
Encrypted and Covert DNS Queries for Botnets:

Challenges and Countermeasures

Constantinos Patsakisa,, Fran Casinoa, Vasilios Katosb

aDepartment of Informatics, University Piraeus, 80 Karaoli & Dimitriou str, 18534
Piraeus, Greece

bBournemouth University, Poole House P323, Talbot Campus, Fern Barrow, Poole,
Dorset, BH12 5BB, UK

Abstract

There is a continuous increase in the sophistication that modern malware
exercise in order to bypass the deployed security mechanisms. A typical
approach to evade the identification and potential take down of a botnet
command and control server is domain fluxing through the use of Domain
Generation Algorithms (DGAs). These algorithms produce a vast amount of
domain names that the infected device tries to communicate with to find the
C&C server, yet only a small fragment of them is actually registered. This
allows the botmaster to pivot the control and make the work of seizing the
botnet control rather difficult.

Current state of the art and practice considers that the DNS queries per-
formed by a compromised device are transparent to the network administra-
tor and therefore can be monitored, analysed, and blocked. In this work, we
showcase that the latter is a strong assumption as malware could efficiently
hide its DNS queries using covert and/or encrypted channels bypassing the
detection mechanisms. To this end, we discuss possible mitigation measures
based on traffic analysis to address the new challenges that arise from this
approach.

Keywords: Malware, Botnets, Domain Generation Algorithm, DNS,
Covert Communication

Email addresses: kpatsak@unipi.gr (Constantinos Patsakis),
francasino@unipi.gr (Fran Casino), vkatos@bournemouth.ac.uk (Vasilios Katos)

Preprint submitted to Computers and Security January 7, 2020

1. Introduction

The amount and sophistication of modern malware are continuously in-
creasing creating a new industry, cybercrime, whose economy is estimated
to have a capitalisation of 1.5 trillion dollars [1]. While this industry has
many monetisation sources [2] such as spamming [3], ad injection [4], de-
nial of service and phishing to name a few, one of the most crucial aspects
is the management of compromised hosts. The critical nature of the lat-
ter lies in the fact that this management should allow the adversary to (a)
orchestrate further attacks by, e.g. sending his compromised hosts (bots)
new commands, (b) prolong the discovery of the attack, and (c) prevent law
enforcement agencies from discovering his true identity.

Clearly, a direct communication channel between infected devices and the
Command and Control (C&C) server can be efficiently detected and blocked
once one detects that a machine has been compromised, by blacklisting a
specific IP or domain. To prevent this, malware authors try to use com-
munication channels that disguise the traffic as benign and cannot be easily
blocked, e.g. social networks or frequently change the domain names that
host the C&C server. In the latter case, which is the focus of this work, the
adversary uses a Domain Generation Algorithm (DGA) that generates mil-
lions of pseudo-random domain names and the compromised devices try to
connect and retrieve new commands, rendering blacklisting methods useless.
However, the adversary only registers a handful of them; therefore, they can
regularly pivot both the domain as well as the IP of the C&C server without
losing the control of the compromised devices. The basic model is illustrated
in Figure 1 as there can be several variations. The botmaster has a deter-
ministic pseudo-random generator (PRNG) to create a set of domain names
installed in all compromised devices. As a result, these devices would period-
ically try to resolve these generated domain names. However, the botmaster
has registered only a few of them, therefore, only those resolve to an actual
machine. To further perplex possible takedown mechanisms, the botmaster
uses fast flux to change the IPs that the registered domains resolve to, which
may be some of the compromised devices.

1.1. Motivation

By design, the widely used DNS protocol is unencrypted and does not
allow for authentication, allowing an adversary to initiate a wide range of
attacks. The above has led to the introduction of several protocols which offer

2

Botmaster

C&C server

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

Infected devicesDNS queriesBotnet management DNS queries

DGA

Protection
mechanism

Fast flux

Figure 1: Botnet management with DGAs. Source [5].

confidentiality and authentication of DNS queries and responses including
among others DNSCurve, DNSCrypt and the different flavours of DNS over
HTTPS/TLS/DTLS. These protocols are actively being deployed by major
DNS servers; including Google, Cloudflare, and OpenDNS, while Mozilla is
considering making DNS over HTTPS the default option for the DNS queries
of the browser1. While this may allow for increased privacy of individuals,
one has to acknowledge that the fact that DNS queries are unencrypted
facilitates both the detection and identification of botnets from the queries
that bots make to the C&C server. Therefore, we need to study what happens
if a malware decides to use the privacy-preserving DNS services to resolve
its C&C server and whether such actions can be detected, as, by definition,
current methods would be rendered useless.

1.2. Main contributions

The contribution of this work is twofold. First, we illustrate a critical
gap in current state-of-the-art and practice methods for detecting botnets

1https://blog.mozilla.org/security/2019/04/09/dns-over-https-policy-

requirements-for-resolvers/

3

that use DGAs. More precisely, the core assumption that researchers and
practitioners set to date is that they consider that an infected machine would
try to connect to the C&C server using the generated domain names from
the DGA and they would be able to intercept these DNS requests. In this
regard, a high rate of failed DNS queries from a specific machine implies the
presence of an infected machine. Moreover, studying these requests from the
perspective of a network administrator one could try to determine whether
the request originates from a DGA by, e.g. evaluating the entropy of the
domain name. While the hypothesis seems rather straightforward, it is rather
strong as they assume that the adversary would use a plaintext channel to
resolve the domain name.

In light of recent trends in malware and the continuous use of encryp-
tion [6], this work investigates the challenges that arise when the adversary
uses encrypted channels to perform DNS queries. While this has not been
discussed in the literature nor reported by CERTs, we consider necessary
to proactively discuss and study the feasibility of such an approach. There-
fore, we study the possibility of botnets using protocols like DNSCurve and
DNSCrypt, and mechanisms such as DNS over HTTPS/TLS to communi-
cate with their C&C server using connections with whitelisted domains over
standard whitelisted protocols. Moreover, we investigate possible detection
mechanisms of such queries and experimentally show that traffic analysis
on the exchanged packets can lead to very efficient detection, in terms of
both computational overhead and accuracy, for specific DGAs. Therefore,
even though DNS queries can be performed over covert channels indicators
of compromise (IoCs) can be composed. In fact, we illustrate that using
the Hodrick-Prescott filter [7] one can accurately classify them using a small
amount of samples.

1.3. Organisation of this work

The rest of this work is structured as follows. In Section 2 we present the
related work regarding malware and DGAs. Then, in Section 3 we discuss
the usage of covert DNS queries from botnets using DGAs and the challenges
that arise for current state of the art mechanisms. In Section 4 we present
our experimental setup and the datasets we utilise. Afterwards, in Section
5 we discuss the findings of our extensive experiments using covert DNS
queries and the emerging patterns that emerge and showcasing that traffic
analysis can efficiently reveal such actions for specific DGAs. Finally, the

4

article concludes discussing possible countermeasures and summarising our
contributions.

2. Related work

Nowadays, a common practice in malware-based campaigns is to use re-
mote servers (i.e. C&C servers), which send instructions/orders to infected
devices [8, 9] to perform a DDoS attack for example [10]. The typical mech-
anism used in the past was to hardcode the IP addresses or possible domains
of the C&C servers in the malware, however, from the attacker’s perspective,
this entailed a set of drawbacks such as losing control of the botnet once the
IP or domain of the C&C server was identified. Therefore, several methods
to partially or fully decentralise the management of infected devices have
been implemented. With peer-to-peer botnets [11], there is no centralised
C&C server, but infected hosts act as both client and servers and efficiently
pass commands to each infected device. The Fast Flux approach imitates
Content Distribution Networks (CDNs) by resolving a domain name to mul-
tiple IP addresses. This can be achieved by using low TTL which forces DNS
to refresh their cache associated with these domains repeatedly. To this end,
a subset of the infected nodes may be used as what is called a flux agent.
A flux agent is a device whose IP is temporarily registered as the host of a
domain that the bots are querying, yet they are forwarding the traffic to the
C&C server. For more about fast flux networks, the interested reader may
refer to [12] and [13].

To provide another layer of protection, malware use what we call Domain
Name Generator Algorithms (DGAs). To this end, a malware uses a PRNG
to create a set of domain names and this approach has become the default
methodology [14, 15]. Hence, infected devices check the list of generated
domains until they find the C&C server, whose location may also change
dynamically. In this regard, blacklisting domains is rendered useless as it
implies many practical issues.

In general, DGA detection methods use simple domain name classification
according to some features such as entropy, length or lexical characteristics
to determine whether a DGA has generated a domain name or not, such as
in [16] and [17]. Nevertheless, several classification approaches use additional
information such as WHOIS or DNS traffic analysis to detect abnormal be-
haviours like a high volume of NXDomain responses, which may indicate
that a device has been infected [18, 19, 20]. Another technique was proposed

5

by Yadav et al. in [21], which groups DNS queries originated by a specific
client to compute the correlation between distinct requests pointing to the
same domains. In a more recent work, Manadhata et al. [22] model the de-
tection problem as a graph inference problem and construct a host-domain
graph from proxy logs to classify domains into benign and malicious with a
certain probability. Gong et al. [23], perform domain name classification us-
ing a clustering algorithm with time-based information as well as IP-domain
auxiliary data. Other machine learning approaches can be found in [24] and
[19], in which authors use a set of features extracted from network traffic and
other well-known domain sources such as Alexa2 to enhance DGA detection.

More recently, since domain names generated by DGAs exhibited a high
level of randomness facilitating thus their detection, attackers adopted the
use of English wordlists, which made it more difficult to discern between valid
and DGA-generated domains. Similarly, the concept of domain shadowing
is also gaining attention, which relies on the use of valid domains that were
previously hacked [25]. Other DGAs generate domain names which have high
chances of collision with valid domains and/or with other DGA malware [26]
so that finding and analysing them becomes more challenging.

There are some techniques to overcome such new generation of DGA al-
gorithms such as the work proposed in [27], where authors use a short-term
memory network (LSTM) to perform binary domain classification using raw
domain names as features. Similar classification approaches based in neural
networks can be found in [28, 29]. In [30], authors use a generative adversarial
network (GAN) to implement a deep learning based DGA which is capable
of bypass classical deep learning detectors. Subsequently, such information
is used as input feedback to the DGA detectors to enhance their accuracy
and robustness. In the case of [31], the authors are able to characterize
and classify similar DGA-generated domains, generating knowledge about
the evolving behaviour of botnets. More recently, Curtin et al. developed
the smashword score [32], a new metric that uses n-gram overlapping com-
bined with information provided from WHOIS lookups to determine whether
a DGA has generated a domain name or not. For a detailed overview and
classification of methods of how malicious domains can be detected, the in-
terested reader may refer to [33]. Moreover, a summary of the main literature
families is provided in Table 1. Note that none of the existing methods can

2https://www.alexa.com/topsites

6

analyze encrypted communications. Although some approaches do not use
side information (i.e. since they only analyze domain name lexical features)
as in [28, 27, 29], the fact that DNS query responses are covert hinders the
detection since we cannot check whether it was a true or false positive in real
scenarios, making the discovery of novel DGA families even more difficult.

Table 1: Summary of literature families and their main characteristics. NN stands for
Neural Networks and RF for random-forest classifiers.

DGA Family Description Detection features Main detection
methods

Covert
DNS de-
tection

Arithmetic-based A PRNG gener-
ates alphanumeri-
cal combinations

Randomness, lexical
structure

entropy, lexico-
graphic analysis,
DNS response,
WHOIS

No

Hash-based Create an hex
representation of
a hash

Randomness, lexical
structure

entropy, lexico-
graphic analysis,
DNS response,
WHOIS

No

Wordlist-based Combination of
words extracted
from a dictionary

Lexical structure and
n-gram analysis

Classifiers (NN, RF) No

Permutation-based Permutations
over valid or
word-based do-
mains

Lexical structure, n-
gram analysis, DNS
response, pattern
analysis

Classifiers (NN, RF) No

With DNS tunnelling, the malware tries to exploit the features of DNS
protocol since DNS traffic is allowed unrestricted by most firewall installa-
tion. To this end, data are encoded as DNS queries and responses to avoid
detection and bypass the installed security measures. Two well-known ex-
amples are Feederbot [34] and Morto3 which used the TXT resource record
to deliver their encrypted commands to the infected hosts. Nevertheless,
DNS is also exploited by botnets to amplify the bandwidth of their attacks
[35, 36].

It is apparent that in the literature researchers always assume that the
DNS query information is plaintext or that they can collect it and analyse
it. We consider that the latter is a strong assumption as DNS traffic can be
encrypted or tunnelled to hide its existence. However, as recently illustrated
[5], DGAs can be extended to Resource Identifier Generation Algorithms

3https://www.symantec.com/connect/blogs/morto-worm-sets-dns-record

7

(RIGA) which allows the use of other protocols beyond DNS and allow the
orchestration to exploit other more decentralised protocols.

3. Covert DNS queries

In what follows we introduce our threat model and detail how an adver-
sary would try to armour a malware.

3.1. Threat model

In our model, we assume that an adversary has managed to compromise
a device in the internal network of an organisation. The adversary wants
to issue commands to the compromised host (bot) without using a direct
communication channel with him; therefore, she opts for the use of a DGA.
Furthermore, the adversary wants to hide the existence of this mechanism by
encrypting all the DNS queries and tunnel them through another protocol
that is allowed from the firewall policy of the host network. To this end,
we assume that the adversary has full control of the compromised host and
of some other hosts outside the host network that she wants to contact.
Therefore, we assume that the adversary cannot drop packets of other hosts
nor change the network policies of the host network. Moreover, we assume
that any unencrypted traffic will be collected by the host network and the
use of any unauthorised protocol or connection with unauthorised host; both
internal and external would be blocked.

3.2. Armouring a malware

As discussed, many malware use DGAs in their attempt to hide the actual
C&C server. However, their continuous DNS queries may trigger alerts to
installed security mechanisms as they will detect a high amount of failed
DNS queries to usually random looking domains from specific hosts. This
is due to the very nature of the DNS protocol which does not provide data
security. Apparently, the lack of these mechanisms exposes users to many
threats such as eavesdropping and a set of man-in-the-middle attacks (e.g.
DNS data manipulation). Nevertheless, in this scenario, it allows network
administrators to monitor the domains that their hosts are trying to connect
to.

While there are several solutions to counter such threats, with the most
dominant one being DNSSEC [37], we are only interested in protocols that
offer confidentiality. The reason behind this choice is that in order to armour

8

the malware to bypass many network security mechanisms we aim to encrypt
the DNS queries and/or tunnel them via other whitelisted protocols. The
concept is that if the DNS queries and their responses are encrypted, then no
one else could determine which are the requested domains and whether they
exist. In this regard, we limit our scope to specific protocols and schemes
which are deployed by legitimate DNS servers and offer confidentiality when
performing DNS queries. The list is rather limited and consists of the fol-
lowing options:

1. DNSCurve: This protocol was proposed by Bernstein [38] and ad-
dresses the confidentiality, integrity and availability of DNS. The pro-
tocol uses strong yet very fast encryption, however, despite its efficacy
it has not been widely deployed, with the most widely used DNS server
supporting it being OpenDNS4.

2. DNSCrypt: Denis and Fu introduced this protocol to authenticate
communication between a DNS client and a DNS resolver [39]. Cur-
rently, it is the most widely used encrypted DNS protocol as many
well-known DNS servers provide it, including among others OpenDNS
and Yandex.

3. DNS over HTTPS: This protocol offers DNS resolution over an en-
crypted HTTPS connection to provide end-to-end authenticated DNS
lookups. Well-known DNS providers such as Google and CleanBrows-
ing are already compliant with this protocol.

4. DNS over TLS: As the name suggests, this protocol runs DNS trans-
actions over TLS (see IETF RFCs 78585 and 83106). Therefore, DNS
queries sent to the resolver are performed in an encrypted channel, en-
hancing security and privacy. This solution is implemented by some
DNS providers such as Cloudflare and CleanBrowsing.

5. DNS over Datagram Transport Layer Security (DTLS): This is
an experimental protocol to offer confidentiality for DNS queries 7 using
UDP to improve performance and addresses packet loss and reordering
that may happen during packet delivery which are traditional problems
of DTLS.

4https://umbrella.cisco.com/blog/2010/02/23/opendns-dnscurve/
5https://tools.ietf.org/html/rfc7858
6https://tools.ietf.org/html/rfc8310
7http://www.rfc-editor.org/info/rfc8094

9

Evidently, the first two options imply some constraints in their adoption
from malware as they imply the usage of “exotic” protocols that in, e.g. cor-
porate/monitored environments would be blocked from the network firewall.
It should be noticed that similar to HTTPS, DNSCrypt also operates in port
443. While the two protocols differ, if the firewall does not correctly identify
the protocol, DNSCrypt could tunnel DNS queries and responses. However,
in the case of the latter two methods, the DNS queries and responses are
masqueraded under the veil of the widely used HTTPS/TLS protocols with
legitimate domains. Therefore, the DNS queries can be performed in an
entirely covert way as the traffic does not trigger any alert in the security
mechanisms, but it is tunnelled as normal HTTPS/TLS traffic. DNS over
DTLS transfers datagrams over TLS, using UDP and port 853. The protocol
is quite efficient, however, it is in experimental stage and not actively used
by any major provider to be evaluated.

While the use of DNSCurve and DNSCrypt is subject to firewall policy
constraints, in all the cases above the host manages to efficiently resolve the
IP of a domain name using strong encryption primitives. Practically, the
network administrator will have to analyse packets with encrypted traffic.
The interested reader may refer to [40] for a more detailed comparison of
DNSSEC and DNSCurve.

BotmasterC&C server

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

fkdja2e.com

hjs2alls.org

vvf9h2z.com

bna90a.com

biZmtkamEyZ

zMmFsbHMub3Jn

nZmOWgyei5jb20

5hOTBhLmNvbQ

Infected devicesBotnet management

DGA

Protection
mechanism

O
bfuscated D

N
S queries

Whitelisted protocols

Privacy
preserving

DNS

Fast flux

Figure 2: The armored malware.

10

4. Experimental setup

The experimental evaluation aims to explore whether is it possible to
construct good quality Indicators of Compromise to determine whether en-
crypted network traffic corresponds to the one generated by a botnet that
using a covert channel for requesting the possible domain name of its C&C
server, as analysed in the previous section. The quality of an IoC in this
paper adopts Bianco’s pyramid of pain approach [41]. That is, we aim for
creating higher IoCs on the pain scale, such as Network Artefacts or Tools,
as the lower IoCs cannot be considered reliable due to the encryption layer.
To this end, we assume that the network administrator would perform traffic
analysis on the packets on the intercepted HTTPS/TLS traffic. In our exper-
iments, we do not consider DNSCrypt and DNSCurve as the protocols can
be easily detected and blocked by a firewall. The reader should note that by
following this approach, the adversary manages to have the security and pri-
vacy guarantees of standard TLS for her queries. Therefore, it is practically
impossible to perform any attack unless there are implementation issues, at
the trade-off of linear complexity to the length of exchanged information for
using standard TLS communication.

To investigate the capabilities and approaches of traffic analysis in the
present problem domain, synthetic datasets were constructed. These datasets
consist of covert DNS queries to registered and non-registered domains. For
the former, we have used the Alexa top 1000 domains, while for the latter we
use non registered domain names generated from ten different DGAs. More
precisely, we have used the DGAs presented in Table 2 which have been
published by Abakumov 8. In columns Min, Max, Average and Stdev we
refer to the corresponding measures for the domain length of each dataset.
Unique values indicate whether all possible lengths of domain names are
represented in each dataset. For instance, in Conflicker all the possible values
(16-8+1=9) are represented in the dataset, however, this is not the case for,
e.g. Alexa as we have 22 unique values in the dataset and there could be 25
unique values, showing that domains of 3 specific lengths do not exist in the
dataset.

From each DGA we have kept the first 1000 domains. This procedure
creates a rich dataset of 11.000 domains of existing and non-existing domains.
Finally, we collect the generated traffic and try to correlate the results to

8https://github.com/andrewaeva/DGA

11

determine whether a device performs covert DNS queries.

Dataset Min Max Average Stdev Unique values

Alexa 4 28 11.349 3.237 22
Conflicker 8 16 11.755 1.983 9
CryptoLocker 15 21 17.783 1.424 7
GOZ 20 35 28.241 2.431 16
Matsnu 28 40 30.527 2.038 13
new GOZ 26 32 29.885 1.087 7
Pushdo 11 11 11.000 0.000 1
Ramdo 20 20 20.000 0.000 1
Rovnix 24 38 26.794 2.622 15
Tinba 16 16 16.000 0.000 1
Zeus 26 32 29.878 1.038 7

Table 2: Datasets used in the experiments and their statistical properties in terms of
domain length characteristics.

Our methodology for synthesizing our datasets is rather straightforward.
For each of the datasets mentioned above, we perform DNS queries over
HTTPS and TLS and intercept the generated traffic using the well-known
tcpdump tool. To facilitate the process and to allow for further validation
of the results, we use pydig9 to perform all the covert DNS queries. Then,
we parse the generated pcap file and perform feature extraction on each
captured packet. Using tshark; the command line version of Wireshark,
and Linux command line tools, we filter the traffic to extract the necessary
packages from the pcap files. The features that we extract from each packet
are the source IP, the target IP, the size of each packet, the protocol and the
info that tshark produces. The latter are some metadata for each package
that facilitate the filtering process. Based on these features we investigate
whether they can be used independently and in combination to determine
whether a machine performs covert DNS queries. To allow the testing and
validation of our claims and methodology we have uploaded all the needed
scripts and sample datasets in GitHub10 in the form of pcap files.

9https://github.com/shuque/pydig
10https://github.com/kpatsakis/covert_dns_queries

12

The aforementioned steps create 22 datasets: 11 for DNS over TLS and
11 for DNS over HTTPS. We argue that the packages of the host should
not be considered as their content may greatly vary depending on the client-
side implementation. Therefore we limit our results to the packages received
from the DNS server over HTTPS/TLS. From these packages, we omit the
packages which are the initiation or the termination of TLS as they do not
contain actual information for the DNS query but other information such as
parameter and cipher negotiation. Therefore, the rest of the packages must
contain the actual response for the query to the DNS server. As such, the
latter coincides with the experimental results.

The basic concept behind this choice of features is that the response of the
DNS server in terms of length for NXdomains will differ significantly from
the response for existing domains. In the latter case, the response should
contain information like the IP address etc. making it longer in principle.
The specifications of DNS in RFC 1035 [42] for responses to DNS queries
justify this intuitive result. To facilitate the reader, we provide the output of
some tools, for instance, see Figure 3 and 4 which illustrate the output of two
DNS queries using dig. Clearly, the response of an existing domain contains
“different” information in terms of both quality and quantity. Therefore,
the research question is whether this differentiation can be observed in the
intercepted encrypted traffic.

5. Discussion

In the following paragraphs we discuss our findings of our experimental
results. To this end, we first discuss the experimental results using traffic
analysis and then we present how one can efficiently perform bot attribution.

5.1. Traffic analysis

On a macroscopic level, examining the size of the responses in each case
we notice that some interesting patterns emerge, see Figures 7a-7k and 8a-
8k. It should be noted that due to its implementation when using DNS over
TLS, each response consists of two packets with the first one having a length
of 97 bytes. Evidently, DGAs which produce domains with static length,
end up having server responses with static length as well, see Figures 7f, 8f,
7g,8g, 7i and 8i. Similarly, DGAs which produce domains with little variance
on their length, see 7b and 8b, have responses with little variance in their
length. Clearly, the Alexa dataset presents the most significant variance

13

; <<>> DiG 9.11.3-1ubuntu1.2-Ubuntu <<>> www.google.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18417

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 65494

;; QUESTION SECTION:

;www.google.com. IN A

;; ANSWER SECTION:

www.google.com. 238 IN A 216.58.205.164

;; Query time: 44 msec

;; SERVER: 127.0.0.53#53(127.0.0.53)

;; WHEN: Thu Oct 25 01:08:12 EEST 2018

;; MSG SIZE rcvd: 59

Figure 3: The DNS response when querying for Google.com.

; <<>> DiG 9.11.3-1ubuntu1.2-Ubuntu <<>> rejuxlip.ru

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 64200

;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 65494

;; QUESTION SECTION:

;rejuxlip.ru. IN A

;; Query time: 2475 msec

;; SERVER: 127.0.0.53#53(127.0.0.53)

;; WHEN: Thu Oct 25 01:10:58 EEST 2018

;; MSG SIZE rcvd: 40

Figure 4: The DNS response when querying for rejuxlip.ru.

14

in the response lengths as it has the most extensive diversity in terms of
both lengths of domains and the response is expected to contain several
values for the IPs of the hosts. In Table 3 we provide an overview of the
statistical properties of the responses in each case. More precisely, columns
Min, Max, Average and Stdev refer to the corresponding measures for the
packet size of each dataset. Unique values indicate whether all possible sizes
of packets are represented in each dataset. For instance, in Pushdo for DNS
over HTTPS, while the range is from 564 to 570, only two values are found
in our experiments.

It is clear that the results mentioned above indicate that even though
the DNS queries are performed covertly via legitimate DNS servers, traffic
analysis can efficiently determine the queries on existing and NXDomains
with almost 100% accuracy if the DGA generates domains of static length.
In this regard, one could develop a lightweight approach to constructing IoCs.
The corresponding rule would look for packages to privacy-preserving DNS
servers like Google, Cloudflare etc. over HTTPS and then look for the 97 vs
X pattern or the stable value pattern on the received packages to determine
whether a device has been compromised and tries to perform DNS queries
over a covert channel.

However, a thorough and complete detection requires providing attribu-
tion information which in this case it would be threat intelligence on the
type of infection and bot attempting to communicate with its C&C or bot-
master. Detecting NXDomain responses is expected to be performed at an
early stage of the intrusion detection process to allow the security controls
to block the connection or respond in the prescribed security policy manner.
The incident response process would be considered complete if it would be
capable of providing evidence of the bot that has successfully compromised
the system. As such, the aim of the incident response exercise is twofold: a)
identify quickly that a bot has infected the system; b) identify the particular
bot or family.

Currently, in an unencrypted, standard DNS setting, the computed IoC
describing a bot infection would be a large number of NXDomain responses
within a particular time frame. We have described above how to replicate
this IoC under TLS and HTTPS communication. In the following section,
we present an approach for constructing higher quality IoCs capable of iden-
tifying the underlying bot.

15

Dataset Min Max Average Stdev Unique values

HTTPS

alexa 476 704 541.610 27.646 109
Conflicker 470 599 565.162 20.612 50
CryptoLocker 568 592 580.045 6.586 25
GOZ 574 594 585.218 3.710 21
Matsnu 595 611 601.425 3.617 17
new GOZ 580 605 594.347 6.797 26
Pushdo 564 570 567.806 2.890 2
Ramdo 574 580 577.708 2.915 2
Rovnix 591 610 596.900 3.979 20
Tinba 521 589 585.445 6.410 6
Zeus 580 605 591.737 6.414 26

TLS

alexa 134 619 220.951 80.746 235
Conflicker 121 354 214.670 58.580 37
CryptoLocker 189 205 196.532 5.484 14
GOZ 195 209 202.217 2.484 15
Matsnu 214 224 216.566 2.046 11
new GOZ 201 218 211.854 5.281 14
Pushdo 185 185 185.000 0.000 1
Ramdo 196 196 196.000 0.000 1
Rovnix 210 223 212.759 2.684 14
Tinba 145 202 201.483 5.405 2
Zeus 202 218 211.520 5.245 13

Table 3: Statistical properties. Note that for TLS we omit the packages with length 97
bytes as this appears in all interactions.

5.2. Bot attribution

The approach for constructing bot IoCs is based on the following assump-
tions:

• the bot uses a fixed DGA strategy to generate the domains,

• the domains are generated sequentially,

• the process is repeated until an existing domain is received.

These assumptions allow us to consider the network traffic generated by
the bot as a time series variable. This is also the first significant distinction

16

between the Alexa dataset and all other bots we considered in our experi-
ments. In what follows, we present only the results for the case of DNS over
HTTPS traffic, yet similar results apply for DNS over TLS.

Figure 5 shows a sample of the datasets, more precisely Alexa, Conficker
and Goz, plotted over time. More precisely, the figure illustrates the packet
size (axis Y) for each dataset, if we consider that one performed a covert
DNS query for each of the domains of the corresponding dataset sequentially
(axis X). It can be observed that the variables display a significant amount
of noise.

(a) Alexa (b) Conficker (c) Goz

Figure 5: Time plots of Alexa, Conficker and Goz

In the proposed approach we attempt to apply filtering in order to remove
the noise and identify any trend. This approach is commonplace in the eco-
nomic analysis of time series, and we explore its applicability to the current
problem domain. More specifically, in the context of time series analysis the
objective is to identify a trend so that this can be used to make predictions
of the future values of a given variable. This can be attempted if one would
establish that there is correlation between the immediate past observations
(lags) for any given point in the series. If this is the case, this knowledge
can be extracted from the series in a form of a trend, thus breaking down
the series (or signal) to a linear combination of a trend and a cycle, with the
latter capturing any periodicity. Once these trends are identified, we attempt
to see whether they are distinct for each malware and different from benign
traffic. Moreover the examined datasets can be considered to be time series
(although the x axis does not explicitly capture time) as the DNS packets
generated from a DGA follow a sequential order over time.

The approach of time series analysis is as follows. Assuming that the
variable is composed of a cycle (which is true as we have DNS requests and
responses) and a trend, we consider the Hodrick-Prescott (HP) filter [7] to

17

be a good candidate. The Hodrick-Prescott filter separates a time-series yt
into a trend τt, a cyclical component ζt and an error component εt such that:

yt = τt + ζt + εt

The components are determined by minimising the following quadratic loss
function:

min
τt

(
T∑
t=1

(yt − τt)
2 + λ

T−1∑
t=2

[(τt+1 − τt) − (τt − τt−1)]2)

with the multiplier λ specifying the penalty offered by the second term.
Figure 6 shows the trends of the different variables representing the bots
following the application of the HP filter. In this instance, we picked Alexa,
Cryptolocker and Goz. Below each plot, there is also an autocorrelation
plot showing the autocorrelation of the respective variable. Unsurprisingly
Alexa’s autocorrelation (Figure 6d) drops quickly as this is not a time series
and each observation (domain) is independent of the previous ones. Cryp-
tolocker is quite distinct from Alexa, but Goz shows some similarity.

(a) Alexa’s trend (b) Cryptolocker’s trend (c) Goz’s trend

(d) Alexa’s trend autocor-
relation

(e) Cryptolocker’s trend
autocorrelation

(f) Goz’s trend autocorre-
lation

Figure 6: Trends and autocorrelations

Autocorrelation is an indication of the number of previous observations
(lags) affecting the current observation. It was established that for all bots a

18

minimum of 4 lags is sufficient to reconstruct the whole series. By running an
autoregressive moving average (ARMA) estimation over all series, we obtain
the coefficients summarised in Table 4.

constant lag(-1) lag(-2) lag(-3) lag(-4)

Alexa
3.418966 3.088595 -3.624877 1.913501 -0.383532
{0.469880} {0.029306} {0.082269} {0.082175} {0.029205}

[0.000] [0.000] [0.000] [0.000] [0.000]

Conficker
2.785166 3.107565 -3.657214 1.920612 -0.3758890

{4.716197e-01} {0.029506} {0.083259} {8.340822e-02} {2.967494e-02}
[0.000] [0.000] [0.000] [0.000] [0.000]

Cryptolocker
2.843495 2.880937 -3.301188 1.851547 -4.361981e-01

{5.729647e-01} {0.028428} {0.075057} {7.451386e-02} {2.778673e-02}
[0.000] [0.000] [0.000] [0.000] [0.000]

Goz
3.497740 3.104442 -3.665087 1.944414 -3.897455e-01

{5.019608e-01} {0.029296} {0.082379} {8.240207e-02} {2.932082e-02}
[0.000] [0.000] [0.000] [0.000] [0.000]

Matsnu
3.111954e+00 3.152710 -3.77899 2.032400e+00 -4.112938e-01
{4.716860e-01} {0.028967} {0.08182} {8.174793e-02} {2.888826e-02}

[0.000] [0.000] [0.000] [0.000] [0.000]

NewGoz
2.243034 3.168183 -3.822154 2.070548 -4.203520e-01
{0.522166} {0.029030} {0.082280} {8.274406e-02} {2.957008e-02}

[0.000] [0.000] [0.000] [0.000] [0.000]

Pushdo
3.645356e+00 3.110475 -3.685589 1.962390 -3.936961e-01
{5.041236e-01} {0.029258} {0.082007} {8.174939e-02} {2.896300e-02}

[0.000] [0.000] [0.000] [0.000] [0.000]

Ramdo
3.359594 3.164252 -3.842610 2.126389 -4.538455e-01

{4.817741e-01} { 0.028482} {0.080164} {8.033351e-02} {2.865658e-02}
[0.000] [0.000] [0.000] [0.000] [0.000]

Rovnix
4.380914 3.092777 -3.652384 1.954086 -4.018180e-01

{5.473323e-01} { 0.029101} {0.081594} {8.163828e-02} {2.914092e-02}
[0.000] [0.000] [0.000] [0.000] [0.000]

Tinba
0.878688 3.380042 -4.351385 2.533331 -5.634898e-01
{0.304202} {0.025792} {0.073868} {7.300452e-02} {2.479662e-02

[0.000] [0.000] [0.000] [0.000] [0.000]

Zeus
6.110055e+00 2.773122 -3.025082 1.637556 -3.959203e-01
{7.452222e-01} {0.029171} {0.076807} {7.675001e-02} {2.908530e-02}

[0.000] [0.000] [0.000] [0.000] [0.000]

Table 4: ARMA estimation for all bots - Std. Error in curly brackets, Probability in
square brackets

To utilise ARMA coefficients as IoCs, we need to investigate whether each
tuple can uniquely identify the bot. This is examined by testing whether sta-
tistical differences between the different IoCs (coefficients) exist. In addition,

19

we need to test whether subsets of each series can produce the same IoCs as
well as the minimum number of (consecutive) observations needed to produce
them.

The investigation of the existence of statistical differences was performed
as follows. A single variable was produced by stacking all variables and
adding a second variable to label the origin of the data and observations.
That is, the first 1000 observations were from Alexa (with the label ID=0)
the following observations were from Conficker (ID=1), then Cryptolocker
(ID=2) and so forth, in accordance with the order displayed in Table 4. We
then ran an analysis of variance (ANOVA) with Duncan’s test to perform
the clustering. The results are shown in Table 5. From the tests, 10 distinct
groups emerged, where all bots were successfully separated except Goz and
Tinba which were grouped together.

Sum of squares df Mean square F Sig.

Between Groups 2986937.080 10 298693.708 2310.923 0.000
Within Groups 1419585.793 10983 129.253
Total 4406522.873 10993

Table 5: ANOVA and clustering results

Finally, by performing t-tests, we measured that in most cases it requires
between 20 to 30 observations to construct the IoCs (ARMA coefficients).
From a practical perspective, a network administrator by observing the en-
crypted network traffic and capturing the lengths of requests and responses,
would be able to detect the bot infection, identify the bot; if this is already
in the IoC database. Moreover, she may escalate by taking action before
the bot completes the communication with the botmaster - that is, if the
communication needs more than 30 DNS lookups.

Similar results were obtained with the analysis of the TLS traffic. It
is worth mentioning that the distinction between Alexa and non-Alexa (i.e.
bot) traffic was stronger, but the distinction between the bots is less apparent.
In other words, it is possible to identify the anomalous activity and flag the
botnet infection, but attributing to the particular bot would be less effective.

Evidently, in both cases, we follow the same steps; therefore, it is needed
to investigate the complexity that the proposed traffic analysis implied with
regard to the length of exchanged information. While most steps are linear,
e.g. collecting the data, applying the Hodrick-Prescott filter etc., the ANOVA

20

100

200

300

P
ac
ka
g
e
le
n
gt
h
in

b
y
te
s

(a) Conficker

100

120

140

160

180

200

P
a
ck
ag
e
le
n
gt
h
in

b
y
te
s

(b) CryptoLocker

100

120

140

160

180

200

220

P
ac
ka
g
e
le
n
gt
h
in

b
y
te
s

(c) GOZ

100

150

200

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(d) Matsnu

100

150

200

P
ac
ka
ge

le
n
g
th

in
b
y
te
s

(e) New GOZ.

100

120

140

160

180

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(f) Pushdo

100

120

140

160

180

200

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(g) Ramdo

100

150

200

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(h) Rovnix

100

120

140

160

180

200

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(i) Tinba

100

150

200

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(j) Zeus

200

400

600

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(k) Alexa

Figure 7: Package size diversity for different datasets (DGAs and Alexa) using DNS over
TLS.

method is quadratic. Therefore, the whole process of the proposed traffic
analysis has quadratic complexity to the length of exchanged information.

21

500

550

600

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(a) Conflicker

570

575

580

585

590

P
a
ck
ag
e
le
n
gt
h
in

b
y
te
s

(b) CryptoLocker

575

580

585

590

595

P
ac
ka
g
e
le
n
gt
h
in

b
y
te
s

(c) GOZ

595

600

605

610

P
ac
ka
ge

le
n
g
th

in
b
y
te
s

(d) Matsnu

580

590

600

P
ac
ka
ge

le
n
g
th

in
b
y
te
s

(e) new GOZ

564

566

568

570

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(f) Pushdo

574

576

578

580

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(g) Ramdo

590

595

600

605

610

P
ac
ka
ge

le
n
g
th

in
b
y
te
s

(h) Rovnix

520

540

560

580

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(i) Tinba

580

590

600

P
a
ck
ag
e
le
n
gt
h
in

b
y
te
s

(j) Zeus

500

550

600

650

700

P
ac
ka
ge

le
n
gt
h
in

b
y
te
s

(k) Alexa

Figure 8: Package size diversity for different datasets (DGAs and Alexa) using DNS over
https.

6. Conclusions

The continuous arms race between malware authors and anti-malware has
made modern malware to use a wide range of cryptographic and obfuscation

22

methods. Therefore, modern malware has become far more stealthy making
the quest for novel methods to detect and classify malware a big challenge.

Trying to overcome future challenges, we investigate the use of covert
channels for making DNS queries. The motivation towards this direction is
that DGAs are detected via the amount and rate of NXDomain responses
and the use of pattern matching and machine learning to classify the queries
based on their entropy. More recently, in order to circumvent the latter
detection, some DGAs have started using combinations of words so that the
queries do not appear so random. Nevertheless, the amount and rate of
NXDomain responses remains the same.

We conjunct that in order to circumvent this limitation, malware might
soon resort to encrypted DNS queries. As we discussed in our work, this shift
would render many of currently deployed security mechanisms useless as they
heavily depend on monitoring the unencrypted traffic with the DNS servers.
The currently available methods and protocols that are provided by major
DNS servers; including Google, Cloudflare, and OpenDNS, if used properly,
may allow infected hosts to perform encrypted DNS queries masqueraded
as typical HTTPS traffic with whitelisted domains, bypassing this way all
deployed security mechanisms.

To address this threat, we showcase how traffic analysis can be used to
provide a lightweight security mechanism and construct IoCs. Using domain
names generated from several DGAs we showcase that there are emerging
patterns that allow us to identify and classify them accurately. Indeed, de-
spite their covert nature, we illustrate that the Hodrick-Prescott filter can
classify them using around 30 samples with very high accuracy and perform
bot attribution.

Acknowledgments

This work was supported by the European Commission under the Horizon
2020 Programme (H2020), as part of the projects YAKSHA (Grant Agree-
ment no. 780498), CyberSec4Europe (https://www.cybersec4europe.eu)
(Grant Agreement no. 830929) and the Marie Sk lodowska-Curie grant agree-
ment No 778229 (Ideal-Cities).

The content of this article does not reflect the official opinion of the
European Union. Responsibility for the information and views expressed
therein lies entirely with the authors.

23

[1] N. Ismail, Global cybercrime economy generates over $1.5tn, ac-
cording to new study, https://www.information-age.com/global-

cybercrime-economy-generates-over-1-5tn-according-to-new-

study-123471631/ (2018).

[2] T. Moore, R. Clayton, R. Anderson, The economics of online crime,
Journal of Economic Perspectives 23 (3) (2009) 3–20.

[3] J. M. Rao, D. H. Reiley, The economics of spam, Journal of Economic
Perspectives 26 (3) (2012) 87–110.

[4] Y. Chen, P. Kintis, M. Antonakakis, Y. Nadji, D. Dagon, M. Farrell,
Measuring lower bounds of the financial abuse to online advertisers: A
four year case study of the TDSS/TDL4 botnet, Computers & Security
67 (2017) 164 – 180.

[5] C. Patsakis, F. Casino, Hydras and ipfs: a decentralised playground for
malware, International Journal of Information Security (2019) 1–13.

[6] F. Casino, K. R. Choo, C. Patsakis, Hedge: Efficient traffic classification
of encrypted and compressed packets, IEEE Transactions on Information
Forensics and Security 14 (11) (2019) 2916–2926.

[7] R. J. Hodrick, E. C. Prescott, Postwar us business cycles: an empirical
investigation, Journal of Money, credit, and Banking (1997) 1–16.

[8] M. Antonakakis, et al., Understanding the mirai botnet, in: 26th
USENIX Security Symposium (USENIX Security 17), USENIX Asso-
ciation, Vancouver, BC, 2017, pp. 1093–1110.

[9] Y. Nadji, R. Perdisci, M. Antonakakis, Still beheading hydras: Botnet
takedowns then and now, IEEE Transactions on Dependable and Secure
Computing 14 (5) (2017) 535–549.

[10] C. Kolias, G. Kambourakis, A. Stavrou, J. Voas, Ddos in the iot: Mirai
and other botnets, Computer 50 (7) (2017) 80–84.

[11] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, D. Dagon, Peer-
to-peer botnets: Overview and case study, HotBots 7 (2007) 1–1.

24

[12] T. Holz, C. Gorecki, K. Rieck, F. C. Freiling, Measuring and detect-
ing fast-flux service networks, in: Proceedings of the Network and Dis-
tributed System Security Symposium, 2008.

[13] O. Katz, R. Perets, G. Matzliach, Digging deeper - an in-depth analysis
of a fast flux network, https://www.akamai.com/us/en/multimedia/
documents/white-paper/digging-deeper-in-depth-analysis-of-

fast-flux-network.pdf (2016).

[14] A. K. Sood, S. Zeadally, A taxonomy of domain-generation algorithms,
IEEE Security Privacy 14 (4) (2016) 46–53. doi:10.1109/MSP.2016.76.

[15] R. Perdisci, I. Corona, G. Giacinto, Early detection of malicious flux
networks via large-scale passive dns traffic analysis, IEEE Transactions
on Dependable and Secure Computing 9 (5) (2012) 714–726.

[16] A. J. Aviv, A. Haeberlen, Challenges in experimenting with botnet de-
tection systems, in: Proceedings of the 4th Conference on Cyber Security
Experimentation and Test, CSET’11, USENIX Association, Berkeley,
CA, USA, 2011, pp. 6–6.

[17] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, S. Ranjan, Detecting al-
gorithmically generated domain-flux attacks with DNS traffic analysis,
IEEE/ACM Transactions on Networking 20 (5) (2012) 1663–1677.

[18] Y. Zhou, Q.-S. Li, Q. Miao, K. Yim, DGA-based botnet detection using
DNS traffic, J. Internet Serv. Inf. Secur. 3 (2013) 116–123.

[19] N. Jiang, J. Cao, Y. Jin, L. E. Li, Z. Zhang, Identifying suspicious activi-
ties through dns failure graph analysis, in: The 18th IEEE International
Conference on Network Protocols, 2010, pp. 144–153.

[20] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, D. Dagon, From throw-away traffic to bots: detecting the rise
of DGA-based malware, in: Proceedings of the 21st USENIX conference
on Security symposium, USENIX Association, 2012, pp. 24–24.

[21] S. Yadav, A. L. N. Reddy, Winning with DNS failures: Strategies for
faster botnet detection, in: M. Rajarajan, F. Piper, H. Wang, G. Ke-
sidis (Eds.), Security and Privacy in Communication Networks, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 446–459.

25

[22] P. K. Manadhata, S. Yadav, P. Rao, W. Horne, Detecting malicious
domains via graph inference, in: M. Kuty lowski, J. Vaidya (Eds.),
Computer Security - ESORICS 2014, Springer International Publish-
ing, Cham, 2014, pp. 1–18.

[23] Y. Gong, S. Qitian, Z. Zhang, A DGA odyssey PDNS driven DGA anal-
ysis, https://pc.nanog.org/static/published/meetings/NANOG71/
1444/20171004_Gong_A_Dga_Odyssey__v1.pdf (2017).

[24] G. Zhao, K. Xu, L. Xu, B. Wu, Detecting APT malware infections based
on malicious DNS and traffic analysis, IEEE Access 3 (2015) 1132–1142.

[25] D. Liu, Z. Li, K. Du, H. Wang, B. Liu, H. Duan, Don’t let one rotten
apple spoil the whole barrel: Towards automated detection of shadowed
domains, in: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, ACM, New York,
NY, USA, 2017, pp. 537–552.

[26] The DGA of pykspa “you skype version is old”, https://www.

johannesbader.ch/2015/03/the-dga-of-pykspa/ (2015).

[27] D. Tran, H. Mac, V. Tong, H. A. Tran, L. G. Nguyen, A lstm based
framework for handling multiclass imbalance in dga botnet detection,
Neurocomputing 275 (2018) 2401–2413.

[28] G. Attardi, D. Sartiano, Bidirectional lstm models for dga classification,
in: International Symposium on Security in Computing and Communi-
cation, Springer, 2018, pp. 687–694.

[29] C. Choudhary, et al., Algorithmically generated domain detection and
malware family classification, in: International Symposium on Security
in Computing and Communication, Springer, 2018, pp. 640–655.

[30] H. S. Anderson, J. Woodbridge, B. Filar, DeepDGA: Adversarially-
tuned domain generation and detection, in: Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security, AISec ’16, ACM,
New York, NY, USA, 2016, pp. 13–21.

[31] S. Schiavoni, F. Maggi, L. Cavallaro, S. Zanero, Phoenix: Dga-based
botnet tracking and intelligence, in: S. Dietrich (Ed.), Detection of In-
trusions and Malware, and Vulnerability Assessment, Springer Interna-
tional Publishing, Cham, 2014, pp. 192–211.

26

[32] R. R. Curtin, A. B. Gardner, S. Grzonkowski, A. Kleymenov, A. Mos-
quera, Detecting DGA domains with recurrent neural networks and side
information, arXiv preprint arXiv:1810.02023.

[33] Y. Zhauniarovich, I. Khalil, T. Yu, M. Dacier, A survey on malicious do-
mains detection through DNS data analysis, ACM Computing Surveys
51 (4) (2018) 67:1–67:36.

[34] C. J. Dietrich, C. Rossow, F. C. Freiling, H. Bos, M. Van Steen,
N. Pohlmann, On botnets that use DNS for command and control, in:
2011 seventh european conference on computer network defense, IEEE,
2011, pp. 9–16.

[35] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis,
S. Gritzalis, Dns amplification attack revisited, Computers & Security
39 (2013) 475–485.

[36] M. Anagnostopoulos, G. Kambourakis, S. Gritzalis, New facets of mobile
botnet: architecture and evaluation, International Journal of Informa-
tion Security 15 (5) (2016) 455–473.

[37] G. Ateniese, S. Mangard, A new approach to DNS security (DNSSEC),
in: Proceedings of the 8th ACM conference on Computer and Commu-
nications Security, ACM, 2001, pp. 86–95.

[38] D. J. Bernstein, Dnscurve: Usable security for dns, dnscurve. org.

[39] F. Denis, Y. Fu, DNSCrypt (2015).

[40] M. Anagnostopoulos, G. Kambourakis, E. Konstantinou, S. Gritzalis,
Dnssec vs. dnscurve: A side-by-side comparison, in: Situational Aware-
ness in Computer Network Defense: Principles, Methods and Applica-
tions, IGI Global, 2012, pp. 201–220.

[41] D. Bianco, The pyramid of pain, http://detect-respond.blogspot.
com/2013/03/the-pyramid-of-pain.html (2014).

[42] P. Mockapetris, Rfc 1035-domain names-implementation and specifica-
tion, http://www.ietf.org/rfc/rfc1035.txt (2004).

27

