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Abstract 

Purpose: The purpose of experiment one was to determine the appetite, acylated ghrelin and 

energy intake response to breakfast consumption and omission in hypoxia and normoxia. 

Experiment two aimed to determine the appetite, acylated ghrelin and energy intake response 

to carbohydrate supplementation after both breakfast consumption and omission in hypoxia. 

Methods: In experiment one, twelve participants rested and exercised once after breakfast 

consumption and once after omission in normobaric hypoxia (4300 m: FiO2 ~11.7%) and 

normoxia. In experiment two, eleven participants rested and exercised in normobaric hypoxia 

(4300 m: FiO2 ~11.7%), twice after consuming a high carbohydrate breakfast and twice after 

breakfast omission. Participants consumed both a carbohydrate (1.2g·min-1 glucose) and a 

placebo beverage after breakfast consumption and omission. Measures of appetite perceptions 

and acylated ghrelin were taken at regular intervals throughout both experiments and an ad-

libitum meal was provided post-exercise to quantify energy intake. Results: Breakfast 

consumption had no significant effect on post exercise energy intake or acylated ghrelin 

concentrations, despite reductions in appetite perceptions. As such, breakfast consumption 

increased total trial energy intake compared with breakfast omission in hypoxia (7136 ± 2047 

kJ vs. 5412 ± 1652 kJ; p = 0.02) and normoxia (9276 ± 3058 vs. 6654 ± 2091 kJ; p < 0.01). 

Carbohydrate supplementation had no effect on appetite perceptions or acylated ghrelin 

concentrations after breakfast consumption or omission. As such, carbohydrate 

supplementation increased total energy intake after breakfast consumption (10222 ± 2831 kJ 

vs. 7695 ± 1970 kJ p < 0.01) and omission (8058 ± 2574 kJ vs. 6174 ± 2222 kJ p = 0.02). 

Conclusion: Both breakfast consumption and carbohydrate supplementation provide beneficial 

dietary interventions for increasing energy intake in hypoxic conditions. 

Key words: altitude, ghrelin, feeding, nutrition 



Abbreviations 

AUC = area under the curve 

B-CHO = breakfast consumption and carbohydrate supplementation

B-PLA = breakfast consumption and placebo

F-CHO = breakfast omission and carbohydrate supplementation

FiO2 = fraction of inspired oxygen 

F-PLA = breakfast omission and placebo

GOAT = Ghrelin-O-Acyl-Transferase 

MCFA = medium chain fatty acid 

PiO2 = partial pressure of inspired oxygen 

RPE = rating of perceived exertion 

SD = standard deviation 

SE = standard error 

SpO2 = peripheral oxygen saturation 

VAS = visual analogue scale 

CAS = composite analogue scale 

̇ CO2 = volume of expired carbon dioxide 

V̇O2 = volume of inspired oxygen 

V̇O2max = maximal oxygen uptake 



1.0 Introduction 

Hypoxic exposure has been demonstrated to supress appetite perceptions and subsequently 

attenuate energy intake in comparison with normoxia (Matu, et al., 2017a; Wasse, et al., 2012). 

In addition, resting energy expenditure has been suggested in be elevated in hypoxia, compared 

with normoxia (Matu, et al., 2017a; Westerterp, et al., 1994). As such, chronic hypoxic 

exposure is often associated with a negative energy balance and concomitant weight loss 

(Matu, et al., 2017c; Westerterp, et al., 1992), thus contributing to the deleterious effects of 

high altitude on physical capability (Sergi, et al., 2010). Logically, breakfast consumption 

provides an opportunity to increase caloric intake prior to exercise and abate body mass loss at 

high altitude. However, several studies in normoxia have demonstrated that the transitory 

reduction in appetite after exercise may be shorter in the fasted state (Cheng, et al., 2009; 

Deighton, et al., 2012; Gonzalez, et al., 2013; McIver, et al., 2018) compared with the fed state. 

In addition, studies in normoxia have previously demonstrated an increase in compensatory 

feeding after breakfast omission, albeit without an exercise intervention (Astbury, et al., 2011; 

Clayton & James, 2015). Whilst this overeating effect does not typically demonstrate a greater 

daily energy balance in normoxia, the magnitude of this acute response remains to be elucidated 

in hypoxia. In addition, alternative nutritional strategies to avoid glycogen depletion (Brouns, 

1992) require investigation in hypoxia after both breakfast consumption and omission. 

The prolonged hunger suppression after breakfast consumption compared with omission in the 

post-exercise period has often been demonstrated as transient, and has not resulted in any 

subsequent changes in post-exercise energy intake (Deighton, et al., 2012; Gonzalez, et al., 

2013; McIver, et al., 2018). However, due to the suppressive effects of hypoxia on the 

orexigenic hormone, acylated ghrelin (Matu, et al., 2017a; Wasse, et al., 2012), it seems 

plausible that appetite perceptions following exercise after breakfast consumption may be 

further suppressed in hypoxia, compared with normoxia. In addition, it has also been suggested 



that pre-exercise nutritional status and the resultant effects on substrate metabolism may 

determine post-exercise appetite perception and energy intake (Hopkins, et al., 2011). In this 

regard, there is growing evidence to suggest that whole body carbohydrate availability, and the 

rate of tissue specific utilisation (influenced by exercise and/or diet) may contribute to the 

regulation of energy balance (Edinburgh, et al., 2018; Gonzalez, et al., 2019; Hopkins, et al., 

2014). The rate of carbohydrate oxidation during a bout of exercise has been positively 

associated with post-exercise energy intake, thus inducing post-exercise dietary compensation 

(Hopkins, et al., 2014).  As substrate metabolism has been shown to differ in hypoxia compared 

with normoxia in varying states of energy balance (Griffiths, et al., 2019a; Griffiths, et al., 

2019b; O'Hara, et al., 2019; O'Hara, et al., 2017; Péronnet, et al., 2006; Young, et al., 2018), 

these responses may induce differing effects on appetite and energy intake in hypoxia. 

A number of studies have aimed to abate the loss of body mass experienced at high altitude 

(Matu, et al., 2017c; Westerterp, et al., 1992) via the use of nutritional interventions to augment 

energy intake in hypoxia (Berryman, et al., 2018; Butterfield, et al., 1992; Kayser, et al., 1993; 

Matu, et al., 2017b). However, the efficacy, practicality, adherence and palatability of these 

interventions at high altitude are somewhat limited. Previous research regarding the use of 

carbohydrate supplementation during exercise as a strategy to increase energy intake in 

hypoxia demonstrates an efficacious, practical and palatable alternative to the aforementioned 

interventions (Askew, et al., 1987; Macdonald, et al., 2009). Considering the suppressive 

effects of glucose load on the orexigenic hormone, acylated ghrelin (Shiiya, et al., 2002) it is 

necessary to determine the response to carbohydrate supplementation after breakfast 

consumption and omission in order to identify the optimum nutritional strategy. In addition, 

whilst the use of participants in a negative energy balance (as per previous research) is 

warranted for ecological validity, this response should also be determined in fully fed 

participants, to determine the applicability of this nutritional intervention for wider 



populations, such as athletes or military personnel and mountaineers able to maintain energy 

balance (i.e. start of an expedition or rapid military deployment to high altitude). 

This study aimed to determine the influence of breakfast consumption and omission on 

subsequent energy intake, as well as the efficacy of carbohydrate supplementation on 

increasing energy intake in hypoxia in the fasted and fed state. Findings from this study may 

be used to identify the optimum nutritional strategy (or strategies) for increasing energy intake 

during high altitude sojourns in mountaineers and military personnel. Within this manuscript 

we report the findings from two experimental studies. The purpose of experiment one was to 

determine the appetite, acylated ghrelin and energy intake response to breakfast consumption 

and omission in acute normobaric hypoxia (fraction of inspired oxygen (FiO2) ~11.7%, 4300 

m) and normoxia. The purpose of experiment two was to determine the appetite, acylated

ghrelin and energy intake response to carbohydrate supplementation after both breakfast 

consumption and omission in hypoxia. 

2.0 Methods 

2.1 Experiment one 

Twelve (23  3 years, 181.1  6.4 cm, 79.8  13.1 kg) physically active, healthy males provided 

written, informed consent prior to participation. The study received institutional ethical 

approval and was conducted in accordance with the Declaration of Helsinki (Leeds Beckett 

research ethics committee, application reference 32098). All participants were non-smokers, 

normotensive, and were free from diabetes, thyroid disorder, and sickle cell trait. In addition, 

participants did not possess any food allergies and were not taking any medication. None of 

the participants had travelled to an altitude of >1500 m within the previous three months and 



were all currently residing at an altitude of <500 m. Participants recorded their food intake for 

the 24 hours before each experimental trial and were instructed to replicate this for each 

subsequent trial. During this time participants were asked not to perform strenuous activity or 

consume caffeine or alcohol. 

2.1.2 Experimental design 

Experiment one was part of a larger study investigating substrate oxidation in hypoxia 

(Griffiths, et al., 2019a) but the methods included in this manuscript specifically relate to 

appetite and energy intake responses, which have not been published previously. participants 

completed sub-maximal and maximal exercise tests in both normobaric hypoxia (FiO2 ~11.7%, 

4300 m) and normoxia (FiO2 ~ 20.93%) to calculate walking speeds required to elicit 40%, 

50% and 60% maximal oxygen uptake (V̇O2max) relative to each environmental condition for 

the experimental trials. These two preliminary trials were separated by >48 hours and 

conducted in a single-blind randomised fashion. Participants then completed four 4-hour, 5-

minute experimental trials, which included a 2-hour 15 minutes rest period, followed by a 1-

hour incremental walking protocol (20 minutes at each intensity), a 30-minute post exercise 

rest period followed by an ad-libitum meal (Figure 1). All trials were conducted in an 

environmental chamber (TISS, Alton, UK and Sporting Edge, Sheffield on London, UK). Two 

of the trials were performed in normobaric hypoxia (fraction of inspired oxygen (FiO2): ~11.7% 

when considering water vapour partial pressure (Conkin, 2011; Fenn, et al., 1946) and daily 

fluctuations in barometric pressure) equivalent to 4300 m (partial pressure of inspired oxygen 

(PiO2): 83 mmHg), and two were performed in normoxia. One trial within each environmental 

condition involved breakfast consumption (see experimental trials), and one involved breakfast 

omission. These visits were separated by >7 days and were randomised independent of the 

preliminary trials, using a Latin Square design. 



2.1.3 Preliminary trials 

In experiment one, participants completed a preliminary trial involving a sub-maximal and 

maximal exercise test in both hypoxia and normoxia, to determine walking speeds for 

experimental trials in each environmental condition. In hypoxia, the sub-maximal phase 

involved four, 3-minute stages walking at 1.5 km/h, 2.5km/h, 3.5 km/h and 4.5 km/h at a 10% 

gradient throughout. In normoxia, participants walked at 3 km/h, 4 km/h, 4.5 km/h and 5.5 

km/h. The initial two walking speeds were performed at a 10% gradient and the second two at 

a 15% gradient. Participants walked carrying a 10 kg backpack in both conditions. Lower 

speeds and gradients were used in normobaric hypoxia based on the reduced V̇O2max elicited 

in hypoxia (Dill, et al., 1931), and the need for all participants to achieve 40 - 60% V̇O2max 

during the 12-minute trial. The higher gradient utilised in normoxia was employed to ensure 

participants achieved 60% V̇O2max with a walking gait. 

Following completion of the sub-maximal phase, participants then rested for approximately 5 

minutes, after which the maximal phase commenced. Participants ran without a rucksack, at a 

1% gradient (Jones & Doust, 1996) at a constant speed dependant on fitness, aiming for a 

perceived exertion of 12. The gradient was increased by 1% every minute until volitional 

exhaustion. Oxygen uptake (V̇O2) and carbon dioxide production (V̇CO2) measurements were 

made throughout both phases of the test using an online gas analysis system (Metalyser, Cortex, 

Germany), which was calibrated following the manufacturer’s instructions. All participants 

were deemed to reach a ‘true’ V̇O2max by fulfilment of >2 of the following criteria: a plateau in 

V̇O2 in the final exercise stage (Taylor, et al., 1955), respiratory exchange ratio >1.15 (Issekutz, 

et al., 1962), heart rate within 10 b·min-1 of age predicted maximum (220-age), rating of 

perceived exertion (RPE) >19 and/or blood lactate >8 mM (Midgley, et al., 2007; Shannon, et 

al., 2016). 



2.1.4 Experimental trials 

The evening prior to each experimental trial, participants consumed a standardised evening 

meal between 7pm and 8pm that included fusilli pasta, pasta sauce, cheddar cheese, milk and 

jelly beans (1037 kcal, 57% carbohydrate, 28% fat, 15% protein). Participants entered the 

environmental chamber at 8am, following an overnight fast.  Participants then rested for an 

hour. At 1 hour, in both the normobaric hypoxia and normoxia breakfast consumption trials, 

participants were allowed 15 minutes to consume a standardised porridge breakfast (535 kcal, 

58% carbohydrate, 24% fat, 18% protein). This meal included rolled oats, semi-skimmed milk 

and orange juice, and was designed to replicate typical breakfast consumption in the UK 

(Reeves, et al., 2013). At 1 hour in the normobaric hypoxia and normoxia breakfast omission 

trials, participants continued resting for 15 minutes, without the consumption of breakfast. At 

1 hour 15 minutes, participants in all trials rested for a further hour. At 2 hours 15 minutes, 

participants completed a 1-hour walking test (20 minutes at 40%, 50% and 60% V̇O2max) at a 

10% gradient, carrying a 10kg backpack, to mimic the demands of high-altitude trekking 

(Mellor, et al., 2017). Participants then rested for 30 minutes after exercise. Participants were 

then given 20 minutes to consume an ad-libitum meal (see ad-libitum meals section). 

2.2 Experiment two 

2.2.1 Participants 

Eleven (23 ± 3 years, 178.0 ± 7.0 cm, 76.6 ± 7.0 kg) physically active, healthy males provided 

written, informed consent prior to participation. The study received institutional ethical 

approval and was conducted in accordance with the Declaration of Helsinki (Leeds Beckett 

research ethics committee, application reference 46180. Inclusion and exclusion criteria was 

replicated from experiment one, except participants in study two were all required to have a 

normal baseline 12 lead electrocardiogram, given emerging evidence indicating a 



proarrhythmic effect of exposure to altitudes >4000m (Boos, et al., 2017). Pre-trial controls 

were also the same as experiment one. 

2.2.2 Experimental design 

Participants completed a sub-maximal and maximal exercise test to calculate walking speed 

required to elicit 50% V̇O2max in normobaric hypoxia (FiO2 11.7%, 4300 m). Participants then 

completed a 4 hour 50 minutes experimental trial. This included a 1-hour 45 minute rest period, 

followed by a 1-hour 30 minute sub-maximal walking test (50% V̇O2max), 3 km time trial and 

a 30-minute post exercise rest period (Figure 2). All four trials were performed in normobaric 

hypoxia equivalent to 4300 m. Two trials involved pre-exercise breakfast consumption 

followed by ingestion of a carbohydrate or placebo beverage (B-CHO and B-PLA) throughout 

the 1-hour 30-minute sub-maximal walking test. The other two trials involved pre-exercise 

breakfast omission followed by ingestion of a carbohydrate or placebo beverage (F-CHO and 

F-PLA) throughout the walking test. The carbohydrate beverage trials involved ingestion of

1.2 g·min-1 (108 g) of glucose (D-glucose, Thornton and Ross LTD, Huddersfield, UK). Each 

beverage contained 25.7 mmol/L sodium chloride (2.25 g). These visits were separated by > 7 

days and pre-exercise nutritional status (breakfast consumption or omission) was randomised 

in a single blind fashion. The order of beverage ingestion was randomised in a double-blind 

fashion by a researcher independent to the study. 

2.2.3 Preliminary trials 

In experiment two, participants completed the previously described (see section 2.1.3) sub-

maximal and maximal exercise test in hypoxia only, as there were no normoxic experimental 

trials. All participants fulfilled >2 of the criteria for V̇O2max measurements as detailed in section 

2.1.3. 

2.2.4 Experimental trials 



The evening prior to each experimental trial, participants consumed a standardised evening 

meal, as per experiment 1. Participants entered the environmental chamber (FiO2: ~11.7%, 

4300 m) at 7:30am, following an overnight fast. Participants then rested for 30 minutes. At 30 

minutes in the B-CHO and B-PLA trials, participants were allowed 15 minutes to consume a 

standardised breakfast (as per experiment one). At 30 minutes in the F-CHO and F-PLA trials, 

participants continued resting for 15 minutes, without the consumption of breakfast. At 45 

minutes, participants in all trials rested for a further hour. At 1-hour 45 minutes participants 

completed a 1-hour 30 minute sub-maximal (50% V̇O2max) walking test at a 10% gradient, 

carrying a 10kg rucksack. Within each nutritional sub-group, one trial consumed a 

carbohydrate and one trial consumed a placebo beverage. Each beverage was consumed pre-

exercise (600 ml) and every 15 minutes during exercise (150 ml). A total of 1.5 L of 

carbohydrate or placebo solution was consumed over the course of the trial. Participants then 

completed a self-paced 3 km time trial, however this was not the focus of this study and results 

are not presented herein. Following the 3 km time trial, participants rested for a further 30 

minutes and then consumed an ad-libitum meal (see ad-libitum meals section). 

2.3 Measurements 

2.3.1 Ratings of perceived appetite 

In experiment one, ratings of perceived appetite scores were recorded at baseline, pre-prandial 

(30 minutes and 1 hour), post-prandial (1 hour 15 minutes, 1 hour 45 minutes, 2 hour 15 

minutes), exercise (2 hours 45 minutes), post-exercise (3 hours 15 minutes and 3 hours 45 

minutes) and post ad-libitum meal (4 hours 5 minutes). In experiment two, ratings of perceived 

appetite scores were recorded at baseline, pre-prandial (30 minutes), post-prandial (45 minutes, 

1 hour 15 minutes and 1 hour 45 minutes), exercise (2 hours 45 minutes), post-exercise (3 hours 

15 minutes and 4 hours 30 minutes) and post ad-libitum meal (4 hours 50 minutes). 



Appetite perceptions were measured using validated 100 mm visual analogue scales (VAS) 

(Flint, et al., 2000). Using these scales composite appetite score (CAS) was calculated using 

the following formula: CAS = ([hunger + prospective food consumption + (100 – fullness) + 

(100 – satisfaction)] / 4 (Stubbs, et al., 2000). A higher value is associated with a greater 

appetite sensation and subsequently a stronger motivation to eat.  

2.3.2 Ad-libitum meals 

An ad-libitum pasta meal was administered at 3-hours 45 minutes and 4-hours 30 minutes in 

experiment one and two respectively. The macronutrient content of the meal was designed to 

closely align with the UK dietary guidelines for macronutrient proportions (51% carbohydrate, 

34 % fat and 15% protein). The meal consisted of penne pasta, cheddar cheese, tomato pasta 

sauce and olive oil (Deighton, et al., 2016).  

Participants consumed the ad-libitum meal in isolation to prevent any social influence affecting 

food intake. Participants were provided with a bowl of the respective meal and this was 

replaced by an investigator before the participant had emptied it and with minimal interaction. 

No time limit was set for eating (although this did not exceed 20 minutes) and participants were 

instructed to eat until comfortably full before meal termination. Energy intake was determined 

as the weighted difference in food before and after eating, and with reference to the 

manufacturer’s table of nutritional information. Participants were permitted to drink water ad-

libitum. 

2.3.3 Heart rate, SpO2 and RPE 

In experiment one and two, heart rate and peripheral oxygen saturation (SpO2) were measured 

using a fingertip pulse oximeter (Nellcor PM10N, United States) every 15 minutes during rest. 

Measurements were taken for at least 20 seconds, until values had stabilised. Heart rate, SpO2 

and RPE were measured every 10 minutes throughout exercise.   



2.3.4 Blood sampling 

Venous blood samples were drawn from a 20-gauge cannula (Introcan Safety; B Braun, 

Sheffield, UK) which was inserted into an antecubital vein upon arrival. In experiment one, 

samples for the analysis of acylated ghrelin were drawn at baseline, 1-hour (pre-prandial), 2-

hours 15 minutes (post-prandial), 2-hours 55 minutes (50% V̇O2max), 3-hours 15 minutes (60% 

̇ O2max) and 3-hours 45 minutes (post-exercise). In experiment two, samples for the analysis 

of acylated ghrelin were drawn at baseline, 30 minutes (pre-prandial), 1-hour 45 minutes (post-

prandial), 2-hours 45 minutes (exercise (60 minutes)), 3-hours 15 minutes (exercise (90 

minutes)) and post-exercise (4-hours 30 minutes). Samples were collected into a pre-cooled 

EDTA tube (Sarstedt, Leicester, UK). The tubes were treated on the morning of testing to 

minimise the degradation of acylated ghrelin, with 50 µl of a solution containing p-

hydroxymercuribenzoic acid, potassium phosphate buffer and sodium hydroxide (Hosoda, et 

al., 2004). Tubes were spun at 1500 x g for 10 minutes in a centrifuge (CompactStar, CS4, 

VWR) immediately after being filled with venous blood. The supernatant was then transferred 

into separate Eppendorf tubes to be frozen immediately at -20 °C before being transferred to -

80 °C until analysis.  

2.4 Blood analysis 

Commercially available enzyme-linked immunosorbent assay kits were used to determine 

plasma concentrations of acylated ghrelin (SPI BIO, Montigny Le Bretonneux, France). To 

eliminate interassay variation, all samples from each participant were analysed on the same 

plate. The within batch CV was 8.2%. 

2.5 Statistical analysis 

Data are expressed as mean ± standard deviation (SD) in text and mean ± standard error (SE) 

in figures to avoid distortion of the graphs. All data were analysed using IBM SPSS statistics 



(v24 for Windows; SPSS; Chicago, IL). The trapezoid method was used to calculate area under 

the curve (AUC) for appetite perceptions and acylated ghrelin concentration. Two-way 

repeated measure ANOVAs (time x trial) were used to determine differences between appetite 

perceptions and hormone concentrations between AUC periods in experiment one and two. 

One-way repeated measures ANOVAs were used to determine differences between energy 

intake, heart rate, SpO2 and RPE.  Where significant main effects of trial were found, further 

post-hoc analysis was performed using Bonferroni correction for multiple comparisons. A 

paired sample t test was used to determine the difference between V̇O2max in hypoxia and 

normoxia in experiment one. Effect sizes were calculated as Cohen’s d and subsequently 

corrected to Hedges g (Cumming, 2013), as a result of the small sample size in the present 

study (n < 20). As Hedges g is a variation of Cohen’s d (Hedges & Olkin, 1985), values were 

interpreted as < 0.2 trivial, > 0.2 small, > 0.6 moderate, > 1.2 large, > 2 very large and > 4 

extremely large, as detailed by Hopkins (2004). The sample size was deemed sufficient to 

determine differences in CAS, acylated ghrelin and energy intake in experiment one and two. 

Regarding experiment one, based on previous studies in our laboratory (Matu, et al., 2017a) 

and an alpha value of 5%, a sample size of 12 would generate a power >80% for these variables. 

Regarding experiment two, based on previous studies in our laboratory (Matu, et al., 2017a) 

and similar previous literature (Askew, et al., 1987) a sample size of 11 would generate a power 

>80% for these variables.

3.0 Results 

3.1 Experiment one 

3.1.1 Exercise responses 

V̇O2max was significantly reduced in hypoxia compared with normoxia (38.3 ± 6.0 mL·kg-

1·min-1 vs. 53.0 ± 8.6 mL·kg-1·min-1; p < 0.001, g = 1.93). Data regarding walking speeds and 



relative percentage of V̇O2max induced during the sub-maximal walking test in the present study 

have been reported previously (Griffiths, et al., 2019a). Relative exercise intensity was not 

significantly different between any trial at 40% (p = 0.39), or 60% V̇O2max (p = 0.18) however, 

a trend for an increased relative exercise intensity in hypoxia compared with normoxia after 

breakfast omission was observed at 50% V̇O2max (p = 0.06). SpO2, heart rate and RPE scores 

for the duration of the experimental trial are presented in Table 1. There were no significant 

differences between trials for heart rate (p > 0.14, g < 0.93) or RPE (p > 0.86, g < 0.20). SpO2

was significantly lower in hypoxia compared with normoxia in both the breakfast consumption 

(p < 0.01, g = 7.56) and omission trials (p < 0.01, g = 9.30) (Table 1). 

[Insert Table 1] 

3.1.2 Energy expenditure 

Energy expenditure at rest was significantly greater in hypoxia compared with normoxia in 

both the breakfast consumption (1252 ± 158 kJ vs. 1108 ± 145 kJ; p = 0.02, g = 0.92) and 

breakfast omission trials (1349 ± 250 kJ vs. 1053 ± 140 kJ; p = 0.001, g = 1.47). Energy 

expenditure at rest was not significantly different between breakfast consumption and omission 

in hypoxia (p = 0.66, g = 0.37) or normoxia (p = 0.49, g = 0.45).  

Energy expenditure during exercise was significantly reduced in hypoxia compared with 

normoxia after both breakfast consumption (1809 ± 218 kJ vs. 2477 ± 205 kJ, p < 0.001, g = 

3.05) and omission (1734 ± 223 kJ vs. 2425 ± 262 kJ, p < 0.001, g = 2.73). Energy expenditure 

during exercise was not significantly different between breakfast consumption and omission in 

hypoxia (p = 0.34, g = 0.21) and normoxia (p = 0.99, g = 0.32). 

3.1.3 Appetite perceptions 

No significant differences in CAS (Figure 3A) were observed between any trial at baseline (all 

p = 0.99, g < 0.30) or in the pre-prandial period (all p = 0.99, g < 0.12). In the post-prandial, 



exercise and post-exercise periods, CAS was significantly lower after breakfast consumption 

compared with omission in hypoxia (post-prandial: p < 0.01, g = 2.90, exercise: p < 0.01, g = 

1.93, post-exercise: p = 0.02, g = 0.54) and normoxia (post-prandial: p < 0.01, g = 2.95, 

exercise: p < 0.01, g = 2.37, post-exercise: p = 0.08, g = 0.62). In the same periods, there were 

no significant differences in CAS between hypoxia and normoxia after breakfast consumption 

(trend for reduced CAS in hypoxia observed during exercise) (post-prandial: p = 0.18, g = 0.45, 

exercise: p = 0.07, g = 0.60, post-exercise: p = 0.38, g = 0.44) or omission (post-prandial: p = 

0.99, g = 0.42, exercise: p = 0.58, g = 0.51, post-exercise: p = 0.99, g = 0.26). Immediately post 

meal, no significant differences in CAS were observed between any trial (p > 0.40, g < 0.57). 

[Insert Figure 3] 

3.1.4 Acylated ghrelin 

No significant differences in acylated ghrelin concentration (Figure 4A) were observed 

between any trial at baseline (all p = 0.99, g < 0.10), or in the pre-prandial period (all p = 0.99, 

g < 0.13). In the post-prandial period, acylated ghrelin concentration tended to be lower in the 

breakfast consumption compared with omission trials in hypoxia (p = 0.08, g = 0.51) and 

normoxia (p = 0.06, g = 0.58).  In the same period, no significant difference was observed in 

acylated ghrelin concentration between hypoxia and normoxia after breakfast consumption (p 

= 0.99, g = 0.16) or omission (p = 0.48, g = 0.25). During exercise, there was no significant 

difference in acylated ghrelin concentration between breakfast consumption and omission in 

hypoxia (p = 0.10, g = 0.67) or normoxia (p = 0.85, g = 0.29). In the same period, acylated 

ghrelin concentration was lower in hypoxia compared with normoxia after breakfast 

consumption (p = 0.04, g = 0.52) but not omission (p = 0.99, g = 0.10). In the post-exercise 

period, acylated ghrelin concentration was not significantly different between breakfast 

consumption and omission in hypoxia (p = 0.57, g = 0.37), or normoxia (p = 0.58, g = 0.10). 



In the same period, acylated ghrelin concentration was significantly lower in hypoxia compared 

with normoxia after breakfast consumption (p = 0.01, g = 0.48) but not omission (p = 0.99, g 

= 0.04). 

[Insert Figure 4] 

3.1.5 Energy intake 

Ad-libitum energy intake during the post-exercise meal was significantly lower in hypoxia 

compared with normoxia after breakfast consumption (4897 ± 2047 kJ vs. 7007 ± 3048 kJ; p 

= 0.04, g = 0.80) and omission (5412 ± 1653 kJ vs. 6654 ± 2091 kJ; p = 0.03, g = 0.64). No 

significant differences in ad-libitum energy intake during the post-exercise meal were observed 

between breakfast consumption and omission in hypoxia (p = 0.40, g = 0.27) or normoxia (p = 

0.99, g = 0.14). 

Total trial energy intake (including breakfast) was significantly higher after breakfast 

consumption compared with omission in hypoxia (7136 ± 2047 kJ vs. 5412 ± 1652 kJ; p = 

0.02, g = 0.90) and normoxia (9276 ± 3058 vs. 6654 ± 2091 kJ; p < 0.01, g = 0.98).  

3.2 Experiment two 

3.2.1 Exercise responses 

In hypoxia V̇O2max was 40.6 ± 4.3 ml·kg·min-1 and this elicited a walking speed of 2.9 ± 0.5 

km·h-1 in the experimental trials (B-CHO: 50.0 ± 8.4% V̇O2max; B-PLA: 49.0 ± 8.1 V̇O2max; F-

CHO: 49.3 ± 8.3 V̇O2max; F-PLA: 49.0 ± 8.1 V̇O2max). Relative exercise intensity was not 

significantly different between any trial (p = 0.93). There were no significant differences 

between trials for mean SpO2 (p = 0.08, g < 0.49), heart rate (p = 0.53, g < 0.35) and RPE (p = 

0.62, g < 0.35) for the duration of the experimental trial (Table 2). There were no significant 



differences in the walking speeds during the 3 km time trial (B-CHO: 2.54 km/h; B-PLA: 2.58 

km/h, F-CHO: 2.56 km/h, F-PLA: 2.65, p = 0.99). 

[Insert Table 2] 

3.2.2 Energy expenditure 

Total trial energy expenditure was not significantly different between any trial (B-CHO: 4003 

± 671 kJ; B-PLA: 3648 ± 726 kJ; F-CHO: 3768 ± 598 kJ; F-PLA: 3563 ± 621 kJ; p = 0.16, g 

< 0.31). 

3.2.3 Appetite perceptions 

No significant differences in CAS (Figure 3B) were observed between any trial at baseline (p 

> 0.12, g < 0.51) or in the pre-prandial period (p > 0.37, g < 0.56). In the post-prandial period,

during exercise, post exercise and post meal, CAS was significantly lower after breakfast 

consumption compared with omission in the carbohydrate (p < 0.03, g > 1.10) and placebo 

trials (p < 0.04, g > 1.47). No significant difference in CAS was observed between the 

carbohydrate and placebo trials after breakfast consumption (all p = 0.99, g < 0.20 or omission 

(p > 0.67, g < 0.41) at any time point. 

3.2.4 Acylated Ghrelin 

No significant differences in acylated ghrelin concentration (Figure 4B) were observed 

between any trial at baseline (all p = 0.99, g < 0.14) or in the pre-prandial period (all p = 0.99, 

g < 0.12). In the post-prandial period, acylated ghrelin concentrations tended to be lower after 

breakfast consumption compared with omission in the carbohydrate (p = 0.09, g = 0.75) and 

placebo trials (p = 0.08, g = 0.57). In the same period, no significant differences in acylated 

ghrelin concentrations were observed between the carbohydrate and placebo trials after 

breakfast consumption (p = 0.99, g = 0.12) or omission (p = 0.99, g = 0.03). There were no 



significant differences in acylated ghrelin concentration between trials during exercise (p > 

0.36, g < 0.91) or in the post-exercise period (all p = 0.99, g < 0.27). 

3.2.5 Energy intake 

Ad-libitum energy intake during the post-exercise meal was not significantly different between 

trials (B-CHO: 6191 ± 2831 kJ, B-PLA: 5457 ± 1970 kJ, F-CHO: 6264 ± 2574 kJ, F-PLA: 

6174 ± 2222 kJ; p = 0.26, g < 0.33). 

Total trial energy intake (including breakfast and carbohydrate supplementation) was 

significantly higher in the carbohydrate compared with placebo trials after breakfast 

consumption (10222 ± 2831 kJ vs. 7695 ± 1970 kJ p < 0.01, g = 1.01) and omission (8058 ± 

2574 kJ vs. 6174 ± 2222 kJ p = 0.02, g = 0.76). Total trial energy intake was also significantly 

higher after breakfast consumption compared with omission in the carbohydrate (p < 0.01, g = 

0.70) and placebo trials (p = 0.02, g = 0.77).  

4.0 Discussion 

The purpose of this study was twofold. Firstly, experiment one aimed to determine the appetite, 

acylated ghrelin and energy intake response to breakfast consumption and omission in acute 

normobaric hypoxia and normoxia. Secondly, experiment two aimed to determine the appetite, 

acylated ghrelin and energy intake response to carbohydrate supplementation after both 

breakfast consumption and omission in hypoxia. In experiment one, we observed no significant 

effect of breakfast consumption on subsequent post-exercise energy intake in hypoxia or 

normoxia, despite a reduction in CAS after breakfast consumption compared with omission 

(trend observed post-exercise in normoxia). As such, pre-exercise breakfast consumption 

significantly increased total energy intake in hypoxia and normoxia. Secondary to this, we also 

observed a hypoxic induced suppression of appetite and acylated ghrelin after breakfast 



consumption, but not omission. In experiment two, carbohydrate supplementation had no effect 

on CAS, acylated ghrelin concentration or post exercise ad-libitum energy intake in hypoxia. 

As such, carbohydrate supplementation increased total trial energy intake in both the breakfast 

consumption and omission trials. Pre-exercise breakfast consumption combined with 

carbohydrate supplementation induced the greatest total trial energy intake. It is important to 

note that the aforementioned findings were observed in acute normobaric hypoxia equivalent 

to 4300 m. Whilst we cannot be sure that these findings translate wholly to terrestrial altitude 

over chronic durations (as per high altitude sojourns), these acute exposures provide an 

alternative, to allow the quantification of these physiological responses prior to real world 

applications. 

The discovery that breakfast consumption did not affect subsequent energy intake with  

hypoxia or normoxia, despite the associated reduction in CAS and acylated ghrelin is a novel 

finding. As such, breakfast consumption increased total trial energy intake and had no effect 

on energy expenditure at rest or during exercise. These findings concord with the normoxic 

literature in demonstrating that post-prandial exercise elicits a greater suppression of appetite 

than fasted exercise (Cheng, et al., 2009; Deighton, et al., 2012; Gonzalez, et al., 2013; McIver, 

et al., 2018). This is the first study to demonstrate that this effect does not differ in hypoxic 

conditions. The finding that energy intake did not differ in the breakfast consumption or 

omission trials post-exercise in hypoxia and normoxia may be explained by the rate of muscle 

glycogen utilisation during exercise. In this regard, muscle glycogen depletion as a result of 

exercise has demonstrated a positive relationship with post-exercise reductions in RER 

previously (Henderson, et al., 2007) and has also been suggested to promote muscle glycogen 

replenishment post exercise (Hopkins, et al., 2011). Previously published data from the same 

cohort as the present study (Griffiths, et al., 2019a) refutes this hypothesis and demonstrates 

that substrate oxidation was not different in the post-exercise period between fasted and fed 



participants, suggesting that muscle glycogen utilisation was also not different during exercise 

between fasted and fed participant. This is in accordance with previous literature demonstrating 

no difference in post-exercise substrate oxidation (Deighton, et al., 2012; Gonzalez, et al., 

2013; McIver, et al., 2018). Whilst speculative, these findings may explain the null effect of 

pre-exercise nutritional status on subsequent energy intake in the present study  

In experiment one, CAS tended to be lower during exercise in hypoxia compared with 

normoxia after breakfast consumption but not omission. This finding is in accordance with 

findings from a meta-analysis demonstrating a reduction in post-prandial, but not fasted hunger 

scores in hypoxia compared with normoxia (Matu, et al., 2018). The effect of hypoxia on CAS 

after breakfast consumption was transient however, and was not sustained post-exercise. In 

addition, acylated ghrelin concentrations were significantly lower during exercise and post-

exercise in hypoxia compared with normoxia after breakfast consumption but not omission. 

This is also in agreement with Matu, et al. (2017a) who found that the reduction in hunger 

scores after breakfast consumption was associated with reduced acylated ghrelin 

concentrations, thus implicating the orexigenic effect of acylated ghrelin as a moderator of 

appetite regulation in hypoxia.  

The suppressive effect of normobaric hypoxia on appetite and acylated ghrelin concentration 

has been observed in randomised control trials previously (Bailey, et al., 2015; Matu, et al., 

2017a; Wasse, et al., 2012) but a within participant comparison of fasted and fed participants 

has not been conducted. In addition, the aforementioned literature investigating appetite and 

acylated ghrelin responses to exercise in normobaric hypoxia have been conducted following 

breakfast consumption. To the author’s knowledge, there are currently no studies investigating 

these variables in fasted participants during exercise in normobaric hypoxia. The appetite 

stimulating effects of ghrelin are induced via acylation of ghrelin with a medium chain fatty 

acid (MCFA) (Kojima, et al., 1999), catalysed by the enzyme Ghrelin-O-Acyl-Transferase 



(GOAT) (Kojima, et al., 2016; Yang, et al., 2008). The condensation reaction involved in this 

acylation of ghrelin is not directly dependent upon molecular oxygen and is therefore not 

directly affected by hypoxia. As such, it has been suggested that hypoxia may elicit differing 

effects on the availability of MCFAs as a substrate (Matu, et al., 2017a; Matu, et al., 2017b), 

and as a hypoxia-related suppression of acylated ghrelin was only observed after breakfast 

consumption in the present study, this effect may be moderated by pre-exercise nutritional 

status in hypoxia. The present study suggests the discrepancy in findings between hypoxia and 

normoxia may be derived from the inability of acylated ghrelin to regenerate after both feeding 

and exercise in hypoxia. Further research is required to determine the physiological 

mechanisms associated with this effect. Interestingly, these differences in appetite and acylated 

ghrelin concentrations between pre-exercise nutritional status were not reflected in post-

exercise ad-libitum energy intake, with hypoxia inducing a reduction in energy intake 

regardless of breakfast consumption or omission. These findings identify the need for novel 

nutritional interventions to augment energy intake in hypoxic environments. 

This is the first study to determine the effect of a carbohydrate supplement on appetite, acylated 

ghrelin concentration and energy intake in hypoxia after both breakfast consumption and 

omission. In experiment two, carbohydrate supplementation had no effect on appetite 

perceptions or acylated ghrelin concentrations. This is somewhat surprising, as given the 

suppressive effect of meal ingestion on acylated ghrelin and subsequent increase in satiety 

(Drazen, et al., 2006), it may be expected that this effect is replicated following caloric intake 

via carbohydrate supplementation. In addition, the combined effect of breakfast consumption 

or omission and carbohydrate supplementation is of particular interest given the relationship 

between glucose load and lower plasma ghrelin concentrations observed in normoxia (Shiiya, 

et al., 2002). Further, carbohydrate supplementation typically induces an increase in insulin 

concentrations during exercise (Jeukendrup, et al., 1999), and these elevations in insulin 



secretion have been suggested to be an inhibitor of ghrelin secretion (Erdmann, et al., 2004). 

However, this did not have any effect on acylated ghrelin concentration or appetite perception 

in hypoxia. These findings may be explained by the dominant, suppressive effect of hypoxia 

subsequently limiting any further effect of carbohydrate supplementation on acylated ghrelin 

concentrations. As such, future research is required to determine if the acylated ghrelin and 

appetite response to carbohydrate supplementation differs in acclimatised individuals or at 

lower altitudes. 

As a result of the negligible effects of carbohydrate supplementation on appetite and acylated 

ghrelin concentration, total energy intake increased compared with placebo by ~33% and ~31% 

after breakfast consumption and omission respectively. Matu, et al. (2017b) demonstrated that 

pre-exercise high fat breakfast resulted in significantly higher appetite perceptions and acylated 

ghrelin concentrations during exercise than a high carbohydrate breakfast. However, in contrast 

to the present study, this did not result in an increase in energy intake. Further, high 

carbohydrate, rather that high fat diets provide a greater energy yield per litre of oxygen, which 

is likely an important consideration in environments of low oxygen availability (Hochachka, 

1985). The increase in energy intake in the present study is in accordance with previous 

literature conducted in a field setting using ad-libitum carbohydrate supplementation (Askew, 

et al., 1987; Macdonald, et al., 2009). In this regard, Askew, et al. (1987) observed an increase 

in energy intake with ad-libitum carbohydrate supplementation compared with placebo (2325 

kcal vs. 1787 kcal). In addition, Macdonald, et al. (2009) also observed a 15058 kcal increase 

in energy intake in the carbohydrate supplementation group during a 21-day incremental 

sojourn up to 5400 m. Specifically, an overall increase of 15058 kcal was observed and the 

expected energy deficit in hypoxia was completed abated in > 50% participants. The increase 

in energy intake following carbohydrate supplementation after both breakfast consumption and 

omission in the present study suggests that this nutritional strategy may be a useful tool in 



potentiating energy intake in fully fed populations. Alternatively, this strategy may also provide 

a palatable, compensatory nutritional strategy for those in energy deficit. The largest energy 

intake observed was with a combination of breakfast consumption and carbohydrate 

supplementation, therefore identifying this strategy as the most efficient in augmenting energy 

intake in hypoxic conditions. 

The present study provides novel insight regarding the effects of breakfast consumption and 

carbohydrate supplementation on appetite and energy intake. Nevertheless, some notable 

limitations must be acknowledged. First, whilst the measure of subsequent energy intake 

provides a better understanding of short-term appetite response, it is also necessary to 

determine the effect of breakfast consumption/omission and carbohydrate supplementation on 

total daily energy intake, as compensatory feeding may occur later in the day. Second, the 

placebo trial utilised in experiment two involved ingestion of a fluid solution containing 

electrolytes and flavouring. The effect of this fluid ingestion on acylated ghrelin concentration 

and appetite perceptions are unknown and it may be beneficial to include a no-fluid condition 

in future studies. Third, the hypoxic exposures used in the present study were acute in duration 

therefore measurement of body mass was not suitable for this experimental design and the 

efficacy of these nutritional interventions could not be confirmed. In addition, the physiological 

responses to chronic hypoxic exposure have been demonstrated to differ to acute exposure 

(Mazzeo, et al., 1991), therefore it is not definitive that these findings translate to chronic 

hypoxic exposure. As such, future research should determine the effects of breakfast 

consumption and carbohydrate supplementation on body mass during chronic terrestrial 

altitude exposures. 

4.1 Conclusions 



In conclusion, breakfast consumption suppressed appetite perceptions and acylated ghrelin 

concentrations in hypoxia and normoxia, however this effect was transient and resulted in no 

significant difference in subsequent post-exercise energy intake. As such, breakfast 

consumption increased total trial energy intake compared with breakfast omission in both 

hypoxia and normoxia. In addition, carbohydrate supplementation also increased energy intake 

in hypoxia regardless of pre-exercise nutritional status.  Breakfast consumption and 

carbohydrate supplementation combined provided the largest increases in energy intake and 

should be considered as feeding strategies in hypoxic environments. 
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Table 1. Mean SpO2, heart rate and RPE across the full duration of all trials (experiment one) 

SpO2 Heart rate RPE 

H breakfast 79±3 86±9 12±2 

H fasted 80±4 88±21 12±2 

N breakfast 97±3 86±9 12±2 

N fasted 

H = hypoxia, N = normoxia, SpO2 = peripheral oxygen saturation, RPE = rating of perceived 

exertion. 

Table 2. Mean SpO2, heart rate and RPE across the full duration of all trials (experiment two) 

B-CHO 

B-PLA 

F-CHO 

F-PLA 

B-CHO = breakfast consumption and carbohydrate supplementation, B-PLA = breakfast

consumption and placebo, F-CHO = breakfast omission and carbohydrate supplementation, 

F-PLA = breakfast omission and placebo, SpO2 = peripheral oxygen saturation, RPE = rating

of perceived exertion 



Fig.1 

Fig 2 



Fig 3 



Fig 4 


