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ABSTRACT

Multiview representations reveal the latent information of the
data from different perspectives, consistency and complemen-
tarity. Unlike most multiview learning approaches, which fo-
cus only one perspective, in this paper, we propose a novel
unsupervised multiview learning algorithm, called compre-
hensive latent factor learning (CLFL), which jointly exploits
both consistent and complementary information among mul-
tiple views. CLFL adopts a non-negative matrix factoriza-
tion based formulation to learn the latent factors. It learns
the weights of different views automatically which makes the
representation more accurate. Experiment results on a syn-
thetic and several real datasets demonstrate the effectiveness
of our approach.

Index Terms— Comprehensive, multiview learning, la-
tent factor learning, non-negative matrix factorization (NMF).

1. INTRODUCTION

In many real-world applications such as data analytics in
video surveillance, image processing and natural language
processing, data are collected from diverse domains or ob-
tained from various feature extractors. They exhibit hetero-
geneous properties which are called multiview data [1]. Con-
ventional machine learning algorithms cannot handle these
multiview data well. They tend to concatenate all multiple
views into one single view to adapt to the learning setting [1].
However, this may cause over-fitting, if a training sample is
small.

Many existing multiview algorithms try to construct a la-
tent subspace shared by multiple views [2–5]. In the latent
subspace, distinct views are connected with each other, and
the complementary information underlying different views is
integrated. The multiview subspace learning (MSL) learns a
unified feature representation from the subspace of all views,
so all views share one representation. Non-negative matrix
factorization (NMF) is one of the most popular and competi-
tive subspace learning method.
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Some works have been done in the area of NMF-based
multiview learning. Greene et al. [6] proposed an integrated
approach for multiview learning. The combination is per-
formed by applying an approach based on matrix factorization
to group related clusters produced on individual views. Later,
Liu et al. [7] proposed a new framework which formulates
a joint matrix factorization process with the constraint that
pushes each view into a common consensus. After that, Ou
et al. [8] proposed a co-regularized multiview NMF method
with a correlation constraint. It exploits the complementary
information of multiple views through the co-regularization
to accommodate the presence of the noisy views. The au-
thors in [9] took the local geometric structure of each view
into consideration, and penalized the disagreement of differ-
ent views at the same time. And Wang et al. [10] proposed
a diverse NMF algorithm which adds a diversity constraint to
ensure that data vectors from different views be as diverse as
possible, by regularizing the dot product of two vectors from
different views close to zero.

All the methods above only focus on one type of per-
spective among multiple views. For example, Liu [7] focuses
on the consistency while Wang [10] focuses on the comple-
mentarity. The consistency aims to maximize the agreement
among the multiple views, while the complementarity states
that each view may contain some knowledge that other views
do not have [1]. These two kinds of approaches fail to con-
sider either specific or common factors, which may have a big
influence on the accuracy of clustering after using the above
NMF-based methods.

To address this limitation, in this paper, we propose a mul-
tiview learning algorithm, called comprehensive latent factor
learning (CLFL), by jointly exploring both the perspectives of
consistency and complementarity for multiview data. Firstly,
we study the weight of each view according to the difference
of latent factor matrices and the consensus matrix. Those
views which have more common information will be given
a higher weight. The latent factor for each view is then di-
vided into two parts [11]. One is the common latent factor
shared across multiple views, while the other is the specific
latent factor to each view. After learning these two parts re-
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spectively, the common and specific latent factors for the rep-
resentation were obtained. Then, we integrate them into an
optimal representation for clustering. The main contributions
of this paper are summarized as follows.

1) Different from most existing multiview latent factor
learning methods, CLFL exploits both consistency and com-
plementarity. Therefore, a more comprehensive latent repre-
sentation can be obtained, representing the original data more
accurately.

2) We introduce a single parameter γ to control the distri-
bution of weighting factors for NMF-based multiview latent
representation learning, which is easy to adjust and discover
the best weights. The weight factor of each view can be as-
signed automatically depending on the dissimilarity between
the representation matrix of each view and the consensus ma-
trix. The weights will be used during the integration of spe-
cific latent factors from different views.

3) As a result of learning the weight factor of each view
and combining consistency and complementarity together,
CLFL is more adaptable to the number of views than other
methods, because we use all views of a dataset to get a com-
petitive result, unlike other methods which only choose two
or three most important views for clustering. Also, we use
another parameter β to control and adjust the proportion
of specific and common latent factors. This enables us to
achieve the optimal representation for different datasets.

2. BRIEF REVIEW OF NMF

In this section, we briefly introduce non-negative matrix fac-
torization (NMF) [12]. Given an input non-negative data ma-
trix X = [x1, x2, ..., xN ] ∈ RM×N , each column of X is
an instance vector. NMF aims to find two non-negative ma-
trices W ∈ RM×K and H ∈ RN×K whose product can well
approximate the original matrix X. In particular, H can be
considered as the new representation of data in terms of the
basis W. The cost function of standard NMF is defined as

min
∥∥X−WHT

∥∥2
F

s.t.W,H ≥ 0 (1)

This standard NMF can be extended to multiview setting
by adding the cost function of each single view together. Sup-
pose a dataset has V views, the multivew learning objective
function becomes [13]:

V∑
v=1

min
∥∥∥X(v) −W(v)H(v)T

∥∥∥2
F

s.t.W,H ≥ 0 (2)

3. COMPREHENSIVE LATENT FACTOR
LEARNING (CLFL)

MultiNMF [7] has become the most famous and effective
method for latent factor learning, which learns a joint view
representation. However, it fails to discover the view-specific

latent factors. We aim to address this issue by proposing a
new method CLFL which exploits both specific and common
latent factors.

3.1. The Objective Function of CLFL

We define the objective function as:

V∑
v=1

∥∥∥X(v) −W(v)H(v)T
∥∥∥2
F
+

V∑
v=1

(α(v))γ
∥∥∥H(v)Q(v) −H∗

∥∥∥2
F

s.t.W(v) ≥ 0,H(v) ≥ 0,H∗ ≥ 0,

V∑
v=1

α(v) = 1

Q(v) = Diag(

V∑
v=1

W
(v)
i,1 ,

V∑
v=1

W
(v)
i,2 , ...,

V∑
v=1

W
(v)
i,K)

(3)
H∗ is referring to the common latent factor of all views. We
use a single parameter γ to control the distribution of weight
factors α(v) in all V views, such that the important views will
be assigned bigger weights [14]. Also, in order to make dif-
ferent H(v) comparable, we constrain

∥∥∥W(v)
.,k

∥∥∥
1
= 1 by in-

troducing auxiliary variables Q(v) [7] to simplify the compu-
tation.

3.2. Optimization

The joint optimization function in (3) is not convex over all
variables simultaneously. Thus, we propose an iterative opti-
mization algorithm as done in [15]. For each view we have:

J =
∥∥∥X(v) −W(v)H(v)T

∥∥∥2
F
+ (α(v))γ

∥∥∥H(v)Q(v) −H∗
∥∥∥2
F

(4)
To solve this optimization problem, we propose an iterative
update procedure. Specifically, the following four steps are
repeated until the objective function converges:

3.2.1. Fixing H∗, H(v), α(v), compute W(v).

Let Ψ(v) = [ψ
(v)
i,k ] be the Lagrange multiplier matrix for

the constraint w(v)
i,k ≥ 0 and L be the Lagrange L =

J + Tr(Ψ(v)W(v)T ) where Tr(.) is the trace function.
The equation leads to the following updating rules [16]:

W
(v)
i,k ←W

(v)
i,k

(X(v)H(v))i,k + (α(v))γ
∑N
j=1 H

(v)
j,kH∗

j,k

Ri,k

Ri,k = (W(v)H(v)TH(v))i,k + (α(v))γ
M∑
l=1

W
(v)
l,k

N∑
j=1

H
(v)
j,k

2

(5)
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3.2.2. Fixing H∗,W(v), α(v) compute H(v)

For each view, we first normalize the column vectors of W(v)

using Q(v), then W(v) ←W(v)Q(v)−1
, H(v) ← H(v)Q(v).

Thus, the object function was transformed to,

V∑
v=1

∥∥∥X(v) −W(v)H(v)T
∥∥∥2
F
+

V∑
v=1

(α(v))γ
∥∥∥H(v) −H∗

∥∥∥2
F

s.t.W(v) ≥ 0,H(v) ≥ 0,H∗ ≥ 0,

V∑
v=1

α(v) = 1

(6)
Following the KKT condition [17] for the non-negativity

of H(v), we have the following equation:

H
(v)
j,k ← H

(v)
j,k

(X(v)TW(v))j,k + (α(v))γH∗
j,k

(H(v)W(v)TW(v))j,k + (α(v))γH
(v)
j,k

(7)

3.2.3. Fixing W(v),H(v) and α(v) compute H∗

∂O

∂H∗ =
∂
∑V
v=1

∥∥H(v)Q(v) −H∗
∥∥2
F

∂H∗

=

V∑
v=1

(α(v))γ(−2H(v) + 2H∗) = 0

(8)

Solving Eq. 8 gives us H∗ as

H∗ =

∑V
v=1(α

(v))γH(v)Q(v)∑V
v=1(α

(v))γ
≥ 0 (9)

3.2.4. Fixing W(v),H(v) and H∗ compute α(v)

By setting G(v) =
∥∥H(v)Q(v) −H∗

∥∥2
F

, we have

α(v) =
(γG(v))

1
1−γ∑V

v=1(γG(v))
1

1−γ

(10)

With these four steps above, we alternatively update W(v),
H(v),H∗ as well as α(v) and repeat the process interactively
until the objective function is converged.

3.2.5. Calculate the view-specific latent factors H(v)
s

To compute the specific latent factor of each view H
(v)
s , we

apply the approach proposed in [7] to obtain H(v) and H∗ as
follows:

H(v)
s = H(v) −H∗ (11)

Then all the specific latent factors are integrated by using the
weights 1 − α(v) which were learned previously. The whole
specific factor Hs can be obtained.

Hs =

V∑
v=1

(1− α(v))H(v)
s (12)

By integrating the common latent factor and specific latent
factor together with a single parameter β, a comprehensive
latent factor representation was obtained as

HF = βH∗ + (1− β)Hs (13)

Obviously, the parameter β controls the proportion of these
two parts. This makes our method be able to get the optimal
representation in all datasets.

Algorithm 1 Algorithm of CLFL

Input: Non-negative Matrix {X(1),X(2), ...,X(V )}, param-
eter γ.

Output: The weights α(v).
1: Normalize each view X(v) such that

∥∥X(v)
∥∥
1
= 1

2: Initialize W(v), H(v), H∗ and α(v)

3: repeat
4: for v = 1 to V do
5: repeat
6: Fixing H∗, H(v), α(v), update W(v) by Eq.5
7: Fixing H∗,W(v), α(v) update H(v) by Eq.7
8: Fixing W(v),H(v) and α(v) update H∗ by Eq.9
9: Fixing W(v),H(v) and H∗ update α(v) by Eq.10

10: until Eq.4 converges
11: end for
12: until Eq.3 converges
13: Obtain Basis Matrices {W(1),W(2), ...,W(V )}, Coef-

ficient Matrices {H(1),H(2), ...,H(V )}, Consensus Ma-
trix H∗ from MultiNMF [7].

14: for v = 1 to V do
15: Calculate the specific latent factor of each view by

Eq.11
16: end for
17: Integrate all the specific latent factors using weights 1 −

α(v) by Eq.12
18: Integrate the common latent factor and view-specific la-

tent factor together with a single parameter β by Eq.13

4. EXPERIMENT

In this section, experiments were conducted to demonstrate
the effectiveness of the proposed CLFL in discovering the un-
derlying clustering structure shared by multiple views of data.

4.1. Datasets

One synthetic and three real world datasets were used in the
experiments. Below is a brief introduction.

• Synthetic dataset: It is generated from two clusters.
Each cluster is composed of three Gaussian compo-
nents that means an instance is represented as three
views. For each cluster, five hundreds instances are ran-
domly sampled. More details can be found in [18].
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• 3-Sources Text Dataset: It is collected from three on-
line news sources: BBC, Reuters, and The Guardian.

• Reuters Multilingual dataset: It contains feature
characteristics of documents that are translated into 5
languages over 6 categories.

• UCI Handwritten Digit dataset: This handwritten
digits (0-9) data is from the UCI repository.

4.2. Methods to Compare

We compared the proposed approach with several latent
factor learning methods, including Single View (BSV and
WSV) [13], ConNMF [13], ColNMF [19], and Multi-
NMF [7]. Three metrics, Clustering Accuracy (AC), Nor-
malized Mutual Information (NMI) and Purity are used to
evaluate their performance.

4.3. Clustering Results

In our experiments, we run 20 times and obtain the aver-
age performance. The clustering results of different algo-
rithms on four datasets are showed in Table 1. As we can see,
CLFL outperforms all the other five algorithms in four dif-
ferent datasets in three metrics. Compared with MultiNMF,
CLFL improves performances average 5% on all datasets in
terms of AC, NMI, and Purity, which proves the effectiveness
of Our comprehensive learning method adding specific latent
factor to the common latent factor. Specifically, the weights
α(v) play a crucial role to integrate the specific latent factors.
In fact, we found that, without the weights α(v) the clustering
results even worse than MultiNMF. Also, Fig 1 shows how
the performance of CLFL on the digit and 3-source datasets
varies with the parameters β. We can see that, in the digit,
when β is set nearly 0.6 it achieves the best performance and
it will be around 0.7 for the 3-source. So, there is an opti-
mal point between the specific latent factor and the common
shared factor. Since it differs from dataset to dataset, we use
the parameter β to get the optimal representation in different
datasets. Usually, the common shared factor holds a larger
proportion around 0.6 to 0.8.
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Fig. 1: Performance of CLFL with parameters β

Table 1: AC, NMI and Purity of different methods

Methods Metrics Synthetic 3-Source Reuters digit

WSV
AC 0.5375 0.3876 0.1894 0.5385

NMI 0.5023 0.2079 0.1618 0.5398
Purity 0.6630 0.4586 0.1889 0.5570

BSV
AC 0.5815 0.4970 0.2711 0.6630

NMI 0.5978 0.2937 0.1064 0.6252
Purity 0.7640 0.5266 0.2806 0.6700

ConNMF
AC 0.6740 0.4290 0.1939 0.6865

NMI 0.6535 0.2029 0.1471 0.6507
Purity 0.7290 0.4734 0.2100 0.7340

ColNMF
AC 0.6550 0.4408 0.2711 0.6005

NMI 0.5641 0.2163 0.1056 0.5376
Purity 0.6520 0.5118 0.2917 0.7265

MultiNMF
AC 0.8465 0.6154 0.4483 0.8140

NMI 0.7455 0.4300 0.3128 0.7336
Purity 0.8515 0.6272 0.4500 0.8210

CLFL
AC 0.8920 0.6450 0.4733 0.8740

NMI 0.8008 0.4407 0.3170 0.7722
Purity 0.8895 0.6391 0.4692 0.8780

4.4. Discussion of the Parameter γ

We use one parameter γ to control the distribution of weight
factors for different views [20]. From Eq.(10), we can see
that when γ →∞, the weights for all views are equal. When
γ → 1, the weight factor 1 will be assigned to the view whose
G(v) value is the smallest while 0 is assigned to the weights of
the other views. In the experiment, we choose γ from [0.001,
0.01] to give the best α(v) for each view. More theoretical
details about how to choose the parameter will be studied in
our future work.

5. CONCLUSION

In this paper, we have proposed a novel latent factor learning
algorithm called CLFL. It discovers a comprehensive latent
representation for multiview data, by exploiting the consis-
tent and complementary information among different views,
simultaneously. Also, CLFL learns the weights of all differ-
ent views automatically. The specific latent factor and the
common shared factor are integrated with a single parameter
to control their weights for optimal representation of datasets.
The clustering experimental results on four different datasets
have demonstrated the effectiveness of our approach. In the
future work, we will study the theory of choosing parame-
ters and investigate to take local geometrical information into
consideration to learn a better representation.
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