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Abstract 

Cellular structures are lightweight-engineered materials that have gained much attention with 

the development of additive manufacturing technologies. This paper introduces a precise 

approach to predict the mechanical properties of additively manufactured lattice structures 

using deep learning approaches. Diamond shaped nodal lattice structures were designed by 

varying strut length, strut diameter and strut orientation angle. The samples were manufactured 

using laser powder bed fusion (LPBF) of Ti-64 alloy and subjected to compression testing to 

measure the ultimate strength, elastic modulus, and specific strength. Machine learning 

approaches such as shallow neural network (SNN), deep neural network (DNN), and deep 

learning neural network (DLNN) were developed and compared to the statistical design of 

experiment (DoE) approach. The trained DLNN model showed the highest performance when 

compared to DNN, DoE and SNN with a mean percentage error of 5.26%, 14.60%, and 9.39% 

for the ultimate strength, elastic modulus, and specific strength, respectively. The DLNN model 

was used to create process maps, and was further validated. The results showed that although 

deep learning is preferred for big data, the optimised DLNN model outperformed the statistical 

DoE approach and can be a favourable tool for lattice structure prediction with limited data. 
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1. Introduction 

Metal cellular structures are high performance lightweight-engineered materials, which have 

combination of high load bearing strength, high-energy absorption, and unique acoustic and 

thermal insulation properties. These properties made them promising structures for high 

performance products such as filters, catalytic convertors, acoustic absorbers, heat exchangers, 

abradable seals, porous burners, biomedical implants, and oil sensors [1-5]. The structures can 

be categorised into periodic and stochastic porous structures. Pores of the periodic lattice 

structures are uniform as they were made from repeated unit cells, whereas they are randomly 

distributed in the stochastic porous structures. Generally, the mechanical properties of periodic 

lattice structures outperform those exhibits by the stochastic porous structures because of their 

internal imperfections. However, the complexity and time consuming of manufacturing 

periodic lattice structures using conventional manufacturing technologies such as casting and 

machining obstruct the wide use of these meta-materials [6, 7].  

Additive manufacturing (AM) has been widely explored as a robust technology for the 

fabrication of complex geometrical structures reducing the manufacturing steps and constraints 

of conventional manufacturing technologies [8-10]. Laser powder bed fusion (LPBF) is a metal 

AM technique, which builds up 3D components by using a laser beam to selectively melt layers 

of metal powder according to a digital design. The technique is capable to rapidly manufacture 

high-resolution cellular lattice structures for many applications. Several researches have been 

introduced to investigate the manufacturing of periodic cellular lattice structures using LPBF 

techniques. Process optimisation is an efficient approach to control and optimise the 

performance of periodic lattice structures. Typically, LPBF process optimisation investigates 

the effect of parameters such as laser power, laser scanning speed, hatching spacing, build 

temperature, layer thickness and scanning strategy on the properties of the developed structures 

such as porosity, cracks, defects and microstructure [11-15]. Li et al. studied the development 

of shape memory auxetic cellular structures and investigated the role of LPBF process 

parameters on the as fabricated and heat treated microstructure and hence the performance of 

the developed structures [16]. On the other hand, Yan et al. studied the manufacturability and 

mechanical properties of novel Schoen Gyroid lattice structures using LPBF [17].  The study 

also investigated the effect of the cell size on the yield strength and the Young’s modulus of 

the developed lattice structures. McKown et al. studied the compression behaviour of several 

metallic lattice designs based on octahedral and pillar-octahedral geometries using 
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mathematical, numerical, and density mapping to control the properties of the developed 

structures [18-20]. The above simulations are effective but they focus on one or few aspects of 

the design process and it becomes difficult to predict the performance of additively 

manufactured periodic lattice structures accurately via simulation approaches only.  

Recently machine learning (ML) has been shown to accelerate the development of AM 

technology and enable new opportunities in many applications [21]. The benefits of this 

technology is that they do not need to develop analytical equations but they learn the relation 

between the input or design parameters and the output performance based on existing data. 

Neural network (NN) is a supervised ML technique that can be trained to show a particular 

performance. An input layer, a hidden layer, and an output layer are the three types of layers 

included in any NN architecture. Each layer consists of a number of neurons or nodes. In NN, 

an arbitrary function can be expressed network using a sufficient number of neurons and at 

least one hidden layer. A shallow neural network (SNN) is a type of NN with an input layer, 

one or two hidden layers, and one output layer. Deep learning neural networks (DLNN) is a 

part of machine-learning family that utilise several hidden layers in their architecture to learn 

how data is presented, which allows automated search of big data. Coefficients in NN, also 

known as weights, represent the interaction between neurons in neighbouring layers, are 

obtained by training the NN iteratively aiming to minimize the discrepancy between predicted 

and actual outputs. Typically, DLNNs outperforms SNNs with respect to the number of 

computational units, particularly for complex problem. This is because of the non-linear nature 

the activation functions taking place at several layers in the DLNN network [22]. On the other 

hand, training deep networks can be challenging when the initial weights are close to the 

optimum values. Furthermore, if the initial weights are far from the optimum values, either 

greater or less, the training process will approach a local minima or will be infeasible [23]. 

Accordingly, the potential of deep learning research remained unexplored widely until the 

introduction of the greedy layer-wise pre-training method [23, 24], where a restricted Boltzman 

machine was used to train a deep belief network. Later, a stacked auto-encoder (SAE) 

architecture was proposed by Bengio et al. [22] to replace the restricted Boltzman machine in 

an analogous pre-training method.  Greedy layer-wise pre-training initializes the neural 

network’ weights to values close to a local minimum. As a result, it helps the optimization 

process and produces efficient model generalization [22]. The term greedy refers to pre-training 

every layer individually, irrespective of subsequent layers in the network [22]. Accordingly, 
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each layer is provided with data at a separate abstraction level and learn to represent the data 

in a distinct manner [24]. One case study was found to use machine learning in the design of 

hierarchical materials of AM parts [25]. The authors investigated optimized properties of 

hierarchical materials based on a trained model of finite element analysis database of hundreds 

of thousands of geometries without the use of full microstructural data. However, the study did 

not provide details about the AM technique, used material, or process parameters. In this work, 

we use machine-learning approaches to predict the properties of additively manufactured 

titanium alloy cellular structures and hence optimize their properties. The cell size and 

orientation were considered as input parameters. The ultimate compression strength, Young’ 

modulus, and specific strength were studied as output data. On the other hand, statistical and 

machine learning approaches such as DoE, SNN, DNN, and DLNN were used to analytically 

understand the effect of the input design parameters on the performance of AM cellular 

structures processed by LPBF. 

2. Cellular Structure Design 

Periodic cellular structures with defined geometries exhibit controlled density to achieve 

specific properties [26]. Design parameters of periodic lattice structures include density, pores 

size, and features dimensions. There are many types of periodic lattice structures such as 

Gyroid, Diamond, and Neovius [27]. They are different in their strut shape, orientation, 

thickness, and nodal connectivity. Among these types, the diamond shape lattice structure is 

considered as a favourable structure and hence has been used in many applications [28, 29]. 

Diamond shape lattice structure has four struts connected nodally with another four struts, 

which allows a great flexibility in changing the volume fraction and without the use of support 

structures. Figure 1 shows the nodally-connected diamond lattice structure and its unit cell. The 

investigated design parameters of this structure used in this study are the strut length (L), strut 

diameter (D), and the strut orientation angle theta (θ). The generated design parameters and 

levels are shown in Table 1. The levels values listed in Table 1 were chosen based on a 

combination of the manufacturability of the samples and the geometrical constraints to achieve 

compression samples according to ASTM C365. A design of experiment technique (DoE) 

using response surface is used in this paper as a reference approach.  
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Figure 1: The Nodally connected diamond structure used in this study and their design 

parameters. 

Table 1: Design parameters and their corresponding levels 

Parameter Units Levels 

−2 −1 0 1 2 

Strut Length (D) mm 0.2 0.36 0.6 0.83 1 

Strut diameter (L) mm 1 1.2 2.25 3.29 4 

Strut Orientation Angle (θ) degree  30 36.1 45 53.9 60 

 

3. Deep Learning  

In this section, the structure of the proposed deep learning neural network (DLNN), in terms 

of its depth, size of hidden layers, and its activation functions, is presented. Then, the adopted 
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pre-training and fine-tuning techniques are demonstrated. Finally, backpropagation algorithm 

is discussed. The shallow neural network (SNN), shown in Figure 2, is presented and used for 

comparison purpose to evaluate the performance of the developed DLNN.  

Proposed DLNN Architecture: The structure of the developed deep learning neural network 

(DLNN), shown in Figure 3, gave the best performance among many other tested structures 

having different hidden layers, activation functions, and neurons sizes. It comprises of an input 

layer, three hidden layers, and an output layer. The input layer has three inputs, the struts length, 

diameter and orientation angle. The output layer consists of three nodes, activated by the 

sigmoid function. The outputs of the network are the ultimate strength, Young’ modulus, and 

specific strength. The three hidden layers have the same size, 50 neurons in each layer. 

Employing hidden layers of the same size was recommended in [24] due to its convenience 

when applying the pre-training technique that will be presented shortly. As for the activation 

functions, Swish was chosen to activate the first hidden layer, followed by a rectified linear 

unit (ReLU) which activates the second and third hidden layers as expressed in equations (2) 

and (3), respectively. 

f1(x) = x. sigmoid(x) =  
x

1+e−x
        (2) 

f2(x) = max (0, x)          (3) 

DLNN Pre-training:  

Since the performance of a neural network heavily relies on the assigned weights [30], it is 

essential to guarantee having an initial weights which are in the neighborhood of a good 

estimate so as to ensure that the employed gradient descent method converges to the local 

minimum area during training without have the vanishing gradient issue[22, 23]. To this end, 

a pre-training technique is developed in the proposed approach to initialize the network’s 

weights. The selected pre-training technique is the developed unsupervised greedy layer-wise 

and its process is depicted in Figure 4. The proposed DLNN is pre-trained in four stages, where 

the DLNN’s non-input layers are trained sequentially, starting from the first hidden layer till 

the output layer. Each layer is individually trained using a Shallow Neural Network (SNN), 

which is also denoted to as an auto-encoder, of suitable input and output layers. Only 90% of 

the measured data were randomly considered in the training process.  

DLNN Fine-tuning: Although pre-training better initializes the weights of the DLNN, it 
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suffers from sub-optimality, especially for the weights in the first hidden layers [30]. Therefore, 

global network fine-tuning is carried out to replace stochastic weights, resulting from 

unsupervised learning in the pre-training process, with more deterministic ones by means of 

the backpropagation algorithm [23]. The optimization process in this case is much simpler 

compared to optimizing random initial weights and yields better generalization[22]. 

Backpropagation [31]is a widely used supervised learning technique for neural networks, 

where the differences between the DLNN’s predictions and the corresponding target outputs 

are employed to modify the network internal weights, thus refitting the network parameters for 

optimal performance. In what follows, a description of the backpropagation algorithm is 

provided. First, the input to the network is forward propagated through the DLNN, where each 

layer computes its output as a function of its preceding layer’s output. Then, during the 

backpropagation process the error between the predicted output and the target is calculated by 

using one or more of the cost functions (i.e., Mean Squared Error (MSE) Mean Absolute Error 

(MAE), or Cross Entropy (CE) loss functions) and then propagated backword to the network 

layers. By using the gradient decent (GD), the updated weights are calculated by multiplying 

the derivative of the activation function with the computed error (between network predictions 

and targets). Thus, using gradient decent technique along with the backpropagation algorithm, 

the minimum of a least square cost function would be achieved.  

 

Figure 2: Shallow Neural Network Supervised Training 
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Figure 3: Deep Neural Network Supervised Training 

 

 
Figure 4: Deep Learning Neural Network Unsupervised Greedy Layer-wise Pre-training 

Approach 
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4. Results  

4.1. Compression properties of lattice structures 

The compression setup and the properties of one of the compression test samples are shown in 

Figure 5. The compression stress increases to a peak value (Ultimate strength). Afterwards, the 

stress falls rapidly after the partial failure of some of the lattice structures nodes. The stress 

picks up again as the strain increases until another failure to some nodes take place.  This 

behaviour is repeated until the whole sample fractured into two pieces. The measured 

properties matrix of the LPBF Ti-64 lattice structures are shown in Table 2. The table includes 

three design parameters (strut length, strut diameter, strut orientation angle) and the 

corresponding mechanical results (Ultimate strength, Specific strength and Young’s modulus).  

The table showed that the ultimate strength of the cellular materials is in range of 4-228 MPa, 

the specific strength are 12-120 KN·m/kg, and Young’s modulus 0.05-9.31 GP. 

Table 2: The matrix of the investigated parameters and measured porosity and hardness 

Samples 
Strut 

Length (L) 
(mm) 

Strut 
diameter (D) 

(mm) 

Strut 
Orientation 
Angle (θ) 
(degree) 

Ultimate 
Strength 
(MPa) 

Specific 
Strength 

(KN·m/kg) 

Young’s 
modulus 

(GPa) 

1 2.25 1 45 228 115 8.34 

2 3.29 0.36 54 4 12 0.05 

3 3.29 0.84 54 19 25 0.35 

4 3.29 0.84 36 82 69 1.55 

5 4 0.6 45 7 17 0.16 

6 2.25 0.6 60 26 27 0.44 

7 1.21 0.84 36 96 44 9.31 

8 2.25 0.6 45 47 44 1.28 

9 3.29 0.36 36 9 22 0.26 

10 2.25 0.2 45 10 22 0.22 

11 2.25 0.6 30 185 120 7.73 

12 2.25 0.6 45 52 47 1.41 

13 1.21 0.84 54 69 43 4.19 

14 2.25 0.6 45 49 44 1.17 

15 1.21 0.36 54 146 58 4.95 

 

 



 

10 

 

  

Figure 5: (a) compression testing setup, (b) one of the compression stress–strain diagram for 

the Ti64 cellular structures, (c) fractures sample 

4.2. Comparison between DoE and the DL Models 

After preparing the datasets, an automated search for the optimal DLNN structure was 

conducted by varying the initial random weights, the number of layers, the activation functions, 

and the number of neurons. More than 2000 different DNN structures from single to five hidden 

layers were trained and tested. The structure, shown in Figure 3, demonstrated the highest 

accuracy among all other structures, where the mean percentage error was the lowest. 

Comparisons between two alternatives for pre-training of the developed structure were then 

conducted, more specifically unsupervised greedy layer-wise pre-training, and 

backpropagation. The best performing model was finally compared against and proved to 

(b) (c) 

(a) 
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Compression 
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outperform other regression techniques, including deep neural network (DNN) and SNN. The 

DNN and SNN that were compared to the adopted DLNN were selected through an automated 

search, analogous to that used for DLNN, while varying the relevant parameters for each. 

The performance of the proposed approach DLNN is compared to both DNN and SNN. The 

DNN structure was selected to be similar to the optimum DLNN structure. To select the SNN 

that will be compared to DLNN, several structures with various activation functions and layer 

sizes were tested. Figure 6 shows the corresponding prediction mean percentage error (MPE) 

for the different approaches Response surface, DLNN, DNN and SNN which confirms DLNN 

as a best performance. It’s clearly shown that a SNN (the simplest structure) has the highest 

MPE compared to other models since it couldn’t capture or correlate the hidden features or 

material’s parameters. Thus, a more complex structure is surely essential for optimal network 

performance, and in this case the DLNN model. 

 

Figure 6: MPE comparison for tested approaches 

4.3. Model Validation 

In all the developed models, only 90% of the measured data were randomly considered in the 

search.  The remaining 10% were used to validate the model. The optimum DLNN model was 

validated against the experimental datasets of Ti-6246 including the 10% unused dataset. 

Figure 7, Figure 8 and Figure 9 depict the porosity and hardness estimates by the developed 

DLNN when pre-trained using unsupervised greedy layer-wise pre-training approaches 
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compared to the measured data as well as by the other two developed methods (DNN and 

SNN). The DLNN has the ability to pre-construct a process map for the alloy hardness and 

densification behavior as a function of the process parameters. Table 4 lists the DLNN output 

predictions of porosity and hardness as a function of the design parameters for 125 number of 

sampling data (consists of unseen dataset (for the network) that are randomly mixed with the 

training dataset), to map the process boundaries.  

 

Figure 7: Maximum strength compared to the output of the DoE/DLNN/DNN/SNN models. 
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Figure 8: Specific strength compared to the output of the DLNN/DNN/DoE/SNN models 

 

Figure 9: Young’s modulus compared to the output of the DLNN/DNN/DoE/SNN models. 
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4.4. DLNN distribution map 

The optimum DLNN model was used to construct a distribution map of the compression 

ultimate strength, Elastic modulus and specific strength as a function of strut diameter, strut 

length and orientation angle. The distribution map can be used to predict the performance 

cellular structures as well as to study the effect of the strut diameter, strut length and strut 

orientation angle of the compression behavior of the samples. Figure 10 shows the contour map 

of the compression ultimate strength and Elastic modulus as a function strut diameter and 

length. In addition, the figure shows a comparison between the stress-strain diagrams of lattice 

samples fabricated with different strut diameter and strut length (X1-X4). X1 and X2 represent 

lattice samples fabricated using different strut diameter with the same strut length and 

orientation angle, while X3 and X4 are lattice represent samples fabricated using different strut 

length and the same strut diameter and orientation angle. Specifically, X1 and X2 represent 

lattice structures with strut length of 2.25mm and strut diameter of 0.2mm and 0.6mm, 

respectively. On the other hand, X3 and X4 represent lattice structures with strut diameter of 

0.84 mm and strut length of 1.21mm and 3.29mm, respectively. Generally, there is an increase 

in the compression strength as the strut diameter increases and the strut length decreases. 

Similarly, the elastic modulus increases with the increase of the strut diameter and the decrease 

strut length. 
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Figure 10: (a-b) the predicted contours distribution of the ultimate compression strength and 

elastic modulus with respect to the lattice struts diameter and length (c-d) stress strain 

diagrams of samples X1-X4. 

 

Figure 11 shows the contour map of the compression ultimate strength and Elastic modulus as 

a function strut diameter and orientation angle. Similarly, the figure compare the stress-strain 

diagrams of lattice samples fabricated with different strut angles (X5-X6). The figure shows a 

decrease in the compression strength as the strut angle increases. On the other hand, the elastic 

modulus decreases with the increase of the strut diameter and strut length. Figure 12 shows the 

predicted contours distribution of the specific strength with respect to the lattice struts diameter, 

length and angle. The figure shows similar behavior as in the ultimate strength prediction. The 

specific strength of the samples increases as the dimeter increases while it decreases with the 

increase of the strut length and strut angle.
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Figure 11: (a-b) the predicted contours distribution of the ultimate compression strength and 

elastic modulus with respect to the strut angle, (c) stress strain diagrams of samples X5-X6. 

 

Figure 12: The predicted contours distribution of the specific strength with respect to the 

lattice struts diameter, length, and angle. 
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complexity, and materials used as DLNN can be implemented to develop an input-output 

algorithm where the input parameters are cell geometry while the output mechanical properties 

are the obtained mechanical characterization. Hence, deep learning was introduced to build 

predictive mechanical properties model of Ti-64 cellular structures using a limited number of 

samples with an accuracy better than conventional statistical methods. The correlations 

between cell geometry and ultimate strength, elastic modulus and specific strength were 

obtained combining the optimized DLNN model and measured results. The strength and the 

elastic modulus of the cellular structures can be custom-made for biomedical and aerospace 

applications. For example, biomedical implants can be tailored made using our approach to 

achieve a high specific strength with elastic modulus similar to human tissue and hence avoid 

stress-shielding problem of biomedical implants. The computational cost of the introduced 

DLNN approach was less than 5 min for the training process. Furthermore, the approach 

showed it can be implemented as an alternative technique of DoE in the context of process or 

design optimisation since DLNN mean error was less than the DOE one. Thus, we proposed 

an efficient algorithm of additively manufactured cellular structures, while demonstrating the 

approach potential in predicting and optimising designs with geometrical parameters as the 

diamond cell design is used as a proof-of-concept as well as a qualitative comparison with other 

approaches. Furthermore, the concept of using additive manufacturing and machine learning 

to design high performance structures can include a wide range of materials and processes to 

tailor any interesting property such as optical, mechanical, electric, or thermal.  

6. Conclusions 

Results showed that the DLNN model can accurately predict compression properties of cellular 

materials and generate distribution model that lead to stronger and controlled stiffness 

structures. The discussed results lead to the following conclusions: 

 The trained DLNN model showed the highest performance when compared to deep 

neural network (DNN), shallow neural network (SNN) and design of experiment (DoE). 

 There is an increase in the compression strength as the strut diameter increases and the 

strut length decreases. In addition, the elastic modulus increases with the increase of 

the strut diameter and strut length. 

 The specific strength of the samples increases as the dimeter increases while it 
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decreases with the increase of the strut length and strut angle. 

The trained DLNN model showed that it could predict the occurrence of porosity level with an 

accuracy of 5.26%, 14.60%, and 9.39% for the ultimate strength, elastic modulus, and specific 

strength. These results show that the developed DLNN models can be considered as promising 

tools in learning measurement from few measurement data to make high-fidelity performance 

predictions. The approach developed in this paper can be also be extended to other cellular 

types. 

2.1 Experimental Section 

The material used in the fabrication of the lattice structures was Ti-64. The material is 

lightweight with superior mechanical properties, which makes it suitable for aerospace and 

biomedical applications.  Laser powder bed fusion (LPBF) was used  to fabricate the proposed 

lattice matrix. Ti6Al4V, the powder size range of 25–50 μm was supplied by (TLS Technik 

GmbH, Germany). A Concept Laser M2 LPBF machine is used, which consists of Nd:YAG 

laser of 1075 nm wavelength, and a beam spot of 50 μm. The samples were produced using 

standard process parameters of Ti6Al4V with laser power of 200 W, a scanning speed of 1200 

mm/s, and layer thickness of 20 micron for compression testing. The samples were produced 

on a Ti-6Al-4V plate and under Argon control down to O2<100 ppm. Prior to the compression 

testing, the samples were sonicated in an acetone bath for 5 minutes to remove a trapped 

powders and contaminants. The density of the samples was measured using Archimedes 

approach with a Mettler-Toledo densitometer. Compression testing were carried out at room 

temperature using Zwick/Roell system on the fabricated samples. Specimens with 5×5×8 unit 

cells were compressed along the Z (build direction). The tests were carried out under a contact 

speed of 0.1 mm/min. The compression maximum strengths are expressed by using the nominal 

engineering strength which equivalent to the maximum force divided by the cross sectional 

area of the fabricated samples). This way reflects the load bearing capacity of the samples. 

Specific strength was calculated by dividing the maximum compression strength of the samples 

by its calculated density. In addition, the Young’s modulus of the samples was calculating the 

nominal strength by the strain. 

 

 



 

19 

 

References 

[1] O. Guillame-Gentil, O. Semenov, A.S. Roca, T. Groth, R. Zahn, J. Vörös, M. Zenobi-

Wong, Engineering the extracellular environment: Strategies for building 2D and 3D cellular 

structures, Advanced Materials 22(48) (2010) 5443-5462. 

[2] X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Metallic powder-bed based 3D 

printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on 

manufacturing, topological design, mechanical properties and biocompatibility, Materials 

Science and Engineering C 76 (2017) 1328-1343. 

[3] L. Yang, O. Harrysson, D. Cormier, H. West, H. Gong, B. Stucker, Additive 

Manufacturing of Metal Cellular Structures: Design and Fabrication, JOM 67(3) (2015) 608-

615. 

[4] A. Delgoshaei, M.K.A.M. Ariffin, Z. Leman, B.T.H.T.B. Baharudin, C. Gomes, Review 

of evolution of cellular manufacturing system’s approaches: Material transferring models, 

International Journal of Precision Engineering and Manufacturing 17(1) (2016) 131-149. 

[5] A. Sabouri, A.K. Yetisen, R. Sadigzade, H. Hassanin, K. Essa, H. Butt, Three-

Dimensional Microstructured Lattices for Oil Sensing, Energy & Fuels 31(3) (2017) 2524-

2529. 

[6] R. Felzmann, S. Gruber, G. Mitteramskogler, P. Tesavibul, A.R. Boccaccini, R. Liska, J. 

Stampfl, Lithography-based additive manufacturing of cellular ceramic structures, Advanced 

Engineering Materials 14(12) (2012) 1052-1058. 

[7] O. Al-Ketan, A. Soliman, A.M. AlQubaisi, R.K. Abu Al-Rub, Nature-Inspired 

Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal 

Structures, Advanced Engineering Materials 20(2) (2018). 

[8] C. Qiu, N.J.E. Adkins, H. Hassanin, M.M. Attallah, K. Essa, In-situ shelling via selective 

laser melting: Modelling and microstructural characterisation, Materials & Design 87 (2015) 

845-853. 

[9] K. Essa, F. Modica, M. Imbaby, M.A. El-Sayed, A. ElShaer, K. Jiang, H. Hassanin, 

Manufacturing of metallic micro-components using hybrid soft lithography and micro-

electrical discharge machining, The International Journal of Advanced Manufacturing 

Technology 91(1) (2017) 445-452. 

[10] H. Klippstein, H. Hassanin, A. Diaz De Cerio Sanchez, Y. Zweiri, L. Seneviratne, 

Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications, 

Advanced Engineering Materials 20(9) (2018) 1800290. 

[11] M. Suard, P. Lhuissier, R. Dendievel, J.J. Blandin, F. Vignat, F. Villeneuve, Towards 

stiffness prediction of cellular structures made by electron beam melting (EBM), Powder 

Metallurgy 57(3) (2014) 190-195. 

[12] S.P. Soe, P. Martin, M. Jones, M. Robinson, P. Theobald, Feasibility of optimising 

bicycle helmet design safety through the use of additive manufactured TPE cellular 

structures, International Journal of Advanced Manufacturing Technology 79(9-12) (2015) 

1975-1982. 

[13] E. Sheydaeian, Z. Fishman, M. Vlasea, E. Toyserkani, On the effect of throughout layer 

thickness variation on properties of additively manufactured cellular titanium structures, 

Additive Manufacturing 18 (2017) 40-47. 

[14] C. Qiu, S. Yue, N.J.E. Adkins, M. Ward, H. Hassanin, P.D. Lee, P.J. Withers, M.M. 

Attallah, Influence of processing conditions on strut structure and compressive properties of 

cellular lattice structures fabricated by selective laser melting, Materials Science and 

Engineering A 628 (2015) 188-197. 



 

20 

 

[15] H. Salem, L.N. Carter, M.M. Attallah, H.G. Salem, Influence of processing parameters 

on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by 

selective laser melting, Materials Science and Engineering: A 767 (2019) 138387. 

[16] S. Li, H. Hassanin, M.M. Attallah, N.J.E. Adkins, K. Essa, The development of TiNi-

based negative Poisson's ratio structure using selective laser melting, Acta Materialia 105 

(2016) 75-83. 

[17] C. Yan, L. Hao, A. Hussein, D. Raymont, Evaluations of cellular lattice structures 

manufactured using selective laser melting, International Journal of Machine Tools and 

Manufacture 62 (2012) 32-38. 

[18] M. Alzahrani, S.K. Choi, D.W. Rosen, Design of truss-like cellular structures using 

relative density mapping method, Materials and Design 85 (2015) 349-360. 

[19] J. Robbins, S.J. Owen, B.W. Clark, T.E. Voth, An efficient and scalable approach for 

generating topologically optimized cellular structures for additive manufacturing, Additive 

Manufacturing 12 (2016) 296-304. 

[20] D.J. Brackett, I.A. Ashcroft, R.D. Wildman, R.J.M. Hague, An error diffusion based 

method to generate functionally graded cellular structures, Computers and Structures 138 

(2014) 102-111. 

[21] X. Qi, G. Chen, Y. Li, X. Cheng, C. Li, Applying Neural-Network-Based Machine 

Learning to Additive Manufacturing: Current Applications, Challenges, and Future 

Perspectives, Engineering 5(4) (2019) 721-729. 

[22] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep 

networks, Proceedings of the 19th International Conference on Neural Information 

Processing Systems, MIT Press, Canada, 2006, pp. 153-160. 

[23] G.E. Hinton, R.R. Salakhutdinov, Reducing the Dimensionality of Data with Neural 

Networks, Science 313(5786) (2006) 504-507. 

[24] G.E. Hinton, S. Osindero, Y.-W. Teh, A Fast Learning Algorithm for Deep Belief Nets, 

Neural Computation 18(7) (2006) 1527-1554. 

[25] G.X. Gu, C.-T. Chen, D.J. Richmond, M.J. Buehler, Bioinspired hierarchical composite 

design using machine learning: simulation, additive manufacturing, and experiment, 

Materials Horizons 5(5) (2018) 939-945. 

[26] X.Z. Zhang, M. Leary, H.P. Tang, T. Song, M. Qian, Selective electron beam 

manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status 

and outstanding challenges, Current Opinion in Solid State and Materials Science 22(3) 

(2018) 75-99. 

[27] E. Yang, M. Leary, B. Lozanovski, D. Downing, M. Mazur, A. Sarker, A. Khorasani, A. 

Jones, T. Maconachie, S. Bateman, M. Easton, M. Qian, P. Choong, M. Brandt, Effect of 

geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: 

A numerical study, Materials & Design 184 (2019) 108165. 

[28] F. Tamburrino, S. Graziosi, M. Bordegoni, The design process of additively 

manufactured mesoscale lattice structures: A review, Journal of Computing and Information 

Science in Engineering 18(4) (2018). 

[29] K. Essa, H. Hassanin, M.M. Attallah, N.J. Adkins, A.J. Musker, G.T. Roberts, N. Tenev, 

M. Smith, Development and testing of an additively manufactured monolithic catalyst bed for 

HTP thruster applications, Applied Catalysis A: General 542 (2017) 125-135. 

[30] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 

(2015) 85-117. 

[31] J. Brownlee, Machine Learning Algorithms from Scratch: With Python, Jason 

Brownlee2017. 



 

21 

 

 


	Blank Page



