
R E S E A R CH A R T I C L E

Quantifying the habitat and zoogeomorphic capabilities
of spawning European barbel Barbus barbus, a lithophilous
cyprinid

Catherine Gutmann Roberts1 | Tea Baši�c1,2 | J. Robert Britton1 |

Stephen Rice3 | Andrew G. Pledger3,4

1Department of Life and Environmental

Sciences, Faculty of Science and Technology,

Bournemouth University, Poole, Dorset, UK

2Salmon and Freshwater Team, Centre for

Environment, Fisheries and Aquaculture

Science (Cefas), Lowestoft, Suffolk, UK

3Geography and Environment, Loughborough

University, Loughborough, Leicestershire, UK

4AP Environmental Solutions, Sawston,

Cambridge, UK

Correspondence

Catherine Gutmann Roberts, Department of

Life and Environmental Sciences, Faculty of

Science and Technology, Bournemouth

University, Poole, Dorset, BH12 5BB, UK.

Email: cgutmannroberts@bournemouth.ac.uk

Funding information

Barbel Society; Loughborough Univerisity;

Severn Rivers Trust; Environment Agency

Abstract

Suitable gravel availability is critical for the spawning success of lithophilous fishes,

including redd builders. Redd construction during spawning can alter substrate charac-

teristics, thereby influencing hydraulic conditions and sediment transport, highlighting

the importance of spawning as a zoogeomorphic activity. Here, interactions between

redd-building fish and their spawning environment were investigated for European bar-

bel Barbus barbus with a comparative approach across three English rivers: Teme (west-

ern), Great Ouse (eastern) and Idle (central). Sediment characteristics of spawning

habitats were similar across the rivers, including subsurface fine sediment (<2 mm) con-

tent (≈20% dry weight), but elevated subsurface silt content and coarser surface sedi-

ments were found in the river Teme. Water velocities were similar at spawning sites

despite differences in channel width and depth. Redds were characterized by a pit and

tailspill, with no differences in surface grain-size characteristics between these and the

surrounding riverbed, but with topographic alteration (dimensions and tailspill ampli-

tude) in line with those of salmonids. Estimates of the fraction of the bed that spawning

barbel were capable of moving exceeded 97% in all rivers. Estimated reproductive

potential varied significantly between the rivers Idle and Teme (3,098 to 9,715 eggs/

m2), which was largely due to differences in barbel lengths affecting fecundity. Larger

barbel, capable of producing and depositing more eggs, but in more spatially extensive

redds, meaning fewer redds per given surface area of riverbed. Predictions of barbel

egg mortality based on sand content were low across both rivers. The effects of silt on

barbel egg and larvae development are unknown, but the levels detected here would

significantly impact salmon egg mortality. Similarities in fish length to redd area and the

size of moveable grains by spawning barbel and salmon suggest they have similar geo-

morphic effects on sediments, although fine sediment tolerance is highly divergent.

K E YWORD S

cyprinid, habitat, redd, reproduction, spawning, zoogeomorphology

Received: 16 May 2019 Revised: 22 November 2019 Accepted: 26 November 2019

DOI: 10.1002/rra.3573

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. River Research and Applications published by Wiley Periodicals, Inc.

River Res Applic. 2019;1–21. wileyonlinelibrary.com/journal/rra 1

https://orcid.org/0000-0002-8506-3355
mailto:cgutmannroberts@bournemouth.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/rra
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frra.3573&domain=pdf&date_stamp=2019-12-25


1 | INTRODUCTION

Geological, morphological and hydrological processes in rivers have

important implications for sustaining biological communities (Bravard

et al., 1997; Elosegi, Díez, & Mutz, 2010). Lithophilous fishes are espe-

cially dependent on the physical environment for their spawning suc-

cess, as construction of redds for egg deposition and incubation

means egg survival and larval emergence rates can be impacted by

suboptimal spawning substratum (Goode, Luce, & Buffington, 2012;

Greig, Sear, & Carling, 2007; Lapointe, Bergeron, Berube, Pouliot, &

Johnston, 2004). The preferred spawning substrata of lithophilous sal-

monid fishes are relatively well understood (e.g., Kondolf, 2000; Arm-

strong, Kemp, Kennedy, Ladle, & Milner, 2003; Louhi, Mäki-Petäys, &

Erkinaro, 2008; Table 1). The sediment mixture, particularly the ratio

of framework gravel sizes to matrix sand, silt and clay sizes, ultimately

defines the quality of spawning substratum (Wu, 2000). Generally,

large quantities of fine sediment (<2 mm diameter; “fines”) reduce

substrate porosity and permeability with negative effects on substrate

embeddedness, oxygen transfer, temperature control, metabolite

removal and larval emergence. High quantities of fines are therefore

associated with reduced egg burial depths, poor egg survival and

emergence rates and other lethal (Kemp, Sear, Collins, Naden, &

Jones, 2011; Sear et al., 2016) or sublethal impacts (Chapman et al.,

2014; Franssen et al., 2012).

Knowledge of spawning substratum preferences amongst non-

salmonid lithophilous fishes is comparatively poor, with a paucity of

information on how river hydrology interacts with sediment composi-

tion to influence larval emergence success and recruitment (Mann,

1996, Baši�c et al., 2017, Duerregger et al., 2018; Table 1). This is

despite the high ecological and recreational importance of many of

these fishes (Winfield & Nelson, 1991), such as the European barbel

Barbus barbus (barbel hereafter) (Britton & Pegg, 2011). Studies of bar-

bel have focussed on the extent of pre-spawning movements (Baras,

1997; Baras & Cherry, 1990; Baras, Lambert, & Philippart, 1994), with

knowledge of spawning requirements limited to studies suggesting

preferences for shallow (≈37 cm) and fast-flowing water with loose

gravels near overhanging vegetation (Melcher & Schmutz, 2010). Bar-

bel are a lithophilous, aggregative fish, typically inhabiting the middle

reaches of European rivers from southeastern England and France in

the west to the Black Sea basin in the east (Britton & Pegg, 2011).

Spawning generally occurs in spring and summer, with the timing

dependent on water temperature (Britton & Pegg, 2011). Fork lengths

(FL) of mature female barbel vary between 209 (Vilizzi, Copp, &

Britton, 2013) and 836 mm (Britton, Davies, & Pegg, 2013).

The spawning behaviours of salmonids and barbel have some sim-

ilarities, especially redd construction where similar-sized females

(Kondolf & Wolman, 1993) excavate pits in the substrate using rapid,

lateral flexions of their bodies, prior to gamete deposition, fertilization

and burial (salmonids: Burner, 1951; barbel: Baras, 1994). Despite sim-

ilarities in spawning mechanisms, there is no quantitative information

on the habitat and redd characteristics of spawning barbel. While

these knowledge gaps can, at least in part, be informed by the salmo-

nid literature (Table 1), there are important differences between the

fishes, including timing of spawning seasons, incubation duration, egg

sizes and burial depth. Globally, salmonids can spawn across the year,

with timing dependent on latitude (Beechie, Moir, & Pess, 2008); in

Britain, salmonid eggs are deposited in redds in winter, with emer-

gence in the following spring. Thus, their eggs are exposed to fines for

longer periods than the eggs of fast-incubating spring/summer

spawning cyprinids (Baši�c et al., 2017). Exception to this longer period

of exposure to fines in salmonids includes spring-spawning steelhead

trout Oncorhynchus mykiss with a 7 to 10 day incubation period

(Goode et al., 2013; Phillips, Lantz, Claire, & Moring, 1975) versus

12 to 20 days in barbel (Baši�c, Britton, Rice, & Pledger, 2018) under

similar sediment but different temperature conditions (steelhead:

7–11�C, barbel: 16–18�C). Another key difference is the egg diameter,

with salmonid eggs generally larger than cyprinid eggs (5–9 mm

vs. 0.5–3.0 mm, respectively) (salmon: Aulstad & Gjedrem, 1973;

Beacham & Murray, 1993; barbel: Pinder, 2001), indicating higher

metabolic demand for salmonid eggs (Rombough, 2007). Salmonid

eggs are also often buried deeper (salmonids: 11–30 cm depth; cypri-

nids 3–17 cm depth; Table 1), with oxygen availability decreasing as

sediment depth increases (Freixa et al., 2016). Because of these differ-

ences, the effects of fine sediment on spawning success of barbel

remains unclear and although Baši�c et al. (2018) revealed delayed lar-

val emergence from substratum with high sand content (>30% sand

by mass), impacts on egg-to-emergence survival were not detected.

Understanding how spawning fishes influence river geomorphol-

ogy and hydrology is also important, especially where significant num-

bers of large-bodied spawning fish are involved in redd construction,

as observed in salmonid spawning events (Hassan, Tonina, & Buxton,

2015; Moore et al., 2007). Redd construction is a form of zoo-

geomorphology (Butler, 1995) whereby animals act as geomorphologi-

cal agents to move sediments and change morphology, sediments and

hydraulics. Female salmonids excavate a pit in the riverbed, during

redd construction, that results in localized coarsening of the bed sur-

face within the depression (Kondolf & Wolman, 1993). Sediment dis-

placed during pit creation is transported and deposited downstream,

forming the tailspill—a mound of sediment typically coarser than both

the pit floor and surrounding bed (DeVries, 1997; Lapointe, Eaton,

Driscoll, & Latulippe, 2000; Montgomery et al., 1996; Rennie & Millar,

2000). Such alterations to the physical environment can have impor-

tant implications for sediment mobility in rivers (Buxton, Buffington,

Tonina, Fremier, & Yager, 2015; Montgomery et al., 1996), with the

extent of disturbance by some species equivalent to the displacement

of gravels caused by flood events (Gottesfeld, Hassan, Tunnicliffe, &

Poirier, 2004). Spawning salmonids can also alter hyporheic exchange

and add marine-derived nutrients into the riverbed (Buxton,

Buffington, Yager, Hassan, & Fremier, 2015). There are, however,

some biological controls on redd building, with different species and

sizes of fish having different zoogeomorphological effects (Moore

et al., 2007; Riebe, Sklar, Overstreet, & Wooster, 2014).

The geomorphic impact of spawning barbel is yet to be quanti-

fied, but recent studies have revealed that their foraging behaviour

can alter the size distribution and/or structure and so, mobility of flu-

vial sediments (Pledger, Rice, & Millett, 2014, 2017; Rice, Pledger,
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Toone, & Mathers, 2018), with larger fish having greater effects

(Pledger, Rice, & Millett, 2016). For example, large-bodied cyprinids,

including adult barbel (>500 mm), disturbed 26% of riffle substrates

per day, and displaced clasts up to 90 mm in size (Pledger et al.,

2017). Thus, due to their size and abundance in some rivers, we

hypothesize that spawning barbel are effective zoogeomorphic agents

TABLE 1 Summary of spawning habitat preferences of non-salmonid (Cyprinidae and Petromyzontiformes) and salmonid lithophils

Order Species

Egg burial

depth (cm)
Water
depth (cm)

Near bed
velocity (cm/s) D50 (mm)

Fines content (%)

Top Bottom <1 mm <2 mm

Cyprinids Alburnoides bipunctatus 20–50j

Barbus barbus 20m 12–88k

40m

15–24b

16–96k

50m

25–49j

28–43b

2–60k 0.1–1.0c 3–46c

Chondrostomus nasus 0f 30f 16–83k

10–61f
20–97k

30–130f
20–200k

17–28f

Squalius cephalus 10–30e

138a
15–75e

5a
23–55a

Phoxinus phoxinus 30d

Leuciscus leuciscus 30l 25l

Notropsis lutipinnis 7� 8� 10–23� 21–31�

Tiaroga cobitis 8p 11p 5.8–19.4p

Luxilus albeolus 2q

Luxilus cerasinus 0q

Agosia chrysogaster 0r 1r 5–20

Petromyzontiformes Petromyzon marinus 8n 10n 10–17h

13–179i
19–39h

50–150i
2h–25g

Salmonids Salmo salar 15e 30e 20–50k

17–76a
35–65k

35–80a
15–16.6i

20–30a

16–64k

5.4a

10k

15�

5–17m

15–55m 35–80m 10–38m 3–19m

Salmo trutta 0p 25p 15–45k

6–82a
20–55k

11–80a
5.8–50i

8–128a

16–64k

8–12a 10k

Oncorhynchus kisutch 15e 35e 5.4–35i 7.5–21h

Oncorhynchus keta 15e 35e 9.6–62i

9.8n 48.9n 12–23n

Oncorhynchus

tshawytscha

15e 50e 30–950g 25–225g 10.8–69i 11c

Oncorhynchus

gorbuscha

15e 35e 6.5–11i

Oncorhynchus nerka 10e 25e 10–15j 14.5–48i

Oncorhynchus clarkii 10e 20e 6–27l 3.2–25.4l 3–17.9l 19c

Oncorhynchus mykiss 10e 25e 10.5–46.3i 12h 16c

Salvelinus confluentus 10e 20e 11c

Salvelinus fontinalis 5e 15e 30–70d 7.2–10.7i 10–22f

Note: Non-salmonid (Cyprinids and Petromyzontiformes) sources: Arlinghaus & Wolter, 2003a; Baras, 1994b; Baši�c, Britton, Rice, & Pledger, 2017c; Bless,

1992d; Cowx & Welcomme, 1998e; Duerregger et al., 2018f; Gardner, Coghlan, & Zydlewski, 2012g; Hogg, Coghlan, Zydlewski, & Simon, 2014h; Manion &

Hanson, 1980i; Mann, 1996j; Melcher & Schmutz, 2010k; Mills, 1981l; Pinder, Clough, Morris, & Fletcher, 2009m; Smith & Marsden, 2009n; McAuliffe &

Bennett, 1981o; Vives & Minckley, 1990p; Maurakis & Woolcott, 1993q; Minckley & Barber, 1971r. Salmonid sources: Armstrong et al., 2003a; Bowerman,

Neilson, & Budy, 2014b; Bryce, Lomnicky, & Kaufmann, 2010c; Curry, Noakes, & Morgan, 1995d; DeVries, 1997e; Franssen et al., 2012f; Hanrahan,

Dauble, & Geist, 2004g; Kondolf, 2000h; Kondolf & Wolman, 1993i; Lorenz & Eiler, 1989j; Louhi et al., 2008k; Magee, McMahon, & Thurow, 1996l; Moir,

Soulsby, & Youngson, 2002m; Montgomery, Buffington, Peterson, SchuettHames, & Quinn, 1996n, O'Connor & Andrew, 1998 � , Ottaway, Carling, Clarke, &

Reader, 1981p.
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and that the impacts of their spawning activities may be similar to

those of redd-excavating salmonids.

The aim of this study was to investigate the two-way interaction

between barbel and their spawning environment. Three questions are

addressed: what flow and substrate characteristics are selected by

spawning barbel, what is the likely reproductive potential of selected

sites and what are the impacts of spawning on substrate characteristics?

Using a comparative approach across three English rivers, the Teme

(western England), Great Ouse (eastern England) and Idle (central

England), objectives were to: (a) assess grain-size characteristics of sur-

face (n = 3 rivers) and subsurface (n = 2 rivers) sediments at barbel

spawning sites and use these in conjunction with salmonid spawning

models to predict the reproductive potential of barbel spawning sites

and estimate egg survival; (b) quantify flow characteristics (water velocity

and depth) and oxygen availability at barbel spawning sites;

(c) characterize barbel redds and identify how their construction alters

surface sediment composition and (d) use published data on barbel

spawning and measurements from this study to determine how effective

salmon-derived models are at estimating barbel reproductive potential

and egg survival. The application of salmonid models to barbel is consid-

ered appropriate given the paucity of knowledge on barbel spawning

requirements, and the similarities in female lengths and their redd build-

ing characteristics. However, we acknowledge that future work is

needed to develop barbel-specific models, given the differences in physi-

ology, timing of spawning season, density of spawners, incubation dura-

tion and egg survival rates. The salmonid models thus provide initial,

first-order estimates of barbel reproductive potential and egg survival.

2 | MATERIALS, METHODS AND DATA
ANALYSIS

2.1 | Study sites

The study was conducted in the rivers Great Ouse, Teme and Idle,

three gravel-bed rivers located in the east, west and centre of

England, respectively (Table 2). All three rivers run through predomi-

nantly agricultural landscapes and maintain low gradients (<0.33%;

Downs & Thorne, 1998; Neal et al., 2000; Severn Rivers Trust, 2012).

Study reaches were representative of the “Barbel Zone” (Huet, 1959;

Figure 1) and hosted translocated, natural or stocked barbel

populations (Table 2). Other lithophilous fish occupy the study

reaches (Table 2) and utilize the same sites and gravels as barbel dur-

ing spawning. The reproductive success of barbel is limited in some of

the indigenous British range of Eastern England, such as in the river

Great Ouse, where populations are supported by hatchery-reared or

translocated fish (Antognazza, Andreou, Zaccara, & Britton, 2016;

Baši�c et al., 2017). In contrast, populations in their non-indigenous

British range of Western England tend to have greater reproductive

success (Gutmann Roberts & Britton, 2018).

Study sites were selected on the Teme, Idle and Great Ouse (n = 13,

20 and 13, respectively; Figure 1) on the basis of direct spawning obser-

vations, and/or because they matched existing qualitative descriptions of

spawning habitats—riffles with “coarse” substratum and shallow, “moder-

ate to high-velocity flow” (Baras & Cherry, 1990; Hunt & Jones, 1975;

Lucas & Batley, 1996). Sampling occurred under baseflow conditions on

the river Idle in April 2011, Great Ouse in September 2014 and 2015

and Teme in May to July 2015 to 2017. Thus, sampling occurred either

before or after barbel spawning, to avoid disturbing spawning aggrega-

tions and ensure collection of ecologically relevant data.

2.2 | Riffle surface and subsurface sediment
and analyses

To assess the size distribution of surface sediments at coarse-grained

spawning riffles, 300- to 400-count Wolman samples (Rice & Church,

1996) were used at each site on each river. Grains were selected using

a systematic grid-sampling scheme, by pacing across the width of each

spawning riffle and, at each step, blindly selecting a grain to measure

with a gravelometer and then taking a step downstream and returning

in the opposite direction.

TABLE 2 Geomorphological, ecological and biological characteristics of the three study rivers

Idle Great Ouse Teme

River location Nottinghamshire Bedfordshire Shropshire, Herefordshire and Worcestershire

Type Gravel-bed Gravel-bed Sandstone/mudstone

Drainage/catchment area

(km2)

842 8,600 1,648

Water source Surface and groundwater Groundwater Surface and groundwater

Length of river (km) 42 230 134

Geology Sandstone, coal measures, magnesium

limestone

Limestone, mudstone Sandstone and mudstone

Dominant morphologies Pool-riffle Pool-riffle Pool-riffle

Predominant barbel

populations

Natural Stocked Translocated

Common fish species Rutilus rutilus, Abramis brama Rutilus rutilus, Abramis

brama

Squalius cephalus, Leuciscus leuciscus, Phoxinus

phoxinus, Alosa spp., Petromyzon marinua
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Subsurface sediments were characterized from 10 samples col-

lected at random from within 10 sites in the river Teme and 13 sites

in the river Great Ouse, using a McNeil sampler and Koski plunger

(coring tube dimensions: 16 × 26 cm; Bunte, Abt, & Station, 2001).

Three sites sampled for surface sediments (sites 4, 5 and 9) in the river

Teme could not be sampled for subsurface sediments due to issues

F IGURE 1 Locations of river catchments and study sites inset within the rivers (a) Idle, (b) Teme and (c) Great Ouse
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preventing access. Surface sediment was removed from the McNeil

sampler by hand and then single core samples of subsurface sedi-

ments were stored in individual air-tight containers and transported

to the laboratory for processing. No subsurface samples were col-

lected from the Idle. In the laboratory, bulk sediment samples were

oven-dried for 24 hr at 100�C and sieved into half-phi size fractions

using a sieve shaker before weighing on Ohaus Navigator scales,

recorded to the nearest 0.1 g. Fines from individual samples were

then recombined, mixed and subsampled (10 g), before Loss On Igni-

tion (LOI, %) was performed to determine organic content (Heiri,

Lotter, & Lemcke, 2001).

Surface and subsurface samples were characterized using grain-

size percentiles (where D5, D10, D25, D50, D75, D84, D90 and D95 are

the grain sizes [mm] for which 5, 10, 25 50, 75, 84, 90 and 95% of the

particles are finer, respectively) from cumulative distribution curves,

with mean grain size, sorting, skewness and kurtosis values calculated

using Trask's method (1932; Equations 1 to 4).

Mean=
D25 +D75

2
ð1Þ

Sorting =

ffiffiffiffiffiffiffiffi
D25

D75

s
ð2Þ

Skewness=
D25 *D75

D50
2

ð3Þ

Kurtosis =
D75−D25

2 * D90−D10ð Þ ð4Þ

To determine the degree of surface armouring, surface D50 was

divided by subsurface D50 with ratios exceeding 1.0 indicative of

armoured beds. Summary statistics were used to compare mean

values between rivers.

Proportions by mass of fine sediment (<2 mm), sand

(0.064–2 mm diameter), silt (≤0.064 mm) and organic matter were

determined only for subsurface sediments. Surface and subsurface

sediment parameters (D5, D50, D95, mean grain size, sorting, skewness,

kurtosis and percentage of fine sediment) were compared between

rivers using one-way ANOVAs, following normality and homogeneity

tests. Subsurface proportions of sand, silt and organic matter for each

river were compared with one-way ANOVAs, with Tukey's post hoc

tests. All analyses were carried out in R version 3.4.0 (R Core

Team, 2017).

2.3 | Characterizing site dimensions, flow, oxygen
availability and analysis

Measurements of water velocity were made using a Valeport Open

Channel Flow Meter (Model 801), set to provide a mean value mea-

sured over 60 seconds. Measurements were made at the same

20, 10 and 13 riffles on the rivers Idle, Teme and Great Ouse

respectively, where surface sediments were collected. Velocity was

measured at two depths: near the bed surface (≈2.5 cm from the bed;

m/s) and at 0.6 depth (distance from the water surface; m/s). Sampling

occurred at the intersections of multiple flow-parallel (n = 4) and flow-

perpendicular (Idle = 5, Teme = 4; Great Ouse = 4) transects, which

were systematically distributed across each of the site widths and

lengths, respectively. This gave 20 transect intersection points (points

hereafter) for 20 sites on the river Idle, 16 points for the 10 sites on

the river Teme and 16 points for 13 sites on the river Great Ouse.

Concomitantly, a depth measurement was made at each point and

multiple wetted width and site length measurements (Idle: n = 4;

Teme: n = 1–4, Great Ouse: n = 4) were made per site. Data were col-

lected from the Idle in April 2011, Teme in August and September

2015 and the Great Ouse in August 2016.

Measurements of dissolved oxygen (mg/L) were taken during the

daytime. For the Great Ouse (August 2016; 4 sites, 9 replicates per

site) and Idle (April 2011; 20 sites, 4 replicates per site), measurements

were made approximately 1 cm below the water surface using a

Hanna probe. For the Teme (May to August 2015; 5 sites, 2–4 repli-

cates per site), data were extracted from the Environment Agency

(2017) water quality monitoring data. All data were collected under

summertime baseflow conditions.

Summary statistics were used to quantify water velocity (near-

bed and 0.6 depth), depth and oxygen concentrations. For all metrics,

site means derived from within-site measurements were averaged to

give river-averaged values.

2.4 | Barbel redd characteristics and their impact
on surface sediment

The characteristics of six barbel redds at four sites (site 4 at Stanford

Bridge: 2 redds; 3 sites at Powick; 10, 11, 12: 4 redds) on the River

Teme were measured between May 2015 and June 2017, 2 to 8 days

post-spawning. Sample size was constrained by a combination of low

numbers of observed redds, accessibility and high turbidity within the

river Teme, that reduced visibility and the ability to accurately mea-

sure the redds. Three redds measured in 2017 were confirmed as bar-

bel redds by rapid egg assessments that involved disturbing the top

50 mm of tailspill sediment using a pencil in a circular motion, with a

hand-held aquaria net placed behind the redd to collect the eggs that

were then identified by their colour and morphology (APEM, 2009;

Pinder et al., 2016). The other three redds were not conclusively iden-

tified as barbel redds, but it was considered unlikely that they were

constructed by other lithophils present in the Teme, given that min-

now Phoxinus phoxinus are too small for their gravel movements to be

mistaken for barbel and chub Squalius cephalus are not redd construc-

tors (South East River Trust, 2018; Table 2). Sea lamprey Petromyzon

marinus are found in the river Teme but generally spawn later in the

year and create a more circular redd with large grains deposited

around the edge (Pinder, Hopkins, Scott, & Britton, 2016). Shad Alosa

spp. are surface spawners and are thus unlikely to influence bed mor-

phology (Acolas et al., 2004).
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Single length and width measurements were made of the two

component parts of each redd pit and tailspill (Supporting Information,

Figure S1)—the pit (the excavated hole or depression in the bed) and

the tailspill (an area where grains, mobilized from the pit during

spawning are deposited). Single depth measurements from the water

surface to the pit bottom, tailspill top and adjacent river bed (datum)

were recorded and used to calculate pit depth and tailspill height by

subtracting the depth of adjacent river bed. Length, width and depth

measurements were made to the nearest cm (±0.5 cm). Surface sedi-

ment samples were collected from each of the pit and tailspill areas to

investigate differences in grain-size distributions between these areas

and the surrounding riverbed. This was achieved via 30-count

Wolman samples. Only 30 clasts were measured in each redd area

due to the small redd areas (APIT = 1.2 ± 0.2 m2, ATAILSPILL = 2.3

± 0.3 m2; mean ± 95% CI) and to minimize redd disturbance. The larg-

est grains visually observed on the tailspill surfaces were measured

(mm) to investigate the maximum particle size moved by barbel during

redd construction.

The areas (A, m2) of pits and tailspills were calculated with Equa-

tion (5) as ellipses as per Ottaway et al. (1981) from measured values

of pit and tailspill lengths and widths.

A= length*width*π ð5Þ

The total area of each redd was calculated by combining pit (APIT)

and tailspill (ATAILSPILL) areas. The net volume (V) of each pit and tail-

spill was then calculated as,

V =
4
3
*π *depth*

length
2

*
width
2

� �
�2 ð6Þ

assuming that both component parts were half-ellipsoid (McCart,

1969) and the pit depth and tailspill heights were used as vertical

parameters in calculations. Volume of sediment displaced during

spawning was assumed to be the volume of the tailspill.

Pair-wise Student's t tests in R (R Core Team, 2017 were carried

out to compare surface sediment characteristics (D5, D50, D95, mean,

sorting, skewness, kurtosis and percent fines) between the pit, tailspill

and surrounding riverbed.

2.5 | Barbel reproductive potential and
geomorphological controls

To assess the reproductive potential of barbel spawning sites, a

salmonid-specific model was parameterised, as there was no barbel-

or cyprinid-specific model available. For salmonids, fork length (FL) is

positively correlated with redd area and the maximum size of particles

that can be moved by spawning fish (Crisp & Carling, 1989), which

can in turn be used to estimate reproductive potential (Riebe et al.,

2014). These measurements are taken from dead or dying spawned

fish, something not possible for barbel as their post-spawning mortal-

ity is very low and they tend to disperse after spawning (Gutmann

Roberts, Baši�c, & Pledger, 2019; Hancock, Jones, & Shaw, 1976). To

provide a consistent set of predictions based on FL, a salmonid rela-

tionship from Riebe et al. (2014) was used to estimate barbel redd

area (m2; “AREDD”; Equation 7), rather than only using our measured

redd dimensions.

AREDD =3:3
FL
600

� �2:3
ð7Þ

An ANOVA was carried out to compare predicted redd area (from

the eight fork lengths measured in the Teme) to the six measured

redds.

The maximum or threshold particle size (DT, mm) that a barbel of

a given length (mm) can displace during redd construction was esti-

mated using Equation (8) (Riebe et al., 2014).

DT = 115
FL
600

� �0:62

ð8Þ

Barbel fork lengths for estimating DT (Equation 8) were derived

from the river Teme (n = 8 females sampled from between sites

10 and 13; Gutmann Roberts, Hindes, & Britton, 2019), river Great

Ouse (n = 29 sampled from between sites 6 and 7; Twine, 2013) and

river Idle (n = 4 sampled from near sites 1 and 2; Pledger, 2015). Then,

using DT calculated for the mean FL of barbel from these rivers

(Equation 8), the fraction of moveable particles (FM) on riffles was

calculated:

FM = 1+ e−1:702z
� �−1 ð9Þ

z=
log DT

D50

	 

log D84

D50

	 

2
4

3
5 ð10Þ

Equation (9) approximates a cumulative log-normal distribution

(Riebe et al., 2014) and z represents the difference between DT and

D50 expressed as a multiple of the SD (Bowling, Khasawneh,

Kaewkuekool, & Cho, 2009), where log (D50) and log (D84/D50) are the

mean and SD of the log-normal grain-size distribution.

Next, the spawning capacity, expressed as the potential number

of redds per riffle area (NREDDS; redds m−2, Equation 11; Riebe et al.,

2014), was calculated using redd area estimates (AREDD) and the pro-

portion of riffle covered in moveable particles (FM).

NREDDS =
FM

AREDD
ð11Þ

Reproductive potential of barbel at a site, NEGGS (eggs m
−2, Equa-

tion 12; Riebe et al., 2014), was calculated using fecundity estimates F

(A). The fecundity (F(A); Equation 13a) of fish of a given length (mm),

can be predicted from salmonid input parameters (Riebe et al., 2014;

Quinn, 2005).
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NEGGS =
FMF
AREDD

ð12Þ

F Að Þ=8:1FL–1450 ð13aÞ

The reproductive potential of barbel at each of the sites was also

calculated using the barbel-specific redd measurements from this

study, with the mean redd area (APIT + ATAILSPILL from Equation 5)

used instead of AREDD (Equation 7), and using the threshold grain-size

DT from the largest grain measured from barbel redd tailspills. A barbel

fecundity-length relationship (F(B), Equation 13b) was also determined

from 15 manually stripped females from the river Trent at a hatchery

(Calverton fish farm, unpublished) and from data on 33 barbel (length

minimum–maximum: 314–740 mm) extracted from Hancock (1979).

F Bð Þ=0:8e−6FL3:8 ð13bÞ

This enabled a comparison of reproductive potential predicted

from salmonid models (12) using salmonid- vs. barbel-specific input

parameters for AREDDS, DT and F. High-density barbel spawning obser-

vations (Baras, 1994) were also used to estimate the maximum num-

ber of redds per square metre (NREDDS) across a site in the river

Meuse, where the fraction of moveable particles is assumed to be

1, due to high and even coverage of redds and in the absence of any

grain-size data or redd measurements. Baras (1994) reported 2 years

of data, but only successful spawning observations from 1990 were

used as this year had the most successful spawning attempts and

therefore provides a maximum estimation of spawning potential. The

observations are from a 150 m2 spawning riffle with 71 “successful”

spawning attempts in one season, with data on 19 female barbel, with

data from 5 females omitted in the original study due to lack of cer-

tainty around observations. Assuming no redd superimposition, the

spawning riffle area divided by the number of redds (assumed to be

number of successful spawning attempts) provides an estimate of

redd area.

Barbel egg survival estimates provide indications of the potential

suitability of subsurface spawning substratum in the study rivers;

however, the absence of suburface sediment data for the river Idle

meant these calculations were only completed for the rivers Great

Ouse and Teme. To predict the potential effect of bed sediment con-

dition (specifically fines content) on barbel recruitment at individual

sites within the two study rivers, egg survival was estimated using sal-

monid models (Equations 14 and 15; Peterson & Metcalfe, 1981).

SI =
Sc
16

+
Sf
8

ð14Þ

Survival %ð Þ=83−29SI−6 SI*Silt %ð Þð Þ ð15Þ

Subsurface sand content was parameterized using a sand index

(SI), which gives weighting to finer sands compared to the larger sands

due to their greater effect on reproductive success. SI calculations

(Equation 14; Lapointe et al., 2004) use the proportion of coarse sand

(Sc = 0.5–2 mm) and fine to medium sand (Sf = 0.06–0.5 mm). Given

the lack of information on the synergistic effects of silt- and sand-sized

particles on barbel egg development and emergence, Equations (14) and

(15) were used and derived from salmonid data. The salmonid model

(Equation 15) was used for the sediments found in the river and also

against the SI only by inputting 0% silt for all sites to determine the

effect of silt. Published data from Baši�c et al. (2018) were used to relate

the SI to observed barbel survival, which was then compared with

values predicted from Equation (15). Successful incubation was defined

as at least 50% estimated survival, as per Kondolf (2000).

Comparisons of survival potential between the two rivers were

carried out using a one-way ANOVA, following normality and homo-

geneity tests. Values given throughout the results are means (±95%

confidence intervals), unless stated otherwise.

3 | RESULTS

3.1 | Barbel spawning site characteristics

Spawning riffle areas varied across rivers, from 37 ± 7 m2 in the Great

Ouse to 108 ± 10 and 500 ± 249 m2 in the Idle and the Teme, respec-

tively. Riffle surfaces utilized by spawning barbel across the three riv-

ers were generally coarse (D50 = 23.41 ± 4.87 mm), well sorted (0.66

± 0.03) and characterized by positively skewed (0.97 ± 0.05) and lep-

tokurtic (0.24 ± 0.01) distributions. Fine sediments across the three

rivers made up on average 2.3 ± 0.9% of the surface bed material.

There was no significant difference in the surface sediment D5

between rivers (ANOVA; F2, 43 = 0.57, p = 0.57), with mean values

ranging from 5.4 to 6.7 mm (Figure 2). The D50 varied significantly

between the three rivers (ANOVA; F2, 43 = 7.662, p = 0.001), with the

rivers Teme and Great Ouse maintaining the coarsest

(mean = 27.9 mm) and finest (mean = 19.3 mm) sediments, respec-

tively (Figure 2). Post hoc tests revealed that the river Teme D50 was

significantly larger than in the Great Ouse and Idle (p < 0.01 and

p = 0.04, respectively), but that the Idle and Great Ouse values were

similar (p = 0.22). The D95 also varied significantly between rivers

(ANOVA; F2, 43 = 7.19, p < 0.01), with the Teme having the largest

(76.6 mm) and the Idle having the smallest (53.0 mm) (Figure 2). As

with the D50, post hoc tests showed that the river Teme sediments

were significantly coarser than the Great Ouse and Idle sediments

(p = 0.01 and p < 0.01, respectively), but Great Ouse and Idle sedi-

ments were not significantly different (p = 0.98). Mean grain size also

differed significantly between the three rivers (ANOVA; F2, 43 = 5.22,

p < 0.01), with mean particle sizes largest in the Teme (29.9 mm) and

smallest in the Great Ouse (21.4 mm) (Figure 2). There were no signifi-

cant differences in mean grain sizes between the rivers Idle and the

Great Ouse or the Teme (p = 0.42 and p = 0.08, respectively), but

mean values were significantly higher between the river Teme and

Great Ouse sediments (p < 0.01). There was no significant difference

between the sorting (F2, 43 = 2.51, p = 0.09; Figure 2), skewness

(F2, 43 = 2.18, p = 0.13, Figure 2) or kurtosis (F2, 43 = 1.70, p = 0.20;

Figure 2) values of the three rivers. There was also no significant
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difference in the percentage of surface fine sediment between the

three rivers (F2, 43 = 1.35, p = 0.27, Figure 2).

Subsurface sediments from the rivers Great Ouse and Teme were

relatively coarse (D50 = 12.24 ± 1.15 mm), well sorted (0.38 ± <0.01)

and characterized by positively skewed (0.62 ± <0.01) and leptokurtic

(0.29 ± <0.01) distributions. D5, D50, D95, mean grain size, sorting,

skewness and kurtosis values were similar between the two rivers

(Table 3). Subsurface sediments were comprised of 20.30 ± 2.85%

fines, of which the majority (19.99 ± 3.14%) was sand and only a small

proportion was silt (0.32 ± 0.29%). Organic content across the two

F IGURE 2 Characteristics of surface sediments within the rivers Idle (n = 20), Great Ouse (n = 13) and Teme (n = 13). Values represent means
(±95% confidence interval) and letters right of bars indicate homogeneous groups
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TABLE 3 Subsurface sediment
metric means (±95% confidence
intervals) for the river Teme (n = 10) and
river Great Ouse (n = 13) and the
statistical significance (P) and F values
from ANOVAs (df = 21), apart from
organic matter where Teme (n = 10) and
Great Ouse (n = 7)

Teme Great Ouse Significance F value

D5 (mm) 0.47 ± 0.14 0.48 ± 0.08 0.94 0.006

D50 (mm) 12.83 ± 2.95 11.66 ± 2.60 0.52 0.435

D95 (mm) 50.07 ± 7.44 48.35 ± 7.97 0.74 0.115

Mean grain size (mm) 15.21 ± 3.02 13.51 ± 2.13 0.30 1.112

Sorting 0.38 ± 0.04 0.39 ± 0.05 0.76 0.098

Skewness 0.62 ± 0.06 0.62 ± 0.08 0.92 0.012

Kurtosis 0.29 ± 0.01 0.29 ± 0.04 0.94 0.007

Fine sediment (<2 mm, %) 18.85 ± 4.88 21.76 ± 4.53 0.35 0.923

Sand (%) 18.38 ± 4.83 21.59 ± 4.46 0.30 1.147

Silt (%) 0.47 ± 0.10 0.17 ± 0.09 >0.001 23.780

Organic matter (%) 2.19 ± 0.64 2.36 ± 0.60 0.68 0.182

F IGURE 3 Flow characteristics and dissolved oxygen across three rivers: Idle (n = 20), Great Ouse (n = 13, four for oxygen only) and Teme
(n = 10, five for oxygen only); wetted width (m), depth (m), near-bed velocity (m s−1), velocity at 0.6 depth (m/s) and amount of dissolved oxygen
(mgL−1). Values represent means (±95% confidence interval) and letters right of bars indicate homogeneous groups
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rivers was 2.13 ± 0.45%. There was no significant difference between

rivers in terms of the proportion of subsurface fines (ANOVA;

F1,21 = 0.92, p = 0.35) or sand (ANOVA; F1, 21 = 1.15, p = 0.30,

Table 3). There was, however, a significant difference in silt content

(ANOVA; F1,21 = 23.78, p < 0.01, Table 3) between rivers, with river

Teme subsurface sediments (0.47 ± 0.09%) containing higher propor-

tions of silt than river Great Ouse subsurface sediments (0.17

± 0.08%). Subsurface sediments at four sites in the river Teme con-

tained >0.5% silt and these were located between Ashford Carbonel

(site 2) and Powick (site 11), whereas subsurface sediments at only

one river Great Ouse site (2) contained >0.5% silt (Figure 4). There

was no significant difference between rivers in terms of the organic

content of fines (ANOVA; F1, 15 = 0.18, p = 0.68, Table 3). Both the

Teme and the Ouse displayed armoured beds, with the ratio of

surface-to-subsurface D50 maintaining values of 2.2 (± 0.4) and 1.8

(± 0.4), respectively.

Wetted width (m) was significantly different between the three riv-

ers (ANOVA: F2, 38 = 18.64, p < 0.001), with post-hoc analyses showing

that each river differed significantly from each other (p < 0.02). The

river Teme was the widest river (18.72 ± 4.60 m) and the river Idle was

the narrowest (9.44 ± 0.35 m, Figure 3). Depth (m) differed significantly

between the three rivers (F2, 40 = 9.85, p < 0.001, Figure 3), with post-

hoc analyses indicating that the Teme and Idle were not significantly

different (p = 0.68), but that the Ouse was significantly different to both

the Teme and Idle (p = 0.02 and p < 0.001, respectively). Near-bed and

0.6-depth velocities (m/s) were not significantly different between the

rivers (F2, 40 = 1.14, p = 0.33 and F2, 40 = 0.72, p = 0.49, respectively;

Figure 3). Dissolved oxygen levels differed significantly between the

three rivers (F2, 26 = 12.53, p < 0.001, Figure 3); however, the post hoc

tests showed that the Teme and Idle were not significantly different

(p = 0.42) but that the Ouse had significantly lower dissolved oxygen

than the Teme and Idle (p = 0.01 and p < 0.01, respectively).

3.2 | Barbel redd characteristics

In the six measured redds, the tailspill tended to be longer and wider

than the pit, with a mean difference of 29 ± 22 and 19 ± 17 cm,

respectively (Table 3). Mean tailspill height was 14 ± 5 cm and pit

depth ranged between 4 and 11 cm, with a mean difference in height

of the tailspill and depth of the pit of 20.0 ± 8.8 cm. Total redd area

ranged from 1.37 to 9.11 m2 at sites 10–12, and 2.23–2.58 m2 at site

4. The mean total redd area was 3.47 ± 0.42 m2. The area of the tail-

spill was larger than that of the pit for five of the six redds. Pit vol-

umes ranged from 1,900 to 34,819 cm3 (14,390 ± 5,338 cm3; mean

± 95% CI) and the tailspill volume ranged from 0 to 234,834 cm3

(74,754 ± 43,284 cm3; mean ± 95% CI). Pit volume was larger than

tailspill volume for two of the redds, and for four of the redds, the

opposite relationship was found. The largest grain diameter found in

barbel tailspills was 110 mm, providing a barbel-specific estimate of

the threshold grain size (DT).

Sediments within the pit and tailspill were coarse (mean grain

size = 22.2 ± 9.5 and 28.2 ± 3.7 mm, respectively) and moderately

well sorted (sorting = 0.58 ± 0.07 and 0.62 ± 0.05 mm, respectively)

(Table 4). While fine sediments appeared more prevalent at the sur-

face of the pit than at the surface of the tailspill (Table 4), the differ-

ence was not significant (p > 0.05; Table 5). Surface grain-size

parameters of the pit and tailspill sediments were similar (t tests,

p > 0.05 in all cases; Table 5). Generally, levels of fine sediment found

on the redd surfaces were low, but surficial sediments of the pit at site

10 were fines-rich (26.7% fines by area) and finer than the surround-

ing bed (6.4% fines by area). There were no significant differences

between the surface grain-size characteristics of the pit and tailspill

areas compared with their surrounding riffle for D5, D50, D95, mean,

sorting, skewness, kurtotsis and percentage of fine sediment (Table 5).

3.3 | Barbel reproductive potential
and geomorphological controls

As mean barbel FLs were 464, 616 and 651 mm for the rivers Idle,

Great Ouse and Teme respectively, the maximum particle size that

barbel could move (DT, Equation 8) was estimated to be 98, 117 and

121 mm, respectively (Table 6). This salmon-derived estimate

suggested an 11 mm overestimation for the Teme, relative to the larg-

est recorded particle size displaced by spawning barbel (110 mm at

Powick). Median grain size was significantly different between rivers

(Subsection 3.1), as was D84 (mm; ANOVA: F2, 43 = 5.07, p = 0.01),

with post hoc tests showing the Ouse and Idle were not significantly

different (p = 0.86), but that the Teme was significantly different to

the Ouse and the Idle (p = 0.02 and p = 0.03, respectively). Mean

(95% CI) D84 for the Teme was 51 (±8) mm compared to 37 (±10) mm

in the Ouse and 39 (±2) mm in the Idle. The fraction of moveable par-

ticles, as calculated from salmon-derived models, was not significantly

TABLE 4 Site-averaged values for redd pit and tailspill dimensions
and surface sediment parameters (mean ± 95% confidence intervals)
at Powick (n = 4) and Stanford Bridge (n = 2) on the river Teme

Parameter Redd pit Redd tailspill

Length (cm) 60 ± 20 89 ± 28

Width (cm) 63 ± 20 82 ± 24

Depth/height (cm) −7 ± 1 14 ± 5

Area (m2) 1.19 ± 0.15 2.28 ± 0.26

Volume (cm3) 14,390 ± 5,338 74,754 ± 43,284

D5 (mm) 4.4 ± 3.3 4.4 ± 1.5

D50 (mm) 21.6 ± 14.3 25.1 ± 5.4

D84 (mm) 36.4 ± 18.6 51.1 ± 11.2

D95 (mm) 54.5 ± 29.7 71.5 ± 16.7

Mean grain size (mm) 22.2 ± 13.1 28.2 ± 5.1

Sorting 0.58 ± 0.01 0.62 ± 0.01

Skewness 0.90 ± 0.01 1.01 ± 0.01

Kurtosis 0.25 ± 0.01 0.25 ± 0.01

Fine sediment (<2 mm, %) 3.2 ± 1.4 0.7 ± 0.6
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different between rivers (F2, 43 = 0.57, p = 0.57), with barbel in each

river being able to move over 97% of surface sediments, by area, dur-

ing spawning (Table 6).

The mean redd area predicted for the river Teme (3.98 m2) was

0.51 m2 larger than that observed at the four sites where redds were

measured (3.47 m2) (Table 6), but the difference was not significant

(ANOVA: F1, 12 = 0.03, p = 0.87). The river Teme had the overall

highest estimated reproductive potential due to a higher calculated

fecundity resulting from the larger sizes of the female fish, despite

having the lowest number of redds m−2 (Table 2). Using the barbel

redd measurements, threshold grain size and fecundity across the spe-

cific sites on the Teme compared to the salmonid-specific values gave

a mean reproductive potential difference of 10,391 eggs m−2 per site,

where the salmonid model significantly under-estimated the potential

(paired t test; t3 = 187.22, p < 0.001). Data extracted from the river

Meuse estimated a barbel redd area of 2.11 m2, a 1.36 m2 difference

in area to the observed Teme redds, which was likely to be due to the

female barbel in the Meuse being 214 mm smaller than in the Teme.

Extracting data from the Meuse gave a barbel-specific value for

NREDDS of 0.47 redds m−2, which was higher than predicted values

across the rivers Teme and Ouse, but lower than the Idle predicted

value (Table 6), but as the redds were predicted to be smaller in the

Meuse, this could account for the difference, especially as fish sizes in

the Meuse and Idle were most similar.

Barbel eggs display a higher tolerance to sand than salmon, with

barbel eggs remaining unaffected by SI levels as high as 3.5, which

would cause 100% mortality of salmon eggs (Figure 4). Egg survival

rates for the Teme, calculated using the salmon-specific model from

the silt and sand content (Equations 14 and 15), varied between 7.7

and 63.4% (42.1 ± 9.6%; mean ± 95% CI). Calculated survival rates

decreased from upstream to downstream until site 10 (downstream of

Powick weir), but then increased again in the three sites farther down-

stream (Figure 5a). The river Great Ouse had mean calculated survival

rates of 39.3 ± 5.8%, with three sites (sites 2–4) having survival

TABLE 5 Paired t test comparisons between pit and tailspill surface characteristics of barbel redds and the adjacent riffle surface
characteristics

Pit vs. tailspill Pit vs. riffle Tailspill vs. riffle

t P t P t P

D5 −0.01 0.99 −0.48 0.65 −0.88 0.42

D50 −0.55 0.61 −0.37 0.73 0.08 0.94

D95 −1.63 0.16 −1.90 0.12 −1.27 0.26

Mean grain size −0.99 0.37 −0.67 0.53 0.28 0.79

Sorting −0.59 0.58 −0.34 0.75 0.35 0.74

Skewness −1.28 0.26 −0.92 0.40 0.58 0.59

Kurtosis −0.21 0.84 0.12 0.91 0.47 0.66

Fines 1.78 0.14 2.48 0.06 0.18 0.87

Note: Degrees of freedom for all tests was 5.

TABLE 6 Predicted reproductive potential for barbel using salmonid equations with salmonid- vs. barbel-specific input parameters, where
N/A is not applicable

River Idle Great Ouse Teme Teme (site-specific) Teme (site-specific) Meuse (single site)

Mean barbel length (mm) 480 ± 71 616 ± 46 651 ± 37 651 ± 37 651 ± 37 437 ± 2

Parameters Salmon-specific input Barbel-specific input

DT (mm) 100 ± 9 116 ± 6 121 ± 4 121 ± 4 110 N/A

FM 0.99 ± <0.01 0.99 ± 0.02 0.98 ± >0.01 0.98 ± 0.01 0.97 ± 0.07 100a

AREDD (m2) 2.08 ± 0.73 3.71 ± 0.48 4.01 ± 0.52 4.01 ± 0.52 3.47 ± 0.42 2.11

NREDDS (redds m
−2) 0.49 ± <0.01 0.27 ± <0.01 0.25 ± <0.01 0.24 ± <0.01 0.28 ± <0.01 0.47

Fecundity (eggs) 2,436 ± 575 3,539 ± 370 3,821 ± 301 3,821 ± 301 40,510 ± 8,510 8,648

Reproductive potential

(NEGGS m
−2)

1,194 ± 2 942 ± 16 937 ± 7 930 ± 8 11,321 ± 108 4,093

Note: Mean barbel length (mm ± 95% confidence intervals) was measured at each study site, threshold particle size (DT, mm; largest grain that can be

moved by spawning fish) was predicted (8) for salmonid-specific parameters and measured for barbel-specific parameters, the fraction of moveable surface

particles (FM) was predicted (9), redd area (AREDD, m
2) was predicted for salmonid specific parameters and measured for barbel-specific parameters,

spawning capacity (number of redds m−2, NREDDS) was predicted (11), fecundity was predicted (13a [salmonid], 13b [barbel]), and reproductive potential

(NEGGS, eggs m
−2) was predicted (12). Teme (site-specific) refers to the four sites where redds were measured. N/A; not applicable. aAssumed whole site to

be moveable due to high coverage of redds, no sediment data available.
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between 0 and 22% (Figure 5b). Despite the significant difference in

silt (%) between the two rivers, when both the percentage of silt and

the sand index (SI) were taken into account, the theoretical calculated

survival did not differ between rivers (ANOVA; F1, 21 = 0.17, p = 0.69),

with both rivers having large variations in egg survival rates. When

survival to emergence was calculated via the salmonid model

(Equation 16) and successful incubation was defined as 50% of eggs

and larvae surviving to emergence (Kondolf, 2000), 30% of the sites

F IGURE 4 Sand index (SI) effects on
egg survival (%) for European barbel (•
Baši�c et al., 2018) and Atlantic salmon (♦
Lapointe et al., 2004). Atlantic salmon egg
survival calculated from the sand index (SI,
Equation 14) from Lapointe et al., 2004, for
sand index values comparable to those
calculated from Baši�c et al., 2018.
Trendlines for: salmon (solid line), y =

−29x + 83 and barbel (dotted),
y = 0.18x + 76

F IGURE 5 Calculated sand index (SI, dashed line,
Equation 14) and observed silt (%, solid line) on the
primary axis, with the theoretical survival of embryos (%,
dotted line from the salmonid model, Equation 15, and dot
and dash line from barbel derived equation determined
from Baši�c et al. (2018)) across 10 sites on the river Teme
(a) and 13 sites on the river Great Ouse (b), ordered from
upstream to downstream
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had predicted successful incubation in the Teme and 31% in the Great

Ouse. Using the salmonid model, the levels of silt in the river had a

significant impact on egg survival in comparison to the assumption of

0% silt at all sites (paired t test; t22 = 4.98, p < 0.001), where silt

reduced egg survival by 4% in the Teme and 2% in the Great Ouse.

When not accounting for silt, one more site in the Teme showed sur-

vival above 50% leading to 40% of sites indicating “successful” sur-

vival to emergence, but the number of sites did not change for the

Great Ouse. The barbel predictions derived from the equation from

Figure 4 (survival = [0.18*SI] + 76) resulted in significantly different

egg survival compared to salmonid models, when both models

discounted silt (paired t test; t22 = 11.22, p < 0.001). The barbel-

specific values predicted higher survival (Figure 4), with a mean differ-

ence of 33.65 (±6.22) %. Barbel-derived values predicted successful

incubation conditions across both rivers at all sites.

4 | DISCUSSION

Research concerning lithophilic fish spawning habitat has focused pri-

marily on salmonids, while the biotic and abiotic characteristics of

non-salmonid spawning habitats remain poorly understood (Collins

et al., 2011). For barbel in their indigenous range in Eastern England,

this has been a major impediment to restoring populations, where

strategies rely on a combination of gravel cleaning and stocking that

have been largely unsuccessful in producing sustainable populations

(Baši�c et al., 2017; Baši�c & Britton, 2016). Here, comparisons of

spawning habitats in three rivers in England revealed barbel surficial

spawning sediments were principally composed of gravels

(D50 = 19.32–27.90 mm; Figure 2). At the sediment depth where bar-

bel eggs incubate, the particles were generally coarse, well sorted and

positively skewed. Spawning sites varied in mean width (9.4–18.7 m)

and depth (0.26–0.38 m) but had similar velocities (0.6 depth;

0.54–0.60 m/s; Figure 3). While data from other studies reveal con-

siderable inter-river differences in barbel spawning success (e.g., high

in the Teme; Gutmann Roberts & Britton, 2018, negligible in the Great

Ouse; Baši�c & Britton, 2016), the majority of sediment and water

velocity parameters did not vary between the study rivers, with rela-

tively similar predictions of habitat suitability for barbel spawning and

egg incubation success.

Across the rivers, surface sediments were relatively coarse and

well-sorted gravels, with most substratum metrics similar between the

Great Ouse and the Idle, but with coarser sediments in the Teme.

Despite this, the fraction of particles estimated to be moveable by

barbel was high (minimum 97%; Table 6) and similar across all three

rivers; this was due to the length of barbel relative to the size of

gravels. Thus, the presence of large clasts is not expected to be a limi-

tation to barbel redd construction in these three rivers, either when

using the maximum grain size estimated by the salmonid model or the

largest grain from the tailspill. This has implications for relatively high

potential for displacement by barbel, given that the three rivers gener-

ally had low D50 values, all below 35 mm. By comparison, in South

Prairie Creek (North America), pink salmon (Oncorhynchus gorbuscha)

were capable of displacing grains ≤95 mm, yet the D50 sizes were

39 to 118 mm (Riebe et al., 2014). Consequently, at spawning sites,

pink salmon were only able to move 59% of the bed (Riebe et al.,

2014). Nevertheless, coarser sediments can be associated with larger

egg sizes within and between populations (Quinn, Hendry, & Wetzel,

1995), which might have positive implications for post-emergence

and overwinter survival. For example, larger eggs tend to produce

larger larvae that are less vulnerable to predation and displacement,

with higher lipid reserves and greater competitive abilities (Nunn, Har-

vey, & Cowx, 2007). Thus, the benefits of the majority of spawning

gravels being made up of particles barbel can move, might be offset

by surviving eggs being smaller and potentially leading to increased

risk of egg and/or larval entrainment.

To our knowledge this is the first documentation of barbel redd

dimensions. It is reasonable to assume the characteristics and persis-

tence of redds will vary between and potentially within systems, as

they are functions of spawning barbel lengths, surface sediment con-

ditions, flow characteristics and bed mobility. No significant difference

was detected when comparing measured and modelled Teme barbel

redd areas, despite a mean 0.54 m2 overestimation by the salmonid

model (Table 4). This suggests that the length to redd relationship

between salmonids and barbel is comparable, based on available evi-

dence. The reproductive potential across the specific sites on the river

Teme was, however, significantly different when using barbel values

compared to using salmon-derived redd area, threshold grain size that

a fish could move and fecundity. These led to an underestimate of

over 10,391 eggs m−2 site−1. This was largely due to the barbel-

specific fecundity values that are over 10 times higher than the

salmon-derived values because of, for example, smaller egg sizes

(Table 6). Using published data (Baras, 1994), we were able to deter-

mine the number of barbel redds by area as 0.47 redds m−2 in the

river Meuse, Belgium. We could not readily compare the Meuse bar-

bel redds by area to the salmon-specific estimates from these study

rivers, because barbel from Baras (1994) study were substantially

smaller and thus predicted redd size was also smaller. The redd size

estimated from the smaller fish in the river Meuse was 2.11 m2 but

this area should be used with caution as it assumed redds were not

overlapping, yet Melcher and Schmutz (2010) found that at high-

density spawning sites, barbel redd superimposition was common, as

with salmonids (van den Berghe & Gross, 1984). As well as redd

superimposition, it is common for salmonids to lay multiple egg

clutches within one redd (Tonina & Buffington, 2009a), although the

spawning description from Baras (1994) suggests that is not the case

with barbel. The data from Baras (1994) was also based on field obser-

vations of spawning, yet experimental work from Gougnard, Poncin,

Ruwet, and Philippart (1987) showed that not all female redd digging

involved the release of ovules. Therefore, spawning observations

could lead to an overestimation of successful spawning attempts.

Spawning abandonment can be higher when there are large numbers

of males present (Gougnard et al., 1987; Hancock et al., 1976), as in

Baras (1994), which is believed to be an evolutionary response that

protects eggs from abrasion-related mortality, caused when males

mechanically aggravate the redd (Hancock et al., 1976). These high
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spawning densities were generally not observed across the three

study sites here. Barbel inter-spawning periods can be 8 days long, so

it would be difficult to establish if all redds constructed by a given

female had eggs without disturbing spawning gravels.

Regarding subsurface fines, there was little variation in sand and

organic matter content between the rivers Great Ouse and Teme, but

Teme sediments contained higher concentrations of silts (Table 3).

Mean silt and clay concentrations were below 0.5%, which is low

compared with other lowland English rivers (4–45%; Clarke &

Wharton, 2001) and Lapointe et al. (2004) classification of “low fines

content” (1.5%). However, presence of silt and clays in spawning

gravels at levels as low as 0.03–0.41% can adversely impact Atlantic

salmon, S. salar egg incubation and embryo survival (Julien &

Bergeron, 2006), with maximum silt levels reaching 0.62 and 0.69% in

the Great Ouse and Teme, respectively. The mean sand concentra-

tions of the Teme and Great Ouse (22 and 18%, respectively) were

higher than the tolerance threshold of salmonids (14%; Bryce et al.,

2010). However, experimental work on barbel suggests survival to

emergence is not affected by sand concentrations up to 40%, even

though emergence timing can be accelerated by 8 days (Baši�c et al.,

2018). These early emerging fish were smaller, blind and had larger

yolk sacks, suggesting their post-emergence survival could be low rel-

ative to more developed later-emerging larvae (Baši�c et al., 2018),

given their reduced ability to navigate flows and increased predation

risk (Krupka, 1988; Vilizzi et al., 2013).

The tolerances of larvae to silt and sand cannot, however, be

considered in isolation, as the salmonid literature suggests it is the

interactions of the different fine sediment size fractions that can be

more important for egg and embryo development (e.g., Lapointe

et al., 2004). Indeed, Levasseur, Bergeron, Lapointe, and Bérubé

(2006) revealed that it was the proportion of subsurface bed material

<0.125 mm in S. salar redds that explained 83% of annual variation

in embryo survival; in their study, there was a threshold of 0.2% con-

centration below which embryo survival dropped sharply below

50%. We found that different size fractions of fines in the rivers

Teme and Great Ouse did not result in differences in the mean

predicted egg and embryo survival between the rivers. However,

there was an inverse relationship between predicted survival and the

sand index for the salmonid model (Figure 5), with the levels of silt

reducing survival by 2 and 4% in the rivers Great Ouse and Teme,

respectively. Only 30 and 31% of sites were predicted to have egg

survival rates over 50% in the Teme and Great Ouse, respectively.

Here, we revealed that barbel have a much higher tolerance to sands

than S. salar when using the sand index (Figure 4). This leads the sal-

monid model to overestimate mortality by a mean of 34% across the

sites in the two rivers when silt is not accounted for (Figure 5b). Fur-

thermore, the ex-situ data from Baši�c et al. (2018) suggested 77%

survival to emergence regardless of sand content (at least for values

of SI ≤3.5; Figures 4 and 5), indicating successful incubation at all

sites relative to Kondolf's (2000) 50% threshold. Fines vary spatially

in rivers (Julien & Bergeron, 2006), due to fluctuations in sediment

supply, flow velocity, channel profile, erosion, deposition and lithol-

ogy (Middelkoop & Asselman, 1998). Spatial variation across sites in

barbel egg survival rates were not predicted from the barbel-derived

calculations, despite salmonid egg survival rates varying from 0 to

63% and in-situ survival in studies showing 0 to 100% (Malcolm,

Youngson, & Soulsby, 2003).

The barbel egg survival estimates from the parameterised salmo-

nid models should be used cautiously, given the divergence in the egg

survival rates from the salmonid model and the ex-situ egg survival

rates of Baši�c et al. (2018). Reasons for this are likely to include the

higher oxygen requirements of salmonid eggs, although there is a pau-

city of information on the oxygen requirements of cyprinid eggs

(Elshout, Dionisio Pires, Leuven, Wendelaar Bonga, & Hendriks,

2013). This is important, because the detrimental impacts of fine sedi-

ments on salmonid eggs and larvae relate to how they inhibit oxygen

delivery to eggs and embryos by entombment (Sear et al., 2016) and

by decomposition of organic matter (Collins et al., 2013; Sear et al.,

2017). Compared to organic content found in other UK lowland rivers

(2–21%; Clarke & Wharton, 2001), the organic matter found in these

rivers was low (2%), although the implications of this are not clear

given the knowledge gap in how organic materials influence cyprinid

development (Collins et al., 2013). Our predictions of barbel egg sur-

vival did not consider the effect of pore water velocity in redds,

although near-bed water velocities were high (Teme: 0.36 ms-1, Great

Ouse: 0.38 ms-1). These near-bed water velocities might have facili-

tated increased oxygen delivery and metabolite removal at depth,

increasing egg survival (Lapointe et al., 2004). Also, differences in

burial depths might influence egg survival rates between species. For

example, barbel eggs in this study tend to be in the top 5 cm of sedi-

ment, whereas similar sized salmonid eggs tend to be buried at greater

depths (e.g., 15–30 cm for S. salar; Moir et al., 2002). Thus, relative to

salmonids, barbel eggs may be exposed to greater hyporheic flows,

higher oxygen exchange and increased flushing of metabolic waste,

especially where redd topography is similar (Tonina and Buffington,

2009a & b).

The differences in incubation duration and egg size between bar-

bel and salmonids also have implications for their survival (Springate &

Bromage, 1985). Longer incubations of salmonid eggs might increase

risk of exposure to suboptimal conditions within the egg pocket, such

as reductions of oxygen concentrations to critical levels (Sear et al.,

2017), especially as salmonid eggs are comparatively large and likely

to have higher metabolic rates and oxygen requirements than barbel

eggs (Rombough, 2007). Thus, the relatively small barbel eggs that are

incubated for relatively short periods are likely to have lower oxygen

requirements than salmonids, with a greater capacity for tolerating

reduced oxygen levels. However, a recent study on a similar rheophilic

cyprinid, nase Chondrostoma nasus, shows that even fine sediment

(<0.085 mm) of 10 and 20% content can cause mortality and physi-

cally block larvae from emerging (Nagel, Pander, Mueller, & Geist,

2020). No sites were found to have the levels of sand above those

that have been experimentally tested (40%) to impact barbel mortality

(Baši�c et al., 2018).

Spawning barbel altered the topography of the riverbed by dis-

placing volumes of sediment during redd construction. However, the

surface grain-size distributions between the pit and tailspill were not
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different (Table 5), as has been found for other redd-building species

(Chapman, 1988; Everest et al., 1987; Kondolf, Sale, & Wolman, 1993;

Young, Hubert, & Wesche, 1989). A potential explanation for this is

that the sediment excavated from the pit into the tailspill was not lim-

ited by grain size for barbel as it has been for some salmonid studies,

where unmoveable coarse grains are left in the pit (Kondolf et al.,

1993). Tailspill amplitude measured for barbel is comparable to those

for Chinook, chum and sockeye salmon (13 and 15 cm; Buxton, 2018)

This suggests shear stresses applied to the tailspills of barbel redds

may be elevated, as has been found for salmonids. Spawning salmon

have been found to change the surface sediment characteristics,

although there have been contrasting effects, with sockeye salmon

Oncorhynchus nerka reducing the coarseness and sorting of sediments

in the redd compared to the surrounding riffles (Hassan et al., 2015),

whereas chum salmon Oncorhynchus keta increase coarseness and

sorting (Montgomery et al., 1996). However, altered surface sediment

characteristics were not evident from barbel redds in comparison to

surrounding riffles. Spawning salmon have also been shown to alter

the composition of subsurface sediments, reducing fines content of

the egg pocket (Young et al., 1989). Although not tested here, obser-

vations of plumes of fine sediment from barbel spawning were made.

The surface sediment showed elevated fines in the pit compared with

the tailspill, which could be due to the topography of the pit causing

flow recirculation and fine sediment deposition (Buxton, Buffington,

Yager, et al., 2015). Barbel eggs were detected 50 mm below the sedi-

ment surface in the tailspill, where previous sampling has found eggs

within depths of 200 mm (Pinder et al., 2009). In cyprinid species such

as nase, egg burial depths can vary between 0 and 300 mm, with

those deposited at the surface (less than 5%) being most susceptible

to mortality (Duerregger et al., 2018). Barbel eggs that are not

retained in the bed can be consumed by other fish, such as grayling,

Thymallus thymallus (Perks, 2019), suggesting higher egg mortality for

shallowly deposited eggs or in highly mobile sediments. By compari-

son, salmonids deposit eggs between 0 and 500 mm (Table 1) from

the sediment surface within the tailspill, where the top of the egg

pocket is 110 mm (mean). Thus, barbel can be considered shallow

spawners, with the majority of their bed disturbance resulting from

redd construction occurring within the surface layers, which could

leave eggs vulnerable to predation and entrainment. Further research

should explore alternative and non-invasive methods of measuring in-

situ changes in the structure, composition and/or topography of flu-

vial surfaces through spawning and indeed, other animal behaviours.

The impact of redd construction on river habitats transcends

changes in channel morphology and substrata condition. In line with

the geomorphic capabilities of some fishes, it is reasonable to assume

bed disturbance by spawning barbel may also influence near-bed

hydraulics and/or sediment transport processes in at least three ways.

First, and as with barbel foraging (Pledger et al., 2014, 2016, 2017), it

is reasonable to assume particles displaced during spawning, particu-

larly those deposited in elevated positions as part of the tailspill, may

sit proud on the sediment surface and in positions of relative instabil-

ity. Thus, displaced grains may be more susceptible to entrainment,

particularly during subsequent high flows. Second, bioturbation of

surficial sediments might result in the loss of bed sediment structure

and adjustments in packing (Buxton, 2018; Montgomery et al., 1996).

Reworking of sediments in this manner, generating structureless or

loosely packed fabrics, may promote bed load transport by reducing

critical shear values required for particle entrainment (Buxton, 2018).

Third, redd creation has a significant and varied impact on bed topog-

raphy, which can influence near-bed hydraulics (Montgomery et al.,

1996) and so, potential for particle entrainment. For example, topo-

graphic change through barbel redd construction may reduce basal

shear stresses (Hassan et al., 2015) by increasing bed form drag, which

may be mitigated by increased shear stresses on tailspill structures

(Buxton, 2018; Buxton, Buffington, Tonina, et al., 2015), loss of stabi-

lizing surface structures and/or substrate loosening, increasing particle

entrainment probabilities. Further work is required to investigate the

impacts of barbel and other cyprinid redd construction on near-bed

hydraulics and sediment transport processes.

The spawning riffles studied here were not utilized by high densi-

ties of barbel, whereas in the river Ourthe (Belgium), up to 600 barbel

utilize riffles of 150 m2 to spawn (Baras, 1994). Most will be male, but

up to 19 females can use the same riffle in a month (Baras, 1994). A

single female can have up to 17 successful spawnings in a year, with

less than 4 successful attempts being more typical (Baras, 1994). Thus,

not all eggs will be deposited in a single redd, as per most salmonid

species (Elliott, 1989). Multiple redd creation by barbel thus compli-

cates the estimates of reproductive potential when salmonid model

parameters are used. This is also compounded by the high density of

female barbel during the spawning season compared to some salmo-

nids, such as S. trutta (e.g., barbel: 0.16 females/m2, Baras, 1994;

S. trutta: 0.03 females/m2, Elliott, 1989). Where spawning habitats are

limited, salmonids may utilize suboptimal habitats, and this can facili-

tate future successful spawning here, the adaptability of barbel to use

suboptimal habitats is unknown, but Baras (1994) showed that limited

spawning success happened when there was not sufficient spawning

habitat, such as specific depth and flow velocity. Barbel spawn in

much greater densities than salmonids (salmonids = 0.01 to 0.43;

Riebe et al., 2014); barbel = 0.24–0.49 redds m−2 (Table 6) which

could lead to more intensive bed disturbance. Consequently, these

differences between barbel and salmonids suggest that future work

predicting barbel spawning success, such as egg production and sur-

vival, is needed to develop more specific models based on their

spawning biology (e.g., multiple redd creation).

5 | CONCLUSION

The present study has started to fill the considerable knowledge gap

in the two-way interactions between non-salmonid redd builders and

their spawning environment, using barbel as a model species. Barbel

were not limited by the size distribution of sediment available for redd

construction on riffles in the study rivers, but recruitment may be

impacted by fine sediment concentrations within spawning gravels.

The study also indicates a need for further research to determine the

optimal conditions for cyprinid egg and larval development and
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therefore, survival, and how these early-life survival rates influence

subsequent recruitment success of cohorts. The influence of these

conditions can be tested empirically using both in- and ex-situ scenar-

ios as has been done with salmonids (Cocchiglia, Curran, Hannigan,

Purcell, & Kelly-Quinn, 2012), coupled with standardized monitoring

of river sediment, water velocity and oxygen conditions. Until this

knowledge is developed, the ability of river managers to enhance the

spawning success of non-salmonid fishes, such as barbel, will remain

highly constrained. Moreover, these studies may enable investigation

of how anthropogenically altered rivers are impacting non-salmonid

fish communities, and how restoration efforts can ensure sustainable

populations in the face of continued environmental change.
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