseases which increase the risk of ischaemia, such as atherosclerosis are 

associated with neurological dysfunction (Moroni et al., 2016). 

 

Interestingly, despite the high energy demand of the brain, aerobic glycolysis – which is 

considerably less efficient at producing ATP than oxidative phosphorylation – appears to 

be crucial in modulating neuronal health. Recent studies suggest that aerobic glycolysis is 

particularly important for synapse formation, synaptic plasticity and learning (Goyal et al., 

2014; Shannon et al., 2016). The importance of aerobic glycolysis in brain activity is also 

supported by nuclear magnetic resonance imaging in various brain regions, identifying that 

increases in lactate levels correlate with brain activity (Figley and Stroman, 2011; Shulman 

et al., 1993). 

 

A wide body of evidence shows that neurones can directly use lactate as an energy source 

(Boumezbeur et al., 2010; Schurr et al., 1997; Serres et al., 2005), even showing a 

preference for lactate over glucose when both energy substrates are present (Bouzier-Sore 

et al., 2006). In neurones, aerobic glycolysis and related metabolic pathways may also 

provide neuroprotection via the synthesis of intermediates which reduce oxidative damage 

(Mullarky and Cantley, 2015; Nciri et al., 2013). This is particularly pertinent for 

neurodegenerative disease, as many are associated with oxidative stress (Butterfield et al., 

2013; Ma et al., 2017). 

 

The normal aging brain experiences reductions in glucose uptake and thus consequential 

decreases in metabolism (Goyal et al., 2017). However, effects appear to be primarily driven  
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Figure 1.3 Effects of microglial activation within the brain. During sterile inflammation, 
microglia can be activated by various DAMP signals, including Aβ. In the healthy brain, 
microglia are responsible for homeostatic maintenance, wherein they removal cellular 
debris by phagocytosis and secrete neurotrophic factors that support the growth and 
survival of neurones. Cellular oxidation associated with ROS and nitric oxide production is 
also limited. In AD, chronic inflammation manifests, contributing to the persistent release of 
pro-inflammatory cytokines and considerable increase in both ROS production and iNOS 
synthesis. Alongside reductions in phagocytosis and neurotrophic factor release, these 
changes lead to synaptic impairment and neuronal damage. Chronically inflamed microglia 
can also activate neurotoxic astrocytes. Together, these neuroinflammatory changes all 
contribute to neurodegeneration. Image adapted from Heneka et al., 2014. 
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by the global loss of aerobic glycolysis within the brain with age (Goyal et al., 2017). As with 

any other organ, the functional capabilities of the brain decline progressively with aging, 

eventually manifesting as impairments in learning and memory, cognition and motor 

coordination, amongst others  (Alexander et al., 2012; Dykiert et al., 2012). With a clear 

reduction in aerobic glycolysis during the aging process, neurones may become more 

vulnerable to oxidative damage. Aging neurones also accumulate dysfunctional and 

aggregated proteins alongside damaged mitochondria, which may be a potential 

consequence of metabolic modulation and oxidative damage (Castelli et al., 2019). 

Expanding on this, impairment of the electron transport chain alongside mitochondrial 

enlargement and fragmentation have all been identified in the aging brain (Morozov et al., 

2017; Pollard et al., 2016; Stahon et al., 2016). Mitochondrial fragmentation can happen in 

microglia, whereby this process can propagate microglial inflammation and neuronal death 

in otherwise healthy neurones (Joshi et al., 2019), highlighting that metabolic dysfunction 

could be a potential catalyst to trigger neurodegeneration in disease. This process appears 

occur through inflamed microglial communication with astrocytes (Joshi et al., 2019; 

Liddelow et al., 2017), emphasising the centrality of the immune system in potentially 

facilitating neurodegeneration in disease. 

1.2. The past, the present, and the future of Alzheimer’s disease dementia 
 
Dementia, from the Latin ‘demens’, or ‘dement’, meaning ‘out of one’s mind’, is a chronic 

disorder of mental processes triggered by injury or disease. Dementia is characterised by 

symptoms including the impairment of memory and cognition, executive functions such as 

reasoning, problem solving and attentional control, and changes in personality and emotion. 

It was first identified in 1906 by the German psychiatrist and neuropathologist Dr. Alois 

Alzheimer through the behavioural study of a 55-year-old woman, Auguste Deter 

(Stelzmann et al., 1995), followed by examination of her brain tissue after death. However, 

Emil Kraepelin, a German psychiatrist who worked with Dr. Alzheimer, was the first to coin 

“Alzheimer’s Disease” (Hippius and Neundörfer, 2003). It wasn’t until 1931, following the 

invention of the electron microscope, that brain cells could be studied in greater resolution 

and detail (Knoll and Ruska, 1932; Ruska, 1986), facilitating the characterisation of AD. 

Two core pathological lesions exist in AD, manifesting as extracellular protein deposits in 

the form of neuritic plaques, now known to consist primarily of 35-45 amino acid β-amyloid 

(Aβ) peptides (Bergström et al., 2016; Murphy et al., 2010), and intracellular neurofibrillary 

tangles (NFTs), formed of hyperphosphorylated aggregates of the microtubule-associated 

protein, tau (Šimić et al., 2016). The importance of the neuritic plaques was revealed in 

seminal work published in 1968, linking the number of Aβ plaques in the brain and the risk 

of developing dementia (Blessed et al., 1968). This has been revised more recently, with 

similar findings (Cummings et al., 1996; Perry et al., 1978), with new emphasis on the role 

of microglia responding to these accumulating plaques (Sala Frigerio et al., 2019) 
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AD is the greatest cause of dementia in the aging population, affecting approximately 4% 

of individuals aged ≥ 65 years of age (Figure 1.4A, Hebert et al., 2013; Prince et al., 2013). 

As of July 2015, around 12% of the global population of 7.3 billion was over 60, leading to 

a global disease burden of around 37 million individuals (United Nations, 2015). AD 

prevalence is expected to rise due to the planet’s aging population, with the numbers of AD 

sufferers expected to increase to around 78 million by 2050 (Prince et al., 2015). This is 

due to increasing age being the primary risk factor for AD (Guerreiro and Bras, 2015). Some 

recent evidence disputes this, because the number of people in Europe and the United 

States living with dementia appears to be reaching a plateau (Wu et al., 2017; Wu et al., 

2015), potentially due to improved education, and declines in chronic disorders such as 

heart disease, stroke, and hypertension. Despite this, in comparison to most diseases, 

where death rates have steadily decreased in recent history, death associated with AD 

continues to rise (Figure 1.4B; James et al., 2014; Murphy et al., 2013; Lehman et al., 2012). 

This statistic helps underline dementia and AD as a public health priority. 

Development of AD imposes a substantial physiological, psychological and economic 

burden on patients, their families, and the health care system. On average, AD patients live 

for 7 to 10 years following diagnosis. This can fluctuate significantly between individuals, 

with age at diagnosis having a large impact on life expectancy (Figure 1.4C) alongside 

clinical symptom manifestation rate. Regardless, in the UK the overall economic impact of 

AD and the other dementias is approximately £26 billion per annum (Figure 1.4D), with an 

approximate annual cost of £32,000 per patient (Prince et al., 2014). Emphasising this, a 

recent National Institutes of Health study identified that the average total health care costs 

for patients with dementia in the last 5 years of life were significantly greater than those who 

died from cancer or heart disease (Figures 1.4E and 1.4F) (Kelley et al., 2015).  

Despite having been first identified over a century ago, there is still no effective therapy to 

slow down or halt the progressive nature of AD. There are symptomatic treatments clinically 

available (see Section 1.5), but these are not permanent solutions. Clinically available drugs 

tackle excitotoxicity (Mehta et al., 2013; Olney and Sharpe, 1969), whilst others can be 

utilised to inhibit the breakdown of acetylcholine (ACh), the primary neurotransmitter 

associated with memory (Croxson et al., 2012; Giovannini et al., 2015; Micheau and 

Marighetto, 2011). However, none of these slow the progression of disease. Further, as AD 

progresses, the exacerbation and expansion of neurodegenerative damage and a hostile 

extracellular environment likely lead to a lack of efficacy for these drugs in later disease 

stages. 
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Figure 1.4 Dementia and Alzheimer’s disease statistics in the UK and USA. A; 
Proportion of people with AD in the United States, grouped by age. Data collected from 
Hebert et al., 2013. B; Estimated percentage change in death rate of several diseases in 
the USA over a 10-year period (2000-10). Data collected from Murphy et al., 2013 and the 
National Centre for Health Statistics. C; Deaths in the USA in 2010 due to AD* per 100,000 
adults over the age of 64. *Deaths where AD is listed as underlying cause. Data obtained 
from the National Centre for Health Statistics. D; Estimated breakdown of dementia costs 
in the UK, 2013. Adapted from Prince et al., 2014. E; Average total expenses per decedent 
of dementia in the final 5 years of life. Data obtained from Kelley et al., 2015. F; Average 
out of pocket expenses per decedent of dementia in the final 5 years of life. Spending is as 
a proportion of household wealth. Data obtained from Kelley et al., 2015.  
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1.3. The pathology of Alzheimer’s disease 
 
The neurodegeneration that occurs in AD is multifactorial, with glutamatergic excitotoxicity, 

oxidative stress, and inflammation all contributing to neuronal death (Figure 1.5, 

Swaminathan and Jicha, 2014). The multifaceted and multicellular nature of the disease 

has been widely recognized in recent years (Bouvier and Murai, 2015; Di Scala et al., 2014; 

Guerrero-Muñoz et al., 2015; Talbot et al., 2012), with abnormal interactions between 

microglia, astrocytes and neurones highlighted as a core component in this proteinopathic 

neurodegenerative disorder (Goetzl and Miller, 2017).  

 

These pathological processes and interactions are thought to sequentially contribute to the 

initial loss of neurones within the entorhinal cortex, before spreading to the hippocampus 

and frontal cortical regions. Neuronal loss leads to cognitive impairment and memory 

deficits seen in AD (Chen et al., 2016; Thomsen et al., 2016). As the disease progresses, 

there is a far greater gross loss of multiple neurones subtypes, leading to an overt reduction 

of brain volume. However, AD may more closely correlate with the enlargement of the 

ventricles, rather than the loss of brain tissue per se (Erten-Lyons et al., 2013). 

Our understanding of end-stage AD pathology is relative good, but the root cause(s) of the 

condition remain obscure. Understanding the core pathologies of AD and their contribution 

to disease may be the first step in discovering ways to suppress damage, and successfully 

treat this condition.  

 

1.3.1. Amyloid beta  
 

1.3.1.1. Amyloid precursor protein processing and amyloid beta production 
 
The amyloid precursor protein (APP) gene has been studied extensively since the link 

between Aβ production and AD was identified. The gene encodes for the integral membrane 

APP protein which is expressed in many cell types within the CNS, including neurones 

(Zhang et al., 2012; Zhang et al., 2011), where it is concentrated at the synapse (Pliássova 

et al., 2015). It appears to have physiological roles in synaptic plasticity and axonal 

outgrowth alongside others which are involved in the regulation of neuronal health (Müller 

et al., 2017). However, APP can be proteolytically cleaved, resulting in the production of 

both amyloidogenic and non-amyloidogenic peptides, depending on the nature of 

sequential secretase cleavage. γ-secretase can cleave APP at differing positions, resulting 

in the production of peptides of various length (Aβ37, Aβ38, Aβ40 and Aβ42). Whilst there 

are several proteases which have α- and γ-secretase activity, BACE1 is the primary β-

secretase (Figure 1.6).  

 



 31 

 
Figure 1.5 Cellular processes and pathways linked to Alzheimer’s disease. These 
processes are likely to be additive, which is indicated by the double-headed arrows in a 
circular fashion. Amyloid deposition, tau hyperphosphorylation, and inflammation are three 
key pathologies of AD, each of which will be looked at in significant detail in Sections 1.3 
and 1.4. NFT’s; neurofibrillary tangles.  
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Figure 1.6 The proteolytic cleavage of APP. The APP family of proteins have a large, 
biologically active N-terminal ectodomain, along with a smaller C-terminus. Cleavage can 
occur through non-amyloidogenic means, where APP is successively cleaved by α-
secretases (such as ADAM10 and ADAM17) and γ-secretase. However, cleavage can also 
occur through amyloidogenic means, where β-secretase (primarily BACE1) & γ-secretase 
cleave APP. 
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Several members of the disintegrin and metalloproteinase (ADAM) family exert α-secretase 

activity, including ADAM9, ADAM10 & ADAM17 (Colombo et al., 2013; Leriche et al., 2016; 

Marolda et al., 2012; Postina, 2012; Vingtdeux and Marambaud, 2012). Similarly, BACE1 

is a transmembrane protease present at relatively high levels in neurones (Zhang et al., 

2011), acting as the catalyst for the first step in the liberation of Aβ from APP (Vassar et al., 

1999). Downregulation of BACE1 leads to the inhibition of cleavage at the two known β-

cleavage sites on APP: Asp1 & Glu11 (Figure 1.6). Further, BACE1 KO mice do not produce 

detectable levels of Aβ (Kobayashi et al., 2008; Luo et al., 2001), and BACE1 expression 

alongside its activity increases in brain regions affected in AD (Johnston et al., 2005; Yang 

et al., 2003). The intramembrane γ-secretase protease complex is responsible for cleaving 

a range of transmembrane proteins including APP (Hong et al., 2017; Wang et al., 2015). It 

consists of four components, two of which are presenilin 1 and 2 (PSEN1/PSEN2; De 

Strooper et al., 2012; Zhang et al., 2014), with PSEN1/PSEN2 thought to be the primary 

regulator of APP processing by γ-secretase (Bai et al., 2015).  

 

In non-amyloidogenic APP processing, APP is sequentially cleaved by α-secretase and γ-

secretase. Upon α-cleavage, a large extracellular domain is released (soluble α-APP; 

sAPPα) through a process coined ectodomain shedding (Klevanski et al., 2015; 

Lichtenthaler, 2006). The α-secretase cleavage site lies within the Aβ domain, thus 

cleavage here prevents Aβ generation (Postina, 2008). Once ectodomain cleavage occurs, 

the C-fragment remains associated with the membrane, before being further cleaved by γ-

secretase. In amyloidogenic processing, APP is first cleaved by BACE1 in place of α-

secretase. The cleavage site for BACE1, unlike α-secretase, is not present within the Aβ 

domain, keeping the peptide sequence intact. Cleavage of APP by BACE1 is often noted 

as the rate-limiting step for the production of Aβ (Das et al., 2016). This shift in processing 

releases sAPPβ, which shares the same sequence as sAPPα, excluding the last few C-

terminal amino acids (Chasseigneaux and Allinquant, 2012).  

 

Aβ peptides are produced in large amounts in AD, but previous research proposed that low 

concentrations (picomolar) of monomeric Aβ could act as a trophic signal, alongside 

modulating synaptic plasticity (Puzzo et al., 2008). This therefore has implications for 

learning and memory (Pearson and Peers, 2006; Plant et al., 2003). However, monomeric 

Aβ readily and rapidly aggregates to form oligomers, protofibrils and fibrils en route to 

plaque deposition (Figure 1.7). The most harmful species of Aβ produced by sequential β 

and γ-secretase cleavage are Aβ1-40 and Aβ1-42 (Figure 1.8, Butterfield et al., 2013), with the 

latter said to be the more toxic. This is based on the observation that Aβ1-42 peptides 

increase in cells expressing APP or presenilin harbouring mutations associated with early 

onset AD (EOAD; Benilova et al., 2012). 
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Figure 1.7 The sequential steps in aggregation of Aβ peptides. Native monomeric forms 
of Aβ of varying sizes initiate the process. Dimers and trimers can assemble before heavier 
oligomers are formed. These can range from tetramers to nonamers and beyond. 
Protofibrils form through the elongated cluster of Aβ oligomers. These in turn aggregate in 
a mesh-type pattern to form amyloid fibrils, the core component of senile plaques.  
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A 
Aβ1-40/1-42 
H2N-Asp1-Ala2-Glu3-Phe4-Arg5-His6-Asp7-Ser8-Gly9-Tyr10-Glu11-Val12-His13-His14-Gln15-

Lys16-Leu17-Val18-Phe19-Phe20-Ala21-Glu22-Asp23-Val24-Gly25-Ser26-Asn27-Lys28-Gly29-Ala30-

Ile31-Ile32-Gly33-Leu34-Met35-Val36-Gly37-Gly38-Val39-Val40-Ile41-Ala42-COOH 

 
Figure 1.8 The amino acid sequence and proposed structure of Aβ1-42.  
A; the full amino acid sequence of Aβ1-42. If you remove the final two amino acids (isoleucine 
and alanine, in red), this is the amino acid sequence of Aβ1-40. B; The structure of the Aβ1-

42 monomer in a non-polar microenvironment. C; This is the contact surface representation 
of the lowest energy conformation of Aβ1-42, in terms of electrostatic potential. This 
representation shows a large electropositive region (blue) within the first of two alpha-
helices. Interestingly, if you align this helix to face the phospholipids of the cell membrane, 
it results in the second alpha-helix orientated as such that it can be inserted into the 
membrane. Data acquired from Crescenzi et al., 2002; Zhang-Haagen et al., 2016.) 
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Oligomers are held together non-covalently, and their formation is likely to occur due to the 

amphiphilic nature of Aβ peptides. Initially thought to remain static and stable (like plaques), 

the possibility exists that oligomers are dynamic, perhaps in a form of equilibrium with Aβ 

monomers and other aggregate formulations (Benilova et al., 2012). The questioning of 

oligomer stability is supported by the identification of a wide array of differing oligomeric Aβ 

(oAβ) forms, including dimers (Shankar et al., 2008), tetrameters (Bernstein et al., 2009), 

nonamers and dodecamers (Lesné et al., 2006). These oligomers appear to be 

intermediates in fibril formation, whereby their shape is modified before the transition 

occurs, but the nature and mechanism of the structural transition is unknown (Fu et al., 

2015; Lee et al., 2011; Lomakin et al., 1997; Sabaté and Estelrich, 2005).  

 

1.3.1.2. Amyloid beta: plaques or oligomers? 
 
First purified in the 1980s (Palutke et al., 1987), the cardinal neuropathological feature of 

AD is the presence of extracellular proteinaceous Aβ plaques. Until more recently, insoluble 

fibrillary plaques consisting of Aβ were considered the toxic moiety, contributing to neuronal 

death and gross pathology seen in AD (Farrell et al., 2017; Hanna et al., 2012). As 

mentioned in Section 1.2, increased plaque number has been associated with an increased 

risk of developing AD. However, this increase in plaque number will likely correlate with the 

increased numbers of varying structural forms of Aβ, confounding interpretation of which 

species holds the highest toxicity.  

 

oAβ also displays neuronal toxicity, and has been suggested to be a central contributor 

towards neuronal damage rather than accumulated insoluble extracellular aggregates 

which were initially suggested (Tomiyama et al., 2010; Walsh et al., 2002). Moreover, oAβ 

but not total plaque burden may correlate more closely with neuronal loss and the astrocytic 

inflammatory response in murine AD models (DaRocha-Souto et al., 2011).  

 

Accumulation of Aβ from oligomers into plaques may act as an endogenous reservoir, 

sequestering oAβ and providing a defence mechanism to protect neurones against oAβ-

induced damage (Treusch et al., 2009; Yang et al., 2017). Whether oligomers could 

dissociate from plaques, reversing this protection is unknown, but plaques are neither 

wholly benign or harmless, with evidence supporting their involvement in the pathological 

conversion of tau (Li et al., 2016), contributing towards its phosphorylation (Busciglio et al., 

1995; Oliveira et al., 2015). This could be a priming step in the development of NFTs. The 

complexities associated with the disease are evident, and the role of Aβ in the 

pathophysiology of AD is not fully understood. However, the amyloid cascade hypothesis 

was previously proposed as the central pathogenic pathway for AD development. 
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1.3.1.3. The amyloid cascade 
 
The amyloid cascade hypothesis, originally proposed in 1992 (Hardy and Higgins, 1992), 

states that Aβ production is the initial trigger in the manifestation of AD pathology, 

consequently leading to the clinical symptoms observed (Figure 1.9). The authors 

expanded, labelling Aβ as the causative agent for the disease process, with NFT formation, 

vascular damage and cell loss all being consequential of Aβ accumulation. This hypothesis 

has been the basis for most work surrounding the pathogenesis of AD for many years. Yet, 

it was developed from studies of familial AD, which are caused by mutations in either APP 

or the presenilin genes. In sporadic late-onset AD (LOAD), Aβ is not necessarily the 

causative agent, with patients still dying due to cognitive related decline following Aβ-

antibody targeted immunotherapy, despite the removal of plaque pathology (Holmes et al., 

2008). Thus, Aβ is unlikely to be the only important pathological target for AD. This holds 

true when comparing the initial localisation of amyloid pathology and neuronal death. 

Studies by Braak and others identified that Aβ pathology appears to begin in the cortex 

before spreading inwards; a progression which is opposite of that for tau (Braak and Braak, 

1991). Further, neuronal death initially and more readily occurs within the entorhinal cortex 

and hippocampus, two brain regions with relatively few plaques when compared to regions 

such as the praecuneus and frontal lobes (Braak and Braak, 1991; Serrano-Pozo et al., 

2011).  

 

This does not mean that the amyloid hypothesis wrong. It can be clearly seen in EOAD that 

genetic mutations which result in Aβ production and accumulation lead to AD. However, 

with regards to LOAD, a more complicated pathway is likely to be responsible for disease 

development. Nevertheless, the hypothesis has come under criticism, with the key 

argument against it based on the poor anatomical and temporal correlation between plaque 

deposition, neuronal loss, and the clinical symptoms of AD. With suggestions that Aβ is 

simply a “bystander”, several researchers propose that tau pathology, which strongly 

correlates with neurone loss and clinical symptoms (Di et al., 2016; Liu et al., 2017), should 

be the primary target of AD research. If this were the case, it could be assumed that in 

EOAD, whereby Aβ accumulation is directly caused by mutations in either APP or 

PSEN1/PSEN2, its deposition would have a stronger anatomical correlation to neurone 

loss, when compared to late stage AD. However, this does not happen. Instead, Aβ 

pathology closely resembles that seen in sporadic AD, with plaques anatomically 

dissociated from brain areas with extensive neuronal loss (Bateman et al., 2012; Shepherd 

et al., 2009). Additionally, positron emission tomography (PET) imaging of tau using 

flortaucipir F 18 identified increased hyperphosphorylated tau in EOAD patients (Quiroz et 

al., 2018). Thus, genetic data suggests that Aβ accumulation can drive tau pathology 

without the two protein aggregates necessarily being anatomically co-localised. 
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Figure 1.9 Diagrammatic representation of the amyloid cascade hypothesis. Research 
into EOAD identifies the importance of mutations in the APP, PSEN1 and PSEN2 genes for 
Aβ accumulation. Reduced clearance of Aβ due to damaged degradation and removal 
mechanisms likely contributes to Aβ aggregation. However, in LOAD, there is likely much 
more at play than Aβ alone. Aβ, amyloid beta; APP, amyloid precursor protein gene; 
PSEN1, presenilin 1 gene; PSEN2, presenilin 2 gene. 
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This anatomical disconnection linking amyloid and tau pathology to neurone loss is yet to 

be fully elucidated. It is likely that Aβ is necessary but not sufficient to cause AD, with 

evidence supporting the complex nature of neuronal damage and synapse loss in the 

disease process (Drachman, 2014; Herrup, 2015; Musiek and Holtzman, 2015). However, 

there are multiple toxic mechanisms that Aβ accumulation can utilise to facilitate neuronal 

damage. 

 

1.3.1.4. Amyloid beta toxicity 
 
Whilst the full extent of Aβ toxicity has not yet been elucidated, many pathological actions 

have been identified including oxidative stress (Li et al., 2017; Ojala and Sutinen, 2017), 

mitochondrial cytochrome C (Cyt C) & Ca2+ diffusion (Kim et al., 2014; SanMartín et al., 

2017), loss of membrane integrity and membrane damage (Fernandez-Perez et al., 2016; 

Sepulveda et al., 2010) and its association with neuroinflammation (Li et al., 2017; Salminen 

et al., 2009; Yin et al., 2017), synaptic dysfunction (Müller-Schiffmann et al., 2016; Ripoli et 

al., 2014) and excitotoxicity (Pallo et al., 2016; Sáez-Orellana et al., 2016).  

 

1.3.1.4.1. Amyloid beta and oxidative stress 
 
The initial response of microglia to pathological forms of Aβ appears to be an oxidative 

stress response, well known to be a prominent and significant feature in many, if not all 

neurodegenerative diseases (Chiurchiù et al., 2016; Della Bianca et al., 1999; Leszek et al., 

2016; Urrutia et al., 2017; Wilkinson et al., 2012). Oxidative damage to DNA, proteins and 

lipids occurs under basal conditions (Barone et al., 2012). However, cells have endogenous 

defence mechanisms which repair and replace damaged macromolecules (Andrews et al., 

2014; Chondrogianni et al., 2014). Oxidative stress occurs when an imbalance arises 

between ROS formation and cellular antioxidant ability, due to either increased ROS 

generation, or a reduction in antioxidant pathways (Valko et al., 2007). The brain is 

vulnerable to ROS induced oxidative damage due to two reasons. Firstly, neuronal 

membranes are rich in polyunsaturated fatty acids, which are especially vulnerable to free 

radical damage (Chen et al., 2008). Secondly, despite the brain only representing 

approximately 2% of total body weight, it receives 15% of the cardiac output, and 20% total 

body oxygen (Jain et al., 2010). The resulting large O2 consumption leads to high levels of 

ROS compared to other parts of the body.  

 

Whilst not essential, the toxicity of Aβ is partly mediated through the interaction with Cu2+ 

and Fe3+ ions (Bush and Tanzi, 2008; Huang et al., 1999; Opazo et al., 2002). The 

oligomeric Aβ complex produced in the presence of Cu2+ and Fe3+ can generate hydrogen 

peroxide (H2O2) from molecular oxygen (O2) through the reduction of Cu2+ to Cu+ and Fe3+ 

to Fe2+. Yet, the presence of these ions is not essential for Aβ to produce H2O2. This is due 
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to Aβ (4 μM) increasing NADPH oxidase activation and protein in BV-2 microglia (Yao et 

al., 2015). This enzyme produces superoxide (O.-
2) radicals which can undergo reactions to 

generate additional ROS species, including H2O2. Further, ROS species such as H2O2 are 

known to trigger the nuclear translocation of the transcription factor NF-κB (Hara-Chikuma 

et al., 2015; Henríquez-Olguín et al., 2015), a central component for the microglial 

inflammatory response (Bordt and Polster, 2014; Kirkley et al., 2017; Taetzsch et al., 2015). 

NADPH oxidase enzymes, including microglial NOX2 are activated by Aβ (Della Bianca et 

al., 1999; Wilkinson et al., 2012), which in turn upregulates NF-κB activity (Fan et al., 2017; 

Vara et al., 2018). Activation of NADPH oxidase enzymes also appear to be crucial for 

astrogliosis and cortical neurone apoptosis (Qin et al., 2002; Wyssenbach et al., 2016), with 

microglia being prime cellular candidates responsible (Choi et al., 2012; Fischer et al., 2012; 

Floden et al., 2005). Microglial activation associated with Aβ-induced ROS production may 

therefore be a central component in developing the chronic neuroinflammatory environment 

observed in AD (Heneka et al., 2015).  

 

In the absence of sufficient antioxidative defence mechanisms, H2O2 can further react with 

the reduced Cu+ and Fe2+ ions to produce the highly reactive and toxic hydroxyl radicals 

(OH.) through the Fenton reaction or via reaction with nitric oxide (NO), the latter forming 

peroxynitrite (ONOO.-). As with most ROS species, OH. is highly-mobile and water soluble, 

reacting with a vast array of cellular components, including DNA, proteins and membranous 

lipids, resulting in DNA fragmentation, inhibition of DNA and protein synthesis but also 

blockage of mitochondrial respiration (Figure 1.10; Halliwell and Gutteridge, 1992), with OH. 

accumulation leading to cell death (Shoeb et al., 2014). Microglial activation of NADPH 

oxidase may therefore have considerable consequences not only for microglial 

inflammation, but also neuronal damage and death associated with multiple different 

oxidative species (Haslund-Vinding et al., 2017).  

 
Lipid peroxidation results in the production highly reactive 4-hydroxy-2-nonenal (4-HNE) 

and malondialdehyde (MDA), the latter of which can activate the immune response and 

RAGE (Aldini et al., 2013; Vistoli et al., 2013), with RAGE itself being an inflammatory 

intermediary (Sanders et al., 2017) and inducer of oxidative stress (Hong et al., 2016). Aβ 

can also activate microglial expressed RAGE, increasing oxidative stress, pro-inflammatory 

cytokine production and further Aβ accumulation (Bierhaus et al., 2001; Kierdorf and Fritz, 

2013; Tóbon-Velasco et al., 2014), with RAGE overexpression exaggerating the 

neuroinflammatory response in mice (Fang et al., 2010). This underlines that neuronal Aβ 

production can stimulate microglial activation and ROS production via a variety of different 

sources, including NADPH oxidase and RAGE, which could consequentially drive a positive 

feedback system to increase Aβ accumulation. RAGE is also an important transporter in 

regulating Aβ influx from the circulation into the brain (Cai et al., 2016). It is no surprise 

then, that advanced lipid peroxidation end products (ALEs) such as MDA are associated  
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Figure 1.10 Hydroxyl radicals induce macromolecular damage. These radicals can 
damage all manner of cellular components, from DNA, to mitochondria, and to proteins. 
Further, free radical-induced lipid peroxidation leads to the damage and increased 
permeability of cellular membranes, allowing amplified Ca2+ influx. This results in the 
disruption of cellular Ca2+ homeostasis, which has particular significance for neurones, 
because it can contribute towards excitotoxicity in those of a glutamatergic subtype.  
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with AD (López et al., 2013). 

 

1.3.1.4.2. Amyloid beta and mitochondrial dysfunction 
 

Aβ-induced disruption of cytosolic Ca2+ signalling can lead to mitochondrial permeability 

transition (MPT) pore formation (Figure 1.11, Elkamhawy et al., 2017; Sun et al., 2014; Ye 

et al., 2015) This can result in severe mitochondrial dysfunction, leading to ROS 

overproduction, mitochondrial respiratory cessation and the release of pro-apoptotic 

factors, all contributing to cell death (Du and Yan, 2010).  ROS induced-lipid peroxidation 

might also contribute, with 4-HNE triggering MPT pore opening in cortical neurones (Figure 

1.11; Choi et al., 2013). 

 

Aβ can accumulate within the mitochondrial matrix (Hansson Petersen et al., 2008; 

Muirhead et al., 2010; Pinho et al., 2014; Rosales-Corral et al., 2012), where it binds to 

amyloid-β alcohol dehydrogenase, (ABAD; Borger et al., 2013; Takuma et al., 2005; Yan 

and Stern, 2005; Yao et al., 2011), an enzyme which exhibits important metabolic functions. 

This includes sequestering cyclophilin D (CycD) in the mitochondrial matrix (Figure 1.11), 

preventing CycD to regulate opening of the MPT pore (Gutiérrez-Aguilar and Baines, 2015; 

Naga et al., 2007; Yan and Stern, 2005). Interaction of ABAD-Aβ appears to displace CycD, 

leading to its translocation to the inner mitochondrial membrane, triggering its involvement 

in opening of the MPT pore. This is of particular importance, because microglial oxidative 

phosphorylation is reduced during an inflammatory response (Orihuela et al., 2016), holding 

promise that ABAD-Aβ interactions in microglia may, in part, correlate with 

neuroinflammation.  

 

Increased intracellular Ca2+, .OH, and Aβ levels in AD can all converge to trigger 

mitochondrial dysfunction and damage, with increased mitochondrial permeability and 

consequential abolishment of the mitochondrial membrane potential (Δψ) linked to both 

apoptotic and necrotic cell death pathways (Barnwal et al., 2016; Ni et al., 2014; Vessoni et 

al., 2016). Reduced Δψ in macrophages also appears to be associated with increased 

mitochondrial ROS production and inflammatory activation (Yaron et al., 2015), suggesting 

a similar response is likely in microglia, further implicating Aβ in their activation and 

consequent inflammatory response. 

 

1.3.1.4.3. Amyloid beta and excitotoxicity 
 

Aβ appears to propagate several mechanisms which can lead to neuronal dysfunction and 

apoptosis. One of which is binding to and inhibiting neuronal α7 nicotinic acetylcholine 

receptors (α7-nAChRs), which are critical for cognition and long-term memory  
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Figure 1.11 Summary diagram depicting several cellular processes contributing to 
neuronal apoptosis in response to Aβ oligomer formation and accumulation. 4-HNE 
has been identified to open the MPT pore in cortical neurones in vitro, in the presence of 
NMDA. However, whether this occurs in vivo needs to be determined. Excess glutamate 
release which is seen in AD could substitute for the NMDA. Mitochondrial ROS production 
can contribute towards lipid peroxidation and further mitochondrial damage. Microglial ROS 
production can also lead to neuronal plasma membrane peroxidation, leading to increased 
Ca2+ influx, which could result in opening of the MPT pore and mitochondrial release of 
cytochrome C, leading to caspase activation and neuronal apoptosis. ABAD, amyloid-β 
alcohol dehydrogenase; ATP, adenosine triphosphate; Cyt C, cytochrome C; CycD, 
cyclophilin D; 4-HNE, 4-hydroxy-2-nonenal; LP, lipid peroxidation; MPT, mitochondrial 
permeability transition; NMDAR, N-methyl-D-aspartate receptor. 

 

(Albuquerque et al., 2009; Liu et al., 2001; Ni et al., 2013; Oz et al., 2013). Also vital for 

cognition are NMDARs, with roles in synaptic plasticity and long-term potentiation (LTP; 

Niciu et al., 2012), the persistent and long-lasting strengthening of synapses as a result of 

high frequency stimulation (Bliss and Lomo, 1973). They are receptors for glutamate, a 

neurotransmitter responsible for around 70% of the excitatory neurotransmission that 

occurs in the CNS. As previously discussed, Aβ can reduce the surface expression of 

NMDARs through direct interaction and consequential endocytosis (Tang, 2009). Aβ 

oligomers have also been shown to directly activate these receptors (Texidó et al., 2011). 

As Aβ continues to accumulate, Aβ-induced NMDA activation may contribute to 

excitotoxicity (Figure 1.12; Vandresen-Filho et al., 2013; Wang et al., 2013). 
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Figure 1.12 A simplified representation of neurotransmitter signalling at the 
glutamatergic synapse. A; Under physiological conditions, excitation of the presynaptic 
neurone results in the release of glutamate. Glutamate binds to AMPA and NMDA 
receptors, initiating Na+ and Ca2+ influx, leading to the synthesis of brain derived 
neurotrophic factor (BDNF; not shown), and the upregulation of neuronal plasticity. B; In 
late stage AD, Aβ oligomer accumulation and excessive extracellular glutamate (mainly 
resulting from neuronal death) have been linked to overactivation of AMPA and NMDA 
receptors, leading to Ca2+-induced excitotoxicity. Aβ1-42, amyloid-beta 42 peptide; AMPA, α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; Glu, glutamate; NMDA, N-methyl-D-
aspartate. 
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1.3.2. Tau hyperphosphorylation 
 
Alongside extracellular Aβ plaques, the second major neuropathological feature of AD is 

the presence of intraneuronal inclusions, so-called NFTs. These are formed by paired 

helical filaments of hyperphosphorylated tau proteins. Tau is abundant in CNS neurones, 

primarily localised in axons (Morris et al., 2011) and has a physiological role in stabilising 

microtubules, a component of the eukaryotic cytoskeleton. However, phosphorylation of tau 

results in its detachment from the cytoskeletal filament. In certain conditions such as AD, 

tau can become hyperphosphorylated (Quiroz et al., 2018), and this could therefore lead to 

mass detachment of the protein from microtubules, leading to decreased cytoskeletal 

stability and neuronal damage (Di et al., 2016; Spires-Jones and Hyman, 2014). During the 

aggregation process, tau undergoes oligomerisation and fibrillarisation. Fibrillary tau clumps 

together into insoluble NFTs that gradually overburden neurones, inhibiting the machinery 

involved in fundamental cell functions (Cheng and Bai, 2018; Chiasseu et al., 2017), 

ultimately, leading to neuronal death (Ward et al., 2012). This is emphasised by the 

presence of extracellular ghost tangles present in the brain long after the neurones they 

resided in have been removed (Serrano-Pozo et al., 2011). Further, tangle number and 
localisation are often correlated to dementia status, something which has not been not been 

associated with Aβ senile plaques (Arriagada et al., 1992).  

 

As with Aβ, the soluble forms of tau may be the toxic moiety, whilst NFTs act as a sink for 

these species. This would push the idea that NFTs are neuroprotective, even at the expense 

of synaptic plasticity. On the other hand, it has been suggested that both NFTs and soluble 

tau are toxic in differing ways, and on different time scales (Kopeikina et al., 2012). It has 

been demonstrated in several animal studies, where non-aggregated tau is linked to 

synaptic dysfunction, microgliosis alongside memory, LTP and other functional deficits 

(Berger et al., 2007; Fá et al., 2016; Hoover et al., 2010; Sydow et al., 2011; Yoshiyama et 

al., 2007). However, targeting tau pathology alone may not be sufficient to effectively 

dampen neuronal damage seen in AD. This is further emphasised by clinical trial failure of 

tau therapeutics (Gauthier et al., 2016).  

 

1.3.2.1. Synergy between tau and amyloid beta pathology 
 

The synergistic actions of oAβ and tau in promoting synaptic dysfunction in AD is well 

supported (Guerrero-Muñoz et al., 2015; Spires-Jones and Hyman, 2014). Interactions 

between oAβ and phosphorylated tau have been observed in neurones, and this increases 

in correlation with disease progression (Manczak and Reddy, 2013). Further, it appears that 

Aβ accumulation may contribute to tau-induced neuronal disruption and disturbance of 

axonal projections (Pooler et al., 2013). Thus, inhibiting this interaction may be an avenue 

to help reduce neuronal damage and synapse loss, rather than targeting one or the other 
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independently. Nevertheless, the prevailing theory is that Aβ pathology occurs upstream of 

tau, whereby it initiates tau’s pathological spread, thus acting as an initiator for the disease 

process. However, the spread of Aβ throughout the brain is distinct from that of tau (Jucker 

and Walker, 2013), with deposition appearing to begin in the frontal and temporal lobes, 

before spreading to the hippocampus and limbic system; gross cortical pathology then 

follows (Masters et al., 2015). Tau tangles start in the entorhinal cortex, before spreading 

into the hippocampus, limbic structures, and finally the primary visual, sensory and motor 

systems (Figure 1.13; Braak and Braak, 1991). Despite this temporal discrepancy, cortical 

tangle burden only increases in people with amyloid pathology, a feature which coincides 

with clinical symptoms (Pontecorvo et al., 2019); highlighting a clear link between the two 

pathologies. Thus, which is the more toxic species is still heavily debated. Although, as tau 

pathology is primarily observed in brain regions relating to clinical symptoms, and its 

deposition correlates with dementia status and reduced cognitive performance with better 

reliability than Aβ (Brier et al., 2016), tau PET imaging may serve as a biomarker for 

neuronal injury in disease. (Dronse et al., 2016).  

 

1.3.3. The links and risks of Alzheimer’s disease 
 

Approximately 90% of all AD cases are sporadic, with the remainder showing some degree 

of heritability (Tanzi, 2012). Most inherited forms manifest as EOAD, which is primarily 

triggered by familial autosomal dominant  mutations linked to genes responsible for the 

processing of APP, amongst which PSEN1, PSEN2 and APP dominate (Goate et al., 1991; 

Raux, 2005; Rogaev et al., 1995; Sherrington et al., 1995). Mutations in these three genes 

are responsible for approximately 70% of familial AD cases (Rovelet-Lecrux et al., 2012). 

As discussed in Section 1.3.1, PSEN genes encode for presenilin-1 and -2, transmembrane 

proteins which are components of the γ-secretase complex. Mutations in these genes 

therefore appear to increase the efficiency of γ-secretase cleavage of APP. However, APP 

mutations can modify the cleavage of its product by all secretase enzymes. For example, 

the E682K mutation in APP favours BACE1 cleavage of APP at an alternative β-cleavage 

site (β’), resulting in increased Aβ production, as identified in an early onset AD case (Zhou 

et al., 2011). 

 

Sporadic cases are non-heritable and have a late-onset (LOAD). Numerous factors seem 

to be associated with increased LOAD risk, with age being the most common. Risk of AD 

increases exponentially as an individual gets older (Imtiaz et al., 2014). Sex differences also 

exist, with women having a higher risk of developing AD post-menopause (Cahill, 2006; 

Pike et al., 2009). These risk factors are highlighted in Figure 1.14 (Seshadri et al., 2006). 
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Figure 1.13 Tau pathology progression in AD. The diagram presented represents Braak 
staging. Braak staging is utilised to refer to NFT pathology, whereby the stage aligns with 
AD symptoms. Stage I-II tangles are primarily confined to the transentorhinal cortex, III-IV 
enter the limbic regions of the brain including the hippocampus and amygdala whilst V & VI 
includes extensive neocortical distribution (Braak and Braak, 1991). The brain of someone 
with preclinical AD will likely have I-II staging, whilst mild to moderate AD and severe AD 
would likely have stages III-IV and V-VI, respectively. Diagram was acquired from the 
National Institute of Health (NIH) and is open access. 
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Figure 1.14 Estimated lifetime risk for developing dementia and AD at differing ages 
for both men and women. A; AD risk with increasing age. B; total dementia risk with 
increasing age. Women having a heightened AD and total dementia risk when compared to 
men of the same age group. Lifetime risk is defined here as the percentage likelihood of 
developing either AD or another manifestation of dementia at the ages examined. Data was 
acquired from participants of the Framingham Study, which was initiated in 1948. 4897 
individuals who were stroke and dementia-free at the age of 55 were followed biennially for 
up to 51 years. Adapted from Seshadri et al., 2006. 
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The strongest genetic risk factor for LOAD is an allelic variation in the apolipoprotein E 

(APOE) gene, encoding for ApoE, a major cholesterol carrier protein with a supporting role 

in lipid transport and tissue repair (Liu et al., 2013). Individuals bearing this allele accounting 

for approximately 60% of all AD cases (Huang, 2011). In the CNS, ApoE is mainly produced 

by astrocytes, transporting cholesterol to neurones through ApoE receptors (Liu et al., 

2015). It also helps promote the clearance and degradation of soluble forms of Aβ 

(Bachmeier et al., 2013; Castellano et al., 2011). There are three polymorphic alleles of 

ApoE: ε2, ε3 and ε4 (Farrer et al., 1997). Aβ levels and plaque load are ApoE isoform 

dependent (Bales et al., 2009; Castellano et al., 2011; Reiman et al., 2009), with AD patients 

positive for the ε4 allele having the highest plaque load, and those with ε2 having the lowest.  

 

GWAS analyses have identified over 20 other genes associated with LOAD, many of which 

encode proteins related to microglial function and inflammation, including CD33, CR1, and 

TREM2 (Beecham et al., 2014; Hollingworth et al., 2011; Hu et al., 2017; Kauwe et al., 

2014; Lambert et al., 2009; Malik et al., 2015; Naj et al., 2011; Villegas-Llerena et al., 2016). 

Other risk factors of interest include air pollution (Calderón-Garcidueñas et al., 2016; Jung 

et al., 2015), smoking (Durazzo et al., 2014), traumatic brain injury (TBI; Gupta and Sen, 

2015; Mendez et al., 2015), periodontitis (Cerajewska et al., 2015), high blood pressure 

(Meng et al., 2014), high cholesterol intake/hypercholesterolemia (Brooks et al., 2017), 

heart failure (Cermakova et al., 2015) and type 2 diabetes (T2DM; De Felice and Ferreira, 

2014; Li and Huang, 2016; Moran et al., 2015; Steen et al., 2005).  

 

Patients diagnosed with T2DM have a significantly greater risk of developing AD (De Felice 

and Ferreira, 2014), with diabetes contributing to structural deficits in the brain, potentially 

linking it to the modulation of neurodegeneration (Sato and Morishita, 2014). Metabolic 

disorders such as T2DM and the associated inflammatory signalling which accompanies 

them can reduce insulin signalling and inhibit cellular responsiveness to insulin (Gregor and 

Hotamisligil, 2011). In the brains of AD patients, similar abnormalities can manifest, 

primarily metabolic stress and neuroinflammation (Talbot et al., 2012; Verdile et al., 2015; 

Yoon et al., 2012). Insulin is broken down by insulin degrading enzyme (IDE; Farris et al., 

2003). In the brain, IDE is also the main enzyme responsible for the degradation of 

extracellular Aβ (Pivovarova et al., 2016; Vekrellis et al., 2000). As a consequence, IDE 

appears to represent the pathological link between T2DM and AD.  

1.4. Neuroinflammation in Alzheimer’s disease 
 
For decades, Aβ and tau have been considered the primary neuropathological hallmarks 

associated with AD and its clinical manifestations. Despite this, some discrepancies have 

been proposed in recent years. Whether Aβ and tau alone are enough to cause the 

extensive neuronal death that is seen in late stage disease is debated. Today, considerable 
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support exists underpinning the critical involvement of neuroinflammation in the progression 

of AD (Bagyinszky et al., 2017; Guerreiro et al., 2013; Heneka et al., 2014; Heneka et al., 

2015; Jiang and Bhaskar, 2017; Latta et al., 2015; Yin et al., 2017; Yu and Ye, 2014). 

However, inflammation is unlikely to just result as a consequence of plaque and tangle 

accumulation, rather it appears to have a causal role in disease, contributing to 

pathogenesis as much so, if not more than Aβ and tau (Bate et al., 2006; Heneka et al., 

2015; Morales et al., 2014). This has been corroborated through an array of methods 

including genetic screening (Heneka et al., 2014; Malik et al., 2015; Villegas-Llerena et al., 

2016), the use of animal models (Hong et al., 2016; Orre et al., 2014; Spangenberg et al., 

2016; Zenaro et al., 2015), and the histological analysis of AD patients’ brain immune cells 

post-mortem (Gomez-Nicola and Boche, 2015; Gomez-Nicola and Perry, 2016; Hopperton 

et al., 2018; Taipa et al., 2018). 

 

1.4.1. Evidence to support neuroinflammatory damage in Alzheimer’s disease 
 

1.4.1.1. Animal models 
 

Animal studies underline that inflammatory challenge alone may be sufficient to induce the 

development of sporadic AD, wherein systemic immune stimulation with a viral mimetic 

contributed towards both Aβ and tau deposition, memory impairments and microglial 

activation (Krstic et al., 2012). This may explain why many risk factors for AD development 

involve inflammation (Brooks et al., 2017; Calderón-Garcidueñas et al., 2016; Cerajewska 

et al., 2015; De Felice and Ferreira, 2014; Durazzo et al., 2014; Gupta and Sen, 2015; Meng 

et al., 2014). Further, animal model data has identified that the development of 

neuroinflammation can occur downstream of Aβ deposition (Akiyama et al., 2000). In 

addition, markers for complement, a part of the immune response which normally occurs 

as an attempt to remove cellular debris, have been identified in transgenic mouse models 

of AD (Fan et al., 2007; Matsuoka et al., 2001; Zhou et al., 2008); most of which co-localise 

with fibrillary Aβ. Being a strong activator of complement, Aβ can stimulate both the 

classical, and alternative complement pathways. A recent study identified that oAβ-induced 

microglial and complement activation can mediate synapse loss and the depression of LTP 

(Hong et al., 2016). The classical complement cascade appears to be crucial for this, as an 

anti-C1q antibody prevented synapse loss. C1q is the first subcomponent of the C1 complex 

within the classical cascade of complement (Kishore and Reid, 2000). Complement 

activation also attracts microglia, resulting in their production and release proinflammatory 

cytokines (Orsini et al., 2014; Silverman et al., 2016). Finally, microglial activation and 

inflammation has been reported in at least seven independent animal models of AD, 

including both Aβ and tau transgenics (Apelt and Schliebs, 2001; Crawford et al., 2007; Fan 
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et al., 2007; Frautschy et al., 1998; Hock and Lamb, 2001; Sturchler-Pierrat et al., 1997; 

Yoshiyama et al., 2007). 

 

1.4.1.2. Genetic/genomic studies 
 
In mice, Aβ plaque-associated microglia express higher levels of proinflammatory genes, 

including several encoding chemokines (Yin et al., 2017), with these microglia taking on an 

“activated” morphology. This shift broadly encompasses microglial transformation from a 

ramified to an amoeboid morphology, which includes the retraction of cellular processes, 

and can be followed by cellular locomotion (Davis et al., 2017). Further, a loss-of-function 

variant of the microglial regulator TREM2, which controls inflammation and phagocytosis in 

microglia (Mecca et al., 2018; Ulrich et al., 2017), has a highly significant association with 

AD, increasing the risk of developing AD approximately threefold (Guerreiro et al., 2013).  

 

1.4.1.3. Post-mortem analysis 
 
In AD patients, complement is activated in both early and late stage disease, with 

differencing complement species co-localising with diffuse and neuritic plaques, alongside 

neurofibrillary tangles (Loeffler et al., 2008; Yasojima et al., 1999; Zanjani et al., 2005). In 

addition, microglial inflammation appears to be positively correlated with total Aβ load, 

wherein it may indirectly contribute towards cognitive decline by facilitating NFT formation 

(Felsky et al., 2019). Increases in microglial activation markers have been identified in 

multiple post-mortem analyses of AD patients. A systematic review published in 2018 

identified thirty-six papers reporting higher levels of major histocompatibility complex II 

(MHCII) in AD patients relative to control patients in at least one of the brain regions 

measured (Hopperton et al., 2018).  

 

A further twenty-one studies compared CD68 between control and AD patients. Although 

there is some CD68 expression in surveillant microglia (Lee et al., 2002), CD68 is primarily 

considered a marker of microglial activation, wherein in labels the lysosome (Walker and 

Lue, 2015). Seventeen of these studies discovered an increase in CD68 expression, 

staining, or CD68 positive cell counts in AD brains compared to control. Twenty papers 

were also identified to quantitatively compare the levels of ionized calcium-binding adaptor 

molecule 1 (Iba1), a protein considered to be a general marker of microglia (Walker and 

Lue, 2015). Data for Iba1 was conflicting, suggesting microglia are primarily activated in 

AD, rather than upregulated (Hopperton et al., 2018). In addition, both familial and sporadic 

AD patients had higher neuroinflammatory pathological markers in brain areas damaged in 

disease including the entorhinal and temporal cortices, hippocampus and dentate gyrus 

(Taipa et al., 2018). 
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Wang et al. analysed the levels of specialised pro-resolving mediators (SPMs), which are 

fatty acid derivatives actively involved in the resolution of inflammation, in hippocampal 

tissue and the cerebrospinal fluid (CSF) from AD and non-AD subjects. Levels of the SPM 

lipoxin A4 (LXA4), which is an endogenous ligand for formyl peptide receptor 2 (FPR2), 

were significantly reduced in both the CSF and hippocampus (Wang et al., 2015). 

 

The link between proteineous pathology and neuroinflammation is therefore becoming 

clearer. However, the association is unlikely to be a passive process. Meaning inflammation 

does not just result as a consequence of plaque and tangle accumulation. Rather, it has a 

causal role in the disease, contributing to pathogenesis of AD. 

 

1.4.2. Microglia in Alzheimer’s disease 
 
Several cell types are involved in the neuroinflammatory response, including astrocytes 

(Colombo and Farina, 2016; Wang et al., 2013) and blood-derived mononuclear cells, such 

as perivascular macrophages (Agrawal et al., 2013; Zhang et al., 2012). The primary cells 

responsible for neuroinflammation however, are microglia (Heneka et al., 2015; Ransohoff 

et al., 2015). These CNS resident macrophage-like immune cells are phagocytic in nature 

(Lucin et al., 2013; Savage et al., 2015), able to degrade various molecules through 

enzymatic cleavage (Paolicelli et al., 2017). In healthy individuals, microglial phenotype is 

relatively homeostatic, whereby cells are able to remove dead cells and debris, preventing 

accumulation in the brain (Ransohoff and El Khoury, 2015). However, as phagocytic cells 

such as microglia age, their degradative capacity becomes less efficient (Koellhoffer et al., 

2017; Li, 2013; Ritzel et al., 2015), leading to the slow and progressive build-up of unwanted 

cellular debris (Thériault and Rivest, 2016). In terms of microglia and the CNS, this includes 

the aggregation of damaging peptides such as Aβ1-42 (Floden and Combs, 2011).  

 

1.4.2.1. Amyloid beta, microglia and neuroinflammation 
 

In patients developing AD, large quantities of fibrillar Aβ begin to accumulate. Unlike soluble 

Aβ however, fibrillar forms of the peptide are mostly resistant to enzymatic degradation, and 

thus microglial phagocytosis does not successfully remove accumulating plaques (Saido 

and Leissring, 2012; Shen et al., 2006). This aligns to the observation of microglia in close 

proximity to Aβ plaques in histology stains, with reduced clearance identified as a major 

pathogenic pathway in AD (Mawuenyega et al., 2010), whereby an inefficient microglial 

phagocytic response leads to further accumulation of soluble Aβ. In addition, Beclin 1, a 

key regulator of microglial phagocytosis, appears to be impaired in AD (Lucin et al., 2013), 

whilst accumulation of oAβ can attenuate phagocytosis of fibrillar amyloid species (Pan et 

al., 2011); multiple observations therefore appear to contribute to the reduced phagocytic 
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capacity of microglia in AD. 

 

This extensive Aβ accumulation appears to be directly responsible for the manifestation of 

chronic neuroinflammation in AD, with deposition following a positive correlation with 

inflammation in the brains of transgenic mice (López-Picón et al., 2018). PRRs such as 

TLRs and RAGE both recognise Aβ, resulting in the stimulation of an immune response 

and the release of pro-inflammatory mediators (Zhou et al., 2014). This appears to be in 

part mediated by NF-κB activation (Zhao et al., 2018; Zhou et al., 2014). This RAGE and 

TLR mediated neuroinflammatory response appears to impair learning and memory in APP 

transgenic and C57 naïve oAβ-injected mice (Balducci et al., 2017; Fang et al., 2010). 

Further, age-related cognitive impairment in mice was directly associated with long-term 

neuroinflammation (d’Avila et al., 2018). Thus, animal studies suggest that Aβ-induced 

inflammatory responses are accountable for neuronal dysfunction. 

 

Although the inflammatory reaction is key in homeostatic regulation, whereby it helps to 

remove dying neurones and cell debris, as well as assisting in repair and regeneration 

(Merino et al., 2015; Zilkha-Falb et al., 2016), chronically activated microglia may also 

damage and remove healthy neurones, thereby further contributing to the pathogenic 

process (Bouvier and Murai, 2015). Microglial interaction with Aβ appears to result in a shift 

of function, causing the release of a battery of pro-inflammatory mediators, including 

cytokines such as IL-1, IL-6 and TNFα (Floden et al., 2005; Heneka et al., 2001), 

chemokines including CXCL1 and CCL-2 (Liu et al., 2015) ROS (Pan et al., 2011; Wilkinson 

et al., 2012), and reactive nitrogen species (RNS; Song et al., 2012). This can result in the 

development of a positive feedback loop between inflammation and Aβ production, wherein 

Aβ-activated microglia have hindered phagocytic ability (Heneka et al., 2015), and thus Aβ 

accumulates, further stimulating microglia, resulting in the manifestation of a self-

propagating chronic inflammatory cycle (Herbst-Robinson et al., 2016; Sastre et al., 2008).  
 
Microglial activation alongside the expression of neuroinflammatory markers such as TSPO 

positively correlate with AD severity in patients and cognitive decline (Cagnin et al., 2001; 

Kreisl et al., 2013). This may explain why eliminating microglia from AD mice can prevent 

neuronal loss without modulating Aβ pathology (Spangenberg et al., 2016). Interestingly, 

microglial activation in post-mortem cortical tissue has a strong association with both Aβ 

and tau pathology, with models supporting that microglial activation is upstream of tau 

accumulation (Felsky et al., 2019). This is supplemented by animal work, wherein microglial 

activation correlated with both memory deficits and tau pathological spread (Maphis et al., 

2015), whilst in contrast microglial depletion prevented tau accumulation (Asai et al., 2015). 

This is further supported by the observation that chronic neuroinflammation occurs relatively 

early in the disease process (Misiak et al., 2012; Monson et al., 2014; Wilcock and Griffin, 

2013; Zhang et al., 2013), identified through neuropathological studies detecting 
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inflammatory mediators and activated microglia in the cerebral cortex of patients post-

mortem, despite a low Braak staging (Eikelenboom et al., 2010). PET imaging studies in 

patients have also shown microglial activation to occur well before clinical symptoms 

manifest (Hamelin et al., 2016; Yasuno et al., 2012), and brain inflammation also 

accompanies Aβ deposition in the majority of MCI patients that progress to AD (Parbo et 

al., 2017). Further, many risk gene variants identified via GWAS are involved in innate 

immunity and are highly expressed in microglia (Beecham et al., 2014; Hansen et al., 2018; 

Villegas-Llerena et al., 2016). These expression profiles have been identified both in the 

brains of mice and humans (Figure 1.15).  

 

1.4.2.2. Tau hyperphosphorylation, microglia and neuroinflammation 
 
In humans, microglial activation appears to be primarily associated with Aβ load, indirectly 

contributing to cognitive decline via induction of hyperphosphorylated tau (Felsky et al., 

2019). However, progression of Aβ does not corelate closely to clinical symptom 

progression (Serrano-Pozo et al., 2011). In contrast, both neuroinflammation and tau 

pathology correlate with AD severity in humans (Bejanin et al., 2017; Kreisl et al., 2013; 

Ossenkoppele et al., 2016), with the former potentially being critical for the latter. For 

example, immunohistochemical analysis of AD patient brains highlighted the importance of 

local grey matter inflammation for tau pathology (Zotova et al., 2013). It may not be 

surprising then that microglial have been proposed to contribute towards the pathological 

seeding of tau (Hopp et al., 2018). In transgenic mice, inflammatory microglia correlate with 

spatial memory deficits and the spread of tau pathology, with an IL-1 receptor antagonist 

significantly reducing this microglial-induced tau pathology (Maphis et al., 2015). 

Additionally, purified microglia transferred from these transgenic mice induced tau 

hyperphosphorylation within the brains of non-transfected mice (Maphis et al., 2015). Thus, 

considerable evidence supports a central pathological role for microglia in AD, wherein it 

may act as a ‘gatekeeper’ between Aβ and tau pathological spread and neurodegeneration. 

 

The widespread and diverse evidence available therefore warrants a focus on research to 

combat neuroinflammation in AD. Additionally, because neuroinflammation is associated 

with a plethora of both neurodegenerative and neuropsychiatric disorders (Furtado and 

Katzman, 2015; Müller et al., 2015; Najjar and Pearlman, 2015; Russo et al., 2014; Zhang, 

2015), the identification of a mechanism to microglial-induced neuroinflammatory damage 

could be beneficial and translatable to differing diseases. We believe that microglial 

activation can be modulated by an appropriate therapeutic agent(s), allowing promotion of 

anti-inflammatory and immunomodulatory pathways to fight back against chronic 

inflammatory and oxidative damage. 
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Figure 1.15 Expression profile of AD risk genes in microglia. These heat maps depict 
the relative expression profile of AD risk genes purified from mouse (A) or human (B) brain 
tissue (Srinivasan et al., 2016; Zhang et al., 2016). RNA sequencing was used for tissue 
analysis. Each column within a cell type represents one sample of those purified cells from 
a different brain. For the mouse dataset, cortical samples from 13-mo old PS2APP Aβ 
model or age-matched non-transgenic littermates were plotted. For the human dataset, 
“normal” cortical samples were plotted, with samples ranging in age from 8 to 63 years. The 
Z-score represents the number of standard deviations by which a sample’s expression level 
for a gene varies in comparison to mean expression level for that gene across all samples 
analysed. For human genes which do not appear to have mouse orthologues, suitably 
selected mouse homologues were utilised. The use of this figure was signed off by the 
original authors (Hansen et al., 2018), and the Journal of Cellular Biology.  
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1.5. Current therapies and recent clinical research 
 
Several medicines are available which can slow down the progression of clinical symptoms. 

Donepezil, rivastigmine and galantamine are acetyl-cholinesterase inhibitors central to 

symptomatic treatment of AD, showing to be mostly effective in mild to moderate stages of 

disease (Grutzendler and Morris, 2001). However, there is no evidence to suggest that one 

drug in this class is more efficacious than the others (Grutzendler and Morris, 2001). 

Nevertheless, withdrawal of donepezil treatment has been associated with potential risks, 

even when the benefits of continuing treatment are not apparent (Howard et al., 2015). An 

alternative symptomatic treatment is memantine, a low affinity NMDA receptor antagonist. 

The aim of its use is to reduce glutamate-induced excitotoxicity without interfering with the 

physiological functions of this neurotransmitter (Wang and Reddy, 2017). Evidence also 

suggests that combination therapy with these two treatments may improve clinical 

symptoms in comparison to singular regimens (Parsons et al., 2013). 

 
Approaches targeted towards disease pathology are essential, with a significant focus being 

on reducing Aβ load to improve clinical outcome (Bales et al., 2016; Gilman et al., 2005; 

Salloway et al., 2014). However, fighting Aβ alone may not be enough to prevent the 

extensive synapse and neuronal loss that occurs in AD. Aβ immunisation has become a 

central research focus in more recent years (Salloway et al., 2014; Wisniewski and Goñi, 

2015). Pre-clinical studies contained promise, providing evidence that different antibodies 

could alleviate both Aβ-associated synaptic and cerebral amyloid angiopathy pathology in 

transgenic AD mouse models (Bales et al., 2016; Dorostkar et al., 2014). However, another 

study highlighted that immunotherapy may not be effective at repairing neuronal dysfunction 

(Busche et al., 2015), perhaps foreshadowing the extensively documented failures of Aβ 

immunotherapy clinical trials (Holmes et al., 2008; Honig et al., 2018; Panza et al., 2019). 

Whether Aβ alone is enough to facilitate neurodegeneration is unclear, with PET imaging 

identifying a reduction in plaque load in APOE ε4 carriers, despite a lack of clinical outcome 

improvements (Salloway et al., 2014). Pittsburgh Compound-B (PiB) is the primary 

radioactive tracer used for PET imaging of plaques, also binding to protofibrils (Yamin and 

Teplow, 2017).  

 

The importance of oligomeric Aβ to disease progression is clearly evident (Benilova et al., 

2012; Bernstein et al., 2009; Ferreira et al., 2015). Though whilst a new approach is 

available to radiolabel oligomers in mice (Sehlin et al., 2016), lowering radioactivity will be 

essential to make this technique safe in humans, allowing us to determine the effects of 

immunotherapies on soluble Aβ accumulation. The clear conclusion that arises from 

continual clinical trial failure is that new research approaches are warranted.  
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As discussed previously, initial exposure of microglia to Aβ likely facilitates ROS production, 

which can further fuel Aβ production but also instigate an inflammatory response. Whether 

Aβ sets in motion a self-propagating disease involving extensive microglial involvement 

needs further elucidation. However, neuronal loss in AD appears to be facilitated by multiple 

causes which develop as the disease progresses (Hoover et al., 2010; Kreisl et al., 2013; 

Nation et al., 2019), underlining the importance of a multifaceted approach for AD 

therapeutics. 

 

As a consequence, therapies targeting Aβ in patients with late stage disease are unlikely to 

have a significant impact on clinical outcome. This is due to the recruitment of a plethora of 

other factors from both neurones and glia, which can further contribute to, and propagate, 

neurodegenerative damage (Liddelow et al., 2017; Salter and Stevens, 2017); likely 

resulting in a vicious cycle of neurodegeneration. Targeting Aβ earlier in disease 

progression is a more sought-after approach to slow down the rate of clinical onset, but 

whether this is enough to combat sporadic disease, which is not directly related to mutations 

in amyloid processing genes, can be debated. It is nevertheless important to go into detail 

about how Aβ is toxic to neurones, and later on, how it could link to the other characteristic 

pathological hallmarks of AD.  

 
Simply put, focusing solely on the amyloid cascade hypothesis or tau-related neuronal 

disruption has not developed effective therapies for AD. This suggests that the pathological 

processes responsible for disease progression are far more expansive than just the 

dysfunctional processing of APP or microtubule associated proteins. However, it could also 

suggest that the therapies targeting towards amyloid and tau are just poor in quality. 

Regardless, there are molecular pathways and cells which are clearly responsible for 

bridging the gap between proteineous pathology and cell death. As covered in Section 1.4, 

chronic inflammation could play a central role, either in response to protein accumulation, 

or as a causative driver of disease (McGeer and McGeer, 2013). 

1.6. Formyl peptide receptor 2 
 
The formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled 

receptors (GPCR) with known roles in chemotaxis, host defence and inflammation (Dalli et 

al., 2012; McArthur et al., 2015; Migeotte et al., 2006; Ye et al., 2009). Mainly expressed by 

mammalian leukocytes, their roles in inflammation vary, from cellular adhesion and directed 

migration through chemotaxis, to granule release and superoxide formation (He and Ye, 

2017). However, FPRs may function to suppress the immune system in certain conditions, 

including exposure to human immune-deficiency virus derived peptides (Braun et al., 2001). 

There are three human FPRs: FPR1, FPR2/ALX, and FPR3. All three share similar 

sequence homology, encoded by genes in a gene cluster (Gao et al., 1998; Yi et al., 2007). 
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FPR1 and FPR2 in particular share an overall high sequence homology, with some 

overlapping functionality. However, in mice, two receptors exist which work together to carry 

out similar functions to that of human FPR2: Fpr2/3 (Dufton et al., 2010; Stempel et al., 

2016). These receptors are functional equivalents of human FPR2, with both having more 

or less identical pharmacology and signalling behaviour (Ye et al., 2009). However, the 

presence of the Fpr3 protein complicates several experimental approaches, such as knock-

down and knock-out experiments. Nevertheless, Fpr3 has 74% identity (Fpr2 has 75%) and 

81% homology to human FPR2, whilst murine Fpr2 and Fpr3 have 82% identity and 88% 

homology to each other (Ye et al., 2009), highlighting their similarities.  

 
The receptors themselves were initially identified and named through their ability to bind N-

formyl peptides such as N-formylmethionine (fMet), a peptide that is produced through the 

degradation of bacterial or host cells (Le et al., 2002; Panaro et al., 2006). The ability to 

recognise peptides containing N-formylated methionine, including the potent N-formyl-

methionyl-leucyl-phenylalanine (fMLP or fMet-Leu-Phe) thereby leads to the conclusion that 

FPRs can act as PRRs. Collectively, these receptors bind to a substantial repertoire of 

ligands, something that has only increased in recent years with the development of new 

synthetic substrates. Agonists are not limited to N-formyl peptides though, with non-formyl 

peptides from both microbial and host origins, alongside synthetic small molecules and an 

eicosanoid, all binding to one, or several of these receptors (He and Ye, 2017). How these 

receptors recognise such a diverse array of ligands remains largely unclear. In the absence 

of crystalline structures of these receptors, computer-aided ligand docking (He et al., 2014; 

Stepniewski and Filipek, 2015) and structural simulation (Schepetkin et al., 2014), alongside 

site-directed mutagenesis (Ferrari et al., 2006) have led to the identification of amino acids 

within both FPR1 and FPR2 responsible for receptor interactions with several different 

molecules (He and Ye, 2017). Interestingly, ligands identified for FPR3 are currently 

minimal. The amino acid sequences for FPR1 and FPR2 are shown in Figure 1.16. 

 
Both FPR1 and FPR2 receptors are expressed in several cell types, including monocytes, 

neutrophils, and microglia (He and Ye, 2017; Yu and Ye, 2014). Whereas FPR3 is 

expressed in monocytes, but not neutrophils (He and Ye, 2017). The distribution pattern of 

the former two receptors does expand though, with both also found in microvascular 

endothelial cells, alongside others (Table 1.1; He and Ye, 2017). However, neither have 

been identified as being present in neurones. Conventionally, FPR1 ligands tend to be pro-

inflammatory, with activation of FPR1 contributing to inflammatory responses (Dorward et 

al., 2015; Liu et al., 2012; Prevete et al., 2015; Wang et al., 2015). Conversely, FPR2 ligands 

are mostly, but not all, anti-inflammatory and immunomodulatory (Al-Madol et al., 2017; de 

Oliveira et al., 2017; Mottola et al., 2017; Tan et al., 2017). Some FPR2 agonists are pro-

inflammatory, including serum amyloid A and Aβ (Yu and Ye, 2014). Nevertheless, FPR2 

may be able to regulate microglial phenotype following challenge by toxic Aβ, highlighted  
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FPR1 (1-90)          

METNSSLPT--------NISGGTPAVSAGYLFLDIITYLVFAVTFVLGVLGN                             

GLVIWVAGFRMTHTVTTISYLNLAVADFCFTSLPFFMVRKAMGGH             

FPR2         (1-90) 

METNFSTPL--------NEYEEVSYESAGYTVLRILPLVVLGVTFVLGVLG 

NGLVIWVAGFRMTRVTTICYLNLALADFSFTATLPFVLIVSMAMGEK               

FPR1 (91-185)         

WPFGWFLCKFLFTIVDINLFGSVFLIALIALDRCVCVLHPVWTQNHRT 

VSLAKKVIIGPWVMALLLTLPVIIRVTTVPGKT---GTVACTFNFSPWTN 

FPR2  (91-185)         

WPFGWFLCKLIHIVVDINLFGSVFLIGFIALDRCICVLHPVWAQNHRTV 

SLAMKVIVGPWILALVLTLPVFLFLTTVTIPN---GDTYCTFNFASWGG         

FPR1      (186-281)   

DPKERINVAVAMLTVRGIIRFIIGFSAPMSIVAVSYGLIATKIHKQGLIKS 

SRPLRVLSFVAAAFFLCWSPYQVVALIATVRIRE-L-LQGMYKEIGI           

FPR2  (186-282)       

TPEERLKVAITMLTARGIIRFVIGFSLPMSIVAICYGLIAAKIHKKGMIKS 

SRPLRVLTAVVASFFICWFPFQLVALLGTVWLKE-MLFYGKYKIIDI                 

FPR1  (282-350)       

AVDVTSALAFFNSCLNPMLYVFMGQDFRERLIHALPASLERALTEDS 

TQTSDTATNSTLPSAEVALQAK  

FPR2  (283-351)       

LVNPTSSLAFFNSCLNPMLYVFVGQDFRERLIHSLPTSLERALSEDS 

APTNDTAANCASPPAETELQAM               
 
Figure 1.16 Sequence alignment of human FPR1 and FPR2. The amino acid sites 
highlighted in red give rise to the differences seen in these receptor subtypes. The 
sequence differences encode for varying amino acids on the II and IV transmembrane 
domains of these FPRs, alongside changes on the third extracellular chain, connecting 
intracellular domains VI and VII. Adapted from He and Ye, 2017.  
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by the pro-resolving nature of many of the receptor’s ligands (Hughes et al., 2017; Perretti 

et al., 2017b; Petri et al., 2017). This receptor could therefore, if modulated correctly, blunt 

inflammation in AD and contribute towards a restriction of disease progression. 

 

Table 1.1 Summary of human FPR receptor subtype location. 

Receptor Subtype Cellular Location 
FPR1 Monocytes, neutrophils, astrocytes, microglia, 

hepatocytes, dendritic cells 

FPR2 Monocytes, neutrophils, microglia, epithelia, 

hepatocytes, microvascular endothelial cells 

 
Studies in recent years have provided evidence supporting that FPR2 modulation can lead 

to a reduction in inflammation in different pathological conditions. For example, murine Fpr2 

appears to be crucial to facilitate effective protection against bacterial infection (Sharba et 

al., 2019). When the receptor was inhibited by the FPR2 antagonist WRW4, it resulted in 

the impairment of inflammatory resolution in murine acute heart failure (Kain et al., 2019). 

Many studies have focused on annexin A1 (AnxA1), an endogenous signalling molecule 

well characterized to be a highly potent FPR2 agonist (Gobbetti et al., 2014; McArthur et 

al., 2015, 2010). Published research highlights how AnxA1 promotes the resolution of 

inflammation via FPR2 (Corminboeuf and Leroy, 2015; Perretti and D’Acquisto, 2009), 

including a recent study underlining that AnxA1 attenuates neuroinflammation after 

intracerebral haemorrhage in mice (Ding et al., 2019). 

 
The effects of other FPR2 ligands have also been investigated. In a mouse model of 

silicosis, wherein lung fibrosis is triggered by the inhalation of particulates containing silica, 

Ac2-26, an N-terminal peptide of AnxA1, abolished leukocyte infiltration and inhibited the 

generation of pro-inflammatory cytokines (Trentin et al., 2015). Ac2-26 also has a protective 

role in atherosclerosis, whereby administration was shown to reduce sclerotic lesion sizes 

and macrophage accumulation in these lesions (Drechsler et al., 2015). Given that microglia 

are the resident macrophage-like myeloid cells of the CNS (Perry and Teeling, 2013), FPR2 

activation may have similar protective roles here. This appears to hold promise, as a second 

AnxA1 peptide, AnxA1sp, can promote neuroinflammation resolution in a model of 

exsanguinating cardiac arrest (Ma et al., 2019). 

 

Lipoxin A4 (LXA4), a bioactive metabolite of arachidonic acid, is classified as a type of 

specialized pro-resolving mediator (SPM; Serhan et al., 2015). It also appears to be an 

FPR2 agonist, wherein stimulation of this receptor blocks atherosclerotic lesion progression 

in both the aortic root and thoracic aorta in mice through binding with FPR2 (Petri et al., 

2017). Alongside this, LXA4 reduced macrophage infiltration, the number of apoptotic cells 

associated with atherosclerotic lesions, and both chemokine and pro-inflammatory cytokine 
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levels including TNFα and IL-6 (Petri et al., 2017). It can also reduce inflammation following 

subarachnoid haemorrhage in rats (Guo et al., 2016). Resolvin D2 (RvD2), another SPM 

and FPR2 agonist, was identified to reduce inflammation in an in vitro model of human 

bronchi (Khaddaj-Mallat et al., 2016), which was inhibited upon the addition of the FPR2 

antagonist, WRW4. 

 
Several small molecular compounds have been shown to act through FPR2, each 

displaying a variety of pro-resolving actions, including WKYMVm. Administration of this 

small compound into a murine model of acute myocardial infarction provided myocardial 

protection from apoptosis, alongside preservation of cardiac function (Heo et al., 2017). 

Compound-17b has been shown to be cardioprotective both in vitro, and in vivo, protecting 

mice against myocardinal ischaemia-reperfusion injury (Qin et al., 2017). In a mouse model 

of rheumatoid arthritis, which is a chronic systemic inflammatory disorder, another small 

molecule FPR2 agonist, Compound-43 (C43), reduced clinical disease severity and 

attenuated synovial TNFα (Kao et al., 2014); deleting the AnxA1 gene severely exacerbated 

observable symptoms. The small molecular agonist Quin-C1 (QC1) also significantly 

reduced inflammation in a mouse model of bleomycin-induced lung injury (He et al., 2011). 

 

1.6.1. A new approach: targeting FPR2 for Alzheimer’s disease 
 
In AD, chronic neuroinflammation manifests (Heneka et al., 2015; Kreisl et al., 2013; Togo 

et al., 2000), underlining that the homeostatic control of inflammatory resolution appears to 

be impaired in AD (Wang et al., 2015; Zhu et al., 2016). Interestingly, surveillant murine 

microglia only express low levels of Fpr2, but this is upregulated following inflammatory 

insult (Cui et al., 2002b, 2002a). Exploitation of this receptor under neuroinflammatory 

conditions therefore makes it a prime candidate for modulating the microglial inflammatory 

response for AD research.  

 

The therapeutic potential of FPR2 is evident when AnxA1, LXA4 and resolvin D1 are 

expressed in both human and mouse brain tissue (Bisicchia et al., 2018; McArthur et al., 

2010; Wang et al., 2015). In AD models, both Aβ induced and pro-inflammatory microglia 

upregulate Fpr2 gene expression (Pan et al., 2011). AnxA1 induced stimulation of FPR2 

can also inhibit Aβ-induced microglial inflammatory mediator release, alongside 

upregulating their ability to phagocytosis Aβ (Ries et al., 2016). Because microglial 

phagocytosis is reduced in AD (Hellwig et al., 2015; Wolf et al., 2017), FPR2 modulation 

may therefore be able to ablate further cellular damage by clearance of pathological Aβ and 

cellular debris. Data with LXA4 supports this, wherein it reduced both Aβ and tau pathology 

alongside improving cognitive performance in AD-transgenic mice (Dunn et al., 2015).  
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In humans, there is reduced expression of several pro-resolving mediators in the 

hippocampus, entorhinal cortex and CSF of AD patients, including resolvin D5 and LXA4 

(Wang et al., 2015; Zhu et al., 2016). With both brain regions highly affected by AD 

pathology, we theorise that neuroinflammatory resolution pathways are critical to prevent 

extensive neuronal damage associated with microglial activation and neuroinflammation in 

AD.  

 

Evidence therefore supports the notion that endogenous resolution pathways are disturbed 

in AD, and that an immuno-modulatory FPR2 agonist could help reverse the disruption of 

this system. Thus, FPR2 might be a viable drug target for tackling neuroinflammation in AD, 

at a time where AD and neurodegenerative diseases as a whole are in desperate need for 

new therapeutics. 

1.7. Hypothesis 
 
I hypothesise that microglial Fpr2/3 activation will successfully reverse the onset of 

neuroinflammation, priming the receptor as a central target for immunomodulation in AD. 

This hypothesis was based on peripheral research by both our group and others, identifying 

the immunomodulatory capability of both the human FPR2 and murine Fpr2/3 receptors 

(Sadani N. Cooray et al., 2013; McArthur et al., 2018, 2015; Trentin et al., 2015).  

1.8. Aims 
 
I will use in vitro microglial cultures to investigate this hypothesis by establishing whether 

Fpr2/3 stimulation can reverse (a) LPS and (b) oligomeric Aβ1-42 (oAβ) induced 

inflammation, identifying any mechanisms involved. I will determine whether Fpr2/3 

activation can modulate the expression of inflammatory phenotypic markers following toxin 

exposure, and whether metabolic changes link to any of the inflammatory responses 

observed. Next, I will ascertain whether LPS or oAβ1-42-induced ROS production is affected 

by Fpr2/3, underlining any mechanism involved in this change. Finally, I will investigate 

whether Fpr2/3 stimulation post-oAβ1-42 exposure can protect differentiated SH-SY5Y cells 

from apoptosis by oAβ1-42-induced microglial activation.  

1.9. Selecting FPR2 ligands 
 
One of the main issues with neurodegenerative disease drug treatments is the ability for 

therapeutics to cross the BBB and enter the brain (Patel and Patel, 2017). Despite the clear 

benefits of utilising previously named SPMs, issues arise regarding their ability to be 

druggable. For example, LXA4 and resolvin D1 appear to be chemically unstable and have 

a short half-life (Maderna and Godson, 2009; Mozurkewich et al., 2016; Skarke et al., 2015), 
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whereas AnxA1 is a large molecule (37 kDa), likely preventing its ability to cross the BBB. 

Whilst direct intracerebroventricular injections are often incorporated to animal studies (Guo 

et al., 2016), this is not possible for humans. Instead, small molecules likely to cross the 

BBB are essential to support any translational applications for preliminary in vitro research. 

For our study, small peptide mimetics such as Ac2-26 from AnxA1 were originally 

considered, but limitations were apparent. For example, it also binds to FPR1 (Dalli et al., 

2012), confusing any potential immunomodulatory mechanisms. Further, recent research 

has returned to focus on AnxA1 (Lima et al., 2017; Ries et al., 2016), suggesting a lack of 

potency or full efficacy compared to the parent molecule. 

 

Instead, we have selected two small molecule FPR2 ligands, the pyrazolone derivative C43 

and quinazolinone compound QC1 (He and Ye, 2017). Pyrazolones are 5-membered 

heterocyclic compounds that have been known to reduce markers of inflammation for over 

thirty years (Brogden, 1986). Quinazolinones are also heterocyclic compounds, possessing 

a diverse array of biological activity including antibacterial and anti-inflammatory (Jafari et 

al., 2016). The anti-inflammatory effects showcased by both of these FPR2 agonists in 

peripheral inflammatory models is therefore unsurprising (He et al., 2011; Kao et al., 2014), 

but their effects on neuroinflammation is yet to be documented. Both compounds are also 

cheap and readily available commercially. The structures of these compounds are 

displayed in Figure 1.17.  
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Figure 1.17 The chemical structures of Compound-43 (C43) and Quin-C1 (QC1). C43 
(A) is a pyrazolone derivative, whilst QC1 (B) is a quinazolinone based compound. 
Structural images were available on the Tocris Bioscience website, and via He and Ye, 
2017. 
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 Methods  

2.1. Drugs and reagents 
 
N-(4-Chlorophenyl)-N-[2,3-dihydro-1-methyl-5-(1-methylethyl)-3-oxo-2-phenyl-1H-pyrazol-

4-yl]-urea (Compound 43), 4-Butoxy-N-[1,4-dihydro-2-(4-methoxyphenyl)-4-oxo-3(2H)-

quinazolinyl]benzamide (Quin-C1), LESIFRSLLFRVM (MMK 1), WRWWWW (WRW4), 4-

[5-(4-Fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl]pyridine (SB 203580), 5-

(2-Phenyl-pyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-3-ylamine (FR 180204), 

diphenyleneiodonium chloride, N6-[2-[[4-(Diethylamino)-1-methylbutyl]amino]-6-methyl-4-

pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride (NSC 23766), 4-[4,5-Dihydro-5 

(4-methoxyphenyl)-3-phenyl-1H-pyrazol-1-yl]benzenesulfonamide (ML 141), rhosin 

hydrochloride and dorsomorphin dihydrochloride were bought from Tocris Bioscience (Bio-

Techne Limited, Bristol, UK). 6E-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-

pyran-2-one (Bromoenol lactone) and 3-(2-methyl-1-oxopropyl)-1-[2-oxo-3-(4-

phenoxyphenoxy)propyl]-1H-indole-5-carboxylic acid (CAY10650) were bought from 

Cayman Chemical Company (Ann Arbor, Michigan, USA). Coomassie Brilliant Blue R-250 

was purchased from Alfa Aesar (Lancashire, UK). Hexafluoro-2-propanol (HFIP), a solvent 

which can monomerise β-sheet protein aggregates (Broersen et al., 2011), treated Aβ1-42 

was purchased from JPT Peptide Technologies (Berlin, Germany). Isolated and purified 

lipopolysaccharides from Escherichia coli, Serotype O111:B4 and trans-retinoic acid 

alongside all other chemicals and reagents unless otherwise indicated were purchased from 

Merck Millipore Limited (Poole, UK) 

2.2. Native tricine-PAGE electrophoresis and Coomassie staining 
 
Coomassie Brilliant Blue was used as a dye-based protein stain for the visualisation of Aβ1-

42 protein bands by gel-electrophoresis. To determine whether the oligomerisation protocol 

previously described (Stine et al., 2011) worked successfully, a native tricine-PAGE was 

used to separate the Aβ1-42 peptides, according to their molecular weight. In sample buffer 

(62.5 mM Tris-base, 25% glycerol, 1% (w/v) Coomassie Blue R-250), 2 μg Aβ1-42 was added 

to each well, in triplicate. Running buffer used consisted of 25 mM Tris and 192 mM glycine 

(pH = 8.3). Following electrophoresis, gels were stained (60 mg/L Coomassie Blue R-250, 

10% (w/v) acetic acid in distilled water) for 2 h. Gels were then washed (10% (v/v) acetic 

acid, 50% (v/v) HPLC-grade methanol, in distilled water) over 24 h. The representative 

photograph in Figure 2.1 highlights Coomassie stained oligomeric Aβ1-42 bands, with 

molecular weight compared against a ladder of know molecular weight proteins. 
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Figure 2.1 Aβ1-42 bands following native tricine-PAGE and Coomassie Brilliant Blue 
staining. Monomeric Aβ1-42 has a molecular weight of 4.51 kDa. Thus, following the 
oligomerisation protocol, acquired Aβ1-42 were hexa/heptamers. 
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2.3. Cell culture 

2.3.1. BV-2 microglia 
 
The murine BV-2 immortalised microglial line (from C57BL/6 mice) which is known to 

express Fpr2/3 (McArthur et al., 2010; Ries et al., 2016), was used as a model system. It 

was a generous gift from Dr E. Blasi (Department of Hygienic, Microbiological and 

Biostatistical Sciences, Modena, Italy). BV-2 cells were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 15 mg/L phenol red, 4 mM L-glutamine and 4.5 g/L glucose, 

supplemented with heat-inactivated fetal calf serum (hiFCS, 5% final), 100 μM non-

essential amino acids (NEAAs), and 50 mg/ml penicillin-streptomycin. Cells were grown in 

T-75 culture flasks (Sarstedt Limited, Leicester, UK), at 37oC in a humidified incubator (5% 

CO2 and 95% air). Medium was changed and cells were sub-cultured three times a week. 

The passage range used was p33-p53, unless otherwise indicated. 

 

2.3.1.1. Routine sub-culturing 
 
Cells were observed under the microscope and confluency estimated. Upon reaching 70% 

confluency, cells were prepared for sub-culturing. Spent medium was aspirated and cells 

were washed with room temperature phosphate buffered saline (PBS-/-; 0.01 M, no Ca2+ or 

Mg2+). Cells were removed by the gentle use of a Corning cell scraper (Sigma-Aldrich 

Corporation, Dorset, UK) in fresh medium, before cell numbers were calculated using a 

Neubauer haemocytometer (Agar Scientific, Stansted, UK). Cells were then centrifuged at 

800 g for 5 min at 22oC and resuspended in warm medium prior to re-plating in fresh flasks, 

at 30,000 cells/cm2. 

 

2.3.1.2. Experimental sub-culturing 
 
Cells were washed, collected, counted and centrifuged as described for routine sub-

culturing. However, instead of being re-plated in cell culture flasks, BV-2 microglia were 

seeded onto experimental assay tissue culture plates. The relative densities for different 

culture plates are shown in Table 2.1. Relative densities for each experiment will be detailed 

in appropriate methodological sections. Any differences were recommended and applied 

according to manufacturer’s instructions. For experimentation, cells were plated and 

allowed to adhere for 2 h prior to serum-starvation for 24 h in DMEM supplemented with 4 

mM L-glutamine, 100 μM NEAAs, and 50 mg/ml penicillin-streptomycin at 37oC in 5% CO2 

and 95% air overnight. Any cell density changes applied were due to manufacturer assay 

protocols. 
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Table 2.1 Relative seeding densities for BV-2 microglia on different cell culture plates. 

Culture Plate Cell Density (cells/cm2) 
6 Well Plate 100,000 

12 Well Plate 100,000 

24 Well Plate 150,000 

Agilent Seahorse 24 Well Plate 1,800,000 

96 Well Plate 200,000 

Tissue Culture Chamber Slides 21,500 

 

2.3.2. SH-SY5Y neuroblastoma 
 
The human neuroblastoma SH-SY5Y cell line was purchased from the European Collection 

of Authenticated Cell Cultures (ECACC, Salisbury, UK). SH-SY5Y cells were cultured in 

DMEM supplemented with 15 mg/L phenol red, 4 mM L-glutamine, 4.5 g/L glucose, 5% 

hiFCS, 100 μM NEAAs and 50 mg/ml penicillin-streptomycin, with medium changed three 

times a week. Cells were sub-cultured once a week and incubated at 37oC in 5% CO2 and 

95% air. Maximum passage used was p20, since ECACC have reported that SH-SY5Y cells 

begin to lose their neuronal characteristics beyond this passage number.  

 

2.3.2.1. Routine sub-culturing 
 
When a visually estimated confluency of 80% was reached, spent medium was aspirated, 

and cells were washed in room temperature PBS-/-. SH-SY5Y cells were then exposed to 

trypsin-EDTA (2,500 and 380 mg/L respectively), solution for 5 min to initiate cellular 

dissociation from the plastic; trypsin-EDTA was then quenched by the addition of new 

warmed medium (6x the volume of that for trypsin-EDTA administered). Cells were counted 

using a Neubauer haemocytometer, before being centrifuged at 800 g for 5 min (22oC). 

Medium/trypsin/EDTA mixture was aspirated and cells were resuspended in fresh medium 

and plated at 30,000 cells/cm2 for sub-culturing. 

 

2.3.2.2. Experimental sub-culturing and neuronal differentiation 
 
Cells were treated as for routine sub-culturing in Section 2.3.2.1 but were seeded on cell 

culture plates at densities shown in Table 2.2. Cells were plated in DMEM containing 15 

mg/L phenol red, 5% hiFCS, 4 mM L-glutamine, 4.5 g/L glucose, 100 μM NEAAs and 50 

mg/ml penicillin-streptomycin for 24 h. This was then aspirated and replaced with 

differentiation medium (DMEM; 1% hiFCS, 10 μM trans-retinoic acid (tRA), 4 mM L-

glutamine, 4.5 g/L glucose, 100 μM NEAAs and 50 mg/ml penicillin-streptomycin), 

previously reported to trigger neuronal differentiation in SH-SY5Y cells (Shipley et al., 



 69 

2016). Cells were differentiated for 5 days at 37oC and 5% CO2, with differentiation media 

replaced on day 3. On day 5, differentiation media was replaced with standard culture 

medium (DMEM; 1% hiFCS, 4 mM L-glutamine, 4.5 g/L glucose, 100 μM NEAAs and 50 

mg/ml penicillin-streptomycin) for 24 h. Cells were used for experimentation from day 6 

onwards. As shown in Figure 2.2, tRA treatment begins to alter the morphology of SH-SY5Y 

cells on day 3, but neurites do not appear until day 4, before becoming extensive on day 5.  

 

Table 2.2 Plating densities for SH-SY5Y neuroblastoma cells in different culture 
dishes. 

Cell Plate Cell Density (cells/cm2) 
6 Well Plate 30,000 

24 Well Plate 35,000 

Tissue Culture Slides 21,500 

 
 

2.3.3. Cryopreservation and thawing of cell lines  
 
Frozen stocks of both cell lines were produced regularly. Following detachment as 

described in Sections 2.3.1.1 and 2.3.2.1, cells were centrifuged at 800 g at room 

temperature for 5 min and resuspended at 1 x 106/ml in freezing medium (hiFCS with 1/11th 

DMSO). 1 ml of cells were added to each 2 ml cryotube before being stored at -80oC in an 

isopropanol filled Mr. Frosty freezing container (ThermoFisher. Scientific, Dartford, UK). 

After 24 h, samples were transferred to liquid nitrogen (-196oC) for long term storage. 

 

To thaw these stock samples, frozen vials were slowly defrosted at room temperature by 

immediate dilution with pre-warmed culture medium. Once completely thawed, cells were 

centrifuged at 800 g for 5 min at room temperature to remove DMSO before being 

resuspended in culture medium as described previously. Cells were cultured at 37oC in 5% 

CO2 and 95% air overnight, and medium was replaced the following day, removing any 

dead cells which did not survive the freeze-thaw process. 

 

2.3.4. SH-SY5Y BV-2 co-culture 
 

In SH-SY5Y/BV-2 co-culture experiments, SH-SY5Y cells were differentiated and cultured 

at a density of 30,000 cells/cm2 as described in Section 2.3.2.2. On day 5, differentiation 

medium was replaced with fresh standard culture medium. At the same time, BV-2 cells 

were collected and seeded onto the plates at a density of 25,000 cells/cm2. On day 6, 

medium was replaced before drug treatment. The identification of both cell types is shown 

in Figure 2.3. 
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Figure 2.2 Phase-contrast photomicrographs of tRA-induced SH-SY5Y differentiation 
over 5 days. After day 3, cells morphology changes can be detected, with neurites clearly 
evident at days 4 and 5. 20x magnification 
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Figure 2.3 20x phase-contrast micrographs of BV-2-SH-SY5Y co-culture. BV-2 
microglia (black arrows) are primarily spherical cells, with some exhibiting a few small 
processes. SH-SY5Y cells (white arrows) express extended neurite processes following a 
5-day differentiation protocol in tRA. Images were taken on day 6, a day after BV-2 
administration. 20x magnification.  
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2.3.5. Primary murine microglia isolation and culturing 
 
Male wild-type or Fpr2/3-/- C57Bl/6 (Fontaine and Davis, 2016; Vital et al., 2016) mice aged 

8-9 weeks were anaesthetised by intraperitoneal (i.p.) injection of sodium pentobarbitone 

(100 µl/mouse). Animals were then transcardially perfused with ice-cold sterile 0.9% saline, 

before brains were collected into collection buffer (ice-cold sterile PBS-/- with 15 mM 

HEPES, 0.5% D-Glucose and 50 mg/ml penicillin/streptomycin) on ice. 5 ml ice-cold PBS-

/- was then added to a sterile Petri dish, before brains were transferred from the collection 

buffer. Brain tissue was chopped into fine pieces (approximately 1 mm3) with a sterile 

scalpel blade. Tissue fragments were collected, centrifuged at 300 g for 2 min at 4oC and 

supernatant aspirated. 5 ml pre-warmed (37oC) enzyme buffer (PBS-/- with 20 mM HEPES, 

40 µM BSA solution, 200 U/ml deoxyribonuclease I (Sigma-Aldrich Corporation, Dorset, 

UK), 5 mM L-Cysteine, 5 mg/ml D-Glucose, 1.5 U/ml Papain (Sigma-Aldrich Corporation, 

Dorset, UK) and 50 mg/ml penicillin/streptomycin) was added and fragments were 

incubated at 37oC for 30 min with occasional agitation and trituration with a 1 ml Gilson 

pipette. Resulting cell suspensions were passed through a 40 µm cell strainer and 

centrifuged at 300 g for 10 min at room temperature. The cell pellet was re-suspended in 

ice-cold 0.9 M sucrose in PBS-/- and centrifuged at 800 g for 10 min at 4oC to remove myelin 

debris. Cells were washed and resuspended in cold PBS-/- at 300 g for 10 min (4oC).  

 
Microglia were isolated from crude cell digests by Percoll density gradient separation (De 

Haas et al., 2007). Each cell pellet was resuspended (3.5 ml/brain) in ice-cold 75% Percoll 

in PBS-/- and slowly overlayed with 5 ml ice-cold 25% Percoll in PBS-/-, then with 3.5 ml 

ice-cold PBS-/-. Gradients were centrifuged at 800 g for 30 min at 4oC without braking, and 

the cells at the 25/75% interphase were collected. Cells were washed in 3x volumes of ice-

cold PBS-/-, centrifuged at 1000 g for 10 min at 4oC and resuspended in warmed culture 

medium (DMEM with L-glutamax, 20% hiFCS and 50 mg/ml penicillin/streptomycin) and 

plated at 150,000 cells/cm2. Cells were given 3 h to adhere, before medium was replaced 

with fresh culture media. Medium was changed every 4 days. Microglia were ready for 

experimentation 2 weeks after initial plating. 

2.4. SDS-PAGE and western blot 
 
Expression of phosphorylated and total ERK1/2, p38 mitogen activated protein kinase (p38), 

alongside total expression of haem oxygenase-1 (HO-1), iNOS, IκBα, AnxA1 and 

superoxide dismustase 2 (SOD2) were examined by SDS-PAGE and western blot. Cells 

were serum-starved overnight and treated according to the experimental design. 

Supernatant was aspirated and cells were lysed in 150 µl pre-cooled RIPA lysis buffer (pH 

8, 150 mM NaCl, 50 mM Tris, 1% Triton X-100, 0.5% deoxycholic acid, 0.1% sodium 

dodecyl sulfate (SDS), and phosphatase/protease tablets (Roche Holding, Basel, 
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Switzerland; 1 of each per 10 ml of RIPA buffer) were added. Cell lysates were then 

subjected to 5 rounds of freeze-thawing on dry ice.  

 

Protein content was determined using Bradford’s reagent (Walker and Kruger, 2003), and 

a standard curve of BSA (0.2 - 1 mg/ml; Figure 2.4). Equal amounts of protein samples (40 

µg) were added to 6x Laemmli SDS sample buffer (375 mM Tris-HCl, 9% SDS, 50% 

glycerol, 9% beta-mercaptoethanol, 0.03% bromophenol blue, pH 6.8; Alfa Aesar, 

Lancashire, UK), and heated at 97oC for 5 min, prior to centrifugation at 800 g for 2 min at 

4oC. Samples were then loaded into an appropriate gel, depending on the molecular weight 

ladder of the protein of interest (Table 2.3) within an OmniPAGE mini vertical system 

(Cleaver Scientific, Rugby, UK) alongside 2 µl of pre-stained Prism Ultra broad molecular 

weight (10-245 kDa; Abcam, Cambridge, UK). Electrophoresis was performed at room 

temperature for approximately 1 h using a constant voltage (180 V) and current (60 mA), 

utilising a nanoPAC-300 (Cleaver Scientific, Rugby, UK) in NuPAGE MOPS SDS running 

buffer (50 mM MOPS, 50 mM Tris base, 1 mM EDTA, 0.1% SDS, pH 7.7; ThermoFisher 

Scientific, Dartford, UK).  

 

Following electrophoresis, proteins were transferred to polyvinylidene fluoride (PVDF) 

membranes (pre-activated by incubation in methanol for 1 min, 0.2 μm pore; Bio-Rad 

Laboratories, Watford, UK) in 25 mM Tris-base, 0.2 M glycine, pH 7.4 at 400 mA for 90 min 

using an OmniPAGE mini vertical system on ice. Protein transfer was confirmed by 

visualisation with Ponceau S red (Alfa Aesar, Lancashire, UK) and membranes were 

blocked in either 5% BSA (ThermoFisher Scientific, Dartford, UK) or non-fat milk for 1 h, 

depending on the primary antibody. Membranes were then washed in TBS, before probing 

with primary antibodies (dilutions as in Table 2.8) overnight at 4oC, Membranes were 

washed with TBS-T and incubated with horseradish peroxidase (HRP)-conjugated goat 

anti-mouse rabbit secondary antibodies for 1 h (1:5000 dilution). Membranes were washed 

extensively in TBS-T and protein was visualised by enhanced chemiluminescence (2.5 mM 

luminol, 0.4 mM p-coumaric acid, 7.56 mM H2O2 in 1 M Tris, pH 8.5) using X-ray film 

(Scientific Laboratory Supplies Limited, Nottingham, UK). For phosphorylated blots, the 

total protein per-well was used as protein loading controls. For all other experiments, red 

Ponceau S stain was employed. 

 

For phosphorylated/total protein blots, following initial ECL exposure to detect 

phosphorylated proteins, membranes were washed in TBS-T, before the HRP enzyme was 

inactivated by administration of 10 M H2O2 for 15 min at 37oC. Membranes were then 

washed with TBS-T three times for 5 min prior to re-blocking with 5% BSA or non-fat milk 

for 1h. PVDF membranes were then re-probed and bands visualised as previously 

described. Quantification of band density was determined through densitometric analysis 

using NIH ImageJ 1.50 software (National Institute of Health, Maryland, USA).  
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Figure 2.4 Standard curve of BSA for the Bradford reagent. Relative concentrations of 
samples were determined through the linear regression line from the data. 
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Table 2.3 The weight (kDa) of proteins of interest targeted for western blotting. The 
respective acrylamide gel percentages which used for each protein is also shown.  

Protein Protein size  
(kDa) 

Gel (%) 

SOD2 22 15% 

HSP27 27 15% 

HO-1 28 15% 

p38 MAPK 38 10% 

IκBα 39 10% 

Annexin A1 40 10% 

ERK1/2 44/42 10% 

AMPK 62 10% 

iNOS 130 8% 

2.5. Flow cytometry 

2.5.1. Fluorochromes, lasers and filters 
 
For all flow cytometry experiments, a BD FACSCanto II (BD Biosciences, Berkshire UK) 

flow cytometer equipped with three lasers (405 nm violet, 488 nm blue, and 633 nm red) 

was used, see Table 2.4. A number of different fluorochromes were used in this project, as 

listed in Table 2.5, alongside the type of experiment that they were used in. 

 

Table 2.4 Fluorescent signals (fluorochromes) which can be detected by the BD 
FACS Canto II flow cytometry system. 

Fluorochrome Fluorescence Maximal Excitation/Emission 
Filter wavelengths (nm) 

405 nm Violet   

Pacific Blue Blue 401/452 

AmCyan Green 475/491 

488 nm Blue   

FITC Green 494/520 

PE Yellow 496/578 

PerCP-Cy5.5 Far Red 482/676 

Pe-Cy7 Far Red 496/785 

633 nm Red   

APC Red 650/660 

APC-Cy7 Far Red 650/785 
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Table 2.5 A list of antibodies, molecules and conjugated fluorochromes alongside 
the respective lasers and filters used for flow cytometry analysis. APC, 
allophycocyanin; DAPI, 4’, 6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; 
FPR2, formyl peptide receptor 2; HPF, hydroxyphenyl fluorescein; IgG, immunoglobulin G; 
PE, phycoerythrin. 

 
Antibody/Molecules 2nd Antibody/ 

Conjugates/ 
Fluorochrome 

Laser Filter Experiment Section 

Annexin A1 Alexa Fluor-goat 

anti-mouse IgG 

Blue FITC Annexin A1 

Expression 

2.11 

Annexin V FITC Blue FITC Annexin V/PI 2.7.3 

CD11b APC Red APC BV-2 

Phenotyping 

2.5 

CD38 APC Red APC BV-2 
Phenotyping 

2.5 

CD40 APC Red APC BV-2 

Phenotyping 

2.5 

CD68    BV-2 

Phenotyping 

2.5 

CD86 FITC Blue FITC BV-2 

Phenotyping 

2.5 

CD200 PerCP-Cy5.5 Blue PerCP-

Cy5.5 

Co-Culture 

Apoptosis 

2.7.3 

CD206 PE Blue PE BV-2 

Phenotyping 

2.5 

CM-H2DCFDA FITC Blue FITC ROS Production 2.12.1 

DAPI DAPI Violet Pacific Blue Cell Cycle 2.7.2 

E.Coli BioParticles BODIPY FL Blue FITC BV-2 Phagocytic 
Capacity 

2.13 

FPR2 Alexa Fluor 488-

goat anti-mouse 

IgG 

Blue FITC SH-SY5Y FPR2 

Expression 

2.6 

HPF FITC Blue FITC Hydroxyl/Peroxy

nitrite Detection 

2.12.4 

2-NBDG 7-nitrobenzofurazan Blue FITC Glucose Uptake 2.15.2 

 

2.5.2. Cell Gating and controls 
 
Live cells were initially gated according to forward scatter (FSC) and side scatter (SSC) as 

indicators of size and granularity, respectively, as shown in Figure 2.5A. Debris and dead 

cells often express a lower level of FSC and are often found in the bottom left corner of the 

histogram plot with appropriate voltage and gain settings (Figure 2.5A). Dead cells can also 

have increased an autofluorescent signal hence why a cell gate was selected around the 

population of interest. Aggregated cells were excluded by further comparison of FSC signal 

peak height with peak area, with events showing a non-linear relationship between the two 
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being excluded (Figure 2.5B). This second step was not included in the analysis of co-

culture experiments given the ability of microglia to phagocytose (Solito and Sastre, 2012) 

and hence aggregate with other cells. A total of 10,000 singlet events were analysed in 

each experiment per sample, except for co-culture assays, where 50,000 events per sample 

were used. Data was analysed using Flow Jo 8.8.7 software (Tree Star Incorporated. OR, 

USA). 

 

Several controls were used for all flow cytometry experiments. This included an unstained 

population of cells to determine any autofluorescence, alongside single stained controls 

which reveal spectral overlap between two or more different fluorophores, allowing for 

removal by compensation when analysing. Finally, a Fc receptor blocking control antibody 

(1 μg/ml CD16/32; ThermoFisher, Dartford, UK) was utilised for IgG experimental 

antibodies, to ensure only antigen specific binding was observed. 

2.6. Cell surface marker expression 
 
Expression of pro-inflammatory (CD11b, CD38, CD40, CD86) and anti-inflammatory 

(CD206) cell surface markers was detected by flow cytometry. Cells were collected and 

fixed with 2% formaldehyde in PBS-/- 0.01 M for 10 min at 4oC, washed twice in PBS-/- prior 

to incubation in blocking buffer (0.01 M PBS-/-, 1 μg/ml CD16/32 Fc-receptor block, 1% 

FCS, 1 mM CaCl2) on ice for 15 min. Following centrifugation at 1000 g for 1 min, cell pellets 

were resuspended in appropriate antibody mix (Table 2.6) in PBS-/- on ice in the dark for 

30 min. Cells were centrifuged at 1000 g and washed in 4oC PBS-/- and kept on ice until 

analysed using a BD FACSCantoTM II system as described in Section 2.5. Representative 

histograms for CD11b and CD38 expression in BV-2 microglia are shown in Figure 2.5.  

 

Table 2.6 List of conjugated antibodies used for BV-2 phenotypic analysis by flow 
cytometry. The maximal experimental concentrations used alongside the appropriate 
dilution factors have also been listed. Experimental concentration of antibody mix was per 
million cells in 100 μl volume. 

Antibody Clone Company Maximal Experimental 
Concentration 

Dilution 

CD11b-APC M1/70 BioLegend® 2.5 μg/ml 1:80 

CD38-APC 90 BioLegend® 2.5 μg/ml 1:80 

CD40-APC 1C10 BioLegend® 10 μg/ml 1:20 

CD45-PE 30-F11 BioLegend® 2.5 μg/ml 1:80 

CD86-FITC GL1 BioLegend® 2.5 μg/ml 1:80 

CD206-PE C068C2 BioLegend® 5 μg/ml 1:40 
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Figure 2.5 Flow cytometry gating strategy and histogram traces for cell surface 
marker fluorescence. A; cell gating around living population. Debris (bottom left corner) 
were excluded. B; gating strategy to identify singlet events. C and D; representative 
histograms for CD11b and CD38 staining in BV-2 microglia respectively. Samples are 
unstained (black) and untreated (red). Marker expression was recorded via flow cytometry 
48 h after plate seeding. MFI, median fluorescence intensity.  
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2.7. Immunofluorescence 
 

For immunofluorescent staining and visualisation, cells were fixed in 2% formaldehyde in 

PBS-/- for 10 min at 4oC and washed in PBS-/-, before being blocked for 30 min with PBS-

/- containing 10% hiFCS ± 0.05% Triton-X 100. Cells were then incubated with appropriate 

primary antibody in PBS-/- with 1% FCS ± 0.05% Triton-X 100 overnight at 4oC. Cells were 

washed twice in PBS-/- with 1% hiFCS ± 0.05% Triton-X 100, before being incubated with 

secondary antibody in PBS-/- with 1% hiFCS  ± 0.05% Triton-X 100 at room temperature 

for 1 h.  For FPR2 staining only, cells were then washed in PBS-/- and incubated with the 

plasma membrane marker CF640R conjugated wheatgerm agglutinin (5 ug/ml) for 20 min 

at room temperature. For all other immunofluorescent stains, cells were then washed in 

PBS-/- and incubated with AF488-conjugated phalloidin (1:1000 dilution), which also stains 

the plasma membrane, for 20 min at room temperature. These plasma membrane stains 

were added to the secondaries for the last 20 min of secondary antibody exposure. Cells 

were then washed in PBS-/- three times. Nuclei were defined by incubation with 4’, 6-

diamidino-2-phenylindole (DAPI), 180.3 nM) in ddH2O for 5 min, prior to rinsing with ddH2O. 

Cells were then mounted under Mowiol mounting solution (10% w/v Mowiol with 25% v/v 

glycerol, 25% v/v ddH2O, 0.02% w/v sodium azide, 50% v/v tris.HCl, pH 8.5; Harlow and 

Lane, 2006). Slides were kept in the dark before images were taken using the LSM 710 

Meta Confocal microscope and ZEN Black software (Zeiss, Cambridge, UK) or the Leica 

DM5000 B, as appropriate (see Table 2.7). 

 

2.7.1. NADPH oxidase co-localisation  
 
BV-2 microglia were plated on tissue culture slides (ThermoFisher Scientific, Dartford, UK) 

at a density of 21,500 cells/cm2 before being serum starved for 24 h. Cells were then treated 

according to experimental design, washed once with pre-warmed PBS-/- and fixed in 2% 

formaldehyde in PBS-/- for 10 min at 4oC and blocked as described in Section 2.6. Cells 

were then incubated at 4oC overnight with primary anti-mouse monoclonal and rabbit 

polyclonal antibodies for gp91phox (NOX2) and p67phox, respectively. Cells were washed 

twice with PBS-/- containing 1% hiFCS and 0.05% Triton X-100 and incubated with AF647-

goat anti-rabbit and AF488-goat anti-mouse secondary antibodies for 1 h at room temp in 

the dark. Cells were washed with PBS-/- and nuclei were identified by incubation with DAPI 

(80.3 nM) for 5 min in ddH2O. Cells were then mounted with Mowiol and imaged using a 

LSM 710 Meta Confocal microscope and ZEN Black software (Zeiss, Cambridge, UK). The 

405 nm and 488 nm lasers were used for visualisation of DAPI and gp91phox, respectively. 

The 633 nm laser was selected for identification of p67phox.  
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Table 2.7 Primary and secondary antibodies used for immunofluorescence 
observation, alongside appropriate filters and lasers used for each.  The 405 nm laser 
with BP 365 FSET01 filter was used to detect DAPI fluorescence on the LSM 710.  

Primary 
Antibody 

Source Secondary 
Antibody 

Source Microscope Laser Filter 

gp91phox 

(NOX2) 

Mouse Alexa Fluor ® 

488 

Goat LSM 710 488 nm FSet10 FITC 

p67phox Rabbit Alexa Fluor ® 
647 

Goat LSM 710 633 nm 647 

NF-kB p65 Rabbit Alexa Fluor ® 

647 

Goat LSM 710 633 nm 647 

 

2.7.2. NF-κB nuclear translocation 
 
Cells were plated on tissue culture slides and treated according to experimental design 

before being fixed and blocked as described in Section 2.7. Cells were then incubated with 

a primary rabbit anti-mouse antibody for NF-κB p65 (1:400 dilution) overnight at 4oC. Cells 

were then washed as described previously and incubated with AF647-goat anti-rabbit 

secondary antibody for 1 h at room temperature in the dark. Cells were washed, nuclei 

identified and mounted as described in Section 2.7. Cells were imaged using an LSM 710 

Meta Confocal microscope and ZEN Black software (Zeiss, Cambridge, UK). Filter set 10 

was used for visualisation of DAPI with the 405 nm laser, whilst NF-κB was detected using 

the 633 nm laser with the 647 filter.  

2.8. Cell viability, cell cycle and apoptosis assays 

2.8.1. PrestoBlue cell viability assay 
 

Cell viability was determined using the PrestoBlue cell viability reagent, 24 h and 48 h after 

drug administration. This non-toxic resazurin-based assay measures the mitochondrial 

activity of viable cells and reflects their intracellular redox state (Boncler et al., 2014). 

PrestoBlue solution diluted 1:10 in PBS-/- was added to cells and incubated at 37oC in the 

dark for 15 min. Fluorescence was measured using a CLARIOstar microplate reader (BMG 

Labtech, Aylesbury, UK), with excitation and emission filters set at 560 and 590 nm, 

respectively. All drugs had their fluorescence measured in PBS-/- without cells to determine 

quenching and to confirm they did not contribute to alterations in the fluorescent signal. 

Background correction was performed using unlabelled cells in PBS-/-. Data were 

expressed as percentage of untreated cells. 
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2.8.2. Analysis of cell cycle 
 
BV-2 cells were seeded at 100,000 cells/cm2 and treated according to experimental design. 

Cell medium was aspirated, cells were washed twice in warm PBS-/- and collected in ice 

cold PBS-/-. Following centrifugated at 800 g for 5 min, cells were resuspended in 0.1% 

Triton-X 100 and 3.6 µM DAPI in 200 µl PBS-/- for 10 min at room temperature in the dark. 

Samples were then immediately analysed by flow cytometry, with the violet laser and pacific 

blue filter used to determine DAPI fluorescence. A typical cell histogram profile is shown in 

Figure 2.6. 

 

2.8.3. Annexin V apoptosis assay 
 
SH-SY5Y cells were differentiated as described in the Section 2.3.2.2 and treated according 

to experimental design, either alone or in co-culture with BV-2 microglia. Cells were washed 

with PBS-/- and centrifuged at 1000 g for 5 min at room temperature. Cells were then 

resuspended in binding buffer (0.01 M PBS-/- with 0.1% BSA and 1 mM CaCl2) containing 

annexin A5-FITC (0.45 µg) before being incubated at room temperature in the dark for 15 

min. After incubation, 400 µl of additional binding buffer was added to the cell suspension, 

and gently mixed. Samples were kept on ice in the dark, until analysed by flow cytometry, 

using the 488 nm blue laser and the FITC filter. Single stains were used for compensation 

of these fluorochromes. A typical annexin V-FITC profile for SH-SY5Y cells is shown in 

Figure 2.7. For co-culture with BV-2 microglia, SH-SY5Y cells were separated using the 

neuronal marker CD200-PerCP/Cy5.5 and microglial marker CD11b-APC. 

2.9. Nitrite determination by Griess assay 
 
As nitric oxide is too short-lived in solution to easily measure directly, its stable oxidative 

metabolite, nitrite (NO2-) was used as a proxy marker, detected using the Griess reaction 

(Bryan and Grisham, 2007). Following serum starvation for 24 h, BV-2 cells were treated 

according to experimental design, with cell supernatant collected and incubated 1:2 with 

Griess reagent (3.85 µM napthylethylenediamine dihydrochloride, 58.1 µM sulphanilamide, 

5% ortho-phosphoric acid), at room temperature in the dark for 15 min. Absorbance was 

detected at 540 nm with a CLARIOstar microplate reader (BMG Labtech, Aylesbury, UK), 

with background correction performed using absorbance values of media alone. 

Absorbance was calculated against a standard curve of sodium nitrite (NaNO2, 1.56 - 100 

µM; Figure 2.8). The Griess assay has a sensitivity limit of 3 µM (Misko et al., 1993); any 

values below this were considered ‘non-detectable’. 
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Figure 2.6 DAPI cell cycle histogram of BV-2 microglia. Appropriate gates have been 
included to highlighting the different areas which correlate to respective components of the 
cell cycle.  
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Figure 2.7 Annexin A5-FITC stained and unstained cells, identified with flow 
cytometry. Stained cells are red, with unstained represented by the black curve, 
respectively. The cell population consists of both SH-SY5Y and BV-2 cells. 
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Figure 2.8 A standard curve of sodium nitrite, NaNO2. Absorbance was detected at 540 
nm using the CLARIOstar microplate reader. Detection limit of the assay is labelled. 
Absorbance is expressed as optical density, OD. 
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2.10. Measurement of cytokine levels 
 
TNFα, IL-1β and IL-10 production were determined using commercially available ELISA kits 

(ThermoFisher Scientific, Dartford, UK), according to the manufacturer’s protocol. Following 

overnight serum starvation, cells were seeded at 100,000 cells/cm2 and treated according 

to experimental design. Cellular supernatant was then extracted and centrifuged at 1000 g 

for 5 min to remove cellular debris, before being frozen at -80oC prior to assay. Following 

the assay, optical absorbance at 450 nm and 570 nm was assessed using a CLARIOstar 

microplate reader. Background correction was performed by subtraction of absorbance 

values at 570 nm. TNFα, IL-1β and IL-10 concentrations were calculated by comparison 

with a standard curve for each cytokine (TNFα: 15.875-1000 pg/ml; IL-1β: 15.875-1000 

pg/ml; IL-10: 62.5-4000 pg/ml). Representative standard curves for each cytokine are 

shown in Log10 scale in Figure 2.9. The sensitivity limits of TNFα and IL-1β were 8 pg/ml, 

whilst that for IL-10 was 5 pg/ml. A power regression equation best fitted the standard 

curves and was used for determining the concentration of each cytokine released by BV-2 

microglia. 

2.11. p38 MAPK signalling ELISA 
 
BV-2 microglia were plated at 100,000 cm2 and treated according to experimental design. 

Samples were prepared and normalized for use in an InstantOneTM total/phospho 

multispecies p38 ELISA kit (ThermoFisher, Dartford, UK) according to the manufacturer’s 

instructions. 

2.12. Annexin A1 expression 
 
BV-2 microglia were seeded at 100,000 cells/cm2, serum starved for 24 h and treated 

according to experimental design. Cells were washed with pre-warmed PBS-/- collected 

and incubated in PBS-/- with 1% hiFCS, 1 mM CaCl2 for 30 min at room temperature to 

block non-specific antibody binding. Cells were then incubated with primary rabbit anti-

mouse AnxA1 (ThermoFisher, Dartford, UK) diluted 1:1000 in PBS-/- with 1% hiFCS, 1 mM 

CaCl2 for 1 h at room temperature. For total cellular expression only, 0.05% TX-100 was 

included for both blocking and antibody treatment steps. Cells were washed and incubated 

with AF488-conjugated goat anti-rabbit secondary antibody (1:500, ThermoFisher, Dartford, 

UK) for 30 min at room temperature. Cells were centrifuged at 800 g for 5 min at room 

temperature, washed, and analysed via flow cytometry. 
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Figure 2.9 Standard curves for Log10 TNFα (A), IL-1β (B), and IL-10 (C). Absorbance 
values expressed as optical density were calculated through the subtraction of values at 
570 nm from 450 nm. The curve begins to plateau at higher concentration ranges as the 
samples reach saturation. Samples were diluted to prevent values towards the upper end 
of the curve. R2 = 0.9947, 0.9832 and 0.9993 for TNFα, IL-1β and IL-10, respectively.  
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2.13. Reactive oxygen species and antioxidant detection 

2.13.1. Total intracellular reactive oxygen species detection 
 
Total intracellular ROS production was quantified using the fluorescent tracer, chloromethyl-

dichlorofluores-cin-diacetate (CM-H2DCFDA; Wu and Yotnda, 2011). Cells were plated at 

200,000 cells/cm2 in phenol-red free (PRF) DMEM (phenol red is known to quench 

fluorescein fluorescence signal (Ettinger and Wittmann, 2014)), and serum starved 

overnight before being pre-incubated with CM-H2DCFDA (10 µM) in PRF-DMEM for 20 min 

at 37oC. The tracer was then removed and replaced with fresh PRF-DMEM for 5 min at 

37oC before experimental protocols were undertaken. Fluorescence of the carboxy-DCF 

product was determined every 5 min for up to 1 h at 37oC using a CLARIOstar plate reader 

(BMG Labtech, Aylesbury, UK) with excitation and emission wavelengths of 492 nm and 

517 nm, respectively. Hydrogen peroxide (100 µM) was used as a positive control for the 

assay. Cells with no dye and wells with CM-H2DCFDA alone or in combination with drug 

treatments but no cells were used as negative controls.  

 

2.13.2. Mitochondrial reactive oxygen species detection 
 
MitoSOX Red (MitoSOX), was used to define mitochondrial superoxide production. Cells 

were serum starved overnight in PRF-DMEM and pre-treated with 2 µM MitoSOX in PRF-

DMEM at 37oC in the dark for 15 min. Following incubation, medium was replaced and fresh 

PRF-DMEM added. Cells were then treated as per experimental protocol. The 

mitochondrial respiratory chain complex I inhibitor rotenone (2.5 µM) was administered as 

a positive control. Detection of ROS was carried out every 5 min for up to 1 h at 37oC using 

a CLARIOstar (BMG Labtech, Aylesbury, UK) plate reader, set at 37oC with excitation and 

emission wavelengths of 510 nm and 580 nm, respectively.  

 

2.13.3. Hydrogen peroxide detection 
 
H2O2 was detected using a commercial assay (ROS-Glo H2O2, Promega, Southampton, 

UK). BV-2 cells were seeded at 156,250 cells/cm2 and serum starved overnight in PRF-

DMEM. Media was then aspirated and replaced with pre-warmed PBS-/- before H2O2 

substrate (25 µM) was added alongside experimental treatments, as per manufacturer’s 

instructions. Cells were then incubated at 37oC for 2 h before ROS-Glo detection solution 

was added to each well. Cells were then incubated for 20 min at room temperature before 

cell lysates were transferred to a white opaque-based 96-well plate. Detection of relative 

luminescence units (RLU) was determined using a CLARIOstar microplate reader. Sample 
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RLU readings were compared to that of a H2O2 standard curve (0.013 µM – 10 mM, Figure 

2.10A). 

 

2.13.4. Hydroxyl/peroxynitrite detection 
 
Hydroxyl (•OH) radicals and peroxynitrite (ONOO-) ion production were determined using 

the Fluoro Hydroxyl/Peroxynitrite Assay (Cell Technology Incorporated, California, USA). 

BV-2 cells were seeded at 100,000 cells/cm2 and serum starved in PRF-DMEM overnight. 

Cells were pre-treated with hydroxyphenylfluorescein (HPF; 5 µM, 45 min at 37oC) then 

treated immediately according to experimental design; 2 ng/ml of phorbol 12-myristate 13-

acetate (PMA) was used as a positive control. HPF-DMEM was then aspirated and cells 

were washed twice and collected in pre-cold PBS-/- using a Corning cell scraper. Cells were 

kept on ice in the dark until analysed on a BD FACSCanto II flow cytometer (BD 

Biosciences, Berkshire UK). Fluorescence was determined using the 488 nm blue laser with 

the FITC filter. Cellular fluorescence was compared against unstained and PMA treated 

stained cells.  

 

2.13.5. GSH:GSSG ratio detection 
 
The relative ratios of reduced (GSH) and oxidised (GSSG) glutathione was determined 

using a commercial assay (GSH:GSSG-Glo, Promega Co, Southampton, UK) according to 

manufacturer’s instructions. Cells were plated at 200,000 cells/cm2 and serum starved in 

PRF-DMEM overnight prior to experimental treatment. RLU for cells treated with total vs. 

oxidised glutathione lysis reagent was determined through comparison to a total glutathione 

standard curve (0.25 – 16 μM) to calculate the relative GSH:GSSG ratio. The standard 

curve (Figure 2.10B) was halved to work out the relative GSSG values, as described in the 

manufacturer’s protocol.  

2.14. Phagocytic capacity 
 
Phagocytic ability was determined by incubation with BODIPY FL conjugated Escherichia 

coli (K-12 strain) BioParticles (ThermoFisher, Dartford, UK; Ragsdale and Grasso, 1989; 

Wan et al., 1993). Cells were plated at 100,000 cells/cm2, serum starved overnight and 

treated according to experimental design. Cell medium was aspirated and replaced with 

pre-warmed PBS-/- containing BioParticle conjugates at 50 particles per cell, before being 

incubated in the dark for 30 min at 37oC. The PBS-BioParticle supernatant was then 

removed, and fluorescence of non-engulfed particles was quenched by incubation with 

0.2% Trypan blue for 1 min. Cells were washed in PBS-/-, collected, and kept on ice. 

Fluorescence was determined using a BD FACSCanto II system (BD Biosciences,  
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Figure 2.10 Luminescence standard curves for log10 H2O2 and glutathione. A; 
Luminescence standard curve for H2O2, with RLU identified to plateau around 3 mM. B; 
standard luminescence curve for glutathione. The standard range used was 0.25 to 16 μM. 
RLU, relative luminescence units. 
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Berkshire UK), with blue 488 nm laser and FITC filter selected. Samples were compared to 

cells treated with PBS-/- only. Data were analysed using Flow Jo 8.8.7 software (Tree Star 

Incorporated. Ashland, USA). Representative histograms of cellular phagocytosis are 

shown in Figure 2.11. 

2.15. Lactate and glucose determination  
 
L-Lactate production and glucose usage were simultaneously determined using a YSI 2300 

Stat Plus machine (YSI Life Sciences Inc. Tunbridge Wells, UK). Cells were initially seeded 

at 70,000, 100,000 and 140,000 cells/cm2 and serum starved overnight. Cells were then 

exposed to LPS (50 ng/ml) to determine whether L-lactate production and glucose usage 

depended on cell plating densities. However, proportional increases in L-lactate production 

and glucose utilisation were observed at each of the three densities (Figure 2.12A and 

2.12B). For the following experiments, cells were plated at 100,000 cells/cm2 and serum 

starved overnight prior to experimental treatment. Supernatant was collected and stored at 

-80oC until required. Linear range of concentration readings for glucose and L-lactate are 

50.0 mM/L and 30.0 mM/L respectively, which are suitably spaced from the detection limits 

of the machine, providing accurate results if values remain below these concentrations.   

2.16. Metabolic assays 

2.16.1. Glucose 6-phosphate dehydrogenase (G6PD) activity assay 
 
Glucose 6-phosphate dehydrogenase (G6PD) activity was assessed using a commercial 

assay (Cell Signalling Technology, Massachusettes, USA). BV-2 microglia were seeded at 

100,000 cells/cm2, serum starved overnight in PRF-DMEM and treated according to 

experimental design. Cells were lysed into ice-cold 1x cell lysis buffer (22 mM Tris-HCl (pH 

7.5), 150 mM NaCl, 1 mM disodium EDTA, 1 mM EGTA, 1% Triton-X 100, 20 mM sodium 

pyrophosphate, 25 mM sodium fluoride, 1 mM β-glycerophosphate, 1 mM sodium 

orthovanadate, 1 µg/ml leupeptin, 1 mM phenylmethane sulfonyl fluoride, pH 7.5; Cell 

Signalling Technology, Massachusettes, USA). Samples were then ultrasonicated (two 20 

second bursts at 20 kHz per sample) with a Soniprep 150 (BMG Labtech, Aylesbury, UK) 

on ice, centrifuged at 14000 g for 10 min at 4oC and lysates were collected. Following 

protein estimation by Bradford’s method (Walker and Kruger, 2003), samples were diluted 

to 0.2 mg/ml in assay buffer and added to an opaque black 96-well plate. Samples were 

incubated at 37oC for 15 min before relative fluorescence was measured using a 

CLARIOstar microplate reader (BMG Labtech, Aylesbury, UK), with excitation and emission 

filters at 540 and 590 nm, respectively.  
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Figure 2.11 FACS histogram showing BODIPYTM FL conjugated E. coli fluorescence 
in BV-2 microglia. A and B; fluorescence observed at 24 h and 48 h post-plate seeding, 
respectively. Samples are unstained (black) and untreated (red).  
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Figure 2.12 LPS (50 ng/ml) induced effects on L-lactate production and glucose 
usage in BV-2 microglia at different seeding densities. Cells were exposed to LPS for 
24 h before supernatant was collected for analysis. A; L-lactate production of LPS treated 
cells compared to untreated. The concentration of L-lactate in DMEM without cells is also 
shown. B; the effect of LPS on glucose concentration in the cellular supernatant at 24 h 
compared to untreated. Reduced glucose in the medium corresponded to increased 
glucose usage. Glucose in DMEM alone is also shown. Data are means ± SEM of 3 
independent cultures in triplicate. *P < 0.05.  
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2.16.2. Mitochondrial function 
 
Mitochondrial function was assessed using a Seahorse XF24 cell MitoStress Test (Agilent 

Technologies, California, USA). This test incorporates serial injections of several inhibitors 

of mitochondrial complex elements and ATP synthase to determine different mitochondrial 

respiratory functions, including maximal respiration and ATP production. Initially, cells were 

plated at different seeding densities (1.0, 1.25, 1.5 and 2.0 x 106 cells/cm2) to determine 

which one was most appropriate for distinguishable data points between the different 

injection timepoints. 1.5 and 2.0 x 106 cells/cm2 produced the most distinct responses for 

both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), with the 

last assay measurement recorded at 97 min (Figure 2.13A and 2.13B). Due to its lower 

group variation, 2.0 x 106 cells/cm2 was selected as the plating density for subsequent 

experiments. Following initial assay set up, BV-2 microglia were cultured at 2 x 106 

cells/cm2, serum starved overnight in PRF-DMEM and treated according to experimental 
design. Medium was replaced with Seahorse XF DMEM supplemented with 1 g/L glucose 

and 1 mM sodium pyruvate, to both match physiological glucose levels but also to facilitate 

mitochondrial respiration, respectively, due to XF DMEM not containing any pyruvate. The 

pH of the medium was then equilibrated to pH 7.4. Cells were incubated at 37oC without 

CO2 for 45 min before analysis of oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR), allowing for de-gassing of the plate and diffusion of CO2 from the 

cells and XF DMEM medium.  

 

Basal respiration was initially determined prior to subsequent serial cellular treatments with 

4 µM oligomycin, 0.6 µM FCCP and 1 µM rotenone/antimycin A to measure ATP production, 

maximal respiratory capacity and non-mitochondrial respiration, respectively. A summary 

of how each aspect of cellular respiration was calculated and what it means is highlighted 

in both Figure 2.13 and Table 2.8. 

 

For each treatment, OCR readings were carried out in triplicate, with a reading every 5 min. 

Cells were then lysed in RIPA buffer and protein content assessed by Bradford’s method 

(Walker and Kruger, 2003) for sample normalisation. Intracellular rates of glycolytic and 

oxidative ATP production were then quantified utilising a bioenergetics spreadsheet 

formulated by Ma et al. at the Van Andel Research Institute (Michigan, USA). Data was 

analysed as guided by the institute website, alongside previous descriptions (Mookerjee et 

al., 2017). 
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Figure 2.13 The effects of different BV-2 microglial seeding densities on oxygen 
consumption rate (OCR) and extracellular acidification rate (ECAR) at 24 h. All cells 
were untreated and cultured in medium containing 1 g/L glucose. OCR and ECAR rates 
were measured in triplicate per sample at baseline and following serial injection of 
oligomycin (4 µM), FCCP (0.6 µM) and antimycin A/rotenone (1 µM; A/R). A; representative 
plot of the Seahorse XF Cell Mito Stress Test metabolic profile for OCR. B; OCR acquired 
in this study with different BV-2 microglial cellular densities. C; ECAR acquired in this study 
for multiple BV-2 cellular densities. Data are means ± SEM of 3-4 independent cultures in 
triplicate.  
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Table 2.8 List of metabolic parameters and calculations used for Agilent Seahorse 
data analysis 

Parameter Equation 
Basal Respiration (Last rate measurement before final injection) – (Non-

mitochondrial respiration rate) 
ATP Production (Last rate measurement prior to oligomycin injection) – 

(Minimum rate measurement after oligomycin injection) 
Maximal Respiration (Maximum rate measurement after FCCP) – (Non-mitochondrial 

respiration) 
Spare Respiratory Capacity (Maximal respiration) – (Basal respiration) 

Proton Leak (Minimum rate measurement after oligomycin injection) – (Non-
mitochondrial respiration) 

Non-mitochondrial Oxygen 
Consumption 

Minimum rate measurement after rotenone/antimycin A injection 
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2.17. Antibodies 
 
Antibodies used throughout the project are listed here, alongside their host species, 

commercial source, catalog number, dilution factor and their application(s).  

2.17.1. Primary antibodies 
 
Table 2.9 List of primary antibodies used through the study. 

 
Antibody 

 
Species 

 
Company 

 
Clone 

 
Dilution  

 
Applications 

Monoclonal Anti-

ANXA1 

Rabbit ThermoFisher 

Scientific 

7H46L26 1:1000 Flow cytometry 

Monoclonal Anti-
CD16/CD32 

Rat ThermoFisher 
Scientific 

93 1:250 Flow cytometry 

Monoclonal Anti-

SOD2 

Rabbit Cell Signaling 

Technologies Ltd. 

D3X8F 1:1000 Western blot 

Monoclonal Anti- 
NF-κB p65 

Rabbit Cell Signaling 

Technologies Ltd. 

D14E12 1:400 Immunofluroescence 

Monoclonal Anti-

IkBα 

Mouse Cell Signaling 

Technologies Ltd. 

L35A5 1:1000 Western blot 

Monoclonal Anti-

FPR2 

Mouse Santa Cruz 

Technology Inc. 

GM1D6 1:10 Immunofluroescence 

Monoclonal 
Anti-iNOS 

Rabbit Cell Signaling 
Technologies Ltd. 

D6B6S 1:1000 Western blot 

Polyclonal 

Anti-HO-1 

Rabbit Cell Signaling 

Technologies Ltd. 

70081S 1:1000 Western blot 

Monoclonal 
Anti-Phospho-

p44/42 MAPK 

(Erk1/2) 
(Thr202/Tyr204) 

Mouse Cell Signaling 
Technologies Ltd. 

E10 1:2000 Western blot 

Monoclonal 

Anti-p44/42 MAPK 

(Erk1/2) 

Rabbit Cell Signaling 

Technologies Ltd. 

137F5 1:1000 Western blot 

Monoclonal 

Anti-Phospho-p38 

MAPK 
(Thr180/Tyr182) 

Mouse Cell Signaling 

Technologies Ltd. 

28B10 1:2000 Western blot 

Polyclonal 

Anti-p38 MAPK 

Rabbit Cell Signaling 

Technologies Ltd. 

9212S 1:1000 Western blot 

Monoclonal Anti-
TNFα 

Armenian 
Hamster 

eBioscience TN3-19.12 1:250 ELISA 

Monoclonal Anti-

IL-1 beta 

Armenian 

Hamster 

eBioscience B122 1:250 ELISA 

Monoclonal-Anti-

IL-10 

Rat eBioscience JES5-16E3 1:250 ELISA 
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2.17.2. Secondary antibodies and conjugates 
 
Table 2.10 List of secondary antibodies and fluorescent conjugates used in the study. 

Antibody/Fluorescent 
Conjugates 

 
Species 

 
Company 

 
Clone 

 
Dilution 

 
Applications 

Polyclonal Anti-Mouse 

Alexa Fluor 405 

Goat ThermoFisher 

Scientific 

 1:300 Immunofluorescence 

Polyclonal Anti-Rabbit 
Alexa Fluor 405 

Goat ThermoFisher 
Scientific 

 1:300 Immunofluorescence 

Polyclonal Anti-Mouse 

Alexa Fluor 488 

Goat ThermoFisher 

Scientific 

 1:300 Immunofluorescence 

Polyclonal Anti-Rabbit 
Alexa Fluor 488 

Goat ThermoFisher 
Scientific 

 1:300 Immunofluorescence 

Polyclonal Anti-Mouse 

Alexa Fluor 647 

Goat ThermoFisher 

Scientific 

 1:300 Immunofluorescence 

Polyclonal Anti-Rabbit 

Alexa Fluor 647 

Goat ThermoFisher 

Scientific 

 1:300 Immunofluorescence 

Monoclonal CD11b-

APC 

Rat BioLegend M1/70 1:80 Flow cytometry 

Monoclonal CD38-APC Rat BioLegend 90 1:80 Flow cytometry 

Monoclonal CD40-APC Rat BioLegend 1C10 1:20 Flow cytometry 

Monoclonal CD45-PE Rat BioLegend 30-F11 1:80 Flow cytometry 

Monoclonal CD86-FITC Rat BioLegend GL1 1:80 Flow cytometry 

Monoclonal CD206-PE Rat BioLegend C068C2 1:40 Flow cytometry 

Monoclonal CD200-

PerCP/Cy5.5 

Mouse BioLegend OX-104 1:20 Flow cytometry 

Annexin A5-FITC  BioLegend  1:20 Flow cytometry 

Propidium Iodide  BioLegend  1:10 Flow cytometry 

Polyclonal Anti-TNFα-

Biotin 

Rabbit ThermoFisher 

Scientific 

 1:250 ELISA 

Polyclonal Anti-IL-1 
beta-Biotin 

E.coli ThermoFisher 
Scientific 

 1:250 ELISA 

Monoclonal Anti-IL-10-

Biotin 

Rat ThermoFisher 

Scientific 

JES5-2A5 1:250 ELISA 

 

2.18. Statistical analysis 

All data are presented as mean ± SEM and were analysed with Graph Pad Prism 8 

(GraphPad Software, CA, USA). All experiments were repeated using a minimum of 3 

independent culture flasks. Statistical significance was detected using two-tailed Student’s 

t-tests or one-, two- or three-way ANOVA with Tukey’s HSD post hoc test, as appropriate. 

Levene’s test was used to determine whether samples had equal variances. P < 0.05 was 

considered as statistically significant.  
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 Stimulation of Fpr2/3 
Reverses Microglial Pro-inflammatory 
and Pro-oxidative Behaviour 

3.1. Overview of the Chapter 

Neurodegenerative disorders such as Alzheimer’s disease (AD) have for many decades 

primarily been thought of as proteinopathies, diseases which manifest as a consequence 

of misfolded protein aggregation. In AD however, a central role for neuroinflammation in 

disease progression is increasingly clear (Heneka et al., 2015). Chronic neuroinflammation 

does not appear to be a consequence of amyloid plaques and neurofibrillary tangle 

development, but may actively contribute to disease pathogenesis just as much or perhaps 

even more than protein aggregates (Zhang et al., 2013). This is highlighted by PET imaging 

studies showing that expression of the microglial inflammatory marker TSPO correlates with 

AD severity in humans (Kreisl et al., 2013). A similar finding has been observed in the 

human AD brain for tau (Bejanin et al., 2017; Ossenkoppele et al., 2016), but this cannot 

be said for Aβ (Serrano-Pozo et al., 2011). As such, modulating neuroinflammation may 

provide a new avenue for therapeutic approaches.  

Research interest associated with potential AD neuroinflammatory therapeutics is 

becoming more evident (Mudò et al., 2019; Raikwar et al., 2019; Zhang et al., 2019). The 

most extensively studied approach is the use of non-steroidal anti-inflammatory drugs 

(NSAIDs), which inhibit the cyclooxygenase enzymes COX-1 and COX-2; but despite 

promising findings in animal models (Wilkinson et al., 2012; Woodling et al., 2016) and 

epidemiological studies (Zhang et al., 2018), randomized placebo-controlled trials looking 

at the therapeutic benefit of NSAIDs such as rofecoxib (Reines et al., 2004) aspirin (AD 

Collaborative Group, 2008) and most recently naproxen (Meyer et al., 2019) failed to show 

significant changes in cognitive outcomes in AD patients. Inhibiting one aspect of a broad 

inflammatory response, such as the COX enzymes is unlikely to sufficiently resolve the 

chronically activated inflammatory phenotype that microglia adopt in AD (Meyer et al., 

2019). Actively stimulating inflammatory resolution rather than simply inhibiting pro-

inflammatory mediators looks to be a promising research approach for neurodegenerative 

diseases with a considerable inflammatory component (Frigerio et al., 2018; Hopperton et 

al., 2018). 

Our methodology concentrates on modulating the endogenous pro-resolving phenotype 

that microglia/macrophages naturally adopt during acute episodes of inflammation. 

Successfully modulating this process pharmacologically via Fpr2/3 may be a novel way to 
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actively prevent tissue damage in neurodegenerative disease, and concomitantly 

upregulate repair mechanisms. Extensive research emphasises the essential role that both 

murine and human versions of the Fpr2/Fpr3 proteins have in modulating peripheral 

inflammatory resolution (Sadani N Cooray et al., 2013; Dalli et al., 2012; Gobbetti et al., 

2014; McArthur et al., 2015; Vital et al., 2016). In addition, selective agonists have been 

identified to reduce chronic inflammation in a range of animal models including mouse 

models of rheumatoid arthritis and bleomycin-induced lung injury (He et al., 2011; Kao et 

al., 2014). Targeting Fpr2/3 stimulation may therefore hold therapeutic potential for 

neuroinflammatory disease.  

3.2. Aim and hypothesis 

We hypothesised that Fpr2/3 stimulation would reverse inflammation in BV-2 microglia and 

promote pro-resolving microglial characteristics. The primary aim of the experiments in this 

Chapter was to determine whether Fpr2/3 agonists could reverse inflammatory microglial 

activation following stimulation with the potent model inflammogen, LPS.  

Stimulation of Fpr2/3 has been shown to signal through both ERK1/2 and p38 MAPK 

(Sadani N Cooray et al., 2013; Dalli et al., 2012; Guo et al., 2016; He and Ye, 2017; 

McArthur et al., 2015). Previous work identified that the Fpr2/3 agonist LXA4 lessens 

inflammation in rats by decreasing the activation of phosphorylated ERK1/2 but not p38 

(Miao et al., 2015), with another group emphasising that LXA4 elicited reductions in stroke-

associated inflammation via a p38 dependent mechanism (Guo et al., 2016). With previous 

work highlighting that pro-inflammatory activation of Fpr2/3 is associated with ERK1/2 

signalling (Sadani N Cooray et al., 2013), we further hypothesised that the pro-resolving 

effects of Fpr2/3 stimulation would instead be p38 MAPK mediated. 

3.3. Drug dose determination and experimental design 

The potent pro-inflammatory stimulus LPS was selected as a model inflammogen, used at 

a concentration of 50 ng/ml. This concentration was selected on the basis of previous work 

within the laboratory showing it to be sufficient to induce the release of pro-inflammatory 

cytokines and upregulate the expression of pro-inflammatory surface markers in BV-2 

microglia (McArthur et al., 2010). LPS elicits its pro-inflammatory effects through binding 

the CD14/TLR4 receptor complex in a range of immune cells including macrophages and 

microglia (Parajuli et al., 2012; Rajaiah et al., 2015), resulting in the phosphorylation of a 

range of signalling kinases such as ERK1/2, Akt and p38 (Khan et al., 2017; Lu et al., 2008). 

The resulting response triggers the nuclear translocation of NF-kB and the transcription of 

a range of pro-inflammatory molecules (Parajuli et al., 2012; Youssef et al., 2019). 
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To determine the most appropriate concentration of the Fpr2/3 agonists C43 and QC1, 

concentration-response curves were initially set up for both, centred around their EC50 

values at FPR2, reported as 44 nM for C43 (Bürli et al., 2006) and 40 nM for QC1 (Zhou et 

al., 2007), respectively. BV-2 microglia were serum starved for 24 h before treatment. For 

cell viability and cell cycle assays, measures of inflammatory mediator production, 

phagocytic capacity, antioxidant enzyme and AnxA1 expression, alongside L-lactate and 

glucose detection, BV-2 microglia were exposed to LPS for 1 h unless otherwise stated. 

Cells were then treated with C43 or QC1 and analysed 24 or 48 h post-LPS addition. For 

phenotypic marker analysis, BV-2 microglia were treated with LPS for 24 h prior to the 

addition of Fpr2/3 agonists, with analysis 48 h post-LPS. For ROS experiments and confocal 

imaging, LPS was administered 10 min prior to FPR2 agonists, with ROS production 

analysed for up to 1 h. Samples acquired for respective imaging analysis and western blot 

of NF-κB, NADPH oxidase and IκBα expression were fixed at 30 min post-LPS. Fpr2/3 

ligands were administered 10 min-post LPS. A summary of the different experimental 

procedures are detailed in Figure 3.1. Different treatment timings were utilised based on 

the time frame for successful response detection. For example, ROS production in immune 

cells happens almost immediately following a noxious response (Rawson et al., 2015), 

which can facilitate the transcription of pro-inflammatory markers through NF-kB (Mittal et 

al., 2014), although the detection for the latter is often described at 24-48 h post-noxious 

insult in vitro (Cai et al., 2017; Siddiqui et al., 2016). For phenotypic marker expression 

analysis, Fpr2/3 agonists were administered 24 h post-LPS to determine whether a 

microglial pro-inflammatory phenotype could be reversed following prolonged noxious 

stimulation. 

3.4. Results 

3.4.1. Fpr2/3 agonists do not affect BV-2 cell viability 
 
Initial studies investigated any potential toxicity of either Fpr2/3 agonist alone or in 

combination with LPS pre-treatment. Neither C43, QC1 or LPS affected cell viability as 

assessed by the PrestoBlue assay (Figure 3.2A-3.2F), when compared to untreated cells 

at 24 h. Both H2O2 (200 μM) and actinomycin D (1 μg/ml) were administered as positive 

controls (Figure 3.2A and 3.2B).  

 
As the PrestoBlue assay assesses cell number and cannot readily distinguish between cell 

survival and proliferation, the effects of LPS and Fpr2/3 agonists on BV-2 cell cycle was 

examined. Exposure to LPS for 24 h resulted in a significant decrease in the proportion of 

cells in G2/M phase accompanied by an increase in the SubG1 population (Figure 3.2G and 

3.2H). Addition of C43 following LPS stimulation successfully reversed the reduction in G2/M 

but had no effect on the SubG1 population. Cells treated with both LPS and C43 had 

significantly increased G0/1 populations, but also concomitant reductions in the S-phase  
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Figure 3.1 Summary of different experimental protocols. A; cell viability analysis, which 
included 1 h pre-treatment of LPS. PrestoBlue was used for cell viability analysis at both 24 
h and 48 h. DAPI was used for cell cycle analysis at 24 h. B; for inflammatory marker 
profiling, LPS was administered 1 h prior to Fpr2/3 agonists, unless otherwise specified 
elsewhere in the chapter. Cytokines and nitric oxide release were detected at both 24 h and 
48 h. Protein expression was analysed at 24 h unless otherwise specified. C; analysis of 
phenotypic marker expression was carried out at 48 h post-LPS administration. Fpr2/3 
agonists were added 24 h after initial LPS exposure. D; for metabolic phenotype profiling, 
such as analysing phagocytic ability and L-lactate production, cells were treated as for 
inflammatory marker profiling, with protein expression measured at 24 h only, whilst other 
components were analysed at both 24 h and 48 h. E; ROS detection occurred every 5 min 
for 1 h (CM-H2DCFDA) and 1 h (MitoSOX Red). Measurements for specific ROS species 
are highlighted in select sections within the Chapter. 

A 

B 

C 

D 

E 
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Figure 3.2 The effects of Fpr2/3 agonists and LPS on cell viability and relative cell 
cycle populations of BV-2 microglia. A; C43 (3, 10, 30, 100 nM) does not affect cell 
viability at 24 h. B; no tested concentration of QC1 (3, 10 30 and 100 nM) affects cell viability 
at 24 h. Actinomycin and H2O2 were used as positive controls. C and D; neither LPS or 
C43/QC1 (100 nM) affect cell viability at 24 h compared to untreated cells. E and F; neither 
Fpr2/3 agonist (100 nM) or LPS affect cell viability at 48 h when compared to untreated 
cells. G; cell phase populations following C43 and LPS treatments at 24 h. LPS ± C43 
significantly increases cells in the G1 and SubG1 phase, alongside reducing cells in the S 
phase and rescuing the reduction in G2/M cells triggered by LPS administration alone. H; 
cell phase populations following LPS and QC1 treatment at 24 h. Data are means ± SEM 
for 3-6 independent cultures in triplicate. *P < 0.05. 
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population (Figure 3.2G). Stimulation with QC1 did not elicit any effects on BV-2 cell cycle 

(Figure 3.2H). In summary, Fpr2/3 activation did not elicit toxicity or changes in cell cycle in 

BV-2 microglia. 

 

3.4.2. Fpr2/3 agonists reverse LPS-induced pro-inflammatory mediator release 
 
Nitric oxide (NO), TNFα and IL-1β are all pro-inflammatory mediators linked to the 

neuroinflammatory environment in AD (Brosseron et al., 2014; Heneka et al., 2015; 

Malinski, 2007). As microglia are thought to be the primary source of these mediators in the 

CNS (Ransohoff and El Khoury, 2015), the levels of each were determined at 24 h and 48 

h post-initial drug treatment. Addition of LPS significantly upregulated NO release at both 

time points (Figure 3.3A-I) as indirectly measured by the Griess assay (Bryan and Grisham, 

2007), supporting previous results (Xiang et al., 2018). This was reduced at 24 h post-LPS 

by C43 and QC1 when added 1 h prior to or after LPS stimulation. (Figure 3.3A, 3.3B, 3.3D). 

Post-treatments with C43 or QC1 at 48 h post-LPS similarly resulted in reduced NO release 

compared to cells treated with LPS alone (Figure 3.3C and 3.3D). In these experiments 

(Figure 3.3A-3.3D), neither untreated cells nor Fpr2/3 agonists alone effected nitrite levels 

(data not shown).  

 

To confirm that the effects of C43 and QC1 were due the selective activation of Fpr2/3 and 

not the closely related receptor Fpr1, cells were treated with LPS for 50 min prior to the 

addition of the Fpr2/3 antagonist WRW4 (10 μM; (McArthur et al., 2015)) or the selective 

Fpr1 antagonist cyclosporin H (CSH, 0.7 μM; (Wenzel-Seifert and Seifert, 1993)). C43 or 

QC1 were next added as prior. Pre-treatment with WRW4 ablated the effects of C43 and 

QC1 on NO release at 48 h post-LPS administration (Figure 3.3E and 3.3F), whereas CSH 

was without effect (Figure 3.3G and 3.3H). Complex pharmacology surrounds Fpr2/3, with 

both pro- and anti-inflammatory agonists existing (Sadani N Cooray et al., 2013; He and 

Ye, 2017). We therefore tested the specificity of these anti-inflammatory effects through use 

of the pro-inflammatory agonist MMK-1 (2 nM, EC50; (Hu et al., 2001)). Whilst having no 

effect on NO alone, addition 1 h post-LPS significantly increased NO production at 48 h 

(Figure 3.3I). 

 

The principal source of NO in microglia is iNOS (Du et al., 2017). Hence, we studied the 

effects of Fpr2/3 agonists upon iNOS expression. Whilst 24 h LPS exposure upregulated 

iNOS expression after compared to untreated cells (Figure 3.4A), confirming previous 

reports (Lecca et al., 2018), this was not affected by C43 or QC1 post-treatment, nor did 

these Fpr2/3 agonists alter iNOS expression when administered alone. Ponceau S stain 

was used as a loading control, due to the altered banding pattern of β-actin following LPS 

treatment (Figure 3.4A). The relative ratios of iNOS expression compared to LPS alone is  
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Figure 3.3 The effects of Fpr2/3 agonists and LPS on nitric oxide release. A; C43 (3, 
10, 30 or 100 nM) was administered to BV-2 cells 1 h prior to LPS with nitrite levels – an 
indirect measure of NO production – detected at 24 h post-C43 addition. All groups were 
treated with LPS. Neither C43 or untreated cells produced detectable nitrite levels and were 
excluded. B; nitrite levels were detected following 24 h LPS stimulation with or without 1 h 
post-treatment with C43 (3, 10, 30 or 100 nM). All groups were treated with LPS, with 
untreated and C43 treated cells excluded as for A. C; C43 1 h post-treatment (10 and 100 
nM) reduced LPS-induced nitrite release measured at 48 h post-LPS. D; QC1 (100 nM) 1 h 
post-treatment reduced LPS-induced nitrite release measured at both 24 h and 48 h post-
LPS. E and F; the selective Fpr2/3 antagonist WRW4 (10 μM) inhibits the nitrite reducing 
abilities of both C43 and QC1 at 48 h, respectively. WRW4 was administered 10 min prior 
to these Fpr2/3 agonists, 50 min post-LPS. Nitrite was measured 48 h post-LPS. G and H; 
at 48 h post-LPS, the Fpr1 inhibitor CSH had no effect on C43 or QC1, respectively. CSH 
was administered 10 min prior to the Fpr2/3 agonists, and thus 50 min post-LPS. I; MMK-1 
(2 nM) 1 h post-treatment significantly increased nitrite release when compared to untreated 
and LPS alone at 48 h-post LPS. Data are presented as means ± SEM for 3-7 independent 
cultures in triplicate. *P < 0.05.  
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Figure 3.4 The effects of Fpr2/3 ligands and LPS on iNOS expression. A; BV-2 
microglia exposed to LPS for 24 h significantly increased iNOS expression. Ponceau stain 
was used as a protein loading control. LPS altered the banding pattern of β-actin and thus 
was not used as a loading control. B; 1 h post-treatment with Fpr2/3 agonists did not affect 
iNOS expression following 24 h LPS stimulation. Data are presented as means ± SEM for 
3 independent cultures in triplicate.  
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shown in Figure 3.4B.  

 

Whilst NO can be a potent inflammatory mediator, it can also have other physiological 

functions (Chachlaki et al., 2017; Kakizawa et al., 2012). Hence, we next examined 

production of the major pro-inflammatory cytokines TNFα and IL-1β. As with NO, neither 

C43 nor QC1 addition upregulated TNFα production (Figure 3.5A, 3.5D-3.5F). However, 

LPS increased TNFα production approximately 10-fold in comparison to untreated cells 

(Figure 3.5B and 3.5C), an effect prevented by 1 h C43 pre-treatment (Figure 3.5B) and 

ameliorated by C43 and QC1 1 h post-LPS administration at 24 h (Figure 3.5C and 3.5E) 

and 48 h (Figure 3.5D and 3.5F). The effects of both C43 and QC1 at 48 h were inhibited 

by pre-treatment with 10 μM WRW4 10 min prior to Fpr2/3 agonist administration (Figure 

3.5G and 3.5H) but not by 0.7 μM CSH pre-treatment (Figure 3.5I and 3.5J). These anti-

inflammatory Fpr2/3 responses were agonist specific, with MMK-1 having no effect at 48 h 

when administered alone or 1 h post-LPS (Figure 3.5K). In contrast to TNFα, IL-1β was not 

detectable in any groups using a well-characterised commercial IL-1β ELISA shown to be 

functional in murine systems (data not shown).  

 

3.4.3. Administration of Fpr2/3 agonists post-LPS stimulation increases release of 
the pro-resolving cytokine IL-10 
 

The reductions in LPS-induced TNFα and NO release caused by both Fpr2/3 agonists 

supports an anti-inflammatory role for this receptor. To determine whether activation in 

microglia is actively pro-resolving, as has been shown for peripheral monocytes (Sadani N 

Cooray et al., 2013), we investigated the effects of Fpr2/3 stimulation upon IL-10 production; 

a key anti-inflammatory cytokine (Cherry et al., 2014; Yang et al., 2009). Stimulation with 

LPS significantly suppressed baseline IL-10 release after 24 h (Figure 3.6A), whilst C43 

treatment alone had no effect. Treatment with C43 (100 nM) 1 h prior to LPS did however 

increase IL-10 release at 24 h post-LPS when compared with LPS alone (Figure 3.6B). 

Post-treatment of C43 or QC1 significantly increased IL-10 release at 48 h but not 24 h 

post-LPS (Figure 3.6C-3.6F). Further, just like C43, QC1 had no direct effects on IL-10 

release alone. Confirming that these observations at 48 h were Fpr2/3 mediated, the effects 

of C43 were inhibited by 10 min pre-treatment with WRW4 (Figure 3.6G). The IL-10 

modulating effects of Fpr2/3 stimulation were agonist specific, as 1 h post-treatment with 

MMK-1 had no effect on IL-10 release at 48 h (Figure 3.6H). In summary, Fpr2/3 activation 

successfully promotes the release of pro-resolving IL-10 whilst concomitantly reducing pro-

inflammatory mediator production.  
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Figure 3.5 The effects of Fpr2/3 agonists and LPS on TNFα release in BV-2 microglia 
at 24 h and 48 h. A; the effects of varying C43 concentrations (3, 10, 30 and 100 nM) on 
TNFα release following 24 h exposure. B; TNFα release following 24 h LPS administration 
± C43 1 h pre-treatment addition at varying concentrations. C; TNFα concentration 
measured at 24 h after LPS ± C43 1 h post-treatment. D; effects of 1 h post-treatment of 
100 nM C43 on LPS-induced TNFα release following 48 h exposure to the endotoxin. E and 
F; effects of QC1 (100 nM) 1 h post-treatment on LPS-induced TNFα release at 24 h and 
48 h post-LPS addition, respectively.  G and H; effects of WRW4 (10 μM) administration on 
TNFα at 48 h after LPS exposure, when administered 10 min prior to C43 and QC1 (and 50 
min post-LPS), respectively. I and J; effects of CSH addition on TNFα at 48 h post-LPS, 
when administered 10 min before Fpr2/3 agonists and 50 min after LPS. For WRW4 and 
CSH experiments, Fpr2/3 agonists were administered 1 h after LPS. K; the effects of 1 h 
post-administration of MMK-1 on TNFα production at 48 h following initial LPS exposure. 
Data are means ± SEM of 4-6 independent cultures in triplicate. *P < 0.05. 
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Figure 3.6 The effects of Fpr2/3 agonists and LPS on IL-10 production in BV-2 
microglia at 24 h and 48 h. A; effect of LPS and varying concentrations of C43 alone on 
IL-10 production at 24 h, compared to untreated cells. B; effects of 1 h C43 (100 nM) pre-
treatment on IL-10 production following LPS insult at 24 h. C; effect of 1 h C43 (100 nM) 
post-treatment on IL-10 production following LPS stimulation at 24 h. D; IL-10 release at 48 
h, following LPS administration and C43 1 h post-treatment. E and F; effects of 1 h QC1 
(100 nM) post-treatment on IL-10 production following LPS insult for 24 h and 48 h, 
respectively. G; the effects of WRW4 on IL-10 production against C43 (100 nM) at 48 h. H; 
the effect of MMK-1 on IL-10 production at 48 h, added 1 h after LPS. Data are means ± 
SEM of 3-6 independent cultures in triplicate. *P < 0.05. 
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3.4.4. The effects of Fpr2/3 are independent of AnxA1 
 

Previous work by our group and others has shown that endogenous Fpr2/3 ligand AnxA1 

has a key role in inflammatory resolution (Lima et al., 2017; Locatelli et al., 2014; McArthur 

et al., 2015) and IL-10 release (Sadani N Cooray et al., 2013; Souza et al., 2007). We 

therefore determined whether changes in cellular AnxA1 levels correlated with IL-10 

production in BV-2 microglia. AnxA1 expression was not elevated by either C43 or QC1 

(Figure 3.7A-D), nor were cytokine or NO responses to these agonists affected by AnxA1 

knockdown through stable transfection with AnxA1 targeting shRNA, ShA1 (Figure 3.7E-J). 

Data provided here therefore suggests the effects of C43 and QC1 are independent of 

AnxA1.  

 

3.4.5. Fpr2/3 agonists modulate BV-2 microglia cell surface marker expression 
 

The relative expression of different cell surface markers provide insights into the 

inflammatory phenotype of microglia. To further characterise the pro-resolving effects of 

Fpr2/3 ligands, we examined the expression of a panel of microglial pro-inflammatory 

(CD11b, CD38, CD40, CD45, CD86) and pro-resolving (CD206) phenotypic markers at 48 

h post-LPS treatment, with Fpr2/3 agonists given 24 h post-LPS to allow time for changes 

in protein synthesis. Neither administration of C43 nor QC1 alone had an effect on any of 

these CD molecules (Figure 3.8). With the exception of CD86, all pro-inflammatory markers 

were upregulated following LPS insult (Figure 3.8). Treatment with C43 post-LPS 

significantly reduced CD38 and CD40 expression (Figure 3.8C and 3.8E) but did not affect 

CD11b or CD45 (Figure 3.8A and 3.8G). Treatment with QC1 was less effective, 

significantly reducing LPS-induced CD38 expression (Figure 3.8D), but not affecting any of 

the other pro-inflammatory markers (Figure 3.8B, 3.8F, 3.8H and 3.8J). Expression of the 

anti-inflammatory, pro-resolution marker CD206 was not affected by either agonist alone 

but was significantly reduced by LPS treatment (Figure 3.8K and 3.8L). This reduction was 

reversed by C43 only, with QC1 being ineffective (Figure 3.8K and 3.8L). In summary, 

Fpr2/3 stimulation is able to successfully modulate the expression of several different 

inflammatory cell surface markers, holding promise to drive microglial cells towards a pro-

resolving phenotype following insult with an inflammatory stimulus.  

 

3.4.6. Fpr2/3 agonists and LPS increase BV-2 phagocytic capacity 
 

A key behaviour of inflammatory microglia and macrophages is the phagocytosis of 

pathogenic material, such as Aβ and invading bacteria (Lucin et al., 2013), alongside the 

efferocytosis of damaged and dying cells (Chang et al., 2018). Pro-resolving microglia show 

a higher efferocytotic capacity than pro-inflammatory cells, and activation of Fpr2/3 has  
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Figure 3.7 The expression and localisation of AnxA1 in BV-2 microglia, alongside the 
effects on pro-inflammatory mediator release following transfection-induced AnxA1 
knockdown. Fpr2/3 agonists were both administered at 100 nM. A; western blot example 
highlighting AnxA1 expression following 24 h stimulation with QC1 alongside untreated 
cells. The Ponceau S stain was used as a loading control. B; relative AnxA1 expression 
ratios from western blot data. C; total AnxA1 expression at 24 h following Fpr2/3 agonist 
stimulation compared to untreated cells. D; relative surface expression levels of AnxA1 at 
24 h following treatment with Fpr2/3 agonists compared to untreated cells. E; representative 
western blot highlighting the successful knockdown of AnxA1 in ShA1 plasmid treated BV-
2 microglia compared to WT and plasmid control (PKCO) cells. The Ponceau S stain was 
used as a protein loading control. F; graphical representation of the relative AnxA1 ratio 
between WT, PKCO and ShA1 microglia. G; NO release as measured indirectly by nitrite 
production at 24 h in PKCO and ShA1 microglia. H; NO release at 48 h in PKCO and ShA1 
cells. I; TNFα release at 24 h in PKCO and ShA1 cells. J; IL-10 release at 48 h in PKCO 
and ShA1 cells. For G-J, Fpr2/3 agonists were administered 1 h after LPS, with supernatant 
collected at 24 and 48 h post-LPS. Data are means ± SEM (n = 3-6 independent cultures 
in triplicate). *P < 0.05. 
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Figure 3.8 The median fluorescent intensities of a panel of CD microglial phenotypic 
markers. Cells were pre-treated with LPS for 24 h, before the addition of C43 or QC1 (100 
nM). Marker expression was determined 48 h post-LPS. All marker expression levels are 
shown as percentage of untreated. A and B; relative expression levels of CD11b. C and D; 
expression levels of CD38. Both Fpr2/3 agonists significantly reversed the LPS-induced 
increase in CD38. E and F; CD40 expression in BV-2 cells. C43 but not QC1 significantly 
reduced CD40 expression post-LPS induction. G and H; CD45 expression levels. I and J; 
CD86 expression. No changes were observed for any of the treatment groups. K and L; 
expression of the pro-resolving CD206 was reduced by LPS and rescued by C43 addition. 
QC1 had no significant effect. LPS significantly affected the expression of all CD phenotypic 
markers examined, excluding CD86. Data are means ± SEM for 3-6 independent cultures 
in triplicate. *P < 0.05. 
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been previously shown to regulate bacterial phagocytosis (Gobbetti et al., 2014; Lan et al., 

2017; Zhang et al., 2017). We therefore examined the phagocytic capacity of BV-2 cells 

following LPS stimulation for 24 h and 48 h ± 1 h post-stimulation with Fpr2/3 agonists, 

using fluorescently labelled heat-killed E. coli bioparticles. At 24 h post-LPS treatment, 

whilst C43 and QC1 treatment alone had no effect on bacterial phagocytosis, both 

potentiated the pro-phagocytic effects of LPS pre-treatment (Figure 3.9A and 3.9B), an 

effect not seen with QC1 (Figure 3.9B). This effect of C43 was no longer apparent 48 h 

post-LPS treatment (Figure 3.9C and 3.9D). LPS alone significantly increased bacterial 

phagocytosis at 48 h only (Figure 3.9C and Figure 3.9D). Fpr2/3 agonists therefore appear 

to modulate microglial phenotype following an inflammatory insult, inducing an upregulation 

of phagocytosis which may contribute to the removal of pathogenic material and cellular 

debris.  

 

3.4.7. Fpr2/3 activation reverses LPS-induced mitochondrial and NADPH oxidase-
initiated ROS production in microglia 
 

Beyond classical neuroinflammatory mediators such as cytokines and NO, the link between 

oxidative damage and AD has become clearer in recent years. Oxidised protein content is 

increased in the CSF of patients with both AD and MCI (Di Domenico et al., 2016), 

suggesting oxidative damage may begin many years before symptoms become apparent. 

Oxidised protein content is also found in the brain, where oxidative markers increase in a 

disease-dependent manner. This correlates with patient Mini-Mental Status Examination 

(MMSE) scores (Ansari and Scheff, 2010), a 30-point questionnaire widely used in clinical 

and research settings to determine patient cognition. LPS activation of TLR4 stimulates 

ROS production in immune cells (Kim et al., 2010). To determine whether LPS similarly 

triggered ROS production in BV-2 microglia and whether Fpr2/3 agonist treatment could 

reverse this, ROS production was assessed with the intracellular ROS tracer CM-

H2DCFDA. Stimulation with LPS significantly increased ROS production in BV-2 microglia 

over 1 h, with both C43 and QC1 (100 nM) completely reversing this when administered 10 

min after LPS (Figure 3.10A-3.10D); neither C43 nor QC1 affected ROS production when 

administered alone.  

 

Superoxide and NO can combine to produce the highly reactive ROS species peroxynitrite 

(ONOO-; Radi, 2018). Thus, ONOO- (and hydroxyl radical; •OH) production after 1 h was 

examined using the hydroxyphenylfluorescein (HPF) tracer. Cells treated with C43 and QC1 

10 min after LPS exposure exhibited significantly reduced •OH and ONOO- release 

compared to untreated cells, an effect absent when administered without LPS (Figure 3.10E 

and 3.10F). The production of H2O2 at 2 h was also determined, using the Promega ROS-

Glo assay kit. However, none of the experimental groups produced detectable amounts of 

H2O2, as compared to the standard curve and positive control (data not shown). 
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Figure 3.9 The phagocytic index of BV-2 microglia following LPS exposure for 24 h 
and 48 h. Fpr2/3 agonists (100 nM) were administered 1 h post-LPS. Microglial phagocytic 
capacity was identified by engulfment of fluorescent E. coli bioparticles and measured by 
flow cytometry. A; phagocytosis by BV-2 cells was increased following the combined 
treatment of LPS and C43 at 24 h. B; LPS and QC1 combined stimulation increased 
phagocytic index at 24 h. C; LPS significantly increased BV-2 phagocytic index at 48 h, 
whereby C43 did not contribute towards this effect. D; LPS upregulation of phagocytosis at 
48 h is not affected by QC1. Data are means ± SEM of 3-4 independent cultures repeated 
in triplicate. *P < 0.05. 
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Figure 3.10 The effects of Fpr2/3 agonists and LPS on ROS production in BV-2 
microglia. For all experiments, Fpr2/3 agonists were administered 10 min post-LPS. A and 
B; relative ROS production gradients following LPS and drug treatments, compared to 
untreated. Measurements were recorded every 5 min for 1 h. C and D; overall ROS 
production of each treatment group. H2O2 was included as a positive control for the assay. 
ROS was detected with CM-H2DCFDA. E and F; •OH and ONOO- production at 1 h following 
LPS and Fpr2/3 agonist stimulation. G and H; mitochondrial ROS (mtROS) gradients of 
different treatment groups compared to untreated cells over 1 h. I and J; mtROS production 
over a period of 1 h for different treatment groups. Rotenone was used as a positive control. 
K and L; the effects of C43 and QC1 on rotenone-induced mtROS production up to 2 h. 
Mitochondrial ROS production was detected with MitoSOX Red every 5 min for up to 2 h. 
Data are means ± SEM of 3-5 independent cultures in triplicate. *P < 0.05. 
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Previous reports show that LPS can contribute to mitochondrial ROS production (Mills et 

al., 2016; Park et al., 2015). To decipher whether mitochondria contributed as a source of 

LPS-induced ROS production in our study, mitochondrial specific superoxide was examined 

using the MitoSOX fluorescent tracer, with Fpr2/3 agonists administered as for CM-

H2DCFDA. Interestingly, LPS increased mitochondrial ROS (mtROS) over a 2 h period, with 

both C43 and QC1 reversing this back towards untreated levels (Figure 3.10G-3.10J). 

However, neither FPR2 agonist prevented increased mtROS production initiated by the 

mitochondrial complex I inhibitor rotenone (Figure 3.10K and 3.10L).  

 

LPS has also been shown to produce ROS via the activation of microglial NADPH oxidase 

(Yauger et al., 2019). The NADPH oxidase subtype NOX2 is found at highest levels in 

microglia (Hou et al., 2018), and is therefore a prime candidate to investigate ROS 

production. The NOX2 enzyme consists of multiple protein subunits, including the plasma 

membrane bound gp91phox and the cytosolic regulatory protein p67phox (Ma et al., 2017). 

When activated, p67phox is transported to the cell membrane and colocalises with 

gp91phox, in a pathway dependent on the small GTPase Rac1 (Haslund-Vinding et al., 

2017). NADPH oxidase assembly was determined by confocal microscopic examination, 

with 30 min LPS ± 10 min post-C43 treatment before cell fixing, staining and visualisation. 

Compared to untreated cells, LPS increased the localisation of p67phox to the plasma 

membrane after 30 min exposure, supporting increased co-localisation with gp91phox 

(Figure 3.11A). Interestingly, whilst C43 did not impact localisation of these subunits when 

administered alone, addition 10 min post-LPS reversed p67phox mobilisation induced by 

this inflammogen (Figure 3.11A). These processes are shown with a distribution false-

colour image for p67phox, displaying more clearly the relative levels and cellular distribution 

of p67phox (Figure 3.11A). A false-colour image was used for both gp91phox and p67phox 

co-localisation, highlighting strong peripheral co-localisation in LPS treated microglia, with 

C43 treatment reversing this effect (Figure 3.11B). 

 

3.4.8. Fpr2/3 agonists do not modulate antioxidant pathways following LPS insult 
 

Having shown Fpr2/3 agonists to abrogate LPS-induced ROS production, we investigated 

their mechanism of action, focussing firstly on antioxidant defences to examine whether 

receptor stimulation modified activities of several pathways. However, neither C43 nor QC1 

post-treatments affected the ratio of oxidised glutathione disulfide (GSSG) to reduced 

glutathione (GSH:GSSG) after 2 h LPS exposure (Figure 3.12A), nor did they exert any 

effect on either superoxide dismutase-2 (SOD2; 24 h) or hemeoxygenase-1 (HO-1; 6 and 

24 h; Figure 3.12B-3.12I). Thus, Fpr2/3 stimulation appears to reduce LPS-induced ROS 

production without modulating antioxidant systems. 
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Figure 3.11 The effects of LPS ± C43 on NADPH oxidase subunit co-localisation as 
determined by confocal microscopy. Samples were fixed following 30 min treatment with 
LPS ± 10 min-post treatment with C43. A; immunostaining of gp91phox (red), p67phox 
(green), counterstained with DAPI (blue). Treatment with LPS induced the recruitment of 
p67phox from the cytosol towards the plasma membrane, as clearly represented in the 
false-colour distribution images. Post-treatment of C43 successfully reversed this. B; false-
colour image for p67phox and gp91phox co-localisation further emphasising peripheral 
NADPH subunit co-localisation following LPS treatment alone, with C43 reversing this. 
Peripheral co-localisation is labelled via white arrows. Scale bar = 10 μm. Images are 
representative of 3 independent cultures. 
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Figure 3.12 The effects of Fpr2/3 agonists and LPS on the reduced to oxidized 
glutathione ratio, alongside HO-1 and SOD2 expression. A; the relative ratio of reduced 
(GSH) to oxidized (GSSG) glutathione following 2 h pre-treatment with LPS ± QC1. QC1 
was added 10 min after LPS. B; HO-1 expression at 6 h-post LPS. C43 was added 1 h after 
LPS. Ponceau S stain was used as the loading control. C; relative HO-1 ratio at 6 h, 
compared to untreated cells. D; HO-1 expression following 24 h LPS exposure ± Fpr2/3 
agonist 1 h post-treatment. E and F; HO-1 expression ratio at 24 h compared to untreated 
cells for LPS ± C43 and QC1, respectively. G; SOD2 expression at after 24 h exposure to 
LPS ± Fpr2/3 agonist 1 h post-treatment. H and I; relative HO-1 expression ratio of C43 and 
QC1 treatment groups compared to untreated. Data are means ± SEM for 3-4 independent 
cultures in triplicate.  
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3.4.9. Fpr2/3 agonists reduce LPS-induced L-lactate production and glucose 
utilisation 
 
Interaction between the control of metabolism and inflammatory phenotype in macrophage-

lineage cells is increasingly evident, with a shift towards glycolysis and away from the Krebs 

cycle and fatty acid oxidation (FAO) being strongly associated with a pro-inflammatory 

macrophage phenotype (O’Neill and Hardie, 2013), whilst oxidative phosphorylation is more 

associated with a pro-resolving phenotype (Rodríguez-Prados et al., 2010). Whether 

something similar happens in CNS immune cells is not known. To investigate whether this 

occurs, we examined the end-stage glycolytic metabolite L-lactate in BV-2 culture medium 

following LPS and Fpr2/3 agonist treatments in serum-free high (4.5 g/L; 25 mM) and 

physiological (1 g/L; 5.6 mM) glucose levels. Initial studies confirmed that 24 h treatment 

with LPS significantly increased L-lactate release compared with untreated cells, an effect 

reversed by subsequent 1 h post-LPS treatment with either C43 or QC1 (100 nM), an 

observation similar for both high and physiological glucose conditions (Figure 3.13A-3.13D). 

Interestingly in high glucose medium, either C43 or QC1 administered alone stimulated a 

reduction in L-lactate levels at 24 h, but not 48 h (3.13A and 3.13B), an effect not seen in 

physiological glucose conditions (Figure 3.13C and 3.13D). 

 

Upregulated aerobic glycolysis is associated with increased glucose uptake (Aït-Ali et al., 

2015), hence we determined BV-2 cellular glucose usage at 24 h and 48 h post-LPS in both 

high and physiological glucose medium. In high glucose medium, treatment with LPS 

significantly decreased glucose concentration in the supernatant at both 24 h and 48 h, 

which was only reversed by Fpr2/3 agonists at 24 h when administered 1 h post-LPS (Figure 

3.14A and 3.14B). A similar trend was observed in physiological glucose levels, but C43 

significantly reversed LPS-induced reduction in supernatant glucose levels at both 24 h and 

48 h (Figure 3.14C and 3.14D). When administered alone, neither of these Fpr2/3 ligands 

facilitated changes in glucose concentration (Figure 3.14A-3.14D). Thus, this data provides 

evidence that Fpr2/3 activation can reduce LPS-induced glycolysis. 

 

3.4.10. Fpr2/3 stimulation with C43 phosphorylates p38 MAPK but not ERK1/2 
 

Stimulation of human FPR2 has been associated with activation of both the p38 MAPK and 

ERK1/2 signalling pathways (Sadani N Cooray et al., 2013; Guo et al., 2016; He and Ye, 

2017; McArthur et al., 2015); we therefore examined activation of these pathways in BV-2 

cells in response to C43, the most potent of the two anti-LPS agonists. Initial western 

blotting suggested that C43 rapidly increased the phosphorylation of p38 MAPK (Figure 

3.15A). an effect quantified and corroborated with the InstantOne (total/phospho) 

multispecies p38 ELISA kit (Figure 3.15B and 3.15C). In contrast, C43 did not appear to 

phosphorylate ERK1/2 at any of the time points tested (Figure 3.15D). To further validate 
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Figure 3.13 The effects of LPS and Fpr2/3 agonist treatment on the cellular 
production and secretion of L-lactate in high and physiological glucose conditions 
at 24 h and 48 h post-LPS exposure. In all experimental treatments, Fpr2/3 agonists (100 
nM) were administered 1 h following LPS. A and B; L-lactate production at 24 h and 48 h 
in high glucose medium. Fpr2/3 agonists significantly reduced L-lactate when administered 
alone after 24 h. This effect was lost at 48 h, but the ability remained evident post-LPS at 
both time points. C and D; L-lactate levels at 24 h and 48 h in physiological glucose medium. 
C43 and QC1 reduced L-lactate production post-LPS at both 24 h and 48 h, whilst the 
effects of QC1 at 48 h were smaller compared to C43. However, QC1 also significantly 
reduced L-lactate production alone compared to untreated cells at 48 h. This was not 
observed for C43. Data are means ± SEM for 3-4 independent cultures plated in triplicate. 
*P < 0.05. 
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Figure 3.14 The effects of LPS and Fpr2/3 agonists on glucose usage of BV-2 
microglia in high glucose and physiological glucose media at 24 h and 48 h post-
LPS. Fpr2/3 agonists (100 nM) were administered 1 h following LPS insult. Graphs show 
glucose concentration in the cell supernatant, with reduced levels indicating increased 
cellular glucose usage. Dotted lines represent glucose concentration in respective 
physiological and high glucose medium in the absence of cells. A and B; glucose 
concentration in high glucose medium supernatant at 24 h and 48 h post-LPS. C43 and 
QC1 significantly reverse increased glucose utilisation induced by LPS at 24 h but not 48 
h. C and D; glucose in physiological glucose medium after 24 h and 48 h LPS exposure. 
C43 successfully reverses increased glucose usage by microglia following 24 h and 48 h 
LPS exposure. This was only observed for QC1 at 24 h. Data are means ± SEM (n = 3-4 
independent cultures in triplicate) *P < 0.05.  
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these findings, LPS-induced production of nitrite ± 1 h post-treatment with Fpr2/3 agonists 

at 24 h was determined in the presence of the p38 inhibitor SB203580 (2 μM) or the ERK1/2 

inhibitor FR 180204 (10 μM), both administered 10 min prior to the Fpr2/3 agonist. 

Supporting our previous data, SB203580 inhibited the nitrite-reducing effects of C43 and 

QC1 (Figure 3.15E and 3.15F) but this effect was not seen for FR 180204 (Figure 3.15G 

and 3.15H).  

 

3.4.11. C43 stimulated Fpr2/3 activation reverses LPS-induced NF-κB nuclear 
translocation via a p38 MAPK dependent mechanism 
 

It is well established that LPS can increase cytokine release via activation of the 

transcription factor NF-κB (Park et al., 2016; Zusso et al., 2017). We therefore examined 

whether this process occurred in BV-2 cells, and if it could be modulated by Fpr2/3 agonists. 

To evaluate this, cells were stimulated with LPS for 30 min ± C43 treatment at 10 min post-

LPS and intracellular localisation of the NF-κB p65 subunit was assessed by confocal 

microscopy. As expected, LPS treatment induced nuclear translocation of NF-κB, an effect 

markedly attenuated by subsequent C43 treatment (Figure 3.16A). Moreover, the mitigating 

effects of C43 were inhibited by the p38 MAPK inhibitor SB203580, further confirming the 

involvement of this pathway in Fpr2/3 signaling.  

 

Nuclear translocation of NF-κB p65 is prevented by the presence of the inhibitor complex 

IκBα, which holds NF-κB in the cytoplasm, thus having a central role as a control system 

for NF-κB related gene transcription (Zhang et al., 2017). 30 min LPS treatment led to a 

significant reduction in IκBα expression, an effect prevented by C43 treatment 10 min post-

LPS (Figure 3.16B and 3.16C).  

3.5. Discussion 
 
Whilst ignored for decades, the central contribution of neuroinflammation towards AD 

propagation is now widely acknowledged (Dunn et al., 2015; Heneka et al., 2015; Kreisl et 

al., 2013; Lucin et al., 2013); with some suggesting that it may contribute towards disease 

pathogenesis just as much or perhaps even more than Aβ and hyperphosphorylated tau 

protein aggregates (Zhang et al., 2013). Supporting this, the microglial inflammatory marker 

TSPO correlates with disease severity in humans (Kreisl et al., 2013), a finding which 

cannot be said for Aβ (Serrano-Pozo et al., 2011), which has been considered by many to 

be the primary cause of AD for over 25 years (Hardy and Higgins, 1992).  

 

A role for inflammation in AD is supported by multiple genetic studies which have linked 

SNPs in innate immune genes to AD, implicating microglia in disease pathogenesis 

(Guerreiro et al., 2013; Jonsson et al., 2013; Mecca et al., 2018; Sims et al., 2017) alongside 
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Figure 3.15 C43 stimulates p38 MAPK but not ERK1/2 phosphorylation. A; initial 
western blotting detected possible p38 MAPK phosphorylation (p-p38) by C43 following 2 
min exposure to the Fpr2/3 agonist. DMEM treated cells were used as a negative control. 
Expression of p-p38 was compared to total protein levels. B; increased p-p38 by C43 after 
2 min was confirmed by the InstantOneTM (total/phospho) multispecies p38 ELISA kit. 
Vehicle was cells treated with DMEM. C; relative total p38 expression levels detected 
through ELISA. D; ERK1/2 expression as assessed via western blot. Phosphorylated 
ERK1/2 (p-ERK) was not affected by either DMEM or C43 addition. p-ERK was compared 
against total protein. E and F; nitrite production at 24 h post-LPS. Fpr2/3 agonists were 
administered 1 h after LPS addition. The p38 inhibitor SB203580 (2 μM) was administered 
10 min prior to C43 and QC1. SB203580 significantly inhibited the nitrite reducing abilities 
of both agonists following LPS stimulation. G and H; nitrite levels were also determined at 
24 h post-LPS with the inclusion of the ERK1/2 inhibitor FR 180204 (10 μM) 10 min prior to 
C43 and QC1. However, this inhibitor had no effect on nitrite production, nor did it inhibit 
the nitrite reduction capabilities of C43 or QC1. Data are means ± SEM of 3-6 independent 
cultures in triplicate. *P < 0.05. 



 123 

 
Figure 3.16 The effects of LPS and C43 on NF-κB p65 subunit translocation is 
modulated by IκBα. Cells were treated with LPS for 30 min ± 10-min C43 post-treatment. 
The p38 inhibitor SB203580 (SB; 2 μM) was administered 5 min prior to C43. Cells were 
fixed in 2% formalin at 30 min post-LPS for confocal imaging. A; cellular distribution of NF-
κB p65 as determined by confocal microscopy. NF-κB p65 was identified with a rabbit 
monoclonal IgG primary and a polyclonal goat anti-rabbit Alexa FluorTM 647 secondary 
antibody. DAPI was used to counterstain nuclei. For the false-colour distribution images, 
white/yellow represents high expression and blue/purple represent low expression of NF-
κB p65, respectively. Images represent single optical sections and are representative of 
three independent experiments. Magnification is 63x. Scale bar = 10 μm. B; western blot 
analysis of IκBα following 30 min LPS stimulation ± C43 10 min post-treatment. Ponceau S 
stain was used as a protein loading control. C; ratio of IκBα expression of LPS and C43 
treated cells compared to untreated. Images are representative of 3 independent cultures. 
Data graphically represented is means ± SEM of 3 independent cultures in triplicate. *P < 
0.05. 
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post-mortem (Hopperton et al., 2018) and PET imaging studies (Kreisl et al., 2013; López-

Picón et al., 2018) of AD. Brain inflammation accompanies Aβ deposition in the majority of 

MCI cases that convert to AD (Parbo et al., 2017). Innate inflammation may therefore 

contribute to the disease and targeting microglia may hold central importance for future 

research. Here we show that neuroinflammation can be successfully reduced through 

microglial Fpr2/3 activation and therefore emphasise that this receptor may provide a novel 

therapeutic approach for reducing the severity and onset of neuroinflammation in 

neurodegenerative diseases such as AD. 

 

In an inflammatory response, the pro-inflammatory induction phase is essential to 

orchestrate an effective host defence. The resolution phase which follows is responsible for 

restoring tissue homeostasis once a danger signal has been eliminated (Buckley et al., 

2013), but inhibition of this protective phase can lead to chronic inflammatory disease, with 

arthritis and colitis being clinical examples of peripheral resolution dysfunction (Nielsen and 

Ainsworth, 2013; Perretti et al., 2017a). This supports the complex nature of the immune 

system. Multiple studies bolster the opinion that this happens in the brains of AD patients 

(Fan et al., 2017, 2015; Hopperton et al., 2018; Kreisl et al., 2013; Parbo et al., 2017), thus 

pharmacologically encouraging inflammatory resolution may be a viable alternative 

therapeutic strategy to tackle neurodegenerative diseases with a considerable inflammatory 

component, including AD (Frigerio et al., 2018; Hopperton et al., 2018). In this study, we 

provide evidence that Fpr2/3 stimulation successfully shifts microglial phenotype from pro-

inflammatory to one with pro-resolving characteristics, highlighted by shifts in cytokine 

production, phagocytosis and metabolism. We therefore underline that Fpr2/3 modulation 

not only reduces markers of neuroinflammation, but also actively shifts the microglial 

response towards one of active tissue protection and repair; a crucial alteration for neuronal 

protection in neurodegenerative disease.  

 

Murine Fpr2/3 and human FPR2 have central roles in the resolution of peripheral 

inflammation (Sadani N Cooray et al., 2013; Dalli et al., 2012; Gobbetti et al., 2014; 

McArthur et al., 2015; Vital et al., 2016). Despite also being expressed in microglia (Chen 

et al., 2007; McArthur et al., 2010; Ries et al., 2016), little is known about its potential as an 

anti-neuroinflammatory target. We show evidence that post-LPS activation of Fpr2/3 with 

specific agonists successfully contribute to the reversal of LPS-induced inflammation in BV-

2 microglia, supporting the exploitation of this receptor as a therapeutic, rather than a 

prophylactic. Fpr2/3 may therefore protect tissue from neuroinflammatory damage after it 

has already initiated. Our data highlights the facilitation of further research into the potential 

therapeutic capacity of exploiting these pro-resolving receptors for in vivo models of 

neuroinflammatory and neurodegenerative disease, including AD. 
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3.5.1. Fpr2/3 stimulation reduces key features of pro-inflammatory microglia 

Chronically activated microglia are characterised by the release of pro-inflammatory 

mediators, including nitric oxide, cytokines such as TNFα, and chemokines alongside the 

production of different ROS (Heneka et al., 2014; Salter and Stevens, 2017). Here we 

emphasise a fundamental function for Fpr2/3 in regulating the oxidative stress response in 

microglia, wherein it successfully reversed the oxidative capacity of a strongly potent 

inflammogen, LPS, alongside modulating multiple aspects of the pro-inflammatory 

microglial response. Our data here highlight the clear pro-resolving actions of two 

independent Fpr2/3 agonists, C43 and QC1 when given prior to or after LPS, providing data 

on the potential to both prevent and reverse neuroinflammation. The importance of reducing 

neuroinflammation in neurodegenerative diseases cannot be ignored. In pre-clinical 

models, multiple lines of evidence emphasise that reducing neuroinflammation can 

contribute to a reduction in synaptic and axonal damage (Hong et al., 2016), neuronal death 

(Shi et al., 2017) and cognitive decline (d’Avila et al., 2018). Inhibition of microglial activation 

can also preserve hippocampal neurogenesis (Wadhwa et al., 2017), therefore suggesting 

the potential ability of Fpr2/3 stimulation to reduce the likelihood of neuronal damage and 

death as a consequence of neuroinflammation. Importantly, the anti-inflammatory 

observations made for these Fpr2/3 ligands were absent of any signs of microglial toxicity, 

as highlighted through cell cycle and cell viability analysis. This is important going forward, 

wherein tolerability and lack of toxicity is essential for in vivo research utilising these 

compounds. Previous murine work using these agonists in the periphery also showed no 

signs of toxicity (He et al., 2011; Kao et al., 2014).  

Oxidative stress is an essential component of the immune response to destroy invading 

pathogens (Paiva and Bozza, 2014; Winterbourn and Kettle, 2013), but it also has a central 

role in cell signalling, wherein it regulates the inflammatory response (Latz et al., 2013; 

Singel and Segal, 2016). Despite this clear physiological importance, it can be a double-

edged sword. The high energy consumption of the brain results in it being more vulnerable 

to oxidative damage than any other organ (Cobley et al., 2018; Magistretti and Allaman, 

2015), due to high mitochondrial ROS production and modest endogenous antioxidant 

defences of neurones (Baxter and Hardingham, 2016; Bell et al., 2015). However, data 

presented here highlights that Fpr2/3 stimulation can reverse both mitochondrial and 

NADPH oxidase induced ROS production, underlining that select agonists for this receptor 

may provide neurones protection from rogue microglia and their associated ROS response. 

Increased ROS within immune cells can also lead to the hyperactivation of inflammatory 

responses through the activation of the inflammasome (Harijith et al., 2014) and 

transcription of pro-inflammatory genes triggered by NF-κB translocation (Dornas et al., 

2017). This leads to tissue damage, pathology and cell death associated with chronic 

inflammation (Mittal et al., 2014). Whilst IL-1β was not released in our study, suggesting a 
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lack of inflammasome activation Fpr2/3 stimulation prevented the nuclear translocation of 

NF-κB, consequentially reducing the expression of several pro-inflammatory mediators. 

With ROS production appearing to be central contributors to microglial inflammation, Fpr2/3 

induced reversal of NADPH oxidase and mitochondrial induced ROS production may hold 

significance for reducing neuroinflammation in vivo. This still holds pertinence even though 

activation of these ROS pathways here were bacterially (LPS) modulated, because they are 

both active and appear to contribute to neurodegeneration in AD (Wyssenbach et al., 2016) 

ROS production which exceeds the scavenging capacity of neuronal antioxidant response 

systems can lead to the oxidation of proteins, lipids and nucleic acids, observed in the 

human brain (Ercegovac et al., 2010). This appears to be the case in AD, where oxidative 

markers increase in a disease-dependent manner, correlating with patient MMSE scores 

(Ansari and Scheff, 2010), with high ROS levels reported to increase Aβ pathology in 

transgenic mice (Han et al., 2015). For our study, as well stimulating cytokines, we 

confirmed that LPS is a potent stimulator of ROS production (Kim et al., 2010; Yauger et 

al., 2019). Here we show the novel finding that selective Fpr2/3 activation can completely 

reverse LPS-induced ROS production, including superoxide, without modulation of the 

antioxidant systems glutathione, HO-1 or SOD-2. Interestingly, LPS-induced mitochondrial 

and NADPH oxidase induced ROS production has been shown to promote the production 

of several pro-inflammatory cytokines, including TNFα (Bordt and Polster, 2014; Bulua et 

al., 2011). We observed here that both Fpr2/3 agonists significantly reduced ROS from both 

sources, alongside TNFα production, respectively. In addition, formylated peptides derived 

from bacteria and mitochondria are recognised to stimulate FPRs (Dorward et al., 2017; 

Gabl et al., 2018; Ye et al., 2009). Today, the origin of mitochondria remains speculative 

but many conjecture that their manifestation occurred through endosymbiosis, wherein 

these organelles originally manifested as primitive bacterial cells (Dyall et al., 2004; Pallen, 

2011). FPRs may have therefore evolved alongside mitochondria, in part as damage 

recognition receptors. This again further supports that Fpr2/3 may have functions in 

regulating mitochondrial physiology, but current research on their role in mitochondrial 

function is lacking. Further research is therefore warranted to determine whether these pro-

resolving receptors have any direct effects on the functioning of this organelle. 

The production of free radicals is widely recognised to activate of NF-κB (Dornas et al., 

2017; Hara-Chikuma et al., 2015; Ndengele et al., 2005), resulting in an inflammatory 

response (Nathan and Cunningham-Bussel, 2013; Wang et al., 2016). The combination of 

LPS-induced ROS production alongside IKK-induced IκBα degradation are both likely 

contributors towards the pathological observations presented in this study (Karin et al., 

2004; Yang et al., 2003). For the first time, we show that Fpr2/3 activation reverses LPS-

induced NF-κB translocation via p38 signaling and inhibition of IκBα degradation.  
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3.5.2. Fpr2/3 stimulation can promote a pro-resolving microglial phenotype 

Clinical trials looking into the therapeutic potential of anti-inflammatory compounds in AD 

have not been successful. Importantly, the majority of these failed therapeutics have been 

NSAIDs, such as aspirin (AD Collaborative Group et al., 2008), rofecoxib (Reines et al., 

2004) and naproxen (Meyer et al., 2019), and have been given at symptomatic stages of 

AD. However, anti-inflammatory drugs such as these primarily focus on the selective 

inhibition of particular inflammatory processes, preventing the production of specific 

inflammatory mediators. Utilisation of these inhibitory anti-inflammatory strategies may 

have a limited impact on the phenotypic nature of the resident microglial cells of the brain. 

We suggest that microglial phenotypic modulation is a key therapeutic target to facilitate 

endogenous tissue repair and neuronal protection, supplementing any additional anti-

inflammatory pharmacological approaches.  

Our study builds upon previous research exhibiting the crucial functions of murine Fpr2/3 

and human FPR2 in the resolution of inflammation (Sadani N Cooray et al., 2013; Gobbetti 

et al., 2014; Kang and Lee, 2016; Petri et al., 2017; Trentin et al., 2015). We have 

highlighted that both C43 and QC1 can successfully modulate the expression of several 

characteristic features associated with pro-resolving microglia and tissue repair, which may 

hold premise for future research into several different CNS pathological situations wherein 

the resolution of inflammation is hindered.  

First, IL-10 release was significantly upregulated by these two small molecules following 

LPS pre-treatment. This finding supports previous peripheral data, whereby Fpr2/3 

activation increased IL-10 release (Sadani N Cooray et al., 2013; Fredman et al., 2015) via 

p38 activation (Sadani N Cooray et al., 2013; Saraiva and O’Garra, 2010), supporting our 

mechanistic findings in this study. However, these studies reported IL-10 release in the 

absence of a pro-inflammatory insult (Sadani N Cooray et al., 2013), or with Fpr2/3 agonist 

pre-treatment. Our study reports that Fpr2/3 increases IL-10 after exposure to an 

inflammatory challenge. This is of particular importance for therapeutic AD strategies, 

where neuroinflammation is extensive (Heneka et al., 2015). IL-10 is a pro-resolving 

cytokine centrally involved in the resolution of inflammation, reducing the production of pro-

inflammatory mediators by both microglia and astrocytes (Cherry et al., 2014). Several lines 

of evidence place defective IL-10 production or signalling in both animal models of disease 

and AD patients (Di Bona et al., 2012; Kiyota et al., 2012). Whereas IL-10 production likely 

correlates with higher numbers of pro-resolving microglia, which appear to be 

neuroprotective (Tang and Le, 2016).  

A second feature which is important for microglial modulation of brain tissue homeostasis 

is the engulfment and clearance of cellular debris by phagocytosis, a process modulated by 

several receptors including CD206 (Rajaram et al., 2017). Our data show that Fpr2/3 
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stimulation can both increase the rapidity of the microglial phagocytic response to bacterial 

bioparticles and reverse the LPS-induced reduction of CD206 expression. Fpr2/3 

stimulation may therefore increase the phagocytic capacity of endogenous microglia. 

Previous research from our group has shown this to be true, wherein receptor knockout 

impairs peritoneal bacterial clearance in mice (Gobbetti et al., 2014), with Fpr2/3 stimulation 

increasing the capacity of primary microglia to efferocytose neurones (McArthur et al., 

2010). Phagocytosis and efferocytosis are facilitated by distinct molecular mechanisms 

(Martin et al., 2014; Underhill and Goodridge, 2012), and our data presented here alongside 

previous reports highlight the broad potential for Fpr2/3 stimulation to modulate both of 

these processes. Interestingly, microglial phagocytosis and CD206 expression both appear 

to be decreased in several in vitro and vivo studies of AD (Orre et al., 2014; Porrini et al., 

2015; Wendt et al., 2017; Zhang et al., 2019), and pro-inflammatory microglia are known to 

have a reduced phagocytic capacity in both non-diseased and AD states (Hellwig et al., 

2015; Orihuela et al., 2016; Wolf et al., 2017). In AD, this reduction in phagocytosis likely 

leads to the pathological accumulation of toxic Aβ (Bradshaw et al., 2013; Fiala et al., 2005). 

Thus, increasing microglial phagocytosis may be of particular interest to minimise Aβ 

accumulation and neuronal damage.  

Fpr2/3 was also shown to reduce the expression of two central pro-inflammatory phenotypic 

markers, CD38 and CD40, both of which are upregulated in the human AD brain (Akiyama 

and McGeer, 1990; Togo et al., 2000). These markers regulate calcium signalling and 

chemotaxis alongside ROS production, respectively (Ha et al., 2011; Partida-Sánchez et 

al., 2001). Thus, Fpr2/3 agonists hold the promise to modulate a diverse array of microglial 

immunological responses, and further research is required to determine its potential as a 

neuroinflammatory therapeutic. 

The modulation of microglial phenotype through Fpr2/3 signalling is likely primarily 

associated with downstream p38 signalling. Aligning with previous research (Cooray et al., 

2013), we report here that that Fpr2/3 stimulation can result in the downstream upregulation 

of IL-10 through p38. Whilst IL-10 is a central pro-resolving cytokine as described above, 

we cannot conclude that other pro-resolving molecules were not upregulated following 

Fpr2/3 activation. Other cytokines and growth factors associated with resolving pathways 

include IL-4, IL-13 and TGFβ (Salvi et al., 2017), thus further elucidation as to whether 

Fpr2/3 mediated p38 signalling, or alterative Fpr2/3 mediated signalling pathways are 

responsible for the upregulation of any of these additional pro-resolving mediators.  

 

3.5.3. Fpr2/3 stimulation may modulate microglial metabolism 

Increasing evidence has linked immune cell phenotype with metabolism, with glycolysis 

appearing to play a critical role in the pro-inflammatory activation of innate cells such as 
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macrophages and microglia (Gao et al., 2017; O’Neill and Pearce, 2016; Stienstra et al., 

2017). This has been shown for macrophages exposed to LPS (Palsson-McDermott et al., 

2015; Tan et al., 2015), emphasising the importance of aerobic glycolysis in these cells. 

This is similar to the Warburg effect in cancerous tissue whereby under aerobic conditions, 

cancer cells favour glycolytic metabolism over the oxidative phosphorylation pathway 

(Vander Heiden et al., 2009). The maintenance of this metabolic phenotype is seemingly 

counterintuitive given that aerobic glycolysis is far less efficient than oxidative 

phosphorylation in terms of ATP yield (Mookerjee et al., 2017). However, previous work 

suggests that a shift towards aerobic glycolysis may be more efficient when glucose uptake 

is increased (Vazquez et al., 2010), because glucose is the sole energy source for glycolysis 

(Kelly et al., 2015). For example, even dietary fructose is converted into glucose by the 

small intestine (Jang et al., 2018). In addition, glycolysis provides many intermediates which 

can be utilised for inflammatory mediator synthesis, many of which are not produced by the 

Krebs cycle (Ganeshan and Chawla, 2014). Our data confirm previous reports that LPS can 

reduce microglial ATP production (George et al., 2015), likely through a shift towards 

glycolysis, which our data supports.  

Another effector associated with LPS stimulation may be mitochondrial ROS production, 

which appears to be central to the bactericidal activity of macrophages (West et al., 2011). 

Glycolysis may therefore compensate for this shift in mitochondrial metabolism away from 

ATP production and towards mtROS production by the electron transport chain (Palsson-

McDermott and O’Neill, 2013). This may also be true for NO production, which has been 

primarily reported to inhibit mitochondrial ATP production in cardiac cells (Benamar et al., 

2008; Brown and Borutaite, 2007). Our data highlight potential roles for these peripheral 

findings in activated microglia, wherein we observed that LPS significantly increased 

mtROS production, glucose uptake and utilisation, and extracellular L-lactate concentration 

in both high and physiological levels of glucose. These effects were reversed by the post-

treatment with Fpr2/3 agonists C43 and QC1, further supporting the idea that selective 

Fpr2/3 stimulation may alter microglial metabolism in several disease states. We also show 

that Fpr2/3 activation can reverse LPS-induced NADPH oxidase activation, an enzyme 

crucially responsible for ROS production in microglia (Sorce et al., 2017; Vilhardt et al., 

2017). 

In terms of both inflammation and glycolysis, increased extracellular lactate is usually 

associated with a negative feedback loop, reducing the activities of both, including 

attenuating pro-inflammatory cytokine release (Dietl et al., 2010). However, due to 

neurones primarily utilising L-lactate as an energy source, supplied as a consequence of 

the astrocyte-neurone shuttle (Mächler et al., 2016), the accumulation of L-lactate we 

observed in vitro is unlikely to happen within the brain. Thus, further study is required to 

determine the effects of Fpr2/3 stimulation on immunometabolic phenotypes.  
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Peripheral research focusing on the inflammatory resolution capacity of murine Fpr2/3 and 

human FPR2 is ongoing (Sadani N Cooray et al., 2013; Gobbetti et al., 2014; Purvis et al., 

2019; Qin et al., 2017), but this usually excludes investigation into metabolic changes. Our 

data on microglial inflammatory metabolic shifting associated with Fpr2/3 activation is the 

first of its kind, suggesting that human FPR2 facilitates similar functions, and could therefore 

be a beneficial therapeutic target not just for neuroinflammation in neurodegenerative 

disease, but also for changes in CNS metabolism; something that might be a key link 

between metabolic disorders such as insulin resistance and type 2 diabetes, and the 

increased risk of developing AD (Johnson et al., 2017; Moran et al., 2015).__------------------

------------------------_________________________________________________________ 

3.5.4. Fpr2/3 agonist selection will be crucial for therapeutic potential 

Murine Fpr2/3 and its human analogue FPR2 display crucial roles in inflammation and host 

defence (Ye et al., 2009), highlighted by selective agonists eliciting anti-inflammatory and 

pro-resolving effects. However, in our experiments, administration of the synthetic peptide 

agonist MMK-1 further increased nitric oxide production following LPS stimulation. This, 

alongside C43 and QC1 are only a few from a diverse range of ligands which exist for 

human FPR2, including bacterial and mitochondrial-derived formyl peptides, eicosanoids 

and small molecules (He and Ye, 2017). Some of these agonists include the pro-

inflammatory serum amyloid A and Aβ1-42 (Le et al., 2001; Tiffany et al., 2001; Wang et al., 

2018a), but many are endogenous pro-resolving ligands, with species such as AnxA1, LXA4 

and resolvin D1 shown to be expressed in the brain (Bisicchia et al., 2018; McArthur et al., 

2010; Wang et al., 2015), and appear to be essential for BBB integrity (Cristante et al., 

2013) and in reducing AD pathology (Dunn et al., 2015), including increasing Aβ 

phagocytosis (Mizwicki et al., 2013; Ries et al., 2016). Despite the clear benefits of utilising 

these named specialised pro-resolving mediators (SPMs), their therapeutic potential is 

reduced due to either their chemical instability and half-life (LXA4 and resolvin D1; Maderna 

and Godson, 2009; Mozurkewich et al., 2016; Skarke et al., 2015), or their large size 

(AnxA1, 37 kDa), likely inhibiting their ability to cross the BBB. These SPMs may also be 

non-specific to Fpr2/3, with AnxA1 binding to integrin α4β1 (Parente and Solito, 2004), with 

further suggestions that LXA4 and its analogues do not signal through human FPR2 

(Forsman and Dahlgren, 2009). We wanted to utilise specific agonists to support the 

potential of the receptor as a viable therapeutic target.____________________________ -

---------                                         _____________________ 

3.5.5. Experimental limitations and improvements 

The preliminary data gathered here emphasises Fpr2/3 involvement in inflammatory 

resolution and phenotypic shifting, further supporting the initial work which elucidated these 

functions. However, as with all in vitro experimental designs, limitations to our inflammatory 
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model are plentiful. Despite BV-2 microglia being a suitable cellular replacement for primary 

microglial cultures (Henn et al., 2009), single cell culture is not sufficient to correctly 

determine the overall effects of C43/QC1 in the neuroinflammatory environment of the AD 

brain. Besides their immunosurveillance and inflammatory roles, microglia are central in 

establishing synaptic networks and remodelling synapses through synaptic pruning 

(Paolicelli et al., 2011), emphasising the important role they possess in synaptic plasticity 

(Salter and Beggs, 2014). Our model is thus unable to determine whether these neuronal-

modulating capabilities of microglia would be affected by Fpr2/3 activation.  

Pro-inflammatory microglia are responsible for the activation of neurotoxic astrocytes, 

wherein their ability to promote neuronal survival and synaptogenesis is lost, contributing 

towards neuronal death (Liddelow et al., 2017; Shi et al., 2017; Yun et al., 2018). Whilst we 

clearly identified the pro-resolving capabilities of Fpr2/3 agonists in microglia, the knock-on 

consequences for astrocytic phenotype and neuronal survival is unknown. In terms of 

neurodegenerative disease, improving our model to include astrocytes in co-culture, 

followed by the further inclusion of neurones in a triple-culture model, or utilising brain slice 

culture techniques could elucidate the effects of different Fpr2/3 ligands on cellular 

communication responses and the consequences for neuronal survival, following exposure 

to LPS and neurodegenerative toxins such as Aβ1-42. This is essential, as the 

communication responses between these three cell types may have significant 

contributions towards neuronal toxicity or repair processes.  

The pro-resolving effects of Fpr2/3 stimulation in microglia are exciting for further 

neuroinflammatory research going forward. However, the microglial immune response is 

extraordinarily diverse and will vary depending on the pathogenic insult. Recent research 

has highlighted that at least nine transcriptionally distinct microglial states exist, with 

uniquely expressed gene sets (Hammond et al., 2019). Multiple reactive microglial subtypes 

were also found in demyelinating injury in mice (Hammond et al., 2019), suggesting that 

several complicated phenotypes may exist in neurodegenerative conditions, and these may 

fluctuate depending on the disease in question. This will be something to take into 

consideration going forward, emphasising that pro-resolving therapeutics need to be able 

to contribute towards a global shift in microglial phenotype to one that is neuroprotective, 

rather than a limited response in reducing pro-inflammatory mediator release. Sex also 

appears to have major effects on immune cell gene expression. In females, genes appeared 

to be enriched which are involved in PRR pathways (Schmiedel et al., 2018). Our group 

has also shown that oestradiol promotes pro-resolving microglial behaviour through AnxA1, 

providing evidence that the reduction in female oestrogen following menopause may 

contribute to increased inflammation and risk of AD development (Christensen and Pike, 

2015; Loiola et al., 2019; Nadkarni and McArthur, 2013). This has implications for in vitro 

and in vivo model exploitation for both peripheral and neuroinflammatory disease. 
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Phagocytosis is an important microglial response to remove cellular debris and toxic Aβ 

peptides (Ries et al., 2016), whilst efferocytosis is essential to remove apoptotic cells 

(Chang et al., 2018). Our study highlighted that Fpr2/3 stimulation could increase the ability 

of microglia to phagocytosis E. coli bioparticles. Despite this providing a novel insight into 

the phagocytic response associated with Fpr2/3 activation in microglia, the relevance of this 

for neurodegeneration could be questioned. For example, it does not provide an indication 

of efferocytotic ability, which may contribute towards detrimental synaptic destruction; an 

unwanted characteristic previously reported (Hong et al., 2016). Looking into the microglial 

ability to phagocytose cellular debris and toxins relevant for neurodegenerative disease 

following Fpr2/3 stimulation will therefore be crucial to provide further therapeutic credit for 

these pro-resolving receptors. 

 

Data also suggest that Fpr2/3 stimulation can modulate microglial metabolism. Our initial 

observations highlighting Fpr2/3 mediated changes in L-lactate production, glucose uptake 

and mtROS production support the premise that these pro-resolving receptors may have 

an important role in immunometabolism (Gao et al., 2017). Mitochondria (alongside NADPH 

oxidase enzymes) are the primary source of cellular superoxide production (Bordt and 

Polster, 2014; Brennan et al., 2009; Finkel and Holbrook, 2000). However, mitochondrial 

formation of free radicals via reversal of electron transport can inhibit mitochondrial ATP 

production (Scialò et al., 2017), shifting cellular reliance to alternative metabolic pathways, 

including aerobic glycolysis. Whilst the data presented here holds initial promise, it is 

important to note that myeloid cells such as microglia can display a wide variety of different 

phenotypes (Hammond et al., 2019), including several different complicated metabolic 

signatures which do not resemble the Warburg effect (Stienstra et al., 2017). Also, how 

these signatures are encoded mechanistically is currently unknown. It will be important to 

confirm these phenotypic changes following a neuroinflammatory stimulus in vivo, 

alongside distinguishing any associated metabolic changes. Thus, further investigation into 

different components of microglial metabolism following inflammatory insult is essential.  

 

In terms of LPS, whilst it is a potent inflammogen, neuroinflammation is usually sterile in 

nature, and thus bacterial LPS is unlikely to be seen in neurodegenerative disease such as 

AD. However in some circumstances, bacterial infection associated with other diseases 

such as Porphyromonas Gingivalis periodontal infection has been shown to have consistent 

links with AD (Singhrao et al., 2015). However, as an initial proof of concept study, 

determining whether Fpr2/3 stimulation can modulate multiple pro-resolving pathways 

following LPS-associated microglial activation provided inciteful information before 

processing to more complex in vitro and in vivo models. The results displayed in Chapter 3 

help us elucidate whether the peripheral pro-resolution pathways associated with Fpr2/3 

activation could also be modulated within the CNS, to which we provide considerable 

evidence to support this.  
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Finally, the obvious limitation to any in vitro study is the validity for translational application 

of data. This research was primarily a proof of concept study to determine whether Fpr2/3 

stimulation could successfully temper different aspects of the microglial neuroinflammatory 

response. Whilst this model is simplistic in comparison to the intricate detail and complexity 

of the brain, initial in vitro experiments are justified to reduce unnecessary usage and 

euthanisation of animals. As no licenced human microglia were available for purchase 

during this study, BV-2 cells were used instead, as the most extensively characterised 

murine microglial cell line available (Timmerman et al., 2018). Despite this, a shift towards 

a human in vitro system is desirable. Recent research has highlighted that while human and 

murine microglia do indeed have a lot in common, limited overlap was observed in microglial 

genes which were regulated during aging, suggesting human and murine microglial cells 

age differently (Galatro et al., 2017; Olah et al., 2018). Whether the transcriptional 

responses of BV-2 microglia to LPS are representative of primary murine microglia is being 

questioned (Das et al., 2016; He et al., 2018), and thus supplementary research is required 

to support our findings._____                         __________ 

 

3.5.6. Future work 

The primary data gathered and displayed in this chapter provides an overlook to what could 

be an exciting step forward in understanding the therapeutic potential of human FPR2 for 

neuroinflammatory disease. Nevertheless, further work will be important to accurately 

evaluate whether it can be a druggable receptor. An obvious factor to note is that microglia 

release a range of different pro-inflammatory and pro-resolving cytokines under different 

conditions (Heneka et al., 2014), whilst we only selected a few relevant ones for our 

investigations. In the brain, an important consideration must be made for chemokines, which 

are essential for microglial migration and peripheral blood cell recruitment to damaged 

tissue (Gyoneva and Ransohoff, 2015), with its release stimulated by Aβ (Heneka et al., 

2015). Complement is the third component of the core pro-inflammatory triad which we did 

not analyse in this study. Complement has essential roles in regulating the host immune 

response to microbial invasion (Hajishengallis et al., 2017), but it also appears to be crucial 

for the neurotoxic communication between microglia and astrocytes (Liddelow et al., 2017) 

alongside the pathological microglial pruning of synapses in AD mouse models (Hong et 

al., 2016). With C1q, C3 and the microglial complement receptor CR3 being prime 

candidates for pathological synaptic degradation (Hong et al., 2016), these will be important 

components to consider for future investigation to differentiate Fpr2/3 activation from typical 

anti-inflammatory therapies that have previously failed in clinical trials for AD (Meyer et al., 

2019), including NSAIDs which only inhibit the release of one or a small number of pro-

inflammatory mediators. 
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Here we highlight that Fpr2/3 activation can upregulate IL-10, a central pro-resolving 

cytokine (Sica and Mantovani, 2012). Production of IL-10 reduces the inflammatory 

response through STAT3 phosphorylation (Lobo-Silva et al., 2016), thus our future work 

could determine whether Fpr2/3 activation can directly effect this. Alongside IL-10, we 

highlighted that CD206 expression was upregulated when LPS administered cells were 

then treated with C43. This is one of several pro-resolving phenotypic markers which are 

expressed in myeloid cells, also including arginase 1 (Arg), FIZZ1, Ym1 and TREM2 (Lan 

et al., 2017). We also identified that Fpr2/3 stimulation could reduce LPS-induced NO 

production without reducing iNOS expression. Further study into the microglial expression 

profile of Arg1 may therefore be warranted, as this enzyme is responsible for the production 

of urea and L-ornithine from L-arginine, preventing iNOS utilising the latter to produce the 

reactive nitrogen species (Lisi et al., 2017). 

We also observed LPS-increased microglial glycolysis and L-lactate production, both of 

which were reduced by Fpr2/3 stimulation. Glucose uptake is controlled by a group of 

membrane proteins called GLUTs, (Yan, 2017), which facilitate glucose transport across 

the plasma membrane. Microglia express a particular subtype, termed GLUT5 (Sasaki et 

al., 2004). Because Fpr2/3 activation modulated microglial glucose usage, further work 

looking into the relative expression of GLUT5 following Fpr2/3 activation may provide more 

incite regarding potential immunometabolic functioning of these pro-resolving receptors. 

Further, the increase in glycolysis observed following LPS stimulation is likely due to 

pyruvate kinase M2, an essential enzyme necessary for the shift in cellular metabolism 

towards glycolysis (Palsson-McDermott et al., 2015). Because both C43 and QC1 reduced 

L-lactate release when administered post-LPS, identifying whether these agonists modulate 

pyruvate kinase M2 expression will provide further insights into potential mechanisms 

Fpr2/3 can modulate metabolism. This is also true for the monocarboxylate transporter 4 

(MCT4), a plasma membrane protein required for exporting L-lactate from the cytoplasm 

into the extracellular environment (Kaushik et al., 2019).  

Identifying all the mechanisms by which Fpr2/3 facilitates its effects is essential. One of the 

ways LPS enables its inflammatory response in phagocytes is through the kinase activities 

of IKK, tagging IκBα for proteasome degradation and consequentially freeing NF-κB for 

nuclear translocation (Newton and Dixit, 2012). This is what we observed here, with Fpr2/3 

stimulation preventing this. However, further investigation of the pathway is possible. For 

example, looking specifically at both IKK phosphorylation and real-time movement of 

phosphorylated IκBα towards the proteasome with immunostaining techniques. Whilst our 

data suggest that this may be p38 mediated, inclusion of an inhibitor for this kinase for all 

of these aforementioned techniques would confirm its importance in this Fpr2/3 mediated 

anti-inflammatory pathway. Alongside this, whilst IL-10 is recognised to be transcriptionally 

regulated by p38, this is not the only anti-inflammatory cytokine localised in microglia, with 
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others such as IL-4 also reducing LPS induced pro-inflammatory cytokine production 

(Woodward et al., 2010). Another consideration is that anti-inflammatory effects can also 

be mediated by AMPK and STAT3 signalling (Zhu et al., 2015), and previous research by 

our group has shown Fpr2/3 can activate AMPK signalling, contributing towards a 

macrophage pro-resolving phenotype in mice (McArthur et al., 2018).  

Investigation of AMPK signalling is of particular relevance for immunometabolism, wherein 

this kinase is a metabolic sensor (Kelly et al., 2015). It also appears to negatively regulate 

pyruvate kinase M2 expression (Huang et al., 2018), and thus AMPK activation is likely to 

block the metabolic gateway towards aerobic glycolysis. Because this metabolic shift 

towards glycolysis can fuel inflammatory mediator production and increased glucose 

utilisation, we propose that alongside p38, AMPK regulation may be of critical importance 

for the anti-inflammatory and immunometabolic consequences of Fpr2/3 stimulation. Future 

work will therefore expand on whether Fpr2/3 activation has consequential effects on 

metabolic pathways associated with inflammatory modulation, and determine the 

therapeutic relevance of this modulation for neuroinflammatory disease.____---

_______________________________ 

3.5.7. Chapter summary 

Here we show evidence that activation of the pro-resolving receptors Fpr2/3 with specific 

agonists successfully contributes to reversing LPS-induced inflammation in BV-2 microglia. 

Reduced production of pro-inflammatory mediators, ROS, NO and L-lactate alongside 

observable increases in phagocytosis and IL-10 production following Fpr2/3 stimulation all 

support the notion that Fpr2/3 activation can promote a pro-resolving phenotype when 

administered after a microglial inflammatory insult. We also report that Fpr2/3 can reverse 

LPS-induced mitochondrial and NADPH oxidase induced ROS production. This chapter 

thus highlights that FPR2 may be of therapeutic benefit for neurodegenerative diseases 

which have a considerable neuroinflammatory component, but in vivo work will be crucial 

to confirm these phenotypic changes do not only occur in vitro.  
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Figure 3.17 Summary diagram for Chapter 3, detailing the effects of LPS and C43 on 
BV-2 microglia. Mechanism pathways are presented with the dashed arrows and inhibitory 
lines. Solid arrows represent overall changes. Red lines represent LPS stimulated 
responses, whereas green lines represent C43 and Fpr2/3 mediated effects. LPS increased 
both mitochondrial and NADPH oxidase induced ROS production, alongside increasing NO 
and TNFα production, CD pro-inflammatory phenotypic marker expression and NF-κB 
nuclear translocation. C43-induced Fpr2/3 activation was able to reverse these effects, 
alongside upregulating IL-10 production, CD206 expression, and phagocytosis. These 
processes were partly p38 MAPK dependent. 
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 The effects of Fpr2/3 agonists 
and oAβ on ROS Production and 
Metabolism 

4.1. Overview of the Chapter 
 
Despite the central role proposed for Aβ in AD clinical trials targeted towards amyloid 

continue to fail, and have done for over 16 years (Panza et al., 2019). Immunotherapy for 

Aβ specifically targets the accumulation of extracellular plaques, but these may not be 

responsible for driving AD pathology (Benilova et al., 2012; Ferreira et al., 2015; Müller-

Schiffmann et al., 2016; Walsh et al., 2002). This is likely why utilising Aβ immunotherapy 

to remove plaques does not rescue patients from cognitive decline (Holmes et al., 2008; 

Panza et al., 2019). However, Aβ is not only present in plaques, and the role of oligomeric 

forms has not been fully assessed.  

 

Whilst Aβ has been used at high concentrations (5-25 μM) in vitro to activate microglial 

inflammation (Caldeira et al., 2017; Wang et al., 2018), its effects at more 

pathophysiologically appropriate concentrations (Van Helmond et al., 2010) have not been 

investigated. To avoid repeating widely available in vitro research focusing on high 

concentrations of oAβ, this chapter was primed to determine novel findings; how disease 

relevant concentrations of oAβ effect microglial function, alongside understanding whether 

Fpr2/3 agonists can mitigate these actions. In doing so, we will establish the proof-of-

principle for targeting of Fpr2/3 as a potential therapeutic strategy to control microglial 

behaviour in AD. If microglial inflammation could be stimulated by oAβ in our model system, 

then Fpr2/3 may prove to be a beneficial receptor to exploit as a potential therapeutic to 

reduce chronic inflammation and neuronal damage in AD. However, despite not focusing 

on tau pathology in this study, we do emphasise the importance of hyperphosphorylated 

tau in the development and progression of AD, alongside its direct association with 

microglial activation (Hopp et al., 2018; Maphis et al., 2015; Yoshiyama et al., 2007). The 

findings of this Chapter will hopefully provide a proof of concept for the therapeutic efficacy 

for Fpr2/3 agonists in AD research, priming future study looking into the effects of select 

agonists on the primary triad of pathologies associated with the disease: 

neuroinflammation, Aβ aggregation and exacerbated tau hyperphosphorylation.  
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4.2. Aim and hypothesis 
 
We hypothesised that a disease relevant concentration of oAβ would trigger microglial 

inflammation in vitro, and that Fpr2/3 agonists will restore cellular homeostasis. The first 

aim of the chapter was thus to establish the effects of oAβ upon BV-2 microglia. The second 

aim was to confirm whether select Fpr2/3 agonist post-treatment could reverse this oAβ-

induced microglial activation, to highlight the potential of Fpr2/3 as an AD therapeutic.   

4.3. Experimental design 
 
Several different experimental approaches were used to interrogate these hypotheses. This 

included cytokine and nitrite detection, ROS production analysis and antioxidant changes. 

The concentration of oAβ used in this work is representative of measured levels in the brains 

of AD patients post-mortem (Van Helmond et al., 2010), this is markedly lower than 

concentrations used in previous in vitro studies (Caldeira et al., 2017; Wang et al., 2018), 

but may more closely reflect processes occurring at earlier stages in AD that might be more 

amenable to intervention.  

 

Following assessment of inflammatory parameters in BV-2 microglia exposed to oAβ, with 

or without Fpr2/3 ligand treatment, we analysed the metabolic changes that occur in these 

cells, given the increasingly apparent links between metabolism and immunophenotype. 

This included changes in glucose uptake and utilisation, L-lactate production, pentose 

phosphate pathway activity and mitochondrial function. Finally, we assessed the ability of 

Fpr2/3 ligands to exert functional protection against oAβ-induced microglial toxicity through 

the use of co-cultures between BV-2 microglia and differentiated human neuroblastoma 

SH-SY5Y neurones (Figure 2.1 and Figure 2.2).  For experimental timings, oAβ was 

administered 10 min or 1h prior to C43/QC1 for acute assays (2 h or less) or 24 h/48 h 

designs, respectively. Summary designs of different experimental procedures, including 

SH-SY5Y differentiation and co-culturing are presented in Figure 4.1. Different treatment 

designs were determined as previously described in Section 3.3. 

4.4. Results 

4.4.1. oAβ does not affect BV-2 cell cycle or cell viability 
 
Initial studies investigated the potential for oAβ to be directly toxic for microglia, either alone 

or in combination with Fpr2/3 agonist treatment. The effect of oAβ upon cell survival was 

established using a range of pathophysiologically relevant oAβ concentrations (30, 100, 300 

and 1000 nM) as detected by the Prestoblue reagent, with actinomycin D (1 μg/ml) and 

H2O2 (200 μM) treatment used as positive controls. No significant changes in cell survival  
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Figure 4.1 Summary of different experimental protocols in Chapter 4. A; cell viability 
analysis, with 24 h oAβ exposure ± 1 h C43/QC1 post-treatment. B; inflammatory marker 
profiling. oAβ was administered 1 h prior to C43 and QC1. C; expression of phenotypic 
markers in both BV-2 and primary murine microglia, carried out 48 h post-oAβ. D; for 
metabolic phenotype profiling, including phagocytosis capacity and mitochondrial stress 
analysis, cells were treated as for inflammatory marker profiling. E; ROS detection occurred 
every 5 min for 1 h (CM-H2DCFDA) and 1 h (MitoSOX Red). •OH and ONOO- production 
was measured 1 h and H2O2 at 2 h post-oAβ, respectively. F; SH-SY5Y differentiation and 
apoptosis protocol. Cells were plated with trans-retinoic acid (tRA; 10 μM in 1% hiFCS 
DMEM) for 5 days (d1-5), which was replaced with fresh medium on day 3. On day 6, tRA 
media was removed and new 1% FCS DMEM (without tRA) was added before 48 h oAβ 
exposure ± 1 h C43/QC1 post-treatment. 

A 

B 

C 

D 

E 

F 
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were identified for any of the oAβ concentrations tested (Figure 4.2A). As mentioned in 

Chapter 3.4.1, the PrestoBlue reagent cannot readily distinguish between survival and 

proliferation. Thus, cell cycle progression was analysed by flow cytometry with the DNA-

binding tracer DAPI. Confirming preliminary PrestoBlue data, no changes in Sub-G0/G1, 

apoptotic/necrotic cells were observed (Figure 4.2B). Moreover, with the exception of a 

reduction in G2/M phase cells seen with combined oAβ + QC1 treatment, neither oAβ nor 

Fpr2/3 ligands affected BV-2 cell cycle stage distribution (Figure 4.2B and 4.2C). In 

summary, oAβ did not display any microglial toxicity, but Fpr2/3 activation following 

exposure to different toxins may contribute to small shifts in cell cycle progression. 

 

4.4.2. QC1 and oAβ modulate pro-inflammatory markers in primary but not BV-2 
microglia 
 
Initial experiments investigated whether oAβ modulated the production of the soluble 

inflammatory markers nitrite, TNFα and IL-1β, or expression of the surface marker CD40. 

For nitrite, the Griess reagent did not detect any changes at either 6 h or 24 h (data not 

shown). A more sensitive method, 2-3-diaminoaphthalene (DAN), highlighted a small but 

significant increase of NO production compared to untreated cells at 6 h only (Figure 4.3A). 

However, microglia release large quantities of NO when activated, so the importance of this 

in terms of a cellular response is debatable (Hall and Garthwaite, 2009). No differences 

were observed between untreated and oAβ administered cells with regards to TNFα release 

at 24 h, 48 h or 72 h, as measured by ELISA (Figure 4.3B), and IL-1β was non-detectable 

at all times tested (data not shown). No change was observed for CD40 at 24 h (Figure 

4.3C). 

 

Next, the effects of oAβ on isolated primary microglia from wildtype (WT) C57BI/6 mice was 

determined. Unlike BV-2 microglia, at 48 h, oAβ successfully increased the expression of 

the pro-inflammatory marker CD38 in WT cells (Figure 4.4A and 4.4B). Addition of QC1 was 

able to completely reverse this when administered 24 h post-oAβ. This Fpr2/3 ligand was 

also able to increase the expression of CD206, both alone and following oAβ stimulation 

(Figure 4.4C and 4.4D). Importantly, the effects of oAβ and QC1 on CD38 and CD206 were 

completely ablated in primary microglia from Fpr2/3 knockout (KO) mice (Figure 4.4E and 

4.4F), confirming the central role of this receptor in the actions of both compounds upon 

microglia.  

 

4.4.3. C43 but not QC1 increases BV-2 phagocytosis following oAβ insult 
 
Microglia destroy pathogenic material, including bacteria through phagocytosis (Lucin et al., 

2013). The effects of oAβ and Fpr2/3 agonists on BV-2 phagocytic capacity were therefore 

determined at 24 h and 48 h post-oAβ insult. 1 h post-treatment with C43 significantly 
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Figure 4.2 The effects of C43, QC1 and oAβ (100 nM) on BV-2 cell viability and cell 
cycle phase, measured by the PrestoBlue cell viability assay and DAPI flow 
cytometry analysis, respectively. oAβ was administered 1 h prior to Fpr2/3 ligands. 
Measurements are 24 h post-oAβ. A; cell viability at 24 h as measured through cell number, 
compared to untreated. Actinomycin (1 μg/ml) and H2O2 (200 μM) were used as positive 
controls. B; cell cycle analysis at 24 h following oAβ treatment, with 1 h post-addition of 
C43. No significant differences were observed. C; cell cycle analysis at 24 h for oAβ and 
QC1. A significant reduction in the G2/M phase was identified in cells treated with both oAβ 
and QC1. No other changes were observed.  D; representative histogram of DAPI cell cycle 
analysis. Data are means ± SEM. 3-4 independent cultures were used in triplicate. *P < 
0.05. 
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Figure 4.3 The effects of oAβ on inflammatory marker expression in BV-2 microglia. 
A; NO release at 6 h following oAβ insult, as detected with DAN. B; oAβ did not affect TNFα 
release at 24 h, 48 h or 72 h when compared to untreated. C; no difference in CD40 
expression was observed at 24 h post-oAβ, determined by flow cytometry. Data are means 
± SEM of 3-6 independent cultures in triplicate. *P < 0.05. 
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Figure 4.4 The effects of oAβ on CD38 and CD206 inflammatory marker expression 
in primary murine microglia from C57BI/6 wildtype (WT) and Fpr2/3 knockout (KO) 
mice. Measurement times are all post-oAβ. QC1 was administered 24 h after oAβ. A; QC1 
significantly reduced oAβ upregulation of CD38 in WT primary microglia at 48 h, when 
administered 24 h post amyloid. B; representative histogram of WT CD38 expression. C; 
QC1 significantly increased CD206 expression in WT microglia at 48 h, both when 
administered alone and 24 h post-oAβ insult. D; representative histogram tracer for WT 
CD206 expression. E; no difference was observed in CD38 expression in Fpr2/3 KO primary 
microglia following 48 h oAβ treatment. F; no differences were observed for CD206 
expression after 48 h exposure to oAβ in Fpr2/3 KO primary microglia. Data are means ± 
SEM of 3 independent mice. *P < 0.05. 
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increased cellular phagocytosis of E. coli particles at 24 h following oAβ stimulation (Figure 

4.5A), but this effect was lost at 48 h (Figure 4.5B). Conversely, neither QC1 or oAβ 

significantly affected phagocytosis at either 24 h or 48 h (Figure 4.5).----------------------------- 

 

4.4.4. oAβ-Fpr2/3 stimulated ROS production is reversed by QC1 and C43 
 
Production of ROS is a key response of microglia to inflammatory stimuli, primarily as an 

antimicrobial defence (Liu et al., 2010; Spooner and Yilmaz, 2011). However, markers of 

oxidative stress are present in AD (Nunomura et al., 2001), and ROS may be a driver of 

neuronal apoptosis (Zhang et al., 2017). We investigated microglial ROS every 5 min using 

the general ROS production tracer CM-H2DCFDA. ROS was increased after 20 minutes 

exposure to oAβ, remaining higher than untreated throughout the entire 1 h detection time 

(Figure 4.6A). This was successfully reversed by both C43 and QC1, which were 

administered 10 min after oAβ (Figure 4.6B and 4.6C). 

 

Similarly, analysis of H2O2, a product of superoxide dismutase activity (Wang et al., 2018), 

revealed that whilst baseline H2O2 release was undetectable, appreciable quantities were 

released upon 2 h exposure to oAβ, and this was significantly reversed by QC1 treatment 

10 min post-oAβ (Figure 4.6D). As discussed in Section 3.4.7, superoxide and NO can 

combine to produce the highly reactive ROS species ONOO- (Radi, 2018). However, no 

detectable changes in ONOO- were observed for any of the treatment groups after 1 h 

(Figure 4.6E and 4.6F). 

 

To confirm the effects of QC1 were initiated through Fpr2/3 activation, general ROS 

production was again analysed but with the inclusion of WRW4 10 min prior to QC1, which 

successfully blocked the ROS-reducing capacity of this ligand (Figure 4.6G). Interestingly, 

WRW4 also attenuated the ROS producing capabilities of oAβ when administered.  

 

To further determine whether oAβ can elicit microglial responses through Fpr2/3 activation, 

CM-H2DCFDA was used to determine ROS production following 1 h oAβ insult in WT and 

Fpr2/3 KO primary microglia from C57BI/6 mice and examined by flow cytometry. Similarly 

to BV-2 cells, oAβ successfully increased ROS production in WT primary microglia, when 

compared to untreated (Figure 4.7). However, Fpr2/3 KO inhibited ROS production when 

compared to WT. Interestingly, Fpr2/3 KO also appeared to decrease the overall ROS 

produced by primary microglia, as shown by the overall reduced MFI. 
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Figure 4.5 The effects of C43, QC1 and oAβ on BV-2 phagocytic capacity at 24 h and 
48 h post-oAβ. Data are percentages of mean fluorescent intensities normalised to 
untreated cells. Measurements of phagocytosis are determined by cellular engulfment of 
fluorescently labelled E. coli bioparticles. C43 and QC1 were administered 1 h after oAβ. A 
and B; phagocytosis following 24 h administration with oAβ ± C43 or QC1, respectively. C 
and D; phagocytic capacity following 48 h exposure to oAβ ± c43 OR QC1. Data are means 
± SEM of 3-4 independent cultures in triplicate. *P < 0.05. 
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Figure 4.6 The effects of Fpr2/3 stimulation on ROS production in BV-2 microglia. For 
all experiments, C43/QC1 were added to cells 10 min post-oAβ. WRW4 (10 μM) was added 
5 min prior to QC1. Average rate of ROS production was normalised to untreated cells. A; 
ROS production over 1 h for C43, QC1 and oAβ in BV-2 microglia as measured by CM-
H2DCFDA. B and C; ROS gradient percentage values for oAβ and C43 or QC1 
administered BV-2 microglia, respectively. D; H2O2 production after 2 h oAβ exposure, as 
detected by the Promega ROS-Glo assay. QC1 successfully reduced oAβ-induced H2O2 

production. Untreated and cells administered with QC1 alone did not produce detectable 
levels of H2O2. E and F; •OH and ONOO- production at 1 h post oAβ ± C43 or QC1, 
respectively. No significant differences were observed for any of the substances. G; WRW4 
inhibits the anti-oxidative capacity of QC1. WRW4 was also shown to inhibit the ROS 
producing ability of oAβ, as detected with CM-H2DCFDA. WRW4 was added 5 min post-
oAβ. ROS was observed for 1 h and normalised to cells treated with the NADPH oxidase 
inhibitor DPI (10 μM). Data are means ± SEM (n = 3-6 independent cultures). *P < 0.05. 
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Figure 4.7 oAβ-induced ROS production in primary microglia is Fpr2/3 mediated. 
Microglia were isolated from the brains of WT and Fpr2/3 KO C57BI/6 mice and cultured. 
ROS production was detected 1 h post-oAβ stimulation by CM-H2DCFDA and flow 
cytometry. oAβ significantly increased ROS release in primary murine microglia cultured 
from WT mice. However, microglia harvested from Fpr2/3 KO mice did not produce an oAβ-
mediated ROS response. Further, total ROS production in untreated KO cells was 
considerably smaller than that observed in the WT. Data are means ± SEM of three 
independent cultures. Three mice were used per group. *P < 0.05. 
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4.4.5. oAβ induces NADPH oxidase mediated ROS production without affecting 
mitochondrial ROS, a response attenuated by Fpr2/3 stimulation 
 
A major source of cellular ROS is the mitochondria (Finkel and Holbrook, 2000), hence ROS 

production localised to this organelle was determined using the MitoSOX tracer and the 

mitochondrial complex I inhibitor rotenone, as previously described (Section 3.4.7). 

However, no increase in mitochondrial superoxide production was seen with oAβ or QC1 

over treatment times in which CM-H2DCFDA detected a clear ROS response (Figure 4.8A 

and 4.8B).  

 

Previous research has shown that ROS produced by NADPH oxidase may contribute to 

neuronal damage in neurodegenerative disease, including in AD (Ma et al., 2017). Microglial 

NOX2 is therefore a prime candidate to investigate ROS production initiated by oAβ. Thus, 

the induction of ROS production by oAβ was determined with CM-H2DCFDA following 10 

min pre-incubation with the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 1 μM). 

 

oAβ-induced ROS production was sensitive to this NOX2 inhibitor (Figure 4.8C). Supporting 

a role for NADPH oxidase in oAβ-induced ROS production. 5 min pre-treatment with the 

Rac1 inhibitor NSC 23766 (50 μM) also ablated oAβ-induced ROS production (Figure 4.8D). 

Together, these experiments indicate a clear involvement of NADPH oxidase in oAβ-

induced oxidative stress.  

 

Construction of the NADPH oxidase assembly was determined by confocal microscopic 

examination. Compared to untreated cells, oAβ significantly increased the localisation of 

p67phox to the plasma membrane after 30 min exposure, indicating increased 

colocalization with gp91phox (Figure 4.9A). Whilst QC1 had no impact on the localisation 

of these NOX2 components alone, its administration 10 min after oAβ reversed the 

mobilisation of p67phox (Figure 4.9A). This process is shown with a distribution false-colour 

image for p67phox, highlighting more clearly the relative levels of this subunit in different 

cellular locations following drug treatment (Figure 4.9A). This is also shown in the 

orthogonal projects in Figure 4.9B. A false-colour image for both gp91phox and p67phox 

staining highlights co-localisation evident for samples treated with oAβ only (Figure 4.9C).  

 

4.4.6. QC1 and C43 do not modulate antioxidant pathways following oAβ insult 
 
Beyond effects upon NADPH oxidase activity, a component of the anti-ROS effects of 

Fpr2/3 may be due to modification of intracellular antioxidant defences (Vilhardt et al., 

2017). We investigated the effects of Fpr2/3 stimulation upon three key antioxidant systems; 

glutathione, HO-1 and SOD-2. No differences were observed in GSH:GSSG ratio 2 h post-

oAβ addition, nor when QC1 was administered 10 min after oAβ (Figure 4.10A). 
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Figure 4.8 oAβ stimulates NADPH oxidase induced-ROS production in BV-2 microglia 
without stimulating mtROS. QCI was administered 10 min post-oAβ, whilst the NADPH 
oxidase inhibitor DPI (1 μM) and the Rac1 inhibitor NSC 23766 (50 μM) were added 10 min 
prior to oAβ. ROS detection with MitoSOX Red and CM-H2DCFDA was measured every 5 
min for 1 h following oAβ treatment. 1 h rotenone treatment was employed as a positive 
control for mtROS detection. A and B; oAβ failed to induce mtROS production as examined 
using the MitoSOX tracer. C; oAβ induced ROS production, as detected by CM-H2DCFDA, 
was inhibited by DPI. D; ROS induced by oAβ was also inhibited by NSC 23766, as detected 
with CM-H2DCFDA. Data are means ± SEM (n = 3-6 independent cultures). *P < 0.05. 
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Figure 4.9 The effects of oAβ ± QC1 (100 nM) on NADPH oxidase subunit 
colocalization as determined by confocal microscopy. Samples were fixed following 30 
min exposure to oAβ ± 10 min post-treatment of QC1. Cells treated with the secondary 
antibody alone are also shown to display any non-specific binding. A; immunostaining for 
two NOX2 subunits, gp91phox (red), p67phox (green), counterstained with DAPI (blue). 
Treatment with oAβ induced the recruitment of p67phox to the plasma membrane, with QC1 
administration reversing this. The p67phox distribution false-colour images clarifies the 
relative localisation of p67phox under different treatment conditions. QC1 had no effect on 
p67phox or gp91phox alone. Co-localisation has been depicted for oAβ treated cells with 
the white arrows. B; Orthogonal projections of confocal Z-stack images of gp91phox and 
p67 immunostaining. C; false-colour images for gp91phox and p67phox highlights co-
localisation between red and green pixels from A. Scale bar = 10 μm. Images represent 3-
4 independent cultures. Magnification is 63x with an oil immersion lens.  
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Figure 4.10 The relative ratio of reduced to oxidised glutathione peptide (GSH:GSSG) 
and antioxidant enzyme expression in BV-2 microglia. For GSH/GSSG, cells were 
administered with oAβ for 2 h, with QC1 added 10 min post-toxin. For antioxidant enzymes, 
QC1 was added 1 h post-oAβ, with timings for all experiments post-oAβ treatment. A; no 
significant differences were observed in GSH:GSSG ratio after 2 h treatment with oAβ ± 
QC1. B; representative western blot showing HO-1 expression at 6 h, with Ponceau S 
staining used as a loading control. C; HO-1 expression was not affected by either oAβ or 
QC1, at 6 h administration when compared to untreated cells. D; representative western 
blot showing SOD2 expression 24 h post oAβ insult. Ponceau S staining was used as the 
loading control. E and F; the relative expression of SOD2 was not affected by any of the 
treatment groups, showing similar expression levels to untreated BV-2 microglia. Data are 
means ± SEM of 3 independent cultures in triplicate. 
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No consequential changes in either HO-1 or SOD-2 expression were observed (6 h and 24 

h post-oAβ, respectively) for any treatment group, with timings based on previous BV-2 

microglial work (Figure 4.10B-F; Bozic et al., 2015; Kwon et al., 2017).  In summary, Fpr2/3 

ligands can successfully reverse oAβ induced ROS production via preventing NADPH 

oxidase activation, without effecting the GSH, HO-1 or SOD-2 antioxidant defence systems.  

 

4.4.7. oAβ reduces L-lactate production but increases glucose uptake and 
utilisation in microglia  
 
NADPH oxidase activation and ROS production is an energy intensive process; hence we 

examined the impact of oAβ on glucose utilisation and L-lactate production, measuring their 

concentration. Initially, cells were incubated in high glucose media (4.5 g/L) and exposed to 

a range of pathologically relevant concentrations of oAβ (30, 100, 300 or 1000 nM). After 

24 h exposure, oAβ exposure (excluding 100 nM) significantly increased glucose usage 

compared to untreated (Figure 4.11A), without altering L-lactate production (4.11B). 

 

Next, we utilised BV-2 microglia cultured in medium with physiological concentrations of 

glucose (1 g/L; Danaei et al., 2011), and looked at changes in both glucose and L-lactate 

after 24 h and 48 h oAβ (100 nM) exposure ± C43/QC1 1 h post-treatment. Glucose 

utilisation was increased by oAβ at both 24 h and 48 h, with both Fpr2/3 agonists reversing 

this at 48 h (Figure 4.11C and 4.11D). No observable changes were noted for Fpr2/3 ligands 

administered alone. oAβ significantly reduced L-lactate concentration at both 24 h and 48 

h, which neither C43 nor QC1 could rescue (Figure 4.11E and 4.11F). These Fpr2/3 ligands 

had no direct effect on L-lactate production when administered to cells alone (Figure 4.11E 

and 4.11F). In summary, data here suggests that oAβ can significantly reduce glycolysis, 

whilst also increasing glucose utilisation, the latter of which Fpr2/3 ligands can successfully 

reverse.  
 

4.4.8. oAβ reduces basal mitochondrial respiration and ATP production 
 
Following confirmation that oAβ modulates glucose uptake and lactate production, the 

effects of oAβ on glycolysis and mitochondrial function were determined through the use of 

the Agilent Seahorse XF Cell Mito Stress Test. Following 24 h stimulation with oAβ in DMEM 

(1 g/L glucose), mitochondrial respiration was determined, with summary graphs of oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) per minute for each 

treatment group displayed in Figure 4.12A and 4.12B. Both basal respiration and ATP 

production were significantly reduced by 24 h exposure to oAβ, correlating with a reduction 

in proton leak (Figure 4.12C, 4.12D and 4.12E), supporting an overall reduction in 

mitochondrial respiration. However, neither the maximal respiration capacity, spare 

respiratory capacity or coupling efficiency of mitochondria were affected (Figure 4.12F,  
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Figure 4.11 The effects of oAβ on BV-2 glucose utilisation and L-lactate production 
in high glucose (4.5 g/L) and physiological glucose concentration (1 g/L) medium. 
Glucose and L-lactate measurements were made at 24 h and 48 h post-oAβ ± C43/QC1 
(100 nM), administered 1 h after the toxin. Glucose usage and L-lactate production were 
measured by concentration in cellular supernatant, using a YSI 2300 Stat Plus. A; 
concentration-response curve (30, 100, 300 or 1000 nM) of oAβ on glucose concentration  
in high glucose containing medium at 24 h. B; concentration-response curve (30, 100, 300 
or 1000 nM) of oAβ on L-lactate production in high glucose containing medium at 24 h. C 
and D; glucose concentration in physiological glucose containing media at 24 h and 48 h 
post-oAβ. Both C43 and QC1 were able to reverse this, but at 48 h only. E and F; oAβ 
significantly decreased L-lactate production in physiological glucose containing medium at 
both 24 h and 48 h. Neither C43 nor QC1 reversed this. Data are means ± SEM for 3-4 
independent cultures in triplicate. *P < 0.05. 
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Figure 4.12 The effects of 24 h microglial exposure to oAβ on mitochondrial and non-
mitochondrial respiration rate. Addition of QC1 was 1 h post-oAβ. A; a labelled diagram 
of a Agilent seahorse XF Cell Mito Stress Test profile, showing how key parameters of 
mitochondrial function are calculated. B; the oxygen consumption rate (OCR) profile of BV-
2 microglia treated with either oAβ, QC1 or both, alongside that for untreated cells. C; the 
extracellular acidification rate (ECAR) profile for cells treated as described in A. The 
injection points for oligomycin (4 µM), FCCP (0.6 µM) and rotenone with antimycin A (1 µM) 
are included in graphs A and B. D; basal mitochondrial respiration rate was significantly 
reduced by oAβ. E; ATP production was also significantly reduced by oAβ. F; Proton leak 
represents basal respiration not coupled to ATP production. 24 h incubation with oAβ 
significantly reduced mitochondrial proton leak. QC1 did not affect any of these components 
of mitochondrial respiration. G; maximal respiration was unaffected by any of the cellular 
treatments. H; cellular spare respiratory capacity does not change upon cellular treatment 
with oAβ or QC1. I; cellular coupling efficiency for untreated cells was approximately 60% 
but was not affected following oAβ and QC1 treatments. Coupling efficiency is the 
percentage of basal respiration that is used for ATP production. J; administration of oAβ 
significantly reduced basal ECAR, which QC1 reversed towards levels comparable to that 
of untreated cells. K; the rate of non-mitochondrial oxygen consumption was not affected 
by cell treatment. Data are means ± SEM for 3-5 independent cultures in triplicate. *P < 
0.05. 

 

4.12G and 4.12H). Addition of QC1 had no effect on any of these components, either when 

administered alone or 1 h post-oAβ insult (Figure 4.12C-H). oAβ also significantly reduced 

basal ECAR, measured before the serial injection of oligomycin, FCCP and 

rotenone/antimycin A (Figure 4.12I). QC1 was able to significantly reverse this back towards 

untreated levels, suggesting QC1-induced Fpr2/3 activation modulates glycolysis without 

affecting mitochondrial respiration. In addition, whilst ECAR measurements were altered 

upon drug treatment, the overall non-mitochondrial oxygen consumption rate was neither 

affected by oAβ nor QC1 (Figure 4.12J), supporting that other processes are using 

increased oxygen concentrations despite reductions in both mitochondrial and glycolytic 

respiration following oAβ stimulation. 

 
To quantify intracellular rates of glycolytic and oxidative ATP production, data was analysed 

as described previously (Mookerjee et al., 2017). Basal ATP production rates were based 

upon OCR and ECAR prior to serial injections. Maximal ATP production was calculated via 

OCR and ECAR rates following FCCP injection. In comparison to untreated cells, basal oAβ 

treatment reduced ATP production from oxidative phosphorylation (Figure 4.13A), an effect  

reversed by administration of QC1 1 h post-oAβ (Figure 4.13A). However, QC1 had no 

effect when administered alone. No differences were observed for maximal cellular ATP 

production via oxidative mechanisms (Figure 4.13A). Further, basal ATP production from 

glycolysis was reduced by oAβ when compared to untreated cells, but this observation was 

not significant. Despite this, QC1 significantly increased this oAβ-induced reduction to levels 

similar to that of untreated cells (Figure 4.13B). The differences between ATP production 

via both sources is summarised in Figure 4.13C.  
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Figure 4.13 The effects of 24 h exposure of BV-2 microglia to oAβ ± QC1 on ATP 
production via glycolysis and oxidative phosphorylation. QC1 was administered 10 
min-post oAβ. Data shows joules of ATP production. A; ATP production from oxidative 
phosphorylation under basal and maximal respiratory conditions. Values following FCCP 
inclusion were used to determine maximal ATP production. oAβ significantly decreased 
JATP production under basal conditions compared to untreated. QC1 successfully reversed 
this, increasing JATP to levels comparable to untreated cells. No differences were observed 
for maximal ATP production. B; ATP production from glycolysis following cellular treatments 
of oAβ and QC1 compared to untreated under basal conditions. No changes were observed 
compared to untreated, but QC1 significantly increased the oAβ-induced reduction in JATP 
observed. C; comparison of average bioenergetic capacity of ATP production from 
glycolysis and oxidative phosphorylation from A and B. D; the ratio of ATP production from 
oxidative phosphorylation and glycolysis. oAβ significantly reduced this ratio, whilst no other 
changes were observed. Data are means ± SEM of 3-5 independent cultures in triplicate. 
*P < 0.05. 
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The overall ratio of ATP produced via oxidative phosphorylation compared to glycolysis was 

then determined. Following oAβ insult, cellular reliance on oxidative phosphorylation for 

ATP production decreases significantly, due to an almost two-fold reduction in JATP 

production ratio (Figure 4.13D). Therefore, this data supports that oAβ induces a reduction 

in oxidative phosphorylation, ATP production and glycolytic L-lactate production (Figure 

4.12 and 4.13), possibly due to metabolic intermediates being utilised for other cellular 

processes.  

 

4.4.9. QC1 reverses oAβ increased G6PD activity  
 
Activation of NADPH oxidases can only produce superoxide radicals for as long as a supply 

of NADPH is available (Ma et al., 2017). As shown in Figure 4.14A, glucose 6-phosphate 

(G6P) lies at the beginning of two major metabolic pathways: glycolysis and the pentose 

phosphate pathway (PPP; Grant, 2008), which maintains cellular levels of NADPH. Glucose 

6-phosphate dehydrogenase (G6PD) is the rate limiting enzyme in the PPP, and thus the 

primary regulator of the pathway (Grant, 2008). Upregulation of the PPP can therefore divert 

G6P towards NADPH production, meaning less will be available for glycolysis and oxidative 

phosphorylation. It is therefore possible that increased G6PD activity is responsible for the 

reduction in L-lactate and mitochondrial respiration observed following oAβ treatment in 

Sections 4.4.7 and 4.4.8. Further, increases in oAβ-induced glucose utilisation may be due 

to increased cellular demand for NADPH as a consequence of NADPH oxidase activation. 

Thus, to determine whether oAβ-induced ROS production drives NADPH depletion and 

activates the PPP, microglial G6PD activity was determined at 24 h post-oAβ in DMEM 

(1g/L glucose). Stimulation with oAβ significantly increased G6PD activity compared to 

untreated cells (Figure 4.14B). This was reversed by the administration of QC1 1 h post-

oAβ, restoring G6PD activity to that of untreated cells (Figure 4.14B). Treatment with QC1 

alone did not affect G6PD activity, suggesting the reversal of an oAβ triggered process 

rather than a direct effect upon the enzyme.  
 

4.4.10. C43 and QC1 prevent oAβ-induced nuclear translocation of NF-κB  
 
ROS production is known to instigate nuclear translocation of the ubiquitous transcription 

factor NF-κB, particularly H2O2 (Hara-Chikuma et al., 2015; Henríquez-Olguín et al., 2015). 

This ROS species was increased following oAβ addition, but successfully reduced by QC1 

post-treatment (Figure 4.6D). NOX2 activation has been suggested to upregulate NF-κB 

activity (Fan et al., 2017; Li et al., 2018; Vara et al., 2018), which in turn increases the 

transcription of the NOX2 component gp91phox (Anrather et al., 2006; H. Li et al., 2018; 

Mariappan et al., 2010). Despite a lack of inflammation observed in this study, oAβ is well 

established to activate NF-κB (Liu et al., 2015b; Zhao et al., 2018; Zhou et al., 2014), and 
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Figure 4.14 G6PD activity in BV-2 microglia following 24 h insult with oAβ. 
Administration of QC1 was 1 h post-oAβ. A; a simplified diagram representation of the link 
between the pentose phosphate and glycolytic pathways. If glucose 6-phosphate is 
oxidised, it enters the PPP pathway. If it is instead isomerised to fructose 6-phosphate, it 
moves through glycolysis. Diagram adapted from Grant, 2008. B; G6PD activity at 24 h 
following oAβ and QC1 stimulation. Administration of oAβ significantly increased G6PD 
activity compared to untreated cells. QC1 successfully reversed this. However, QC1 had 
no impact on G6PD when administered alone. Abbreviations: 6PG, 6-phosphogluconate; 
6PGD, 6-phosphogluconate dehydrogenase; DHAP, dihydroxyacetone phosphate; G6PD, 
glucose 6-phosphate dehydrogenase; NADP+, nicotinamide adenine dinucleotide 
phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; P, phosphate; 
R5P, ribulose 5-phosphate; TPI, triosephosphate isomerase. Data are means ± SEM for 3-
4 independent cultures in triplicate. *P < 0.05. 
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chronic oAβ-induced microglial ROS production may be responsible for NF-κB-triggered 

neuroinflammation observed in AD (Heneka et al., 2015; Hou et al., 2017; Qin and Crews, 

2012). Because of this, we immunofluorescently examined whether oAβ-induced NOX2 

activation increases NF-κB nuclear translocation following 30 min oAβ stimulation ± 

C43/QC1 10 min post-treatment. Cells were fixed with 2% formaldehyde, stained for NF-κB 

and counterstained for DAPI, respectively. It was identified that oAβ successfully stimulated 

the nuclear translocation of NF-κB, which is most clearly highlighted in the false-colour 

distribution images in Figure 4.15. More interestingly, both C43 and QC1 successfully 

reversed oAβ-induced NF-κB nuclear translocation, as highlighted by the lack of preferential 

nuclear distribution observed when compared to cells treated with oAβ alone (Figure 4.15). 

This links with the successful prevention of NADPH activation and reduction in H2O2 

observed following Fpr2/3 activation.  
 

4.4.11. QC1 protects differentiated SH-SY5Y cells from oAβ-induced apoptosis in a 
BV-2 microglial co-culture system 
 
Microglial ROS production causes neuronal dysfunction (Sorce et al., 2017), likely through 

direct oxidative damage (Wu et al., 2012; Yauger et al., 2019). To determine whether oAβ-

induced NADPH oxidase activation and metabolic modulation could lead to apoptosis of 

neuronal-like cultures in vitro, human derived SH-SY5Y neuroblastoma cells were co-

cultured with BV-2 microglia. SH-SY5Y cells were initially differentiated with tRA for 5 days 

(Kovalevich and Langford, 2013). Next, differentiated cells were analysed to determine the 

expression of both CD200 and FPR2, with cells expected to express the former, which is a 

neuronal marker, but not the latter due to no literature being available to support FPR2 

expression on neurones; this was determined to be the case (Figure 4.16A and 4.16B).  
 

Initial experiments determined that exposure of SH-SY5Y cells to oAβ for 48 h had no effect 

on cell survival, with or without cell differentiation (Figure 4.16). For co-culture experiments, 

SH-SY5Y cells were isolated using CD200 and the microglial marker CD11b (Figure 17A). 

Interestingly, in the presence of BV-2 cells, differentiated SH-SY5Y cells displayed a 

significant increase in apoptosis following 48 h oAβ treatment compared to untreated cells 

(Figure 4.17B). QC1 administered 1 h post-oAβ successfully reversed this, but QC1 did not 

elicit any effects on SH-SY5Y apoptosis when administered alone (Figure 4.17B). To 

understand whether microglia have to be present for increased neuronal apoptosis, SH-

SY5Y cells in single culture were treated for 48 h with conditioned medium from BV-2 

microglia exposed to oAβ for 24 h. Interestingly, SH-SY5Y cells did not undergo apoptosis 

under this protocol (Figure 4.17C), suggested that microglia have to be present to facilitate 

oAβ-induced apoptosis. 
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Figure 4.15 The effects of oAβ, C43 and QC1 on the cellular distribution of NF-κB. 
Cells were treated with oAβ for 30 minutes before being fixed. C43 or QC1 were added 10 
minutes after oAβ. Cells were stained for NF-κB (red) and counterstained with DAPI (blue). 
Staining for NF-κB secondary antibody alone is also shown to identify any non-specific 
antibody binding. Unlike C43 and QC1, oAβ resulted in the nuclear translocation of NF-κB, 
which is highlighted most clearly in the NF-κB false-colour distribution images. C43 and 
QC1 both successfully prevented this process. For NF-kB distribution images, white/yellow 
and dark blue/purple represent high and low expression, respectively. Scale bar = 10 μm. 
Images represent 3 independent cultures. 
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Figure 4.16 Apoptosis of naïve and differentiated SH-SY5Y cells in single culture, as 
determined with flow cytometry. All measurements are 24 h or 48 h post-oAβ exposure. 
A and B; differentiated SH-SY5Y expression of CD200 and FPR2, respectively. Median 
fluorescence intensity was compared against unstained and secondary antibody alone 
(FPR2 only). C; exposure to oAβ for 24 h and 48 h did not stimulate apoptosis in naïve SH-
SY5Y cells in single culture. D; 48 h treatment with oAβ did not result in apoptosis of 
differentiated SH-SY5Y cells. Data presented are means ± SEM (n = 3-6 independent 
cultures in triplicate. 
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Figure 4.17 SH-SY5Y apoptosis analysis in co-culture with BV-2 microglia. Microglia 
were added to 5-day differentiated SH-SY5Y cells, and co-cultures were administered with 
oAβ the following day, with apoptosis of SH-SY5Y cells determined via flow cytometry at 48 
hour post-oAβ. Addition of QC1 and L-Lactate was 1 h after oAβ. Cells were separated for 
analysis with fluorescently conjugated rat monoclonal CD200 (PerCP/Cy5.5) and rat 
monoclonal CD11b (APC) antibodies, markers for neurones and microglia, respectively. For 
ROS detection in SH-SY5Y cells, oAβ was administered 10 min prior to QC1. ROS was 
then measured every 5 min for 1 h. A; cell gating for SH-SY5Y isolation on a logarithmic 
scale. B; oAβ increased SH-SY5Y apoptosis following 48 h exposure. QC1 significantly 
reversed this effect but facilitated no change when administered alone. C; pre-conditioned 
media from microglia exposed to oAβ for 24 h failed to increase cellular apoptosis of 
differentiated SH-SY5Y cells following 48 h culturing. D; L-lactate (100 μM) failed to protect 
differentiated SH-SY5Y cells from oAβ-induced apoptosis in co-culture at 48 h. E; exposure 
of single culture differentiated SH-SY5Y cells to oAβ for 1 h did not increase cellular ROS 
production when compared to untreated cells. QC1 also failed to elicit an effect when 
administered 10 min post-oAβ. F; bar graph representation of the different ROS gradients 
represented in E. Data presented are means ± SEM of 3-6 independent cultures in triplicate. 
*P < 0.05. 
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Interstitial lactate is known to be present in the brain despite there being adequate oxygen 

availability, a phenomenon which occurs through aerobic glycolysis. Astrocytes are known 

to harvest a reservoir of L-lactate (Sotelo-Hitschfeld et al., 2015), acting as a neuronal 

supply for this organic compound, in a process coined the ‘astrocyte-to-neuron lactate 

shuttle’, releasing it into the extracellular space, before being subsequently taken up by 

neurones to be used as an energy substrate (Choi et al., 2012; Mächler et al., 2016). In 

vivo, neurones prefer to utilise lactate over glucose (Fünfschilling et al., 2012; Wyss et al., 

2011). As a consequence of oAβ reducing L-lactate concentration in single cultured BV-2 

cells, the effects of administrating additional L-lactate (100 μM) on apoptosis was also 

sought, but this did not inhibit the apoptotic ability of oAβ (Figure 4.17D). Analysis of ROS 

using CM-H2DCFDA did however confirm that oAβ does not upregulate ROS in 

differentiated SH-SY5Y single culture (Figure 4.17E and 4.17F), implicating increased 

phagocytosis and microglial ROS production in the apoptosis of this neuronal-like cell line 

in BV-2 co-culture.  

4.5. Discussion 
 
The amyloid hypothesis of AD was first proposed in 1992 (Hardy and Higgins, 1992). Work 

published later emphasised the importance of Aβ accumulation in the progressive 

neurodegeneration that characterises this disease (Bernstein et al., 2009; Busciglio et al., 

1995; Mawuenyega et al., 2010). Despite this, therapeutics targeted towards Aβ continue 

to fail in a clinical setting (Panza et al., 2019). This is also true for tau (Gauthier et al., 2016), 

the other primary pathological feature of AD (Shi et al., 2017). Following these consistent 

failures, disease focus has shifted towards a previously ignored pathological candidate: the 

immune response. Multiple research groups have deciphered which genes and 

polymorphisms are associated with an increased LOAD risk, many of which have central 

roles in the innate immune system (Jansen et al., 2019; Kunkle et al., 2019; Yokoyama et 

al., 2016). Deciphering cellular communication patterns alongside microglial-Aβ/tau 

pathological mechanisms is therefore crucial. 

 
 

Many chronic disorders are associated with an overactive and uncontrolled inflammatory 

response, including periodontitis (Kinane et al., 2017) and T2DM (Donath and Shoelson, 

2011), both of which increase AD risk (Leira et al., 2017; Moreno-Gonzalez et al., 2017). 

Peripheral inflammation in midlife is associated with increased cognitive decline over a 20-

year period (Walker et al., 2019), suggesting that pre-clinical inflammation hold importance 

in the development of disease symptoms.  

 

The link between peripheral inflammatory and metabolic diseases and AD risk is likely 

associated with the metabolic control of immune cells, referred to as immunometabolism 
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(O’Neill et al., 2016). As discussed in Chapter 3, pro-inflammatory innate cells such as 

microglia adopt a metabolic profile reliant on glycolysis, whilst pro-resolving cells harness 

oxidative phosphorylation (O’Neill and Pearce, 2016; Orihuela et al., 2016; Stienstra et al., 

2017). This shift towards glycolysis is important for the production of intermediates utilised 

for inflammatory mediator synthesis, many of which are not produced by the Krebs cycle 

(Ganeshan and Chawla, 2014). This may explain why we observed pro-inflammatory 

mediator release in Chapter 3, but not in this Chapter. In our previous study, LPS treatment 

resulted in the increase in L-lactate production, an indirect measure of glycolysis. At the 

same time, multiple markers of neuroinflammation were also increased. However, here we 

provide evidence that oAβ exposure reduces L-lactate production and glycolysis, whilst no 

inflammatory response was observed, further supporting the importance of the microglial 

metabolic profile in facilitating an inflammatory response.  

 

In AD, a chronic neuroinflammatory environment manifests (Heneka et al., 2015). We 

propose that this is associated with an unresolved neuroinflammatory response, perhaps 

initiated by unresolved ROS production, leading to long-lasting glycolytic reliance of 

microglia and continual inflammatory damage.  Due to the inefficiency of ATP production 

by glycolysis, the microglial demand for glucose would likely increase, facilitated by 

augmented glucose uptake (Wang et al., 2019). Here we observe increased microglial 

glucose demand following oAβ treatment.  

 

In vitro studies have shown that high concentrations of Aβ (2-25 μM) can activate microglial 

inflammation (Caldeira et al., 2017; Liu et al., 2015; Urrutia et al., 2017; Wang et al., 2018; 

Yang et al., 2017). However, the effects of pathophysiological relevant concentrations of Aβ 

(Van Helmond et al., 2010) have not been investigated. In our study, we have used a 

concentration of oAβ based on AD patient brain autopsy data (Van Helmond et al., 2010), 

and wanted to determine whether Fpr2/3 stimulation could modulate the effects manifested 

by microglial oAβ exposure. 

 

In Chapter 3, we underlined the importance of murine Fpr2/3 and human FPR2 receptors 

in the resolution of inflammation (Sadani N Cooray et al., 2013; Gobbetti et al., 2014; 

McArthur et al., 2015; Vital et al., 2016). Previous research has highlighted that several 

endogenous FPR2 ligands are expressed in the brain (Bisicchia et al., 2018; McArthur et 

al., 2010; Wang et al., 2015), but become significantly reduced in AD patients (Wang et al., 

2015). In this Chapter, we hypothesised that pharmacological activation of Fpr2/3 post-oAβ 

administration would successfully reverse microglial inflammation, protecting neurones 

from apoptosis. This would potentiate interest in human FPR2 as a neuroinflammatory 

therapeutic target for AD. 

 



 165 

4.5.1. Treatment with oAβ facilitates ROS production without triggering an 
inflammatory response 
 
Chronic neuroinflammation is a central pathology in the progression of AD (Heneka et al., 

2015; Hong et al., 2016; Yin et al., 2017), with increased pro-inflammatory cytokine levels 

measured in both the CSF and blood of patients (Brosseron et al., 2014; Popp et al., 2017). 

The reason often proposed for inflammatory involvement associates with continual oAβ 

stimulation of microglia, alongside unsuccessful removal of these toxic peptides (Ferretti et 

al., 2012; Yin et al., 2017). This supports why reduced function variants of TREM2 are 

associated with an increased risk of AD development in patients (Guerreiro et al., 2013; 

Jonsson et al., 2013; Sims et al., 2017). However, oxidative stress is the more immediate 

response, with ROS species often produced within seconds (Granger and Kvietys, 2015) 

compared to cytokines and other inflammatory mediators which undergo transcription 

(Newton and Dixit, 2012; Shih et al., 2015). Further, as ROS production has been proposed 

to act as second messengers for pro-inflammatory cytokine responses (Bordt and Polster, 

2014; Choi et al., 2012; Haddad and Land, 2002), wherein it regulates the inflammatory 

response (Latz et al., 2013; Singel and Segal, 2016), ROS production associated with 

microglial activation might be a central confounding factor in the progression of oxidative 

damage and neurodegeneration. This idea is something we want to emphasise, especially 

when carrying out in vitro work. We highlight that treatment with a pathologically relevant 

concentration of oAβ (Van Helmond et al., 2010) can stimulate microglial ROS production 

without the initiation of an inflammatory response. We propose that oAβ-microglial-ROS 

communication may be a primary instigator associated with microglial dysfunction, but this 

also underlines the importance of using appropriate concentrations of Aβ for in vitro 

neuroinflammatory research. Multiple groups have published data highlighting the 

neuroinflammatory effects of Aβ exposure to microglia, but the concentration is often up to 

250 times higher than observed in AD patients (Caldeira et al., 2017; Liu et al., 2015; Urrutia 

et al., 2017; Van Helmond et al., 2010; Wang et al., 2018; Yang et al., 2017). 

 

As discussed in Chapter 3, ROS are an essential component of the immune response, 

destroying invading pathogens (Paiva and Bozza, 2014; Winterbourn and Kettle, 2013). 

The destructive nature of ROS supports our notion that when pathologically produced, it 

can consequentially result in extensive endogenous damage. Support for this is widespread 

in AD, with oxidative markers identified to increase in a disease-dependent manner, 

correlating with patient MMSE scores (Ansari and Scheff, 2010), with even oxidative 

biomarkers observed in the CSF of patients before clinical AD manifests (Di Domenico et 

al., 2016). It is not surprising then that ROS production and oxidative damage has been 

proposed to be one of the earliest events in the disease (Nunomura et al., 2001). In animal 

studies, knockout of one allele of SOD-2 significantly increased brain Aβ levels and plaque 

burden in Tg19959 mice (Li et al., 2004), whilst mitochondrially targeted catalase, an 
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antioxidant which catalyses the decomposition of H2O2 to water and oxygen, was shown to 

reduce brain levels of Aβ, BACE1, APP and oxidative DNA damage in AβPP mice, 

increasing their life span (Mao et al., 2012).  

 

In Chapter 3, we discussed our novel finding that Fpr2/3 stimulation can successfully 

reverse ROS production by the well-established potent inflammogen, LPS. In this Chapter 

we present original data underlining that Fpr2/3 agonist post-treatment can significantly 

reverse oAβ-induced microglial ROS production in the absence of an inflammatory 

response. This occurred without any modulation of the antioxidant systems glutathione, HO-

1 or SOD-2.  Previous pre-clinical data has emphasised that neurones excrete Aβ as a 

consequence of aging, whereby peroxynitrite and HNE associated lipid peroxidation could 

increase the amyloidogenic activity of γ-secretase, increasing Aβ1-42 production (Guix et al., 

2012; Gwon et al., 2012). In our study, we identified that Aβ could stimulate superoxide 

induction in the absence of NO. Because both of these oxidative species are required to 

form peroxynitrite, the absence of this latter cytotoxic oxidative species is unsurprising. 

However, iNOS expression has been shown to increase microglial activation in AD-like mice 

(Nathan et al., 2005), alongside being upregulated in human AD brain (Lüth et al., 2001); 

so the potential importance of this reactive species in disease progression cannot be 

ignored. Further, despite not providing evidence to suggest that Fpr2/3 stimulation 

modulates iNOS expression, we have shown that specified ligands can significantly reduce 

NO production (Chapter 3). We therefore suggest that modulation of this receptor could 

potentially decrease peroxynitrite production via the direct prevention of both NO and 

superoxide production.  

 

The production of ROS has long been proposed to be associated with oAβ pathology 

(Giraldo et al., 2014; Han et al., 2015; Huang et al., 1999; Ojala and Sutinen, 2017; 

Wilkinson et al., 2012), appearing to contribute towards further Aβ deposition and memory 

deficits (Hernández-Zimbrón and Rivas-Arancibia, 2015; Kanamaru et al., 2015). This is 

likely why a diet high in antioxidants may reduce AD risk (Berti et al., 2018; Gu et al., 2010; 

Singh et al., 2014). Fpr2/3 stimulation may also contribute to this through not only the ability 

to reduce ROS production, but also indirectly prevent further ROS-associated 

amyloidogenic APP processing and Aβ production.   

 

4.5.2. Aβ-induced ROS production via NADPH oxidase and the PPP pathway is 
reversed by Fpr2/3 stimulation 
 
Here we provide the novel findings that Fpr2/3 activation can successfully reverse oAβ-

induced ROS production by inhibiting activation of NADPH oxidase; likely due to the 

inhibition of co-localisation between NADPH subunits p67phox and gp91phox. When active, 

cytosolic regulatory components of the enzyme including p67phox and the small GTPase 
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Rac1 translocate to the membrane bound gp91phox complex, which is necessary for 

NADPH oxidase activation (Haslund-Vinding et al., 2017). Fpr2/3 activation reverses this 

translocation when administered after oAβ exposure. Whether Rac1 is modulated to 

prevent NADPH oxidase activation needs further elucidation. Previous research in our 

group highlighted that Fpr2/3 can signal through this GTPase (Cristante et al., 2013; 

McArthur et al., 2015), but because oAβ can signal through Rac1 to activate NADPH 

oxidase (Wyssenbach et al., 2016), some of the effects of Fpr2/3 stimulation on NADPH 

oxidase are difficult to interpret. However, AnxA1 can signal through ROCK and RhoA via 

Fpr2/3 (McArthur et al., 2009; Purvis et al., 2019), a signalling pathway which negatively 

regulates Rac1 (Byrne et al., 2016). Thus, further research into Fpr2/3-RhoA/Rac1 

mediated NADPH oxidase modulation is warranted. However, we did not observe Aβ-

induced mtROS production, despite this occurring in neurones (Du et al., 2008; SanMartín 

et al., 2017). Thus, our data emphasises that in microglia, Aβ-induced ROS production may 

primarily be associated with NADPH oxidases. 

 

Free radicals are widely recognised to activate NF-κB (Dornas et al., 2017; Ndengele et al., 

2005), with particular emphasis on H2O2 (Hara-Chikuma et al., 2015; Henríquez-Olguín et 

al., 2015; Ho et al., 2011), which may upregulate the transcription of several NF-κB-

dependent pro-inflammatory genes (de Oliveira-Marques et al., 2007). Here we underline 

that oAβ-induced H2O2 production, likely spontaneously from NADPH oxidase produced 

superoxide (Mander et al., 2006), was significantly reduced by Fpr2/3 stimulation. 

Interestingly, oAβ exposure induced NF-κB nuclear translocation, with Fpr2/3 successfully 

reversing this, all in the absence of an inflammatory response. We suggest that NADPH 

oxidase activation may be important for a microglial priming response. It has been proposed 

that microglia respond to both peripheral and CNS damage by adopting an activated state, 

a process referred to as cellular priming (Perry and Holmes, 2014; Wendeln et al., 2018). 

Remaining in this relatively active phenotypic state, microglial exposure to a secondary 

inflammatory stimulus at a later point results in an exaggerated inflammatory response not 

seen in stimulus-naïve microglia. This priming effect has been linked to neurodegenerative 

disease development, including AD (Li et al., 2018). However, it is unlikely that an in vitro 

model will appropriately recapture in vivo priming mechanisms. Thus, our observations only 

provide a potential insight into this proposed process, with further elucidation warranted.  

 

Activation of NADPH oxidase is an energy intensive process, wherein G6PD activity is 

central for NADPH formation and consequent superoxide production (Haslund-Vinding et 

al., 2017; Wang et al., 2014). G6PD is also the rate-limiting enzyme for the PPP (Grant, 

2008). Thus, we propose that G6PD activation increases NADPH production to fuel NADPH 

oxidase function associated with oAβ stimulation. Our data supports this, with oAβ 

increasing the activity of G6PD. Strikingly, this increased activity was reversed by Fpr2/3 

stimulation post-oAβ. Work in mice highlights that activation of the PPP can stimulate 
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macrophage ROS production and cytokine secretion (Baardman et al., 2018), emphasising 

that this pathway may be an primary perpetrator associated with induction of the microglial 

inflammatory response seen in AD. However, we did not observe an inflammatory response 

here. As previously mentioned, NADPH oxidase activation may be responsible for a 

microglial priming response for exacerbated neuroinflammation, and previous work 

supports this, wherein murine deficiency of p47phox and gp91phox promoted a pro-

resolving microglial phenotype in response to Aβ challenge (Choi et al., 2012). However, 

cellular priming is difficult to model in vitro. Nevertheless, Fpr2/3 stimulation is a promising 

therapeutic target to modulate both NADPH oxidase induced ROS production and G6PD 

activity in microglia. 

 

4.5.3. Fpr2/3 activation can modulate metabolic changes associated with G6PD 
activation 
 
G6PD has knock-on consequences for microglial metabolism. G6P lies at the beginning of 

two major metabolic pathways: glycolysis and the PPP (Grant, 2008). The activation of the 

PPP pathway results in less glucose being available for glycolysis. Interestingly, aerobic 

glycolysis correlates with memory performance in WT but not APP/PS1 mice (Harris et al., 

2016), suggesting that glycolysis may link to the manifestation of clinical symptoms in AD. 

Lactate shuttled to neurones induces the expression of genes associates with synaptic 

plasticity, alongside being required for long-term memory formation (Suzuki et al., 2011; 

Yang et al., 2014). Thus, early stage disease may result in reduced glycolysis and 

impairment of these processes. However, in APP/PS1 mice, inflammatory microglia are 

primarily glycolytic (Holland et al., 2018), emphasising a biphasic metabolic response may 

occur during disease progression, with glycolysis only being upregulated upon the onset of 

neuroinflammation. Data therefore suggests a double-edged role exists for microglia 

glycolysis, despite the current lack of human data establishing temporal progression of 

microglial metabolic changes. Nevertheless, determination of serum metabolomic profiles 

showed upregulation of the PPP in patients who later progressed to AD (Orešič et al., 2011), 

arguing that this metabolic pathway may have a critical role in the early stages of disease 

manifestation. Data provided here supports that Fpr2/3 stimulation can reverse oAβ-

induced reduction of glycolysis, returning levels to that of untreated cells, likely due to the 

downregulation of ROS production and the PPP. 

 

The reduction of glycolysis can also diminish pyruvate production, thus decreasing the 

Krebs cycle and oxidative phosphorylation (Compan et al., 2015; O’Neill et al., 2016). In 

microglia, reduced oxidative phosphorylation is associated with the development of a pro-

inflammatory phenotype (Holland et al., 2018; Orihuela et al., 2016). However, here we 

identify that oAβ can significantly reduce mitochondrial respiration and ATP production in 

the absence of inflammation, again suggesting that this metabolic shift may act as a priming 
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response to initiate microglial inflammation associated with extended exposure to oAβ. 

However, our study uses an acute in vitro model, and thus this assumption must be further 

quantified. Nevertheless, these findings may be of particular relevance for pathological 

pathways associated with AD (Felsky et al., 2019). This shines a light on the importance of 

glucose hypometabolism, which is observed in the brains of AD patients, and correlates 

with Aβ pathology (Pascoal et al., 2019). Thus, the Fpr2/3 initiated reversal of Aβ-induced 

NADPH oxidase and G6PD activation alongside glycolysis reduction may have far reaching 

benefits for AD which require further investigation. However, Whilst Fpr2/3 stimulation by 

QC1 did not significantly alter mitochondrial metabolism, a trend in the reduction of maximal 

respiratory capacity was observed, and thus further experimentation into the mitochondrial 

effects of Fpr2/3 stimulation may be warranted. Nevertheless, we display novel microglial 

metabolic effects of both oAβ and Fpr2/3 stimulation, wherein the latter may hold promise 

to modulate metabolism and oxidative stress before the initiation of an oAβ-induced 

microglial inflammatory phenotypic switch, touted to be essential for disease progression 

(Serrano-Pozo et al., 2013).  

 

4.5.4. Microglial activation is the key perpetrator of neuronal death 
 
Considerable support exists underpinning the importance of neuroinflammation in AD 

progression (Felsky et al., 2019; Guerreiro et al., 2013; Heneka et al., 2015; Shi and 

Holtzman, 2018; Yin et al., 2017), with microglia established to contribute towards both 

direct and indirect neuronal death (Floden et al., 2005; Liddelow et al., 2017; Park et al., 

2018; Yun et al., 2018). Whilst we observed no signs of oAβ-induced microglial 

inflammation in our study, previous work supports a link between oxidative stress, myelin 

and synaptic damage and consequent axonopathy in motor neurones (Fischer et al., 2012). 

Failed CNS myelin generation is also prevented by necroptosis of pro-inflammatory 

microglia, preceded by the repopulation of pro-regenerative microglia (Lloyd et al., 2019). 

In addition, neurone death can be both ROS and microglial phagocytosis mediated (Floden 

et al., 2005; Neher et al., 2011). Here we provide evidence that oAβ-induced apoptosis of 

differentiated SH-SY5Y cells is mediated through microglial activation, in the absence of an 

inflammatory response. This observation appears to be due to direct microglial-SH-SY5Y 

communication, because co-culturing is essential for this apoptotic effect, with microglial 

conditioned medium exposed to oAβ having no effect on cellular apoptosis. We report for 

the first time that microglial Fpr2/3 stimulation can successfully prevent neuronal apoptosis 

induced by oAβ. Alongside this, Fpr2/3 activation elicits wide-ranging pro-resolving and 

protective effects, including well established pro-resolving inflammatory functions (Bisicchia 

et al., 2018; Gobbetti et al., 2014; McArthur et al., 2018), and the newly reported anti-oxidant 

and metabolic modulation functions. Thus, pharmacological supplementation to modulate 

Fpr2/3 may yet provide therapeutic efficacy through a multi-pronged mechanistic approach. 
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Previous research reports that oAβ elicited direct neuronal toxicity (Akhter et al., 2018; 

Guivernau et al., 2016; Izuo et al., 2013; Tanokashira et al., 2017; Xing et al., 2013), but 

the concentration administered in these studies ranged from 10 to 1,000 times higher than 

that observed in human AD brain (Van Helmond et al., 2010). Additionally, several of these 

studies analysed neuronal toxicity through the MTT assay (Guivernau et al., 2016; Izuo et 

al., 2013), which measures metabolic activity. As we show here, oAβ can significantly 

reduce microglial metabolism without inducing toxicity, suggesting these studies may be 

reporting changes in neuronal metabolic profile rather than cellular damage. It is therefore 

crucial that appropriate oAβ concentrations are selected for in vitro study to represent 

cellular responses likely to occur in clinical disease. However, as a result of the data 

presented here, we suggest that Fpr2/3 stimulation may hold substantial promise to help 

reduce ROS production, microglial inflammation and neuronal death if administered during 

early in vivo stages of disease. 

 

4.5.5. Experimental limitations and improvements 
 
The novel data presented here underline that Fpr2/3 activation can prevent microglial 

induced SH-SY5Y apoptosis associated with oAβ stimulation. Limitations of the study do 

exist, however. Firstly, this study was carried out in vitro. Whilst the data presented here 

provide novel insights into the functions of Fpr2/3 following oAβ insult, the importance of 

determining whether this pro-resolving receptor can prevent neuronal apoptosis in vivo is 

paramount. This will elucidate whether therapeutics designed towards Fpr2/3 hold promise 

for neurodegenerative disease research going forward. Second, it is important to note that 

BV-2 microglia and SH-SY5Y are from murine and human origin, respectively. The use of 

the newly identified and ATCC verified human microglial HMC3 cell line will be important 

for future clarification of our murine observations (Dello Russo et al., 2018). We also 

proposed that Fpr2/3 stimulation directly prevents the activation of NADPH oxidase, thus 

reversing the production of ROS species such as superoxide and H2O2. Whilst we identified 

that Fpr2/3 stimulation did not affect the antioxidant systems GSH, HO-1 or SOD-2, the 

effects on other antioxidant systems such as catalase, thioredoxins, peroxiredoxins and 

Nrf2 (Vilhardt et al., 2017) were not determined and need to be considered going forward. 

For any AD research, it is important to consider that tau pathology correlates with dementia 

status (Brier et al., 2016). Differentiated SH-SY5Y cells can express phosphorylated tau 

under certain conditions (Greco et al., 2009; Majd et al., 2018), thus it could be possible 

that microglial ROS production is associated with SH-SY5Y tau pathology. Whilst no visually 

observable changes were noted in the neuronal processes of differentiated SH-SY5Y cells, 

this does not necessarily mean intracellular pathology has not accumulated. 

 



 171 

Despite the co-culture studies providing a means for microglial-neuronal communication, 

astrocytes were not included here. Because microglia can stimulate astrocytic neurotoxicity 

and inflammation (Kirkley et al., 2017; Liddelow et al., 2017), alongside oAβ inducing direct 

pro-oxidant and pro-inflammatory astrocytic responses (Urrutia et al., 2017; Wang et al., 

2013), astrocytes may contribute to oAβ-induced neuronal apoptosis. It is therefore 

important to determine whether Fpr2/3 stimulation can still protect neurones from apoptosis 

in the presence of an astrocytic response. However, because no evidence suggests Fpr2/3 

is expressed in astrocytes (He and Ye, 2017), any astrocytic changes will likely be mediated 

indirectly via microglial Fpr2/3 activation. A triple culture incorporating both glial cells and 

neurones is therefore warranted. In addition to 2D tri-culture systems, advanced 3D human 

triculture systems are now available, which recapitulate intracellular interactions, Aβ and 

tau pathology, neuroinflammation and neurotoxicity (Park et al., 2018). Brain-slice cultures 

would be a greater advancement to determine the cell-cell communication effects ex-vivo 

on neuronal apoptosis following oAβ treatment and Fpr2/3 activation.  

 

The data here also shows that oAβ reduces microglial oxidative phosphorylation. However, 

the effects of oAβ-induced microglial modulation on SH-SY5Y was not determined. This 

was primarily due to the fact that SH-SY5Y cells are of neuroblastoma origin. Due to 

variations in metabolism associated with cancer cells (Vander Heiden et al., 2009), shifts in 

SH-SY5Y metabolic profiles may not represent that present in neurones. This further 

emphasises the importance to determine the effects of microglial Fpr2/3 activation on the 

apoptosis of primary neurones exposed to oAβ. 

 

4.5.6. Future work 
 
Alongside the pro-resolving effects of Fpr2/3 stimulation in Chapter 3, the novel data 

provided here suggest that modulation of these receptors may become a new therapeutic 

approach in AD research. Despite this, further work establishing the roles of Fpr2/3 in AD 

models is critical. An important point to note is that mature SH-SY5Y cells are known to 

express synaptic related proteins, including post-synaptic material 95 and synaptophysin 

(Chamniansawat and Chongthammakun, 2009; Oe et al., 2005). Because microglia have 

important roles in both synaptic pruning and plasticity (Paolicelli et al., 2011; Salter and 

Beggs, 2014), it would be interesting to determine whether oAβ treatment and Fpr2/3 

activation modulate the expression of these proteins, alongside analysing how this may 

relate to the physical appearance of the neuritic structures which develop in these mature 

cells. Fpr2/3-mediated modulation to these proteins would suggest that this pro-resolving 

pathway may have an important role in the synapse, potentially implicating Fpr2/3 in 

microglial mediated pruning and synaptic plasticity. In addition, the effects of Fpr2/3 

stimulation on synaptic transmission could be determined via electrophysiological analysis 
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in primary neurones (Gu et al., 2016), potentially facilitating interest as to whether Fpr2/3 

activation can conserve neuronal communication. LTP of hippocampal neurones both in 

vitro (Gartner and Staiger, 2002) and in hippocampal brain slices (Paci et al., 2017) could 

also provide insights as to whether microglial Fpr2/3 modulation could have knock-on 

consequences for memory, providing further justification for in vivo work. 

 

Whilst we looked at the ability of microglia to phagocytosis E.coli bioparticles, this does not 

provide any indication as to whether Fpr2/3 stimulation with C43/QC1 can contribute 

towards phagocytosis of oAβ. Previous research shows that AnxA1 induced Fpr2/3 

stimulation can increase Aβ clearance and degradation via microglial phagocytosis and 

neprilysin activity in N2a neuronal cells (Ries et al., 2016). Future work could investigate 

this via incorporating fluorescently labelled oAβ (Pan et al., 2011), similar to the BODIPY 

FL labelled bioparticles used in our study. However, because microglia express a range of 

oAβ degrading proteases including neprilysin (Ries and Sastre, 2016), determining whether 

Fpr2/3 stimulation can modulate the activity of these will be of particular interest to combat 

Aβ accumulation in early stage disease.  

 

Because our data suggests that oAβ-induced ROS production is Fpr2/3 mediated, further 

studies are required to determine whether modulation of Rac1 recruitment between oAβ 

and pro-resolving ligands are responsible for the reversal of NADPH oxidase activation. 

AnxA1-induced Fpr2/3 activation upregulates ROCK/RhoA signalling (Cristante et al., 2013; 

Purvis et al., 2019), which often inhibits Rac1 (Byrne et al., 2016). Thus, signalling analysis 

between NADPH oxidase, Fpr2/3 and Rac1/RhoA will be crucial to further elucidate the 

anti-oxidative mechanism associated with this pro-resolving receptor.  

 

The importance of in vivo work in AD research is also clear. The consequential effects of 

our findings on pathology, memory and behaviour in transgenic animal models will be 

crucial to determine whether modulation of Fpr2/3 holds promise for not only AD, but other 

neurodegenerative conditions. Incorporating knockout mouse strains, such as Fpr2/3-/- 

(McArthur et al., 2015) and gp91phox-/- (Dohi et al., 2010) alongside G6PD inhibition models 

(Mele et al., 2018) will help elucidate the importance of the interactions we have observed 

in vitro in terms in murine disease. Parallel supplementation experiments with siRNA for 

these proteins in vitro will further support the mechanistic association between Fpr2/3 

stimulation and PPP-induced NADPH oxidase activation.  

 

4.5.7. Chapter Summary 
 
In this chapter we provide data supporting the pathology of oligomeric 42 kDa amyloid beta 

in microglia involves NADPH oxidase-mediated ROS production, consequently modulating 
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metabolism. We show this happens in the absence of an inflammatory response (Figure 

4.18). The consequences of this for neuronal survival were investigated through the 

development of a BV-2 microglia SH-SY5Y co-culture model, wherein oAβ increased 

differentiated SH-SY5Y apoptosis, but only in the presence of BV-2 microglia. We also 

observed that microglial expression of the pro-resolving receptor Fpr2/3 protects 

differentiated SH-SY5Y from this increase in cellular apoptosis. We report that this 

protective mechanism is related to the newly identified antioxidant and metabolic 

modulating capabilities of Fpr2/3. 
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Figure 4.18 Summary diagram for Chapter 4, detailing the effects of oAβ and QC1 on 
BV-2 microglia. Mechanism pathways are represented with dashed arrows and inhibitory 
lines. Solid arrows represent overall changes. Red lines represent oAβ stimulated 
responses, whereas green lines represent QC1 mediated effects. oAβ treatment resulted 
in NADPH oxidase-induced ROS production. This resulted in metabolic effects, reducing 
both oxidative phosphorylation (OxPhos) and glycolysis. Instead, increased glucose 6-
phosphate dehydrogenase (G6PD) activity shifted glucose 6-phosphate towards the 
pentose phosphate pathway (PPP) to produce more NADPH for ROS production. Data 
presented in this thesis suggest these effects might be partially mediated by Fpr2/3. oAβ 
also triggered NF-κB nuclear translocation in the absence of an inflammatory response. 
Whether this is associated with microglial priming needs further investigation. QC1 
treatment prevented NADPH oxidase activation and ROS production, resulting in a 
reduction in G6PD activity and increased glycolysis. It also prevented NF-κB activation. 
However, no differences were observed for OxPhos following QC1 treatment. 
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 Summary and Future 
Directions 

5.1. Summary 

The central research question of this thesis is whether Fpr2/3 is a good therapeutic 

candidate for neurodegenerative disease. The aims were to identify whether Fpr2/3 

stimulation could suppress both LPS and oAβ induced microglial activation through 

promotion of a pro-resolving phenotype, associated tissue repair and cell conservation 

(McArthur et al., 2018; Orihuela et al., 2016). Both LPS and oAβ are recognised to stimulate 

ROS production (Kim et al., 2010; Urrutia et al., 2017), and we determined whether Fpr2/3 

activation modulated this response, analysing the mechanisms involved. Previous research 

highlighted that innate immune cells modulate their metabolic profile, with pro-inflammatory 

and pro-resolving phagocytes utilising aerobic glycolysis and oxidative phosphorylation for 

energy, respectively (O’Neill and Hardie, 2013; Rodríguez-Prados et al., 2010). We 

therefore determined whether metabolic shifts would be associated with LPS and oAβ 

induced inflammation, and whether Fpr2/3 stimulation had any metabolic modulating 

capacity. Our final aim was to establish whether resolution effects of Fpr2/3 post-oAβ 

administration could protect the neuronal cell line SH-SY5Y from oAβ-induced apoptosis. 

Multiple studies emphasise direct neuronal toxicity of oAβ (Akhter et al., 2018; Guivernau 

et al., 2016; Izuo et al., 2013; Tanokashira et al., 2017; Xing et al., 2013), whilst others 

underline the importance of microglia (Floden et al., 2005; Liddelow et al., 2017; Yun et al., 

2018), we aimed to determine whether microglia presence in co-culture was pivotal for 

toxicity.  

Our results highlight for the first time that Fpr2/3 stimulation can not only promote a pro-

resolving phenotype following LPS stimulation, but also reverse ROS production from two 

independent sources: the mitochondria and NADPH oxidases. Interestingly, and despite 

our assumptions, oAβ did not trigger an inflammatory response in our study. It did however 

initiate NADPH oxidase-induced ROS, resulting in changes to microglial metabolism, which 

appeared to be essential to facilitate oAβ-induced SH-SY5Y apoptosis, with cell death only 

occurring in BV-2 SH-SY5Y co-cultures. Strikingly, Fpr2/3 activation with QC1 successfully 

prevented this apoptotic response. In summary, our data highlights several novel functions 

for Fpr2/3 stimulation in microglia: preventing both NADPH oxidase and mitochondrial 

induced ROS production, consequentially modulating microglial metabolism, and 

preventing microglial-induced neuronal death. 

Our data highlighting the pro-resolution role of Fpr2/3 in microglia following LPS exposure 

was not surprising. However, we report here for the first time Fpr2/3 activation can reverse 
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mitochondrial and NADPH oxidase induced ROS production in microglia. Previous reports 

have suggested that Fpr2/3 activation can stimulate ROS production and cellular 

differentiation in murine stem cells (Zhang et al., 2017), alongside triggering ROS in murine 

granulocytes (Filina et al., 2014). However, we did not observe ROS-production associated 

with our ligands of interest. Supporting these previous findings. 

Here we report new metabolic parameters associated with ROS production and reversal by 

Fpr2/3. Extensive research underlines the importance of microglia in neuronal degeneration 

in neuroinflammatory disorders (Crotti and Glass, 2015; Heneka et al., 2014; Lan et al., 

2017; Walker and Lue, 2015; Wang et al., 2015). In AD, the extent of inflammation appears 

to correlate with cognitive symptoms more closely than Aβ accumulation (Farrell et al., 

2017; Kreisl et al., 2013; Serrano-Pozo et al., 2011). Our data also highlight that microglia 

can cause neuronal apoptosis, and that ROS production and metabolic dysfunction may be 

contributing factors towards this process (Fan et al., 2015; Floden et al., 2005; Ma et al., 

2017). 

5.2. Experimental discrepancies  

Strong emphasis surrounds the use of pathologically relevant toxin concentrations for in 

vitro neurodegenerative research. Multiple studies support direct neuronal toxicity of oAβ 

(Akhter et al., 2018; Guivernau et al., 2016; Izuo et al., 2013; Tanokashira et al., 2017; Xing 

et al., 2013), but we did not observe this. The concentration used in our study was selected 

based on observed oAβ levels in human AD brain (Van Helmond et al., 2010), whereas 

concentrations utilised by previous studies ranged between 10 to 1,000 times higher. Thus, 

these observed in vitro toxic effects are unlikely to represent the in vivo condition. 

In this thesis, we report that Fpr2/3 can both downregulate and increase glycolysis following 

LPS and oAβ exposure, respectively, novel findings that may initially appear to contradict 

each other. However, we propose that these shifts in glycolysis are directly linked to the 

pro-resolving and ROS-lowering capacity of Fpr2/3 stimulation. Following inflammatory 

stimulation, innate immune cells adopt a glycolytic metabolic profile to produce cytokines 

and other pro-inflammatory mediators (Ganeshan and Chawla, 2014; O’Neill and Hardie, 

2013), often resulting in ROS production (Bordt and Polster, 2014; Yauger et al., 2019).  

The pro-resolving effects of Fpr2/3 are directly associated with a decrease in glycolysis, as 

pro-resolving immune cells rely upon oxidative phosphorylation for metabolism (O’Neill et 

al., 2016). Following oAβ exposure however, NADPH oxidase-induced ROS production and 

subsequent reductions in intracellular NADPH stimulated the PPP, resulting in less glucose 

availability for glycolysis. We show that Fpr2/3 stimulation can reverse NADPH oxidase 

induced ROS production, which consequentially reduces activity of the PPP, returning 

glycolysis to a rate similar to untreated cells. This emphasises that Fpr2/3 stimulation may 
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hold differing effects during neuroinflammatory disease, depending on the stage of 

microglial activation.  

5.3. Research limitations 

Our work used the immortalised murine BV-2 microglial line; the most extensively 

characterised murine microglial line available (Timmerman et al., 2018), and often used as 

a substitute for primary microglia. Whilst we did implement some primary microglial 

experiments for key findings, this was limited due to time, cost, availability and handling 

ability. BV-2 microglia were also produced via the inclusion of an oncogene carrying 

retrovirus (Blasi et al., 1990). Whether these cells can mimic primary microglia or the in vivo 

situation with high fidelity has been called into question (Horvath et al., 2008). Despite this, 

we believed it was an appropriate first-line model to determine the therapeutic efficacy of 

Fpr2/3. 

The importance of using human microglia is clearly evident, however. Recent research 

highlights that while human and murine microglia overlap considerably, this is limited for 

genes regulated during aging, supporting the notion that human and murine cells age 

differently (Galatro et al., 2017; Olah et al., 2018). This is something to take into 

consideration for both in vitro and in vivo murine research going forward. Nevertheless, the 

human microglial cell line HMC3 has been made commercially available (Dello Russo et 

al., 2018), with these being the preferred choice for future investigations. 

Possibly the most significant limitation of this research in terms of clinical AD is the lack of 

data surrounding tau hyperphosphorylation. Whilst neuronally expressed tau has 

physiological functions in synaptic plasticity, learning and memory (Biundo et al., 2018), 

hyperphosphorylated tau is a key pathological feature in the development and progression 

of AD (Bejanin et al., 2017). Further, multiple pro-inflammatory cytokines elevated in AD, 

including TNFα, are associated with increased tau pathology (Domingues et al., 2017; Shi 

et al., 2011). Microglial activation also appears to occur prior to synaptic loss and tau 

pathology (Yoshiyama et al., 2007), suggesting that microglia may be directly associated 

with neuronal damage through tau hyperphosphorylation. This is supported by recent 

research reporting that activated microglia dramatically promote tau propagation and 

associated neurotoxicity (Asai et al., 2015), alongside directly contributing to tau pathology 

spread (Hopp et al., 2018).  

The above results therefore suggest that inflamed microglia are crucially connected to the 

progression of pathological tau. Thus, the interaction between tau and microglia is a central 

component of AD research which should be excluded with caution. Whilst we did indeed 

exclude tau pathology in this work, the characterisation of microglial activation on neuronal 

apoptosis was only determined at the very end of this piece of work. As a whole, this thesis 
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was a proof of concept study, primarily focusing on the effects of Fpr2/3 activation on 

microglial activation, modulation and phenotype, and determining the therapeutic potential 

of this receptor for more complicated neurodegenerative disease models. These include 

priming future research studies in animal models, but also with complicated 3D in vitro 

systems which include not only oAβ and microglial activation, but also hyperphosphorylated 

tau pathology (Park et al., 2018). 

Whilst we provide novel data supporting the benefits of Fpr2/3 modulation for 

neuroinflammatory research, this study did manifest some practical limitations. Our main 

technical experimental limitation was that of western blotting. The initial loading control we 

planned to consistently utilise was β-actin, but the banding pattern of this was affected by 

LPS (Figure 3.4). Determined to understand why, we were unable to find any previous 

literature reporting such an occurrence. However, because the endogenous Fpr2/3 agonist 

ANXA1 has been reported to mobilize the actin cytoskeleton in human blood monocytes 

(McArthur et al., 2015), administration of our ligands may have modulated actin expression 

regardless. Total kinase expression, for example ERK1/2 could have also been a potential 

option, due to their activity being associated with phosphorylation rather than upregulation. 

However, we deemed Ponceau S staining as suitable for our study due to previous research 

highlighting comparable densitometric analyses between β-actin and Ponceau S (Romero-

Calvo et al., 2010). 

5.4. Fpr2/3 agonists may hold promise for several central nervous system 
diseases 
 

Whilst our research interest is centrally focused on discovering an alternative therapeutic 

strategy to tackle the chronic neurodegenerative environment established in the brains of 

AD patients, our data highlights that activation of human FPR2 may be of therapeutic benefit 

for several different neurological and neurodegenerative diseases, which have a 

considerable neuroinflammatory component. For example, alongside AD, 

neuroinflammation and oxidative damage are extensive in many CNS disorders including 

Parkinson’s disease (Abeliovich and Gitler, 2016), stroke (Chamorro et al., 2016), multiple 

sclerosis (Kallaur et al., 2017), traumatic brain injury (Karve et al., 2016) and epilepsy 

(Vezzani et al., 2011). Thus, the therapeutic scope for human FPR2 modulation is enticing, 

and something which has stimulated our interest.  

5.5. Future work 
 
In this study we highlight that microglial ROS production appears to be a crucial contributor 

towards neuronal apoptosis. ROS production has also been linked towards tau pathology  

(Giraldo et al., 2014), with the latter being a critical determinant of neuronal dysfunction 
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(Hoover et al., 2010; Shi et al., 2017; Spires-Jones and Hyman, 2014). Reactive microglia 

appear to be a driver of tau pathological spread in the brain (Maphis et al., 2015). Further,  

in preclinical and symptomatic stages of AD, lower aerobic glycolysis is associated with 

higher tau deposition (Vlassenko et al., 2018). Thus, it is highly likely that that pro-resolving 

and newly described antioxidative and immunological functions of Fpr2/3 activation could 

prevent the hyperphosphorylation of tau in neurones. Further research will be essential to 

confirm this both in vitro and in vivo, but it could hold significant benefit for AD research 

going forward.  

 

Whether Fpr2/3 activation can preserve neuronal health in a 3D culture model of AD which 

includes not just neurones and microglia, but also astrocytes (Park et al., 2018) will be 

beneficial, due to neuronal toxicity associated with microglial-astrocytic communication 

(Kirkley et al., 2017; Liddelow et al., 2017). Microglial inflammation can shift astrocytes into 

a neurotoxic phenotype, resulting in them losing the ability to promote neuronal survival, 

synaptogenesis and neural outgrowth, contributing instead to neuronal death (Liddelow et 

al., 2017). Interestingly, inhibiting this microglial-induced conversion of astrocytes is 

neuroprotective in Parkinson’s disease models (Yun et al., 2018). Determining whether the 

microglial effects of Fpr2/3 activation could modulate astrocyte toxicity and neuronal health 

will provide further insight into the therapeutic potential of this pro-resolving receptor. 

 

Brain slice cultures will provide an ex vivo approach to investigate neuronal damage 

following inflammogen exposure in Fpr2/3-/- animals, so we can determine the importance 

of this pro-resolving receptor in limiting neurodegenerative damage. This could also be 

supplemented with WT Fpr2/3 animals and exogenous administration of Fpr2/3 ligands, 

allowing for neurodegenerative marker comparisons to hopefully further emphasise that 

Fpr2/3 stimulation can provide neurones with protection from inflammatory and AD related 

toxic insults. 

5.6. Closing remarks 

AD is the most common cause of dementia in the aging population, affecting approximately 

4% of all individuals over the age of 65 (Hebert et al., 2013; Prince et al., 2013). As of July 

2015, the global disease burden is estimated to be around 37 million people (United 

Nations, 2015), but numbers are expected to rise exponentially to 78 million by 2050 (Prince 

et al., 2015). In comparison to other diseases such as HIV, heart disease and breast cancer, 

where death rates have steadily decreased in recent history, AD associated death continues 

to rise (James et al., 2014; Lehman et al., 2012; Murphy et al., 2013), with the disease being 

a clear public health crisis. 
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The peripheral pro-resolving properties of murine Fpr2/3 and human FPR2 during 

inflammation are clear (Sadani N Cooray et al., 2013; Gobbetti et al., 2014; McArthur et al., 

2018, 2015). Interestingly, several endogenous FPR2 ligands are expressed in the brain 

(Bisicchia et al., 2018; McArthur et al., 2010; Wang et al., 2015), and are reduced in the 

hippocampus, entorhinal cortex and CSF of AD patients (Wang et al., 2015; Zhu et al., 

2016). With both of these aforementioned brain regions highly affected by AD pathology, 

evidence supports the importance of pro-resolving systems such as FPR2 in protecting 

neurones from extensive microglial activation and neuroinflammatory damage. Despite this, 

research into the therapeutic potential of FPR2 agonists for AD is relatively sparse. Here 

we show for the first time that microglial Fpr2/3 stimulation can rescue neuronal cells from 

Aβ-induced, microglial facilitated apoptosis. However, we also provide evidence that Fpr2/3 

activation can stimulate a pro-resolving microglial phenotype following LPS exposure, 

suggesting that select ligands for this diverse receptor may be suitable for research into an 

entire host of different neuroinflammatory and neurodegenerative conditions. 

AD patients are in desperate need for new therapeutics, with clinical trial failures all too 

apparent and devastating (Gauthier et al., 2016; Panza et al., 2019, 2016). Pursuing pro-

resolving approaches will provide novel insights into the importance of aberrant microglial 

activation, metabolism and neuroinflammation in specific aspects of AD. We believe, based 

on previous literature and the data presented here, that Fpr2/3 is an appropriate receptor 

to target in future investigations not only for AD, but multiple neuroinflammatory and 

neurodegenerative diseases. 
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