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Abstract 

 

Picking up statistical regularities of patterns from the environment is essential for predictive and 

adaptive behavior. One of the most important challenges is to understand how statistical learning 

occurs and how the acquired information consolidates and stabilizes in the brain. Evidence 

suggests that the prefrontal cortex (PFC) has a critical role in these processes; the division of 

labor between hemispheres, however, is less characterized. The aim of the present study was to 

directly investigate the causal role of the right and left PFC in statistical learning and its 

consolidation. Healthy, young adults were trained on a probabilistic sequence learning task. 

Anodal transcranial direct current stimulation (tDCS) over the right or left dorsolateral PFC 

(DLPFC) was applied during the training in order to modify learning-related cortical plasticity in 

the targeted brain regions by increasing neural excitability. Performance was tested during and 

immediately after the stimulation, 2-hour and 24-hour later. We found that the anodal tDCS over 

the right DLPFC led to enhanced learning performance both after the 2-hour and 24-hour 

retention periods, suggesting the causal role of this area in statistical learning. In contrast, we did 

not find any effect of left DLPFC stimulation on learning. These results highlight the role of the 

right fronto-striatal network in statistical learning and its consolidation.  

 

Keywords: statistical learning, probabilistic sequence learning, implicit learning, prefrontal 

cortex (PFC), fronto-striatal network, memory consolidation 
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During every moment of our life, the brain is picking up statistical regularities of patterns 

of our physical and social world in order to successfully interact and adapt. The computational 

underpinnings of these processes are relatively well characterized [1-5], whereas the question of 

how the brain learns based on these statistical regularities and how it optimizes, stabilizes and 

consolidates the acquired information has so far remained less understood [1 2 6 7]. A growing 

body of evidence suggests that this fundamental learning mechanism relies primarily on fronto-

striatal brain networks [8-11]. 

Some studies suggested a hemispheric asymmetry in the role of prefrontal cortex (PFC) 

in statistical learning. Gazzaniga and colleagues [7 12 13] used probabilistic guessing and visual 

statistical learning tasks where some events were more frequent than others. In these tasks a 

maximizing strategy (picking always the most frequent option) can lead to a better performance 

compared to the frequency-matching strategy (where people pick the particular options with the 

approximate frequency of their occurrences). Gazzaniga et al. showed in split-brain and frontal 

lobe-lesioned patients that the left hemisphere, especially the PFC, is involved in using 

frequency-matching strategies, whereas the right hemisphere has frequency-maximizing 

strategies. The advantage of the implemented strategies may depend on the task itself: the 

frequency matching strategies can be helpful for uncovering simple causal relationships, 

however they can lead to non-optimal behavior when the relations are more complex (such as in 

an environment/task with probabilistic statistical features) [13]. Supporting this idea, patients 

with a left frontal lobe/PFC lesion performed well in the guessing tasks and in statistical learning 

of new visual features, while the right frontal lobe/PFC lesion led to a weaker performance.  

In the present study, we used the Alternating Serial Reaction Time (ASRT) Task [14], 

which is a unique tool to investigate the processes of frequency-maximizing strategy. In the 
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ASRT task, participants are asked to respond to stimuli (Fig. 1A), which appear according to a 

probabilistic sequence structure (e.g., 2r1r3r4r, where numbers represent specific locations on 

the screen determined by the sequence, and r represent randomly selected location). Because of 

the probabilistic nature of the task, some runs of three consecutive stimuli (i.e. triplets) are more 

frequent than others. Subjects are sensitive to these regularities and with practice they become 

better in differentiating between high- and low-frequency events (Fig. 1B).  Since there are only 

two triplet frequencies, namely high-frequency triplets, occurring 62.5% of all trials, and low-

frequency triplets, occurring 37.5% of all trials, this type of statistical learning in the ASRT task 

is based on frequency-maximizing strategy.   
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Figure 1. (A) Stimuli of the Alternating Serial Reaction Time (ASRT) task (P – pattern, r – random). (B) Because of 

the probabilistic nature of the task, some runs of three consecutive stimuli (triplets) occur more frequently than 

others. For example, if the sequence is 2r4r3r1r, triplets 2-_-4, 4-_-3, 3-_-1, and 1-_-2 occur often because the third 

element could be derived from the sequence or could also be a random element. In contrast, 2-_-3 or 1-_-4 would 

occur infrequently because in this case the third element could only be random. We refer to the former as high-

frequency triplets and the latter as low-frequency triplets. Learning is defined as faster responses to the high-

frequency triplets than to the low-frequency ones. (C) Design and procedure of the experiment. Anodal transcranial 

direct current stimulation (tDCS) was administered simultaneously with the Alternating Serial Reaction Time 
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(ASRT) task during the Stimulation Phase. Then – with no delay – participants performed the ASRT task without 

stimulation (Post-Stimulation Phase). Performance was retested 2-hr and 24-hr later (Retention Phases).  

 

To sum up, several studies [7 12 13] support the role of the PFC in the mechanisms of 

picking up statistical relationships and patterns of events in the environment. Furthermore, they 

highlight that the right and left hemispheres, play a different role in these processes. Here we 

aimed to go beyond these studies by examining the role of the right vs. left PFC in statistical 

learning as well as in the consolidation of the acquired information in a healthy, young 

population. Transcranial direct current stimulation (tDCS) over the right or left dorsolateral PFC 

(DLPFC) was applied during a probabilistic sequence learning task, namely ASRT, in order to 

directly investigate the causal role of the targeted areas in the acquisition and consolidation of 

statistical information. Therefore, performance was tested after 2- and 24-hour retention periods. 

We hypothesized that the right DLPFC stimulation leads to better statistical learning 

performance compared to the left DLPFC stimulation and the sham condition because of the 

underlying triplet structure of the ASRT task.  

 

Material and Methods 

Participants 

 Forty-five right-handed young adults participated in the experiment (mean age = 26.18 

years, SD = 3.91; mean education = 18.37 years, SD = 2.96; 24 males/21 females). They were 

randomly assigned to the 1) sham/control (n=15), 2) the left DLPFC stimulation (n=15), or 3) the 

right DLPFC stimulation (n=15) group. Participants had no previous history of neurological or 

psychiatric disorders, and they had no metal implants in the head or neck area. Participants gave 

written and verbal informed consent before participating. The experiment was in accordance 
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with the guidelines of the Declaration of Helsinki, and was approved by the ethics committee of 

the University of Göttingen. 

 

Task 

The Alternating Serial Reaction Time (ASRT) Task [14 15] was used to measure 

probabilistic sequence learning. In this task, a stimulus (a dog’s head) appeared in one of the four 

empty circles on the screen and participants had to press the corresponding button as fast and as 

accurately as possible (Fig. 1A). The target remained on the screen until the participant pressed 

the correct button. The response to stimulus interval (RSI) was 120 msec. The computer was 

equipped with a special keyboard which had four marked keys (Y, C, B and M on a German 

keyboard, equivalent to Z, C, B and M on a US keyboard), each corresponding to one of the 

circles [16].  

The ASRT task consisted of 35 presentation blocks in total, with 85 stimulus 

presentations and responses (key presses) per block. The first five stimulus presentations were 

random for practice purposes, then an eight-element alternating sequence (e.g., 2r4r3r1r, where 

numbers represent the four places on the screen, and r represents an event randomly selected 

from the four possible places) was repeated ten times. Ten presentation blocks of the ASRT task 

were administered in the Stimulation Phase, 15 presentation blocks in the Post-Stimulation 

Learning Phase, five presentation blocks in the 2-hr- and also five presentation blocks in the 24-

hr-Retention Phase (Fig. 1C). 

  

Transcranial direct current stimulation (tDCS) 
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Anodal tDCS was used to modify learning-related cortical plasticity in the targeted brain 

regions (by increasing neural excitability), and thus to identify the causal role of those areas and 

the related networks in specific behavioral functions. Based on the standard stimulation protocol, 

a direct current of 1 mA amplitude for a 10 minutes duration was provided by a NeuroConn 

(Ilmenau, Germany) stimulator [18]. The stimulation was delivered by two rubber electrodes 

placed in saline-soaked sponges cut to 5x7 cm (with the longer axis placed in the anterior-

posterior direction) and fixed in place by two rubber bands fastened around the participant’s 

head. The international 10-20 EEG standard was used to locate Cz on each participant. The 

anodal electrode was placed over the F3 or F4 for left and right DLPFC stimulation respectively, 

while the cathode was placed over the Cz (Fig. 1C). This method to target DLPFC has been used 

in previous studies [e.g., 19 20] and has been confirmed as an appropriate method of localization 

by neuronavigation techniques [21]. The current was ramped up to maximum at the beginning 

over 30 seconds, remained at 1 mA for 600 seconds (real stimulation conditions), and then 

ramped down to 0 mA over 30 seconds. The stimulation set-up remained fixed on the 

participant’s head throughout the task. Following the protocol of Ambrus et al.’s study [18], a 30 

seconds long stimulation (with an additional 30-s ramp-up and a 30-s ramp-down period) was 

used in the control (sham) group in order to blind the participants about whether they were 

assigned to the experimental (real stimulation) or to the control group (single-blinded design). A 

recent resting state functional magnetic resonance imaging (fMRI) study has shown that a short 

(e.g., 30 seconds) tDCS protocol for the sham condition does not have a significant effect on 

brain dynamics compared to the active tDCS [22], proving it to be an appropriate control 

condition for investigating the effect of stimulation.  
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 The Stanford Sleepiness Scale [SSS, 23] was administered before the Stimulation, after 

the Post-Stimulation, and before and after the 2-hr- and 24-hr Retention Phases in order to assess 

the potential immediate and after-effects of the stimulation on subjective sleepiness. Participants 

reported their subjective sleepiness on a 7-point Likert scale where 1 means “Feeling active, 

vital, alert, or wide awake” and 7 means “No longer fighting sleep, sleep onset soon; having 

dream-like thoughts”.  

 

Statistical analysis 

During the analysis we followed the protocol of previous ASRT studies [e.g., 2 14 15-

17], and because of the typically high accuracy in performance in the ASRT task (above 92%), 

we focused on reaction time (RT) analysis. We calculated median RTs for correct responses 

only, for each subject and each block of five (e.g., Blocks 1-5, Blocks 6-10, etc.), for high- and 

low-frequency triplets separately. Then we calculated a triplet learning index by subtracting the 

RTs for the high-frequency triplets from the RTs for the low-frequency ones for each block of 

five. Here, a higher index reflects better statistical learning; thus being faster on high- than on 

low-frequency triplets. In the analysis reported below, we averaged triplet learning indices across 

blocks of five, separately for each session of the experiment (Stimulation, Post-Stimulation, 2-hr- 

and 24-hr-Retention Phase). 

Note that for each response (n), we defined whether it was a high- or a low-frequency 

triplet by considering whether it was more or less predictable from the event n − 2. Two kinds of 

low-frequency triplets, repetitions (e.g., 222, 333) and trills (e.g., 212, 343), were excluded from 

the analysis, since people often showed pre-existing response tendencies to them [14 24]. By 
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eliminating these repetitions and trills we attempted to ensure that any low- versus high-

frequency differences are due to learning and not to preexisting tendencies.  

 

Results 

We conducted a mixed design analysis of variance (ANOVA) on triplet learning indices 

shown on Figure 2 with Session (4: Stimulation, Post-Stimulation, 2-hr- and 24-hr-Retention 

Phase) as a within-subject factor, and GROUP (3: sham, left vs. right DLPFC stimulation) as a 

between-subject factor. ANOVA revealed significant learning (Intercept: F (1, 42) = 164.90, η2
p 

= .80, p < .001) which improved with practice (indicated by the main effect of SESSION: F (3, 

40) = 5.74, η2
p = .30, p = .002). Groups differed in the amount of learning (shown by the main 

effect of GROUP: F (2, 42) = 4.05, η2
p = .16, p = .025). Fisher’s LSD pairwise comparisons 

revealed that the right DLPFC stimulation group exhibited the highest learning performance, 

differing significantly from the control/sham group (p = .008, Cohen’s d = 1.01) and on a trend 

level from the left DLPFC stimulation group (p = .073, d = 0.65). This difference was more 

evident by the 2-hr- and the 24-hr-Retention Phases, where the Fisher’s LSD pairwise 

comparisons revealed the right DLPFC stimulation group’s advantage compared to the control 

(2-hr-delay: p = .020, d = 0.91; 24-hr-delay: p = .017, d = 0.90) and the left DLPFC stimulation 

group (24-hr-delay: p = .012, d = 0.80). There were no group differences in learning in the 

Stimulation and Post-Stimulation Phases (ps > .270).  
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Figure 2. Learning performance (measured as faster responses for high- compared to low-frequency triplets) in the 

Stimulation (S), Post-Stimulation (P-S), 2-hr- and 24-hr-Retention Phases. Error bars indicate Standard Error of the 

Mean (SEM).  

 

The observed group differences were not due to a general effect of the stimulation on 

arousal level since all groups responded with similar RTs in general, in all sessions (ps > .737). 

In addition, univariate ANOVAs conducted on Stanford Sleepiness measures with GROUP 

(sham, left vs. right DLPFC stimulation) as a between-subject factor revealed no group 

differences in any sessions (ps > .11). 
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Figure 3. Raw reaction times (RTs) for high- and low-frequency triplets, for the sham (A), right DLPFC (B) and left 

DLPFC groups (C). S – Stimulation Phase, P-S – Post-Stimulation Phase, 2-hr and 24-hr Retention Phases. Error 

bars indicate Standard Error of the Mean (SEM). 

 

Discussion 

In our study, anodal tDCS over the right or left DLPFC was applied during a probabilistic 

sequence learning task in order to investigate the causal role of the targeted brain areas and the 

related networks in statistical learning and its consolidation. To our knowledge, this is the first 

study using tDCS over the DLPFCs to investigate consolidation of a sequence learning task with 

statistical features. Learning performance was assessed in the Stimulation, Post-Stimulation, 2- 

and 24-hour Retention Phases (Fig. 1C). We found overall better learning performance of the 

right DLPFC group compared to the sham (control) group. When analyzing the sessions 

separately, there were no group differences in learning in the Stimulation and Post-Stimulation 

Phases. In contrast, the right DLPFC group exhibited a statistical learning advantage in the 2-hr- 

and 24-hr-Retention Phases (Fig 2). We failed to find any effect of the left DLPFC stimulation. 

Previous studies have demonstrated in split-brain and frontal lobe-lesioned patients that 

the right hemisphere, especially the right PFC has an advantage in learning statistical features of 

the environment [7 13]. Here we used tDCS to directly manipulate the involvement of the 

targeted brain regions and the related networks in statistical learning. Our results partly 

complement the findings of those previous studies, since a better learning performance was 

observed after the right DLPFC stimulation compared to sham stimulation and by the last session 

also compared to the left DLPFC stimulation.  

No effect of stimulation in the learning/stimulation phase might be due to the fact that we 

investigated a healthy, young population, while former studies primarily focused on patient 

populations [7 13]. In a healthy, young population, tDCS might cause a smaller change in task 
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performance compared to the effect of a lesion in patients; the former is a short-term 

manipulation of the activity in the targeted brain regions and the related networks, while the 

latter could lead to an irreversible loss of a function subserved by the affected brain areas. In line 

with this argument, Friederici et al. [25] found an effect of left cathodal PFC stimulation on 

statistical language learning in healthy, young adults only in the testing session. One possible 

explanation is that the stimulation can lead to qualitative (different strategies, leading to more 

effective learning) or quantitative (stronger learning) differences in the learning/stimulation 

phase but these effects could not be revealed by behavioral measures. Future studies need to 

address this question using brain imaging or other sensitive methods to explore the effect of the 

stimulation on neural level during the learning phase.  

Besides focusing on a healthy, young population, our study also went beyond the 

previous ones in that we examined the role of the right vs. left PFC not only in statistical learning 

itself, but also in the consolidation of the acquired information. Here we demonstrated that 

increased right PFC excitability results in a higher retention level compared to the sham 

condition both in the 2-hr and 24-hr Retention Phases, and also compared to the left PFC 

stimulation in the 24-hr Retention Phase. These findings highlight the role of the right PFC (and 

the right fronto-striatal network in general) in the stabilization of the representation of statistical 

regularities. Our findings are in line with the previously mentioned statistical language learning 

study of Friederici et al. [25] in which the cathodal stimulation of the left PFC during the 

learning phase resulted in a better performance in the testing phase. In our study we observed 

similar results with excitatory (anodal) stimulation of the right PFC instead of an inhibitory 

(cathodal) stimulation of the left PFC. Taken these findings together, a clear division of labor 

between right and left hemispheres can be observed in statistical learning mechanisms. 
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Using a deterministic sequence learning task that has less prominent statistical features, 

Galea et al. [26] reported offline improvement following a “virtual lesion” of the right DLPFC. 

They used continuous theta-burst transcranial magnetic stimulation (cTBS) to either the right or 

the left DLPFC after the training. The cTBS has been shown to have an inhibiting effect on the 

stimulated area, resulting in a reversible, short-term functional lesion [27]. In contrast, the anodal 

tDCS used in our study has been shown to increase the excitability of the stimulated area, 

leading to higher neural plasticity. The seemingly surprising result that, compared to the left 

DLPFC, both the inhibition and excitation of the right DLPFC could lead to a superior 

performance after a retention period could be explained by the fact that we used the tDCS during 

the learning phase, which may affect the learning itself, while the stimulation in Galea et al.’s 

study [26] interfered with the consolidation of the previously acquired knowledge but not the 

acquisition itself. These results suggest that increased excitability of the right DLPFC in the 

acquisition phase might lead to a better learning performance after a retention period, while 

increased excitability of the right DLPFC after the acquisition phase might result in interference 

effects in the retention/consolidation of the acquired knowledge. Nevertheless, it is important to 

highlight that the tasks used in these two studies are quite different in nature (deterministic vs. 

probabilistic sequence learning) which can also lead to different effects of the stimulation. Future 

studies need to clarify this issue, directly manipulating both the direction (excitation vs. 

inhibition), type of the task (deterministic vs. probabilistic) and the timing of the stimulation 

(during or after the training). 

Concerning the mechanisms of the effect of stimulation, on the cellular level anodal 

tDCS has been shown to cause membrane hypopolarization, leading to enhanced cortical 

excitability [28 29].  In addition, pharmacological studies suggest that the after-effects of the 
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stimulation are N-methyl-D-aspartate (NMDA) receptor-dependent [30], sharing some 

similarities with long-term potentiation (LTP), which resemble neuroplastic alterations thought 

to underlie learning and memory formation [31 32]. On the network level, both imaging and 

modeling studies have been demonstrated that the stimulation affects not only the targeted brain 

region but also the interconnected areas [31 33 34]. For instance, studies using resting state fMRI 

simultaneously with anodal tDCS over the right or left DLPFC showed hemisphere-specific 

increased synchronous activity and connectivity between lateral frontal and parietal areas [22 

35]. Our results are in line with these findings showing a tDCS-induced hemisphere-specific 

modulation of statistical learning measured by a probabilistic sequence learning task. As a 

further step, future studies are needed to employ fMRI during the behavioral task and 

simultaneous stimulation, not only in resting state, in order to determine the effect of stimulation 

on the brain networks specifically involved in that particular task.   

Previous research suggested that the effect of tDCS might be more general, facilitating 

reconfiguration of functional brain networks to address upcoming cognitive demands by, for 

example, increasing the temporal synchrony in the attention networks [22]. To partly address this 

concern, we administered a sleepiness scale to monitor changes in subjective alertness before and 

after the stimulation. The real and sham stimulation groups did not differ in subjective sleepiness 

neither after the stimulation, nor later in the retention phases. Our results indicate that the effect 

of stimulation is rather task-specific than general (e.g., alertness change). In addition, our finding 

that the stimulation of the left and right PFC led to different behavioral outcomes despite the 

similar level of alertness throughout the whole experiment also supports this notion.   

Another important question is how long does the effect of stimulation last. Previous 

studies primarily investigated the after-effects of motor cortex stimulation and found that a 10-
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minute long tDCS induces neuroplastic changes up to 1 hour at least [36]. To our knowledge, the 

after-effects of tDCS on DLPFC have not yet been investigated in functional neuroimaging 

studies. Our results suggest that, on a behavioral level, the stimulation might have a delayed 

rather than an online effect. Nevertheless, studies examining various domains, such as working 

memory [20 37], short-term verbal learning [38] or planning [39], showed immediate 

improvements after anodal tDCS applied over the DLPFC. Future studies need to identify those 

specific cognitive processes which can immediately benefit from the stimulation versus those, 

which show delayed effects.   

Taken together, we found hemispheric differences in the role of the PFCs in statistical 

learning and its consolidation with a probabilistic sequence learning task in healthy, young 

adults. In line with previous research [7], an advantage of the right PFC was obtained in picking 

up statistical regularities. As the involvement of the fronto-striatal network in statistical learning 

is well demonstrated, we believe that the boosting effect of the right PFC stimulation on learning 

processes is due to a greater excitability of the related fronto-striatal network, and not only of the 

PFC itself. In conclusion, our findings corroborate the previous ones showing hemispheric 

asymmetry with right hemisphere advantage in statistical learning and its consolidation, which 

can lead to development of new, more targeted treatment methods for learning and memory 

disorders.  
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