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Bayesian computation to predict the invasion
of a freshwater fish provides insights into dispersal
and range expansion dynamics
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Abstract Short-distance dispersal enables introduced

alien species to colonise and invade local habitats

following their initial introduction, but is often poorly

understood for many freshwater taxa. Knowledge gaps

in range expansion of alien species can be overcome

using predictive approaches such as individual based

models (IBMs), especially if predictions can be

improved through fitting to empirical data, but this can

be challenging for models having multiple parameters.

We therefore estimated the parameters of a model

implemented in the RangeShifter IBM platform by

approximate Bayesian computation (ABC) in order to

predict the further invasion of a lowland river (Great

Ouse, England) by a small-bodied invasive fish (bitter-

ling Rhodeus sericeus). Prior estimates for parameters

were obtained from the literature and expert opinion.

Modelfittingwas conductedusing a time-series (1983 to

2018) of sampling data at fixed locations and revealed

that for 5 of 11 model parameters, the posterior

distributions differed markedly from prior assumptions.

In particular, sub-adult maximum emigration probabil-

ity was substantially higher in the posteriors than priors.

Simulations of bitterling range expansion predicted that

following detection in 1984, their early expansion

involved a relatively high population growth rate that

stabilised after 5 years. The pattern of bitterling patch

occupancy was sigmoidal, with 20% of the catchment

occupied after 20 years, increasing to 80% after

30 years. Predictions were then for 95% occupancy

after 69 years. The development of this IBM thus

successfully simulated the range expansion dynamics of

this small-bodied invasivefish,withABC improving the

simulation precision. This combined methodology also

highlighted that sub-adult dispersal was more likely to

contribute to the rapid colonisation rate than expert

opinion suggested. These results emphasise the impor-

tance of time-series data for refining IBM parameters

generally and increasing our understanding of dispersal

behaviour and range expansion dynamics specifically.

Keywords Biological invasion �Bitterling � Leading
edge dispersal � RangeShifter � River catchment �
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Introduction

Biological invasions are a major aspect of global

environmental change, responsible for pervasive

changes to native biota and ecosystems (Simberloff
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et al. 2013; Gámez-Virués et al. 2015). Following the

introduction of an alien species into a new range, its

invasion success depends, at least in part, on its

dispersal dynamics (Byers and Pringle 2006; Havel

et al. 2015). In order to make more informed decisions

on measures required to control and contain invasive

species, managers need information on dispersal

dynamics, along with establishment rates and ecolog-

ical impacts (Gozlan et al. 2010a; Early et al. 2016).

The extent of many invasions has proved difficult to

predict due to a general lack of knowledge on dispersal

dynamics and their relationship with population

parameters, especially where the invader lacks data

from their native range (Karakus et al. 2018), so here

we demonstrate an analytical method that potentially

overcomes these issues.

Predictive approaches that provide realistic repre-

sentations of real-life invasions and enable scenario

testing can develop understanding of the dispersal

dynamics of invasive species (Bocedi et al. 2014;

Samson et al. 2017). A range of modelling approaches

exist for predicting the dynamics of range expansions,

including analytical methods such as integro-differ-

ence modelling (Gilbert et al. 2014, 2017) and

stochastic simulations, including individual-based

models (IBMs). IBMs have the benefits of flexibility

in model formulation, although they tend to be slower

to run during formal model fitting approaches and so

can be more challenging to use. However, improve-

ments in computer performance in recent years have

helped overcome some of these challenges, resulting

in IBMs being increasingly applied to ecological

issues (e.g. Hedger et al. 2013a, b; DeAngelis and

Grimm 2014; Boyd et al. 2018), with approaches for

fitting these models to empirical data now emerging

(van der Vaart et al. 2018).

Applications of IBMs to invasive species have

included simulations on how population control

efforts affect the individual movement and population

demographics of Eastern brook trout Salvelinus fonti-

nalis (Day et al. 2018) and invasive sea lamprey

Petromyzon marinus (Madenjian et al. 2003; Neeson

et al. 2012). The performance of invasion IBMs can,

however, be improved when empirical data are

available that enable model fitting and enable the

parameters that most strongly influence the predicted

patterns to be identified (Phang et al. 2016), but these

data are rarely available. For example, although

Samson et al. (2017) investigated the spread of

invasive round goby Neogobius melanostomus using

the ‘RangeShifter’ platform (Bocedi et al. 2014), with

model parameters developed from stakeholder inter-

action, scientific literature and inverse modelling

approaches, the model could not be calibrated fully

due to an absence of empirical data on their invasion.

When empirical data are available, the modelling

processes can utilise these to derive more robust

estimates of model parameters by the application of

inverse fitting techniques, such as approximate

Bayesian computation (ABC; van der Vaart et al.

2015). ABC enables estimates of model parameters to

be refined by combining information from empirical

data (such as spatial and temporal distribution data),

with prior probabilities derived from literature and/or

expert knowledge (van der Vaart et al. 2015). ABC has

been used to estimate model parameters within IBMs

by Boyd et al. (2018), who developed a generic marine

fish bioenergetics IBM for evaluating fish population

dynamics. To our knowledge, an ABC process within

an IBM has not been applied tomodelling the dispersal

dynamics of an invading species, despite the impor-

tance of estimating their dispersal and population

parameters, and how these vary with time since their

introduction and establishment (Alford et al. 2009).

The importance of using processes such as ABC to

estimate dispersal parameters of invaders is that these

parameters strongly influence the invasion process.

Whilst introductions of alien species via long-range

dispersal events (via transport or through passive

dispersal) strongly influence the large-scale rate of

range expansion of invaders (e.g. between countries

and regions) (Hastings et al. 2005; Wilson et al. 2009),

these events are then followed by range infilling via

diffusive spread and/or active dispersal (e.g. within the

country or region of the introduction) (Gozlan et al.

2010b). Here, diffusion theory suggests that there will

be a symmetrical, radial expansion from the area of

introduction (Skellam 1951), with the rate of expan-

sion dependent on the interaction of the dispersal

ability and reproductive rate of the population (Fraser

et al. 2015). It will also be influenced by factors

including spatial heterogeneity, temporal variability

and biotic resistance from native species (Hastings

et al. 2005). This dispersal of the alien species at the

‘leading edge’ of their invasion range is important for

understanding the rate at which habitats in the new

region are colonised (Wilson et al. 2009) and the

population parameters that are driving this.
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Within fluvial environments, dispersal events are

also likely to be subject to directional bias, given the

ease of downstream movement by individuals via

passive drift (Byers and Pringle 2006). If upstream

colonisation is to be achieved, then active dispersal is

important, especially if obstacles are to be overcome

that can impede movement (Vitule et al. 2012). This

makes it especially important to understand the

processes driving active dispersal at the upstream

leading edge of the invasion range. Tracking the

natural dispersion of invasive fishes in rivers can be

difficult when anthropogenic activities occur, such as

unregulated secondary release (stocking) events by

anglers to increase angling opportunity, as these

releases are likely to result in more rapid colonisation

rates than possible by natural processes alone (Antog-

nazza et al. 2016). However, these activities are less

apparent when the invader has low recreational and

socio-economic value, such as in many small-bodied

alien fishes (especially if the species is rarely used as

bait fish by anglers), meaning their colonisation rates

are primarily due to natural dispersal alone (Davies

et al. 2013; Davies and Britton 2016).

The aim of this study was to thus incorporate an

ABC process into an IBM for simulating the 30 year

invasion of an alien, small-bodied fish in a river basin,

including identifying the population parameters that

most strongly influenced their rates of dispersion, and

then predicting their future range expansion. The

model invader was bitterling Rhodeus sericeus and the

modelled river basin was the Great Ouse in Eastern

England, with the model developed on the Range-

Shifter IBM platform. In the Great Ouse, bitterling has

undergone a natural range expansion since the 1980s,

with the species not considered to have been subject to

multiple releases due to their low recreational and

socio-economic value.

Materials and methods

Study species and river system

The bitterling is a freshwater fish of the Cyprinidae

family that was introduced into Britain in the 1920 s,

probably for ornamental reasons (Davies et al. 2004;

Damme et al. 2007). A small-bodied (\ 70 mm)

littoral species, it shares many life history traits with

other small-bodied invasive fishes, such as a limited

lifespan (\ 4 years) and early sexual maturity (in the

second or third year of life). It has no angling or

aquaculture value, so is considered as rarely subject to

secondary stocking events for fishery interests (Davies

et al. 2004). Unlike other small-bodied invaders,

however, its reproduction involves a parasitic rela-

tionship with freshwater mussels, where females lay

their eggs within the mussel gills (Mills and Reynolds

2002, 2003; Damme et al. 2007). The presence of eggs

in gills can impact mussel performance through

decreased ventilation, food intake and growth (Re-

ichard et al. 2006). The quality of individual mussels

as hosts also reduces with increased parasitism due to

gill damage (Mills et al. 2005; Reichard et al. 2007;

Smith 2017), suggesting some density-dependent

regulation of bitterling reproduction.

The River Great Ouse rises in central England and

flows in a generally north-easterly direction before

entering the North Sea, and drains a catchment of

approximately 8380 km2. In its lower reaches, the

river flows through areas of low-lying land of low

gradient (fenland). In these fenland areas, the river

channel is characterised by anthropogenic alteration

for land drainage and flood relief, including the

presence of artificial drainage ditches and pumping

stations (Mostert 2017). The bitterling is believed to

have been introduced into its tributary, the River Cam,

in the mid-1970s (Davies et al. 2004), although the

reason for its release (such as whether it was accidental

or intentional) is not known.

Bitterling time-series data in the River Great Ouse

The Environment Agency (the public regulatory body

for inland fisheries in England) and its predecessors

commenced monitoring of the fish assemblage of the

Great Ouse catchment in 1984; this monitoring

involves sampling up to 72 sites approximately every

3 years using a consistent seine netting methodology

(Bayley and Herendeen 2000). In the initial surveys of

the mid-1980s, bitterling was captured only in a series

of small channels that connect to the River Cam

(Fig. 1). Surveys completed up to 2017 provide data

that enables their spread throughout much of the lower

catchment to be tracked. The minimum data available

for each of these surveys are the site location, date of

sampling, and the number of bitterling captured

(Environment Agency 2018). Due to the relatively

large mesh size of the seine nets used, the majority of
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captured bitterling were 55 to 70 mm in length, i.e.

mature adults of generally 2 or 3 years old, with

smaller individuals unrepresented in catches. It was

this data time-series that was used to estimate key

parameters of the IBM (Environment-Agency 2018).

IBM development to model bitterling range

expansion

The platform RangeShifter was used to develop the

IBM, as it allows the development of spatially explicit

IBMs in which the three key dispersal phases of

emigration, transfer and settlement are represented

independently (Bocedi et al. 2014; Samson et al.

2017). A customised version of RangeShifter v. 2.0

was used, which incorporated code to estimate model

parameters byABC given suitable high-level observed

data. Development of the IBM required the following

steps: mapping the catchment (including splitting the

continuous river stretches into discrete sub-population

patches), collating data on bitterling demography,

dispersal and range expansion in the Great Ouse

catchment, setting the prior distributions of parameters

to be estimated, model fitting by ABC and finally,

simulation of future spread. Fitting the ABC was

examined by using the customised version of Range-

Shifter, with the simulation of future bittering spread

then completed in RangeShifter v 1.1 (Bocedi et al.

2014) using the final set of parameter samples from the

ABC.

Mapping the catchment

The initial catchment layers were extracted as tiles of

geographic mark-up language from Ordnance Survey

data (Ordnance Survey 2018) and converted into a

shapefile using QGIS 2.14.20. Following removal of

minor drainage channels in which fish were assumed

not to be present, it was converted to a raster format at

a resolution of 50 m using ArcGIS 10.3.1. However,

as the channel width throughout most of the catchment

was substantially less than 50 m, each river cell was

assigned a quality score using the mean channel width

of the features enclosed by each cell. Thus, we created

a raster of habitat quality, with this quality measure

based on our assumption that sections of greater river

width would have larger and more heterogeneous

littoral areas that provided enhanced habitat quality for

bitterling.

The catchment was then divided into a series of

non-overlapping contiguous patches, where a patch

comprised of a set of cells that delimited an area of

river. Although the Great Ouse is a continuous and

linear system, the use of patches assumed that each

patch delimited the range of a reasonably self-

contained sub-population, which was connected to

neighbouring sub-populations by dispersal. The

delimitations were made in a consistent manner, in

which confluences, weirs and other anthropogenic

features were used to delimit patches where they were

present (Fig. 1); elsewhere, patches were based on

segmentation in the Ordnance Survey data which in

turn was based on stream width (n = 272, mean

length = 2420 m, SD = 1270 m). The variation in

patch length had a minimum effect in the model, as

patches of contrasting length were well-mixed locally

throughout the catchment.

Bitterling development stages and population

parameters

Three stages of bitterling development were defined in

the model, ‘juveniles’, ‘sub-adults’ and ‘adults’.

Juveniles were the fish that initially develop inside

the mussel gills before emergence and were less than

one year old (0 ? , young-of-the-year). Sub-adults

were fish between 1 and 2 years old that were

primarily immature and so not considered as repro-

ductively active. Finally, adults were fish of 2 ? years

old and were considered as mature fish, capable of

reproduction. This enabled each of the stages to be

treated separately within the modelled dispersal pro-

cess (Bocedi et al. 2014).

For each year in the simulation, the probabilities of

juveniles developing into sub-adults, sub-adults devel-

oping into adults, and adults reproducing were set to

unity, i.e. the event occurred if the individual survived.

Reproduction was modelled using a transition matrix

for each of the three stages defined above (Caswell

bFig. 1 The lower catchment of the Great Ouse river in eastern

England, showing bitterling sampling sites (black circles) and

potential barriers to their upstream dispersal within the

catchment (grey triangle; weirs, locks, pumping stations, sluices

and aqueducts). The river channel is in light grey, other than the

area where bitterling were initially captured in 1984 (indicated

by a black open circle). Co-ordinates are of the Ordnance Survey

national grid, and the inset figure shows the location of the

catchment by a black square. � Crown copyright and database

rights 2018 Ordnance Survey (100025252)
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2001), with the parameters being survival, develop-

ment to the next stage and fecundity (Table 1). The

latter was set as the number of offspring per female

that survive to one year old at quasi-zero population

density, and was subject to density-dependence (lower

rates for higher population densities; Neubert and

Caswell 2000). Survival by stage was also assumed to

be density-dependent, and was weighted such that

juveniles had no effect on later stages, and sub-adults

had only 10% of the effect on adults as adults had on

each other and on sub-adults. The density-dependence

attributed to the two previous parameters was due to

the negative effect that a large number of parasitizing

bitterling eggs can have on the quality of mussel gills,

where mussel performance is reduced and bitterling

would not be able to reproduce again on those mussels

with reduced fitness (Mills et al. 2005; Reichard et al.

2007; Smith 2017).

Dispersal parameters

In RangeShifter, dispersal is modelled in three phases:

emigration, transfer and settlement, so that dependen-

cies can be added to each phase separately (Bocedi

et al. 2014). Emigration was set to zero for juveniles,

which stay within mussel gills for a proportion of their

first year of life. For older stages, emigration was low

if density was below a certain inflection point and

higher if density was above the inflection point. We

assumed that the dispersal probability of the sub-

Table 1 Demographic and dispersal parameters used in the bitterling IBM implemented in RangeShifter

Model parameters Stage-structure Density-dependence Value

Population dynamics parameters

Number of reproductive seasons/year Adults No 1

Proportion of males Whole population No 50%

Rate of density dependence (1/b) Whole population No ABC*

Probability of reproducing Adults No 1

Fecundity (ø) Adults Yes ABC*

Survival rate (r) Juveniles Yes ABC*

Sub-adults Yes ABC*

Adults Yes ABC*

Development rate (c) Juveniles No 1

Sub-adults No 1

Adults No 0

Emigration parameters

Asymptote (D) Juveniles No 0

Sub-adults Yes ABC*

Adults Yes ABC*

Slope Whole population No 10.0

Inflection point (b) Juveniles No 0

Sub-adults Yes ABC*

Adults Yes ABC*

Transfer parameters

Directional persistence Whole population No 1.5

Perceptual range Whole population No 50 m

Memory size (no. of cells) Whole population No 2

Step mortality probability (SMc) Whole population No ABC*

Settlement parameters

Settlement probability (S) Whole population No ABC*

Max. no. of steps Whole population No 100

ABC* in the ‘Value’ column denotes parameters that were estimated by approximate Bayesian computation
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adults would be low due to high mortality risks at this

life stage, and therefore the adult fish would be the

main dispersers. The transfer of individuals was

modelled using the stochastic movement simulator

(SMS). This models how the individual moves on a

cell-by-cell basis, as determined by relative costs (in

the sense of the least cost path approach) and a

tendency to maintain a correlated path (directional

persistence) (Palmer et al. 2011; Coulon et al. 2015;

Samson et al. 2017). Our habitat quality raster was

incorporated, so that a dispersing individual would be

more likely to move into the wider of two branches

when reaching a confluence. A per-step mortality

constant was applied so that individuals would not

move indefinitely if they did not find a suitable patch

for settlement. Finally, settlement probability in a non-

natal patch was considered as density-independent,

but less than 1.0 (Table 1).

Estimation of parameters by ABC

Prior distributions of the eleven parameters to be

estimated by ABC (Table 1) were generated using

information extracted from the literature and expert

opinion. Given that bitterling life history traits have

not been studied extensively, information extracted

from literature was mainly based on the parasitic

relationship between mussels and bitterling, so that the

model should incorporate some density dependence in

fecundity to account for this (Mills et al. 2005;

Reichard et al. 2007; Smith 2017). Otherwise, priors

were based on author opinion from their experience of

working on other small-bodied invasive cyprinid fish,

such as Pseudorasbora parva (e.g. Britton et al.

2007, 2008, 2010; Figs. 2, 3 and 4; Table 3). A total of

250,000 parameter combinations was sampled inde-

pendently from the prior distributions and, for each of

the parameter combinations, five replicate simulations

were run. These simulations were initiated using the

bitterling distribution in 1984 (using 1983 as year of

starting simulation; Fig. 1), and finishing in 2018.

Predicted patch-level presence and pre-reproduction

sub-population sizes averaged over the five replicates

for each simulation were compared with observed

presence data and fish density estimates. A distance

metric was computed to determine how close the

predictions of the model given the sampled parameters

were to the actual time-series of range expansion. We

adapted the distance metric q of van der Vaart et al.

(2015) by introducing a weighting for each observed

value, so that the model fit for the ith sample set

becomes

q ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j

wj

mi;j � Dj

sd mj

� �

 !2
v

u

u

t

whereDj is the observed value for empirical data point

j given weight wj, mi,j is the corresponding predicted

value from the model for parameter sample set i and

the standard deviation sd(mj) is a scaling factor to

allow for the observed data points to be made at

different scales (sub-population count up to many

thousands, presence constrained to lie between zero

and one). We used 620 observed data points. These

comprised 394 presence/absence observations and 226

sub-population estimates. We down-weighted 220 of

the presence/absence observations (56%) for which

we had assumed absence (e.g. that a patch was not

occupied in the years immediately preceding the first

observation of bitterling within it); weightings were

reduced from 1.0 by 0.1 in successive years from the

actual observation up to a maximum reduction of 0.5.

A ranking of the 250,000 distance metrics was then

generated and the best-fitting 250 retained to provide

the posterior probability distributions. These 250

samples provided the credible intervals for the

estimated parameters based on the observed range

expansion data, enabling comparison of prior versus

posterior distributions (Csillery et al. 2010).

Goodness-of-fit

We estimated the goodness-of-fit of the model in two

ways: (1) predicted presence/absence was averaged

over all 250 parameter sets and a single goodness-of-

fit statistic was calculated on the basis of one set of

predictions encompassing parameter uncertainty, and

(2) owing to parameter uncertainty, a goodness-of-fit

statistic for each parameter set was calculated and then

an average statistic and uncertainty was determined

around it. In both cases, the true skill statistic (TSS)

was used, which has been recommended for evaluat-

ing the accuracy of species distribution models

(Allouche et al. 2006). The TSS takes a value from

-1 to ?1, where zero equates to a fit no better than

random and ?1 indicates a perfect fit.
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Prediction of future range expansion

Following this model-fitting process, prediction of the

future expansion of bitterling was simulated, starting

from their initial detection in samples in 1984 (using

1983 as year of starting simulation) and running for the

next 100 years. The starting point of 1983 was used

instead of the most recent observed distribution

(2018), as RangeShifter requires all patches to be

initialised at the same density. Thus, had 2018 been

used as the starting point, then simulations would have

been based on that year’s mean patch density and

ignoring the high spatio-temporal variance in popula-

tion sizes at the range front, thereby altering the

patterns of density-dependent emigration and settle-

ment in the years following initialisation.

All the parameters used during this simulation were

set up as in the posterior distribution, i.e. 250

simulations were run which would give predictions

allowing for model parameter uncertainty. Standard

error and confidence intervals for 90% and 95% of

patch occupancy from the 250 predictions were also

calculated. Those percentages correspond to when the

catchment is considered to be fully colonised. The

Fig. 2 Prior (black) and posterior (grey) distributions of the demographic parameters: a rate of density dependence (1/b), b fecundity

(ø), c stage-dependent survival rates (c1 juveniles, c2 sub-adults, c3 adults). PDF probability density function
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bootstrapping resampling technique was used for this

purpose, as the data did not meet parametric assump-

tions (Mooney and Duval 1993; DiCiccio and Efron

1996; O’Hagana and Stevens 2003). All statistical

analyses were conducted using R 3.5.1 (R Core Team

2018).

The data used to develop and calibrate the model

are available from the Environment Agency (2018).

Results

Model fitting

The posterior distributions for six of the parameters

were similar to their priors, i.e. the empirical data

provided little additional information upon which to

reduce parameter uncertainty. For the other five,

however, there were varying degrees of difference

Fig. 3 Prior (black) and posterior (grey) distributions of the density-dependent emigration model: a stage-dependent asymptote (a1

sub-adults, a2 adults), b stage-dependent inflection point (b1 sub-adults, b2 adults). PDF probability density function

Fig. 4 Prior (black) and posterior (grey) distributions of the transfer and settlement phase parameters: a step mortality probability

(SMc), b settlement probability (S). PDF probability density function
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between posterior and prior (Figs. 2, 3 and 4). For rate

of density dependence (1/b), sub-adult survival and

adult maximum emigration probability, the posterior

estimates were somewhat higher than priors. For per-

step mortality probability, posterior estimates were

lower than priors. Most notably, for sub-adult maxi-

mum emigration probability, there was a substantial

difference between the relatively high maximum

emigration probability posterior estimates and the

prior assumption of extremely low probability. These

five posterior distributions showed some tendency to

be inter-correlated, especially sub-adult maximum

emigration probability, for which low values tended to

be associated with high values of 1/b and low values of

per-step mortality probability (Table 4).

The goodness-of-fit of the model as calculated by

method 1 yielded a TSS value of 0.759, and method 2

yielded a mean TSS value of 0.728 (90% confidence

interval 0.685 to 0.765). The applied goodness-of-fit

revealed that the model presented here was able to

reproduce the observed pattern of colonisation of the

catchment with a relatively high degree of accuracy.

Moreover, a more accurate fit to the observed pattern

was obtained if the 250 samples of our posterior

distribution were treated as a collective whole than as

individual predictions.

Simulating bitterling range expansion

From the initial records of bitterling presence in 1984,

their predicted early spread matched relatively well

with the observed time-series occupancy (Fig. 5a),

although the model was unable to replicate the period

of near stasis in the sampled data between about 1992

and 2007. Maps of model deviance of bitterling

presence at the patch level that were averaged over the

whole modelled period and for the decade of near

stasis (supplementary material, Figs. 7 and 8) both

demonstrated spatially correlated patterns, which

suggested some potential influence of spatio-temporal

variation in sampling effort and possibly also the

effect of a sluice acting as a barrier in the south-

western part of the catchment. Predicted patch occu-

pancy showed a sigmoidal pattern; while it took

20 years for bitterling to occupy 20% of the catch-

ment, they are then predicted to only require a further

30 years to achieve 80% occupancy (2030) (Fig. 5b).

With 95% confidence, it was predicted that 90% of the

patches would be occupied after 61 to 63 years (2044

to 2046) and 95% occupied after 69 to 71 years (2052

to 2054) (Fig. 6; Table 2).

Discussion

We have demonstrated how approximate Bayesian

computation can be applied to estimate the parameters

of a mechanistic simulation model for predicting the

future spread of an invading alien species. Our prior

knowledge of some of the model parameters was

imprecise, but by combining that knowledge with

observed data on the spread of the case-study species

to date, and with estimates of its local population

density, we were able to refine the parameter estimates

and, just as crucially, allow for inter-correlations

between them. The refined parameter estimates

enabled predictions of future occupancy of the catch-

ment to be made with a relatively high degree of

precision. The model revealed a sigmoidal pattern in

temporal patch occupancy by bitterling in the catch-

ment, with predictions of 95% patch occupancy after

69 years. The implications of this model are now

discussed in relation to the insights gained on bitter-

ling dispersal by the model, the performance of the

model in predicting the temporal and spatial pattern of

bitterling dispersal, and finally how the model pro-

vides important insights into invasion management.

Model insights into bitterling dispersal

Our prior distributions of model parameters were

mainly based on expert opinion of the ecology of

small-bodied cyprinid fishes, as bitterling population

biology is relatively data poor because of their

negligible fishery value and interest. The only excep-

tion was that their mode of reproduction involves

parasitism of mussels, resulting in some density

dependence in recruitment (e.g. Mills et al. 2005;

Reichard et al. 2007; Smith 2017). That the prior

bitterling population biology data were limited was

not unusual, as low value aquatic species often lack

empirical data on their populations (Karakus et al.

2018; Tarkan et al. 2018). Thus, when these species

are introduced into a new region, whether intentionally

or accidentally (Gozlan et al. 2010a), the data

available for predicting their invasiveness are often

limited (Top et al. 2018), resulting in poorly informed

model parameters (Heikkinen et al. 2014; Urban et al.
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2016) and final models with high uncertainty (Parry

et al. 2013). We showed that monitoring programmes

can provide dispersal time series that, when coupled

with ABC methods, can help overcome this lack of

prior data, enabling more robust predictions of the

dispersal dynamics and future invasiveness of the

modelled species (Neeson et al. 2012; Barros et al.

2016; Samson et al. 2017).

The ABC routine thus enabled the values of the

data-poor model parameters to be predicted in a more

robust manner (van der Vaart et al. 2015, 2016).

Comparison of the prior versus posterior distributions

of these parameters revealed that some posteriors

differed little from their priors, suggesting that expert

opinion appropriately informed the model priors.

There were, however, five model parameters that were

strongly informed by the dispersal time series and thus

were poorly informed by expert opinion. Of these, the

relatively high posterior estimates of maximum emi-

gration probability of sub-adult bitterling (D) were

particularly interesting. The prior distribution of D for

sub-adults was based on the assumption that the

dispersal probability of the sub-adults would be low,

due to high mortality risks at this life stage. This

Fig. 5 a Comparison between the observed number of occu-

pied patches (black continuous line; sampled by seine-netting)

and the mean occupancy of the same patches from 250

predictions using the posterior parameter distributions (Dot-

ted-dashed line), b predicted patch occupancy over 100 years of

the whole catchment using the 250 parameter sets of the

posterior distribution (Dotted-continuous line). Upper and lower

95% confidence limits for the mean of 250 posterior predictions

are shown with dashed lines on both figures
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assumption was formed due to the combination of

asocial, individual fish often being the dispersers at the

invasion front (Cote et al. 2010) and smaller-bodied

individuals having higher predation risks (Nilsson and

Brönmark 2000). Thus, small-bodied, sub-adult bit-

terling were assumed to be relatively sedentary to

Fig. 6 a Predicted current distribution (2018) and b predicted

occupancy (by 2045) of the catchment with 95% confidence.

Grey-scale: probability of occupancy ranging from low (light

grey) to high (dark grey). � Crown copyright and database

rights 2018 Ordnance Survey (100025252)

Table 2 Predicted mean year at which 90% and 95% patch occupancy of the Great Ouse catchment will be attained, together with

predicted numbers of sub-adult and adult bitterling at that time

Patch occupancy Year Number of sub-adults (thousands) Number of adults (thousands)

Mean

90% 62.3 109 102

95% 70.1 110 103

SE

90% 0.259 4 3

95% 0.281 4 3

CI

90% (61.8, 62.8) (102,117) (96,109)

95% (69.5, 70.6) (103, 118) (97, 111)

Standard error (SE) and 95% confidence intervals (CI) were calculated by the adjusted bootstrap percentile method across all 250

simulations from the posterior parameter distribution
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maximise their survival, and any that did disperse

would have a high probability of predation. Indeed, in

invasive round goby Neogobius melanostomus,

upstream-directed range expansion was led by the

movement of larger bodied individuals of high trophic

positions, rather than juveniles that were leaving high

density areas due to, for example, high competition

(Brandner et al. 2013). However, when we used low

emigration rates of sub-adults, patch occupancy did

not match the observed occupancy time series.

Instead, the ABC component of the IBM showed that

there should be dispersive behaviours by both sub-

adults and adults driving this bitterling invasion. In

part, this may be due to an artefact of RangeShifter,

whereby an individual which has dispersed may not do

so again. If the model allowed dispersal by adults only,

then there would inevitably be a delay of two years

between the colonisation of a patch and the production

of the next wave of dispersers. We could compensate

by making patches longer, but that would result in

reduced spatial precision.

The age-specific dispersal preferences of bitterling

detected by our model have also been detected in other

fishes (Frank 1992; Stiver et al. 2007). For example,

high levels of gene flow in Lethrinus nebulosus were

assumed to result from high adult dispersal, yet models

indicated that it was larval dispersal, not adult, that

caused the gene flow patterns (Berry et al. 2012).

Correspondingly, the use of ABC provided an impor-

tant insight into bitterling stage-specific dispersal and

suggests some counter-intuitive dispersal patterns at

the invasion front that warrant further empirical

investigation.

Predictions of the bitterling dispersal pattern

The comparison of simulated versus actual time series

data enabled the future development of bitterling

invasion to be predicted by the IBM with relatively

high confidence. In periods of rapid range expansion,

individuals at the range front often show rapid

population growth, facilitated by individuals investing

heavily in somatic growth and reproduction when

density dependence process are rarely apparent (Brit-

ton and Gozlan 2013). For example, in N. melanos-

tomus, individuals at the invasion front gained

dispersal advantages by attaining large body sizes

relatively quickly, facilitated by low competition

(Brandner et al. 2013). With 20% occupancy of the

catchment after 20 years, the somewhat higher coloni-

sation rates thereafter were likely to be due to the

population gaining sufficient distribution that it was

then able to increase its occupancy of the catchment

relatively quickly in both upstream and downstream

directions, i.e. it had reached a level beyond which

dispersal into a larger number of sites was possible in a

relatively short timeframe. However, there was a

period of relative stasis in the observed rate of

colonisation lasting about 10 years, which the model

was unable to capture. Environmental factors acting

on key dispersal processes and parameters may have

been important in this and would require further

exploration in future model development. At present,

however, we lack a detailed understanding of the

effects of environmental factors on demographic and

(especially) dispersion rates, and such relationships

have yet to be incorporated into RangeShifter.

Notwithstanding, environmental factors such as water

temperature and flow rates in the first summer of life

are recognised as important determinants of annual

recruitment rates in other riverine cyprinid fishes in

England and so might also be important in bitterling

population dynamics (Nunn et al. 2007; Beardsley and

Britton 2012).

While the IBM was able to provide a series of

important insights into how bitterling, as a model

small-bodied invasive fish, might disperse through a

lowland river catchment, it was also apparent that

issues remain with the model that could potentially be

improved. The ABC routine could, for example, be

refined, especially with regard to the need for the

averaging of predicted values over a number of

replicates to allow for RangeShifter being a stochastic

model (Bocedi et al. 2014). This makes it more

difficult for the model to capture the wide variation in

adult population densities observed at many of the

sampling sites in the years immediately following

colonisation. Also, the manner in which the river

environment was represented could be improved. For

example, the River Great Ouse has a relatively linear

river channel whose primary purpose is the flood and

drainage management of the surrounding agricultural

land. Whilst its separation into a series of patches in

the model that accounted for the presence of artificial

barriers (weirs, locks, etc.), in the areas away from

these barriers, the patches were based mainly on size

(2 to 3 km of river length). This was mainly to assist

the modelling process and underlying assumptions.
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This meant, however, that patch delimitation was

based on modelling requirements rather than on

knowledge of bitterling population demographics

and dispersal abilities. For this to be overcome would,

however, require data on the individual movements of

bitterling across different stages, something that

remains technically difficult due to their small body

sizes that makes the use of some common telemetry

methods highly challenging (e.g. Klinard et al. 2018).

Nevertheless, the relatively accurate predictions of the

bitterling dispersal pattern were similar to the empir-

ical data. This suggests that the model has high applied

utility for simulating the outcome of, for example,

management interventions that aim to inhibit their

invasion.

Implications for invasion management

The results of this study have highlighted that IBMs

have high utility for gaining knowledge on the

dispersal processes of aquatic invaders that are

difficult to obtain from empirical data collection alone

and can be used to help develop more informed

management practices (Sakai et al. 2001; Grimm et al.

2006; Samson et al. 2017). Indeed, even without

completing any further simulations, the IBM results

suggest there were two opportunities for management

interventions to have been implemented on the Great

Ouse that could have inhibited the bitterling invasion.

The first would have been immediately following their

initial detection in a very restricted spatial area in

1984, as management interventions are easier and

more effective when the extent of invasion is limited

(Pyke et al. 2008; Britton et al. 2011). The second

opportunity would have been the 20-year period of

low colonisation rates, although this would have been

more difficult than previously due to the greater spatial

extent of catchment occupancy. It is, however,

acknowledged that eradicating or even controlling

populations of invasive fishes in open systems is

highly challenging (Britton et al. 2011; Davies and

Britton 2015). Management interventions on this scale

also usually require rapid implementation (Pyke et al.

2008), supported by robust invasion risk assessment

processes (Copp et al. 2009). Management interven-

tions are then usually only implemented on those

invaders assessed as relatively high risk (Britton et al.

2011). Correspondingly, the lack of initial manage-

ment interventions in 1984 were likely to have resulted

from the paucity of invasion assessment tools avail-

able at that time, coupled with no predictive assess-

ment of the potential extent of their invasion. Given

the extent of their range today, even if invasion risk

assessments suggest some population control is

required, it would most likely be prohibitively expen-

sive and/or have a low likelihood of success (Britton

et al. 2011).

Conclusions

A relatively complex IBM was developed here that

enabled key invasion processes, such as dispersal, to

be incorporated into model fitting using an ABC

regime. The model revealed that whilst a range of

different combinations of parameter values fitted the

observed time series data, nevertheless, it delivered

some important predictions into the dispersal dynam-

ics of bitterling. Thus, the approach delivered novel

insights into the ecological behaviours and dynamics

of this invader, with the model improving our ability to

predict, and ultimately manage, successful invasive

species.
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Appendix

See Tables 3 and 4, Figs. 7, 8.

Table 3 Shape and parameters (Alpha, Beta) of prior distributions fitted to data from the literature and expert opinion, and best-fitted

posterior values obtained from the ABC method

Model parameter Stage-structure Shape Alpha Beta Best-fitted value

Population dynamics parameters

Rate of density dependence (1/b) Whole population Gamma 3 0.003 1750.96

Fecundity (ø) Adults Gamma 10 0.2 63.77

Survival rate (r) Juveniles Beta 40 5 0.93

Sub-adults Beta 5 5 0.89

Adults Beta 10 10 0.40

Emigration parameters

Asymptote (D) Sub-adults Beta 0.1 9.9 0.18

Adults Beta 10 40 0.18

Inflection point (b) Sub-adults Gamma 15 15 0.48

Adults Gamma 15 15 1.23

Transfer parameters

Step mortality probability (SMc) Whole population Beta 1.1 20 0.01

Settlement parameters

Settlement probability (S) Whole population Beta 50 5 0.84

Table 4 Pearson correlation matrix of the posterior parameters of the fitted model

1/b ø r0 r1 r2 D1 D2 b1 b2 SMc S

1/b 0.00 0.02 - 0.21** - 0.02 - 0.47** 0.10 - 0.03 0.19 0.15 0.06

ø 0.09 0.01 - 0.06 - 0.03 0.10 0.06 0.04 0.03 - 0.14

r0 0.05 - 0.05 0.01 - 0.05 - 0.05 0.11 0.07 - 0.14

r1 0.07 - 0.17 - 0.06 0.02 - 0.02 0.06 0.07

r2 - 0.16 0.02 0.03 0.02 0.01 0.13

D1 - 0.19 0.00 - 0.09 0.24** - 0.11

D2 0.02 0.12 - 0.15 0.09

b1 - 0.10 0.16 - 0.12

b2 0.05 0.20

SMc - 0.06

Symbols for the parameters are defined in Table 1 with sub-headings 0, 1 and 2 corresponding consecutively to the fish stage-

structure: juveniles, sub-adults and adults

Bold font denotes combinations that are significant (P\ 0.05), **denotes (P\ 0.01)
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Fig. 7 Map of temporally averaged model deviance in presence of bitterling across years. Colour scale: over-predicted (red) under-

predicted (blue). � Crown copyright and database rights 2018 Ordnance Survey (100025252)
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Fig. 8 Map of temporally averaged model deviance in presence of bitterling for years 1995–2005. Colour scale: over-predicted (red)

under-predicted (blue). � Crown copyright and database rights 2018 Ordnance Survey (100025252)
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