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Abstract 1 

Understanding team behaviours in competitive sports performance requires a 2 

robust understanding of the interdependencies established between their levels 3 

of complexity in organisation (micro-meso-macro). Previously, most studies 4 

have tended to examine interactions emerging at micro- and macro-levels, thus 5 

neglecting those emerging at a meso-level (a level which reveals connections 6 

between the micro and macro levels, depicted by the emergence of 7 

coordination in specific sub-groups of players during performance). We 8 

addressed this issue using the multilevel hypernetworks approach, adopting a 9 

cluster phase method, to record player-simplice local synchronies in two 10 

performance conditions where the number, size and location of goal scoring 11 

targets were manipulated (1st–condition: 6x6+4 mini-goals; 2nd–condition: 12 

Gk+6x6+Gk). We investigated meso-level coordination tendenciesas a function 13 

of ball-possession (attacking/defending), field-direction (longitudinal/lateral) and 14 

teams (Team A/Team B). Univariate Anova was used to assess the cluster 15 

amplitude mean values that emerged between game conditions, as a function of 16 

ball-possession, field-direction and team composition. Generally, large 17 

synergistic relations and more stable patterns of coordination were observed in 18 

the longitudinal direction of the field than the lateral direction for both teams, 19 

and for both game phases in the first condition. The second condition displayed 20 

higher synchronies and more stable patterns in the lateral direction than the 21 

longitudinal plane for both teams, and for both game phases. Results suggest: 22 

(i) usefulness of hypernetworks in assessing synchronisation of teams at a 23 

meso-level; (ii) coaches may consider manipulating the number, location and 24 
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size of goals to develop levels of local tendencies for emergent synchronies 1 

within teams.  2 

Keywords: Multilevel hypernetworks, Meso-level, Emergent Synchronisation 3 

tendencies, Team sports, Association football. 4 

Introduction 5 

Sports teams consist of social entities composed of individual agents who 6 

correlate and coordinate actions to establish effective team communication 7 

networks (Gonçalves et al., 2017; Ribeiro et al., 2017).  8 

The synergetic behaviours (i.e., players combine actions to produce goal-9 

oriented behaviours) that underlie the formation and development of such 10 

communication networks can be expressed at different levels of complexity.  11 

Typically, there are three general levels of complexity into which networks may 12 

typically fall: the micro-, meso- and macro-levels. The micro-level focuses 13 

essentially on the relationships that each player has with other players in a 14 

team, while the meso-level sheds light on the interpersonal synergies emerging 15 

between small groups of players coordinating actions together during 16 

performance. Finally, the macro-level tends to consider the whole structure of 17 

social interactions emerging within a team and how it relates to team 18 

performance outcomes.   19 

The interdependence of team players’ behaviours and actions suggests 20 

that all three levels are interconnected. For example, players at a micro-level 21 

might interact with their nearest team members (at a meso-level), under n-ary 22 

interpersonal relations to produce more complex sets of behaviours or patterns 23 

emerging at a macro-level.   Typically, the majority of previous studies has 24 

tended to focus on the relations established at a micro-level (dyads, i.e., 25 
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relations established between pairs of individuals), or at a macro level of team 1 

organisation (whole team behaviours organised together). Other research (e.g., 2 

Duarte et al., 2013) has focused on the link between micro and macro relations, 3 

by measuring the synchronisation processes between such levels. Indeed, the 4 

study by Duarte et al. (2013) sought to analyse the movement synchronies 5 

evidenced at player-team and team-team levels. These investigators tried to 6 

understand how such synchronisation tendencies varied as a function of key 7 

events and characteristics such as transitions in ball possession 8 

(attacking/defending), halves of the match (first/second), team status 9 

(home/visiting) and field direction (longitudinal/lateral), by means of a cluster 10 

phase method (see Frank and Richardson, 2010, for detailed descriptions on 11 

this method).  12 

Despite these meaningful theoretical and empirical insights regarding 13 

team game performance, research has not yet captured the synchronisation 14 

tendencies emerging at a meso-level scale. These processes should not be 15 

neglected as they fall between the micro- and macro- levels and can provide 16 

relevant information regarding the interconnections established between such 17 

levels (e.g., how players interact locally with their nearest teammates to 18 

produce regular patterns of behavior during performance). Given the 19 

interdependency between levels in a complex system, there is a need to 20 

integrate all scales of analysis (micro-to-meso-to-macro) in research on team 21 

sports performance (Bar-Yam, 2003; Bar-Yam, 2004).  22 

Despite this gap in the field, there is a clear paucity of studies seeking to 23 

propose methods for measuring and providing insights on the processes 24 

underlying the establishment of synchronisation processes of players, within 25 
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and between teams, at a meso-level scale. An exception is the study of López-1 

Felip et al. (2018) which used the cluster phase method (CPM) to capture team 2 

coordination by analysing players’ behavioral variables (players’ orientation-to 3 

and distance-to goal). Most previous studies (e.g., Folgado et al., 2018; 4 

Gonçalves et al., 2018) have used phase synchronisation (players viewed as 5 

“oscillators”) to assess coordination between players. Nonetheless, it is worth 6 

mentioning that phase synchronisation is just one of the many metrics and/or 7 

methods that can be used to assess coordination between cooperating and 8 

competing players (see, for example, generalised synchronisation (e.g., Rulkov 9 

et al., 1995), or granger causality (e.g., Kirchgässner & Wolters, 2007)). Recent 10 

developments in network analyses applied to team sports performance have led 11 

to the introduction of a novel methodology: multilevel hypernetworks (Ramos et 12 

al., 2017; Ribeiro et al., 2019). This approach shows signs of helping 13 

researchers ascertain the complexity rooted at such levels of team coordination 14 

processes. 15 

Therefore, in this study, we sought to extend the previous analysis of 16 

Duarte et al. (2013) by proposing a multilevel hypernetworks approach for 17 

capturing the movement synchronies of players at a meso-level scale. 18 

Moreover, we aimed to analyse whether such synchronisation tendencies 19 

changed between game conditions (1st condition – 6x6 (6 vs. 6 players) +4 20 

mini-goals; 2nd condition – Gk+6x6+Gk (goalkeeper plus 6 players vs. 21 

goalkeeper plus 6 players)). These manipulations involved  the location, number 22 

and size of goal scoring targets. We also investigated these tendencies a 23 

function of ball-possession (attacking/defending), field direction 24 

(longitudinal/lateral) and different teams (Team A/Team B). Our hypotheses are 25 
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as follows: (i) the first condition will result in the emergence of greater 1 

synchronisation and more stable patterns of coordination in the longitudinal 2 

direction, compared to  the lateral direction of the field. This effect may be due 3 

to the absence of goalkeepers, as well as the lack of an offside rule and the 4 

increased number of goals/targets; (ii) The second condition will result in the 5 

emergence of  greater, and more stable, coordination tendencies in the lateral 6 

direction of the field, compared to the longitudinal direction, due to a)  the 7 

location of the goal/scoring target (located in the centre of the field), and b), the 8 

presence of the goalkeeper. 9 

 10 

Methods 11 

Participants 12 

Fourteen male youth football (soccer) players registered with an U19 yrs squad 13 

(mean age 17,9 ± 0,7 years, mean height 175,6 ± 5,7 cm, mean weight 69,7 ± 14 

9,9 Kg, and training experience: 9,2 ± 2,9 years), competing at a regional level, 15 

were recruited to participate in this study. All participants gave prior informed 16 

consent before initiating the experiment. All procedures followed the guidelines 17 

of the Declaration of Helsinki and were in accordance with the ethical standards 18 

of the lead institution. 19 

 20 

Task and procedures 21 

This study was conducted over a two-week period during the 2017/2018 22 

competitive season. Participants performed in two game conditions in which the 23 

number, location and size of goals were manipulated. Each game was 24 

preceded by a 10-minute standardised warm-up composed of low-intensity 25 
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running, ball-passing actions and dynamic stretches. All these activities were 1 

part of the regular training sessions that players were involved with. The first 2 

game condition (conducted in the first week) consisted of two 6-a-side (6vs.6) 3 

games without Goalkeepers (Gk), where players from opposing teams were 4 

solicited to attack/defend two mini-goals sized 0,90 x 0,90 m (height x width) 5 

located in both right- and left-hand sides of the pitch (Figure 1a). The second 6 

game condition (conducted in the second week) comprised two 6-a-side plus 7 

Gk (Gk+6vs.6+Gk) games with two football goals sized 6 x 2 m (height x width) 8 

centered on the end line of the pitch (Figure 1b). The players were split by the 9 

team coaches into two technically-balanced teams. In the first condition, players 10 

were organised on field according to a 2-3-1 tactical disposition, with 1 right 11 

central defender (RCD), 1 left central defender (LCD), 1 left midfielder (LM), 1 12 

right midfielder (RM), 1 central midfielder (CM), and 1 forward (FW). In the 13 

second condition, the organisation of players on field was similar to the first 14 

condition, but now with the inclusion of a goalkeeper (Gk) (1-2-3-1). The 15 

objective of teams in both game conditions was to score as many goals as 16 

possible while preventing the opposing team from scoring. The respective field 17 

dimensions of the playing area in both conditions (63, 6 x 40,7 m, height x 18 

width) were obtained based on the minimum dimensions permitted by the 19 

International Football Association Board (100x64 m, height x width), and the 20 

number of players involved in each game (Hughes, 1994).  21 

 22 

*Please insert Figure 1 near here* 23 

Figure 1. Experimental task schematic representation: a) 6x6+4 mini-goals 24 

condition; b) Gk+6x6+GK condition. 25 

 26 
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Each match had a duration of 15 minutes interspersed by a recovery interval of 1 

7 minutes to minimise the influence of fatigue on participants. During recovery 2 

periods, players could recovery at will and rehydrate. Additionally, during this 3 

period, players were asked to respond to the Borg Rating of Perceived Exertion 4 

(RPE) Scale (Borg, 1982). The RPE was utilised with verbal anchors, which 5 

comprehended a 15-grade scale ranging from 6 (minimum effort) to 20 6 

(maximum effort) (Borg, 1982), with players being asked the following: “how do 7 

you classify the physical effort in the task from 6 (minimum effort) to 20 8 

(maximum effort)?” Moreover, all matches were undertaken at the same hour of 9 

the day (19:00 pm) in order to prevent possible circadian effects on 10 

performance (Cappaert, 1999). Several balls were placed around the pitch to 11 

prevent trial stoppages. Additionally, coaches were instructed to not provide any 12 

sort of encouragement and/or feedback to the players, before and during 13 

practice, since it can influence levels of practice intensity in individual 14 

participants, thus affecting performance (Rampinini et al., 2007). 15 

 16 

Data collection 17 

Positional data (x, y) were acquired through utilisation of global positioning 18 

tracking devices (Qstarz, Model: BT – Q1000Ex) at 10Hz, placed on the upper 19 

back of each player. Previous studies have confirmed the usefulness and 20 

reliability of such GPS devices (e.g., Silva et al., 2016). All pitches were 21 

calibrated using the coordinates of four GPS devices stationed at each corner of 22 

the pitch for about 4 min. The absolute coordinates of each corner were 23 

calculated as the median of the recorded time series, yielding measurements 24 

that were robust to the typical fluctuations of the GPS signals. These absolute 25 
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positions were used to set the Cartesian coordinate systems for each pitch, with 1 

the origin placed at the pitch center. Longitudinal and latitudinal (spherical) 2 

coordinates were converted to Euclidean (planar) coordinates using the 3 

Haversine formula (Sinnott, 1984). A GoPro Rollei Ac415 actioncam (Rollei 4 

GmbH & Co. KG, Norderstedt, Germany) was utilised to record and capture 5 

players’ interactions on field, which encompassed the following characteristics: 6 

(i) resolution: FullHD; (ii) processing capacity of 30Hz; (iii) maximum lens 7 

aperture: F=2.4; (iv) sensor type: CMOS; (v) capture angle: 140º. The Gopro 8 

was stationed on a higher level above the pitch (approximately 4 m high) to 9 

ensure an optimal viewing angle (allowing views of the entire field) during the 10 

games. 11 

 12 

Hypernetworks approach 13 

Hypernetworks extend the concept of hypergraphs to model interactions of a set 14 

of elements (e.g., the players) that make up a given system (e.g., a football 15 

team). In mathematics, a hypergraph consists of a generalisation of a graph (a 16 

structure composed by a set of elements that may share some type of relation) 17 

in which an edge can connect any number of nodes. Therefore, a hypergraph H 18 

corresponds to a pair H=(X, E) where X encompasses a set of elements called 19 

nodes/vertices, while E comprises a set of non-empty subsets of X named 20 

hyperedges (Johnson, 2009). Hyperedges can connect more than two nodes 21 

(i.e., the players), thus they support representation of simultaneous n-ary 22 

relations (n>2), be it cooperative and/or competitive, established between a 23 

given set of players (called simplex, plural–simplices) (Johnson & Iravani, 2007; 24 

Johnson, 2016; Ramos et al., 2017). A hypersimplex is effectively a hypergraph 25 



10 
 

edge where the relation between the elements is explicit. This is necessary 1 

because, for example, three players may collaborate in one 3-ary relational 2 

configuration when scoring a goal, but in a completely different 3-ary relational 3 

configuration when trying to win back the ball from opposition. A hypernetwork 4 

is defined as a set of hypersimplices (for more details, please see Johnson, 5 

2016). Thus, by adopting the hypernetworks approach we were able to assess 6 

how players synchronise their movements in relation to the simplices (intra and 7 

inter relationships) that they interacted with during competition (see Figure 2). 8 

This is a major advantage compared with simply measuring the synchronisation 9 

of players’ phases, since it is now possible to assess the synchronisation 10 

emerging within and between simplices. These simplices can capture the 11 

interactions between sets of players that may include an arbitrary number of 12 

teammates and opponents. The criteria chosen for selecting the set of nodes 13 

was based on the geographical proximity (non-parametric) between players 14 

(i.e., a player does interact with his nearest player and/or goal for goalkeepers 15 

(2nd condition) and mini-goals for players (1st condition)) and directional speed 16 

of players that enable them to interact (through disaggregation and/or 17 

aggregation) with other simplices (Ramos et al., 2017). In short, the 18 

hypernetworks approach allowed us to assess the synchronies evidenced in 19 

intra- and inter-team relationships between players during competition.   20 

 21 

*Please insert Figure 2 near here* 22 

Figure 2. Example of an illustration of hypernetworks representing simplices’ 23 

interactions in an association football pitch, retrieved from performance in the 24 

first game condition (6x6+4 mini-goals). The 4 mini-goals (1 and 2 for Team A; 25 

15 and 16 for Team B) are represented by black dots. Team A (represented in 26 
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blue) is attacking from left to right and Team B (represented in red) is attacking 1 

from right to left. Each simplex is represented by the polygon (or a line when 2 

only two players are involved, e.g., players 7 and 14) defining the convex hull 3 

that connects the players (identified by numbers, or goals – identified by black 4 

points). Players can also be linked to the goals due to the proximity-based 5 

criteria (e.g., player 6 and 3 from the blue team and player 10 from the red team 6 

are connected to the mini-goal number 2). A velocity vector for each player is 7 

also represented.   8 

 9 

Cluster phase method 10 

Frank and Richardson (2010) proposed the CPM by adapting the model from 11 

the Kuramoto order parameter (Kuramoto & Nishikawa, 1987). Such a model 12 

was originally developed for analysing systems whose oscillatory unit’s number 13 

tended to infinity (Strogatz, 2000). Frank and Richardson (2010) decided to test 14 

the applicability of the same model in analysing systems composed by a small 15 

number of oscillatory units (a multiple-rocking chair experiment with only six 16 

oscillatory units).  17 

Basically, the CPM allows the calculation of the mean and continuous 18 

group synchrony, 𝜌𝑔𝑟𝑜𝑢𝑝 and 𝜌𝑔𝑟𝑜𝑢𝑝 (𝑡𝑖), as well as the individual’s relative 19 

phase, 𝜃𝑘, in regard to the group measure (Richardson et al., 2012). This 20 

method has been used in a study by Duarte et al. (2013) to assess whole team 21 

synchrony (at a macro-scale level) and player-team synchrony (at a micro-scale 22 

level) in a professional football match. Implementation of this method allowed 23 

them to calculate a global measure, the cluster amplitude 𝜌𝑔𝑟𝑜𝑢𝑝 (𝑡𝑖), depicting 24 

the team synchronisation at every instant time of the match. It also supported 25 
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use of a relative phase measure reporting the level of individual player’s 1 

synchronisation with respect to the team, ∅𝑘(𝑡𝑖).  2 

 A major advance proposed in the present study, compared to that of 3 

Duarte et al. (2013), is that we introduced a multilevel hypernetworks approach 4 

to assess the synchronisation processes emerging at a micro-to-meso level 5 

depicted through measurement of player-simplices (P-S) synchronisation. To 6 

achieve that aim, we assessed how each player synchronises his movements 7 

with the corresponding simplices into which he is inserted. 8 

The extension to other groups, i.e. player sets, beyond teams is 9 

supported by the following generalisations to the definitions and equations 10 

presented by Duarte et al. (2013). 11 

These procedures starts with the phase time-series acquired through 12 

Hilbert transformation, 𝜃𝑘(𝑡𝑖), for the 𝑘𝑡ℎ player movements measured in 13 

radians [-π π], where 𝑘 = 1, ⋯ , 𝑁 and 𝑖 = 1, ⋯ , 𝑇 time steps. In the 14 

generalisation proposed in the current study we use the definition of group, Γ𝑗. 15 

These groups correspond to the different hypernetworks’ player sets. For each 16 

group, Γ𝑗 its size, 𝑛𝑗, is defined by the number of players that compose that 17 

group (i.e., simplex).  18 

Using this generalisation, the group cluster phase time-series, ∅𝑗(𝑡𝑖), can 19 

be calculated as: 20 

 21 

𝑟𝑗́(𝑡𝑖) =
1

𝑛𝑗
∑ exp(𝑖𝜃𝑘(𝑡𝑖))

𝑘∈Γ𝑗
………………………………………………………..(1) 22 

and: 23 

∅𝑗(𝑡𝑖) = 𝑎𝑡𝑎𝑛2( 𝑟𝑗́(𝑡𝑖))………………………………………………………………..(2) 24 
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where i = √−1  (when not used as a time step index), 𝑟𝑗́(𝑡𝑖) and ∅𝑗(𝑡𝑖) comprise 1 

the resulting cluster phase in complex and radian form, respectively. 2 

Finally, the continuous degree of synchronisation of the group 𝝆𝚪𝒋
(𝒕𝒊)  ∈3 

[𝟎, 𝟏], i.e., the cluster amplitude 𝝆𝚪𝒋
(𝒕𝒊) at each time step 𝑡𝑖 can be calculated 4 

as: 5 

 6 

𝜌Γ𝑗
(𝑡𝑖) = |

1

n𝑗
∑ exp (𝑖(𝜃𝑘(𝑡𝑖) − ∅𝑗(𝑡𝑖)))𝑘∈Γ𝑗

|………………………………………...(3) 7 

 8 

and the temporal mean degree of group synchronisation, 𝝆𝚪𝒋
 ∈ [𝟎, 𝟏], is 9 

computed as: 10 

𝜌Γ𝑗
=

1

𝑇
∑ 𝜌Γ𝑗

(𝑡𝑖)
𝑇
𝑖=1 …………………………………………………………………...(4) 11 

The cluster amplitude corresponds to the inverse of the circular variance of 12 

∅𝑘(𝑡𝑖). Therefore, on the one hand, if 𝜌Γ𝑗
= 1, the group is in complete intrinsic 13 

synchronisation. On the other hand, if 𝜌Γ𝑗
= 0, the group is completely 14 

unsynchronised. Therefore, the larger the value of 𝜌Γ𝑗
 (i.e., close to 1), the 15 

larger the degree of group synchronisation. The same expressions can be 16 

applied to teams by replacing the simplice sets Γ𝑗 by the set of players of each 17 

team Γ𝐴 and Γ𝐵, respectively. 18 

All the computations were conducted by using dedicated routines 19 

implemented in GNU Octave software v4.4.1. 20 

 21 

Data analysis 22 
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Sample entropy (SampEn) was used to evaluate the regularity of cluster 1 

amplitude for each group (P-S) during performance in the two conditioned 2 

matches. This nonlinear statistical tool was introduced by Richman and 3 

Moorman (2000) and presents the following characteristics: (i) greater 4 

consistency with regards to different choices of input parameters; (ii) lower 5 

sensitivity to data series length (data length independence), and; (iii) less 6 

propensity to statistical bias by eschewing self-matches when compared with 7 

traditional approximate entropy (ApEn – Pincus, 1991).  8 

SampEn comprises a modification of ApEn and evaluates the existence 9 

of similar patterns in a time-series, thus unveiling the nature of their intrinsic 10 

structure of variability (Duarte et al., 2013). Thus, given a series Y(t) of T points 11 

(t =1,….,T), SampEn calculates the logarithmic probability that two similar 12 

sequences of m points retrieved from Y(t) remain similar. Or, in other words, it 13 

evaluates whether the sequences are kept within tolerance bounds given by r, 14 

in the next incremental comparison (i.e., for m+1 sequences) (Duarte et al., 15 

2013). 16 

In the current study, input parameters were established as m=1 r=0.2 17 

standard deviations for entropy estimations, as suggested in other 18 

investigations of neurobiological system behaviour (e.g., Preatoni et al., 2010; 19 

Richman & Moorman, 2000). Values close to zero indicated the presence of 20 

regular/near-periodic evolving behaviours for the cluster amplitude regarding 21 

the P-S interactions. Higher values of SampEn indicated more unpredictable 22 

patterns of synchronisation (Preatoni et al., 2010).  23 

A 2 (game condition) x 2 (ball-possession) x 2 (field direction) x 2 (teams) 24 

univariate ANOVA was used to ascertain the cluster amplitude mean values 25 
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between game conditions, and as a function of ball possession 1 

(attacking/defending), field direction (longitudinal/lateral) and teams (Team 2 

A/Team B). The repeated measures ANOVA’s possible violation of sphericity 3 

assumption for the within-participant factors was checked using the Mauchly’s 4 

test of sphericity. Effect size values were calculated as partial eta square (η2) 5 

(Levine & Hullett, 2002). All statistical comparisons were conducted by using 6 

the IBM SPSS 24.0 software (IBM, Inc., Chicago, IL); Significance level was set 7 

at 5%. 8 

 9 

Results 10 

Player-simplice synchronisation 11 

Mean, SD, and SampEn values of P-S cluster amplitude are presented in Table 12 

1. Results revealed significant main effects for teams, ball-possession, and field 13 

direction between game conditions. 14 

 15 

Table 1. Mean, SD, and SampEn values of P-S cluster amplitude as a function 16 

of teams (Team A/Team B), ball-possession (Attacking/Defending), and field 17 

direction (Longitudinal/Lateral) for each game condition 18 

 19 

*Insert Table 1 near here* 20 

 21 

Between game conditions 22 

Higher mean values of cluster amplitude were found for the longitudinal 23 

direction of the field in the attacking phase of the first condition for both Team A 24 

(F (1,48224) = 1055,960; p<0,001, η2=0,021) and Team B (F (1,48224) = 25 

387,406, p<0,001, η2=0,008), compared to the second condition. Moreover, we 26 
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observed higher mean values in the lateral direction when attacking in the 1 

second condition, for Team A (F (1,48224) = 1271,121, p<0,001, η2=0,026) and 2 

Team B (F (1,48224) = 1352,441, p<0,001, η2=0,027), compared to the first 3 

condition.  4 

Significant differences for the longitudinal direction of the field when 5 

defending were verified in the first condition, for both Team A (F (1,48224) = 6 

418,547, p<0,001, η2=0,009) and Team B (F (1,48224) = 226,151, p<0,001 7 

η2=0,005), when compared to the second condition. Furthermore, we observed 8 

higher mean values for the lateral direction for both Team A (F (1,48224) = 9 

295,393, p<0,001, η2=0,006) and Team B (F (1,48224) = 2087,341, p<0,001, 10 

η2=0,041) when defending in the second condition compared to the first 11 

condition. 12 

 13 

Magnitude and structure of synchrony 14 

Our data also revealed that in the first condition, Team A displayed a lower 15 

magnitude of variation (SD) value in the lateral direction of the field compared to 16 

the longitudinal direction. However, they exhibited greater regularity (SampEn) 17 

in the longitudinal direction in both attacking and defending game phases. Team 18 

B displayed a lower magnitude of variation and greater regularity in the 19 

longitudinal direction, compared to the lateral direction of the field, in both 20 

attacking and defending phases. In the second condition, we verified a lower 21 

magnitude of variation and greater regularity in the lateral direction of the field 22 

compared to the longitudinal plane for both teams, in attacking and defending 23 

phases.  24 
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Thus, when comparing values of the magnitude of variation and 1 

regularity between game conditions we observed greater stability in the 2 

longitudinal direction of the field in the first condition (although Team A 3 

presented lower SD values in the lateral direction). The second condition 4 

presented more stability in the lateral direction of the field for both teams, and in 5 

both attacking and defending game phases. 6 

 7 

*Please insert Figure 3 near here* 8 

Figure 3. Example of the time-series representing the P-S synchronisation for 9 

both teams using the cluster amplitude, as a function of field direction and game 10 

condition. Cluster amplitude values range from 0 (no synchrony) to 1 (complete 11 

synchrony). Left and right panels display values for the first and second 12 

condition, respectively. Upper and bottom panels display values for the lateral 13 

and longitudinal direction, respectively. 14 

 15 

Discussion 16 

To the best of our knowledge, this is the first study that sought to investigate 17 

synchronisation processes emerging at a micro-to-meso (P-S) level of analysis. 18 

To fulfil this purpose, the multilevel hypernetworks approach along with the 19 

cluster phase method, previously used in the study of Duarte et al. (2013), was 20 

applied to capture the P-S synchronies formed within and between competing 21 

players. The results obtained in this study support our hypotheses. Indeed, we 22 

observed that local synchronisation tendencies changed when the number, 23 

location and size of goals were altered between game conditions, and as a 24 

function of ball-possession, field direction and teams. This is particularly 25 

interesting, as previous studies (e.g., Duarte et al., 2013; Pinto, 2014) have 26 

reported that synchrony does not change as a function of ball possession. 27 



18 
 

However, a study by López-Felip et al. (2018) identified changes in team 1 

synchrony according to ball possession. The results of that study reported 2 

higher mean values of team synchrony in defensive sub-phases of play. 3 

However, it is worth mentioning that our study analysed differences in 4 

ball-possession according to game conditions, and not between attacking and 5 

defending phases. Moreover, a common finding reported in the current literature  6 

(e.g., Bourbousson et al., 2010; Duarte et al., 2012a; Duarte et al., 2012b) is 7 

that longitudinal displacements present higher levels of synchrony than lateral 8 

displacements. Indeed, typical displacements of players on field tend to unfold 9 

more frequently in the longitudinal direction of the field, as the attacking team 10 

advances upfield seeking to create goal-scoring opportunities. Simultaneously 11 

the defending team moves backward trying to prevent the opposing team from 12 

creating goal-scoring opportunities in the critical scoring region of the field 13 

(Frencken et al., 2011). Both the location of goals and the offside rule has been 14 

proposed as two plausible reasons for explaining such results (e.g., Duarte et 15 

al., 2012b; Travassos et al., 2012).   16 

It is worth noting that, unlike analyses reported in previous studies of 17 

performance in 11-a-side football matches, in the current study the two game 18 

conditions consisted of conditioned matches with manipulations of the number, 19 

location and size of goals, which did not consider the effects of the offside rule. 20 

By not considering the offside rule players were given the opportunity to freely 21 

explore the space left behind the opponent’s defensive line whenever they 22 

wanted. This task constraint led teams to explore more in-depth attacking 23 

movements with- and without ball-possession, in the longitudinal direction of the 24 

field when performing in the first condition. Travassos et al. (2014) observed 25 
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that teams reduced their distances to each other (evaluated through 1 

measurement of teams’ centroids) when the number of goal targets were 2 

manipulated (from two official goals to six mini-goals). The absence of a 3 

goalkeeper, in combination with an increased number of possibilities for scoring 4 

(due to increased number of goals/targets), possibly led teams to utilise 5 

affordances for more forward-backward movements on field (Araújo & Davids, 6 

2016, after Gibson, 1979). The attacking team tried to perform more long 7 

passes to get behind the opposition's defence, thus exploiting the absence of 8 

the offside law. The defending team tried to prevent this behaviour by reducing 9 

distances (approaching defending lines) to the attacking team in the longitudinal 10 

direction of the field, seeking to pressurise opponents, while not conceding 11 

suitable passing and/or shooting opportunities. 12 

In the second condition, the location of goals at the centre of the field 13 

might have constrained players without ball-possession to tightly defend the 14 

centre corridor of the field. This tactical approach offered behavioural invitations 15 

for the attacking team to circulate the ball to both left and right-hand sides of the 16 

pitch (outside riskier zones), thus increasing chances for the defensive team to 17 

recover ball-possession. By passing the ball from one side of the field to the 18 

other, the movements of the attacking players were designed to pull the 19 

defenders away from the central corridor of the field. In fact, maintaining ball-20 

possession, when the team is on the attack, is key to creating goal-scoring 21 

opportunities (Garganta, 1997; Guilherme, 2004). Moreover, these actions are 22 

grounded on a set of tactical principles of play and/or strategical rules that guide 23 

players’ actions during competitive performance (Garganta, 1997; Guilherme, 24 

2004). This approach caused the opposing team to stretch on field and created 25 
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possible empty spaces left between defenders to exploit. Such synergetic, 1 

collective movements, manifested by both attacking and defending teams might 2 

have increased the synchronisation tendencies in the lateral direction of the 3 

field. 4 

However, like the study of Duarte et al. (2013), the differences reported 5 

in the current investigation revealed small effect sizes, suggesting the need for 6 

further empirical clarification. Nonetheless, these results suggested how players 7 

needed to continually reorganise and adjust their functional behavioural 8 

patterns (re-organisation of team synergies) to surrounding informational 9 

constraints (number, location and size of goals). These constant adaptations 10 

produced goal-oriented behaviours coherent with the fulfilment of performance 11 

goals (Bernstein, 1967; Davids, 2015). These results imply the sensitivity of 12 

inherent synergy formation tendencies to changing performance constraints 13 

(Riley et al., 2012), with players temporarily (re)assembling into collective 14 

synergies to achieve specific task goals (Silva et al., 2013).  15 

By participating in two conditioned competitive matches with different 16 

performance objectives, the participants needed to engage in exploratory 17 

behaviours to search for functional movement solutions aiming to satisfy the 18 

changing task demands (Davids et al., 2012). They needed to co-adapt their 19 

behaviours to changing performance constraints to attain competitive goals 20 

(Passos et al., 2016; Passos et al., 2009). The emergence of different 21 

behavioural solutions, as evidenced in both game conditions, may signify, for 22 

example, that previous preferred coordination tendencies, i.e., higher 23 

synchronisation levels verified in the longitudinal direction of the field in the first 24 
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condition, may no longer have been functional under the constraints of the 1 

second condition.  2 

In the first condition, Team B exhibited lower values of SD and SampEn 3 

in the longitudinal direction of the field compared to the lateral direction in both 4 

game phases. This finding suggested that players displayed greater stability in 5 

their coordination tendencies in the simplices with which they interacted in the 6 

longitudinal direction of the field. However, Team A showed slightly higher 7 

values of SD and lower values of SampEn in the longitudinal, rather than lateral 8 

direction of the field in both game phases. In the second condition, we observed 9 

lower values of SD and SampEn for both teams in the lateral field direction than 10 

longitudinally in both attacking and defending phases. This finding signified that 11 

players coordinated their actions in a more regular and stable phase with 12 

reference to the simplices they were involved with in the lateral direction of the 13 

field. 14 

 15 

Conclusions and practical applications 16 

The multilevel hypernetworks approach, along with a CPM, successfully 17 

captured the synchronisation processes emerging at a meso-level scale through 18 

measurement of P-S synchronies. Nevertheless, this study has some 19 

limitations. First, this analysis was typically focused on the "phase" of 20 

synchonisation tendencies, when the trajectory of a dynamical system (for 21 

example describing coordination in team sports) is a combination of "phase and 22 

amplitude". In this way, a movement in a different direction with a different 23 

velocity, produced as a consequence of a movement of another player, cannot 24 

be quantified as a synchronized behaviour just using the ‘phase’ characteristic, 25 
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when it is indeed a "coordinated" motion. Thus, in future studies, there is a need 1 

to ascertain whether it is more adequate to consider players as “oscillators” 2 

(whose phase is adjusted) instead of vectors (whose direction is adjusted). 3 

Furthermore, the results are constrained by  the specific rules of the game 4 

designed by coaches, which could lead to the emergence of diverse results 5 

regarding the levels of synchronization inthe longitudinal and lateral directions. 6 

Regardless, the preliminary findings of this study suggested how task 7 

constraints manipulations during practice, exemplified here by the number, 8 

location and size of target goals, can influence the local synchronisation 9 

processes of competing teams. Therefore, coaches may consider these 10 

manipulations in their training settings to foment the development of specified 11 

local synchronisation tendencies. Here this practical implication was exemplified 12 

by how specific sub-groups of players synchronised their movements, 13 

longitudinally and/or laterally, during specific sub-phases of play (e.g., 14 

defending phase), to recover ball possession. Multilevel hypernetworks seem to 15 

constitute a set of suitable and promising tools for measuring the meso-local 16 

synchronisation processes emerging in teams during competition. 17 
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