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Forecasting tourist arrivals at attractions: Search engine empowered 
methodologies 

Abstract 

Tourist decision to visit attractions is a complex process influenced by multiple factors of 

individual context. This study investigates how the accuracy of tourism demand forecasting 

can be improved at the micro-level by predicting the number of visits to London museums. 

The number of visits to London museums is forecasted and the predictive powers of Naïve I, 

seasonal Naïve, SARMA, SARMAX, SARMAX-MIDAS and artificial neural network 

models are compared. The empirical findings extend understanding of different types of data 

and forecasting algorithms to the level of specific attractions. Introducing the Google Trends 

index on pure time-series models enhances forecasts of the volume of arrivals to attractions. 

However, none of the applied models outperforms the others in all situations.  Different 

models’ forecasting accuracy varies for short- and long-term demand predictions. The 

application of higher-frequency search query data allows generation of weekly predictions, 

which are essential for attraction- and destination-level planning.  

Keywords: Forecasting, Google Trends, search engine, tourist demand, attractions, artificial 

intelligence 

Introduction 

The tourism industry seeks accurate and affordable tools for marketing and management 

strategies to improve tourist experience (Pan et al., 2006) and increase business effectiveness 

(Song and Li, 2008) with a vision of enhancing destination competitiveness (Artola et al., 

2015). Tourism demand forecasting can help the industry to develop more accurate and 

efficient strategies (Song and Li, 2008; Wu et al., 2017). The availability of real-time, high-

volume and high-frequency data has revolutionised the way how tourist behaviour is 

monitored and forecasting reliability is achieved (Yang et al., 2014). Tourist information 
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search data have been used widely to increase the predictive power of existing models (Park 

et al., 2017). Researchers in the tourism domain have proposed a range of methods to apply 

search queries to predict tourist arrivals at a destination level (e.g. Artola et al., 2015; 

Bangwayo-Skeete and Skeete, 2015; Choi and Varian, 2012; Li et al., 2017; Önder, 2017; 

Önder and Gunter, 2016; Park et al., 2017; Yang et al., 2015; Höpken et al., 2018; Li et al., 

2018; Xiang and Pan, 2011; Antolini and Grassini, 2018; Dergiades et al., 2018). An 

information search index is also used to effectively forecast demand for hotels (Kadir et al., 

2014; Pan et al., 2012; Yang et al., 2014; Rivera, 2016).  

Despite its importance for attraction and destination management, the capability of the 

existing methods to accurately forecast tourist arrivals at specific attractions remains 

underdeveloped (Huang et al., 2017; Lei and Wang, 2017). For such forecasting, the main 

constraint is the availability of relevant data. First, the number of data types that can be used 

as explanatory variables for tourist attraction choice is limited. Most attractions do not count 

their arrivals by source market.  The traditional factors in tourism demand theory, such as the 

income level of the source market and the relative price of travel between the country of 

origin and the destination, are thus not applicable (Wu et al., 2017). In contrast to destination 

choice, which is finalised before the visit, and to accommodation booking, which is arranged 

either before or immediately upon arrival at a destination, the choice of attractions is realised 

both prior to the trip (Horner and Swarbrooke, 2016) and, increasingly, during the trip 

(Leiper, 1990; Wang et al., 2012). While the factors of tourist context are known to be the 

determinants of in-destination decision-making (Choe et al., 2017; Buhalis and Foerste, 

2015), the volume and the types of data that characterises visitors in the travel context is low.  

Second, although tourist online search behaviour can be introduced into forecasting models, 

the absence of high-frequency data may limit the accuracy of these predictions. The shorter 

time lag between information search and actual visit to an attraction requires data of higher 
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frequency to capture the relationships between actual demand for attractions and 

corresponding search queries. Currently, the most widely used data frequency in this domain 

is quarterly, followed by monthly and annual (Wu et al., 2017). Few studies have used data 

with a frequency higher than monthly (Wu et al., 2017). If most of the attraction choices are 

made during the trip, then monthly data frequency is too low to capture the relationship 

between actual demand for attractions and the corresponding search trends. 

The aim of this study is to predict tourism demand for specific attractions using time series 

data and neutral network models. Museums are among the most popular attractions for 

certain types of tourists (McKercher, 2006; Recuero Virto et al., 2017). The most visited free 

attractions in London are the museums and art galleries (VisitLondon, 2018). Therefore, this 

study considers the most popular museums in London with free admission as a research 

context. The study is original and contributes to the field in the following ways. First, it 

complements the research on tourism demand forecasting by analysing the performance of 

forecasting techniques on individual attraction level and by comparing the accuracy of 

various models. Second, the study is one of the first to introduce a mixed monthly and weekly 

data sampling model to predict tourist demand. By relaxing the data frequency requirement, 

weekly information search query data can be included in the model. More importantly, with 

the introduction of higher frequency data, it is possible to generate weekly predictions and 

hence more on-time forecasts, which are essential for decision-making in destination 

management. The findings of this study can provide valuable information to London 

museums in their efforts to develop appropriate marketing strategies. Furthermore, the 

methodological findings may be generalised to other kinds of attractions.  

This paper is organised as follows. After a brief literature review addressing the specifics of 

tourist behaviour and tourism demand forecasting in the next section, the following section 

introduces the methodologies and data used in this study. The findings and a discussion of 
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their implications are presented in the fourth section. The fifth and final section concludes by 

identifying the study’s limitations and by outlining future directions for research. 

Literature Review 

Tourist Behaviour and the Choice of Attractions 

Tourist behaviour is motivated by a range of needs, including the need to relax, escape from 

everyday life, experience new things and develop new social relationships (Pearce, 2011). 

Tourist attractions have spatial and temporal characteristics that are distinct from other places 

in individuals’ everyday lives (Leiper, 1990; Pearce, 2011). As a result, tourist attractions can 

draw discretionary visitors to a destination (McKercher, 2017), so that individual perceptions 

of the attraction’s capability to satisfy visitor’s needs and fulfil his or her travel motivations 

dictate the choice of attractions (Leiper, 1990). However, tourists usually do not have enough 

prior knowledge to complete all of the travel arrangements. Extensive information about 

tourist attractions, including their attributes, alternative options and other contextual factors, 

is required to support decision-making and shape expectations of future experiences (Xiang et 

al., 2015a; Gretzel et al., 2006; Xiang et al., 2015b). 

Information search in tourism is a complex and multistage process (Hwang and Fesenmaier, 

2011). Travel decision-making is often conceptualised as a linear process (e.g. need 

recognition, information search, evaluation of alternatives and purchase and post-purchase 

activities). The awareness of the travel needs and the desire to minimise the negative effect of 

contingencies of travel environment lead to information search and a decision-making 

process. To decide which attractions to visit, tourists familiarise themselves with the available 

options, evaluate them in terms of their capability to meet individual needs and then make 

decisions. The availability of the requested information, however, does not always lead to a 

full appraisal and a final decision. A purchase decision may be postponed due to a lack of 
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information or to the travellers’ changing situations. Also, new information may trigger a 

reformulation of the problem and launch a new stage of the information search process (Ho et 

al., 2012; Karimi et al., 2015). However, regardless of the model applied (e.g. Hyde, 2008; 

Gursoy and McCleary, 2004; Bargeman and van der Poel, 2006; Xiang et al., 2015a), the 

information search process is known to precede tourists’ choice of destination, 

accommodations and other travel-supporting services. The search for specific topics does not 

guarantee a positive decision on a travel service but can nonetheless serve as a powerful 

predictor of purchasing behaviour. 

Information search strategies for attraction selection are distinct from those for other major 

travel arrangements. The specific factors of the tourism context (Choe et al., 2017; Fodness 

and Murray, 1999) and the capabilities of the World Wide Web and personal devices (Karimi 

et al., 2015) have transformed the information search process into a continuous and dynamic 

one that occurs before, during and sometimes even after tourists experience a destination. 

Firstly, with exception of primary or iconic attractions, which are well-known to tourists and 

have the power to motivate their visit (Leiper, 1990), tourists increasingly search for 

information about an attraction during the actual trip (Hwang and Fesenmaier, 2011). The 

decision-making process for attractions is highly context-dependent. This process is shaped 

by tourists’ personal characteristics and their travel details, such as the type, purpose, cost 

and length of the trip and tourists’ familiarity with the destination (Hyde, 2008; Kim et al., 

2015; Fodness and Murray, 1999). This decision-making process is also influenced by a 

range of in-destination factors, such as the tourist’s location and social environment and the 

season, weather and time of their visit (Buhalis and Foerste, 2015). Secondly, the 

proliferation of information communications technologies (ICTs) has changed tourist 

decision-making into a more spontaneous process that is affected by the immediate situation 

(Choe et al., 2017; Buhalis and Foerste, 2015). While the use of printed information has 
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dramatically decreased, interconnectivity and interoperability now enable tourists to acquire 

relevant digital content at any time during their customer journeys, including the in-

destination phase (Xiang et al., 2015a). This access leads to a blurring of differences in 

information search activities before, during and after a trip (Wang, 2016). One growing trend 

is to postpone travel arrangements until just before tourists embark on a trip (Xiang et al., 

2015a). As a result, the time lags between need recognition, an information search, the 

decision to visit an attraction and the actual visit all become shorter. Consequently, 

information search data with higher frequency may provide more accurate forecasts of 

tourism demand. 

Tourism Demand Forecasting with Search Query Data 

Forecasting Methodologies 

Research has found that time series models’ forecasting accuracy can be improved by 

including search query data. Pan et al. (2012) introduced online search query data to tourism 

and hotel demand forecasting. They compared various models and found that the 

autoregressive moving average with explanatory variables (ARMAX), which includes search 

query data from Google Trends, may improve the accuracy of hotel room demand forecasts. 

Similarly, Yang et al. (2014) used the web traffic of destination marketing organisations to 

predict hotel demand. The results also showed that ARMAX outperformed the autoregressive 

moving average (ARMA) models, which did not include data obtained from the search 

engine. More comprehensively, Pan and Yang (2017) incorporated both search queries and 

web traffic data to predict weekly hotel demand. Again, the ARMAX models outperformed 

the ARMA models, indicating that incorporating both indices of search query data can 

improve hotel demand forecasting accuracy. However, including search data does not yield 

superior hotel demand predictions consistently. Rivera (2016) applied a dynamic linear model 

to forecast hotel room demand using data from Google Trends. He found that the in-sample 
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and 12-month forecasting accuracy of the dynamic linear model with search query data 

outperformed other models, whereas the exponential smoothing models were more accurate 

for generating 6-month forecasts. Yang et al. (2015) demonstrated the high predictive power 

of search query data when forecasting tourism demand, but also showed that the relevance of 

a search engine depends on its acceptance by target populations. For example, search queries 

from Baidu are more appropriate than those from Google for predicting tourism demand in 

China. Gunter and Önder (2016) used a Bayesian approach to forecast city arrivals with 

search query data. However, this approach produced no significant improvement when 

compared with univariate time series models in the short-run; in the long-run, combination 

methods, particularly the combination of other methods with the Bayesian approach, 

improved the forecasting accuracy significantly. Önder (2017) obtained similar findings. 

Thus, the application of search query data for tourism demand forecasting needs to be further 

developed. 

Due to the complexity of tourist behaviour and the increasing technical capacity to observe 

this behaviour online continuously, scholars have become keen on investigating changes in 

tourist online search with data of different frequencies. Bangwayo-Skeete and Skeete (2015) 

pioneered the use of the mixed-frequency data sampling (MIDAS) model in the tourism 

domain. They used monthly search query data to predict quarterly tourism demand in the 

Caribbean, finding that the autoregressive MIDAS (AR-MIDAS) models outperformed the 

autoregressive (AR) models and that the seasonal autoregressive integrated moving average 

(SARIMA) models in reducing forecasting errors. Camacho and Pacce (2017) similarly found 

that the AR-MIDAS model with quarterly and monthly integreated data ourperformed the AR 

models in the Spanish context. However, both of these studies used the AR model as a 

benchmark. The ARMAX model, which has stronger predictive power when using search 

query data, was not included in these comparisions of forecasting accuracy. Additionally, 
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when higher frequency data, such as monthly and weekly data, were integrated in the models, 

the merit of the AR-MIDAS model was not readily apparent (Hirashima et al., 2017). 

The data for measuring tourism demand is typically collected less frequently than for 

measuring hotel demand and this has implications for research. Visitor arrivals are usually 

counted on a monthly basis; thus, the integration of a weekly-monitored index may generate 

more on-time forecasts when compared with the classic monthly or quarterly forecasts. 

However, previous research has only compared the forecasting accuracy of the AR-MIDAS 

model and the AR and ARMA models. The most competitive model, ARMAX, has not yet 

been included in studies of the models’ relative strengths. According to Hirashima et al. 

(2017), the mix of monthly and weekly data does not show significant superiority over other 

models; thus, the MIDAS model, with its monthly and weekly data, needs to be further 

examined in the tourism context. By the same token, studies using search index data have 

normally focused on forecasting the demand for destinations, while the micro-level demand 

for attractions has been overlooked. One notable exception is Huang et al.’s (2017) study, 

which predicted tourist demand for visiting the Forbidden City in Beijing.  

To address the above research gaps, this study uses the SARMAX or SARIMAX model with 

MIDAS (SARMAX/SARIMAX-MIDAS) models, integrating the monthly and weekly data, 

together with the SARMA or SARIMA family of models and artificial intelligence models, to 

forecast the demand for London museums and to compare the forecasting accuracy of these 

models. The contributions of this research are as follows. Firstly, it expands the application of 

search query data in tourism demand forecasting to the micro-level. Secondly, it 

comprehensively evaluates the forecasting accuracy of the MIDAS model, based on its 

integration of monthly and weekly data, with other time series and artificial intelligence 

models. The next section introduces the methodology and data used in this study. 
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Data and Method 

Data 

Today, tourists rely on the Internet as their major source of information and their most 

commonly applied planning tool (Xiang et al., 2015a). Search engines such as Google, Bing 

and Baidu are powerful and widely accepted intermediaries between tourists and tourism 

service providers, which have become the primary sources of travel-related information 

(Xiang and Pan, 2011; Fesenmaier et al., 2011). The Google Trends index is a ratio that 

reflects the popularity of a specific topic at a given moment worldwide or across topical 

domains and/or geographic regions (Höpken et al., 2018; Google Inc., 2017). The tool 

provides access to a relatively large volume of search queries submitted by its users over 

time.  

Consumer heterogeneity (Claveria and Datzira, 2010) and the need to incorporate all 

variations of the search queries are challenges for the application of the Google Trends and 

Baidu indices (Park et al., 2017; Önder and Gunter, 2016). Another problem is the need to 

reduce the noise included in the index (Xiaoxuan et al., 2016). The same word or 

combination of words may have different meanings, adding irrelevant data to the index that 

can lead to significant overestimations of the results (Artola et al., 2015). Eliminating bias in 

language and on search engine platforms may also improve the predictive power of search 

query data (Dergiades et al., 2018). Therefore, there is a need to aggregate relevant search 

queries into one index (Höpken et al., 2018; Önder, 2017).  

The straightforward collection of all of the possible word combinations, along with the 

elimination of irrelevant search queries, does not account for dynamic correlation between 

these queries (Li et al., 2017). A range of studies (e.g. Li et al., 2017; Li et al., 2018; Höpken 

et al., 2018) have manually developed a composite search index to account for the dynamic 
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interrelationships between search queries. The forecasting accuracy of the models 

significantly improved with the benefitted of the new search index.  

Google Trends tool recognises user queries as topics under specific categories. Google Inc. 

has not revealed its exact algorithm for search index aggregation, but it is widely believed 

that it incorporates the relevant search queries associated with the topic regardless of the 

exact combinations of words, the spelling or even the language used. This algorithm also 

eliminates irrelevant queries, such as the same words being used to describe different 

phenomena (Google Inc., 2017; RealGuess, 2014; Önder and Gunter, 2016). Thus, the quality 

of the query data is not expected to decline, while the application of the index, as aggregated 

by the data provider, is expected to save time.  

Taking into consideration the dominant role of Google search engine in the UK, and the 

proven importance of search query data in improving the accuracy of forecasting (e.g. Önder 

and Gunter, 2016; Pan et al., 2012; Yang et al., 2014), Google Trends index (Google Inc., 

2017) was selected to collect the search queries for the top five most visited museums in 

London with free admission (VisitLondon, 2018). Rather than building the required index 

manually, the data on tourist online searches were obtained with the Google Trends tool by 

choosing the relevant category to represent each of the five museums and then applying the 

‘Travel’ category to decrease the noise (Table 1). The applied data was collected in both 

monthly and weekly frequencies for the period from January 2012 to June 2017. The data on 

monthly visitor arrivals to these museums for the same period were acquired from the 

Department for Digital Culture Media & Sport, UK (2018). Figure 1 and Table 2 present data 

on visitor arrivals to the five museums and demonstrate the corresponding searches in Google 

Trends. 

Table 1. Queries used in Google Trends 

Museum Search Query Category Topic 
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The British Museum British Museum Travel Museum in London, England 
The National Gallery National Gallery Travel Museum in London, England 
The Natural History 
Museum 

Natural History Museum Travel Museum in London, England 

Tate Modern Tate Modern Travel Art Gallery in London, England 
Science Museum Science Museum Travel Museum in London, England 
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Figure 1: Absolute Number of Visits and Google Search Index for London Museums 

Table 2. Descriptive Statistics for London Museums 

 Mean Median Min Max Std. Dev. 

British Museum Visits 536887.93 525372.50 350458.00 765877.00 101994.31 
British Museum Search 79.32 78.50 55.00 100.00 10.44 
National Gallery Visits 496408.58 496718.00 308832.00 692000.00 78857.65 
National Gallery Search 59.82 57.50 40.00 100.00 9.92 
Tate Modern Visits 442347.20 421744.00 287057.00 811162.00 112272.45 
Tate Modern Search 58.88 57.00 34.00 100.00 16.52 
Natural History Museum 
Visits 440165.78 430202.00 318413.00 607731.00 68864.12 
Natural History Museum 
Search 69.42 68.00 45.00 100.00 11.40 
Science Museum Visits 454345.05 445814.00 282802.00 697666.00 105465.13 
Science Museum Search 64.20 62.00 41.00 100.00 14.48 
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Method 

Four time series models from the Naïve I, seasonal Naïve, ARMA or ARIMA family of 

models, the artificial natural network (ANN) and ARMAX/ARIMAX-MIDAS were used to 

generate forecasts of visitor arrivals. To avoid spurious regression, unit root tests were carried 

out to examine the stationarity of all of the time series variables. If the time series included in 

the model were stationary, then level data were used in the modelling process. If non-

stationary, then the data were differenced before being introduced to the models. Next, the 

2012–2016 data were selected as the original training set and used to generate the ex-post 

forecasts from January to June 2017. The accuracy of 1-, 2-, 3- and 6-month-ahead forecasts 

were then compared among various models for each museum. This forecasting practice was 

repeated six times because the training data set extends from December 2016 to June 2017 on 

a rolling-monthly basis. The models used in this research are briefly introduced as follows. 

Naïve I and seasonal Naïve models 

Naïve I and seasonal Naïve models are usually taken as benchmarks to facilitate the 

improvement of newly proposed forecasting methods (Wu et al., 2017). The Naïve I model 

assumes the forecast of next period is equal to the observation of the last period, whereas the 

seasonal Naïve I model assumes that prediction of the next period equals to the observation 

of the same period of the previous year. 

SARMA and SARIMA family models 

The seasonal autoregressive moving average (SARMA) family of models, including SARMA 

and seasonal autoregressive moving average with explanatory variables (SARMAX) models, 

were used to generate forecasts if the time series in the model were stationary. A 

������	(�, 
) × (, �)�� is represented as Equation 1 
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Ф(���)�(�) ln���,�� =���ln	(��,���)
�

 
+"(���)#(�)$�,�, 

(1) 

where 

Ф(���) = 1 −Ф���� −Ф���' −⋯−Ф)���) 

�(�) = 1 − ��� − ��� −⋯− �*� 

"(���) = 1 + "���� + "���' +⋯+ "+���+ 

#(�) = 1 + #�� + #�� +⋯+ #,� 

Ф(���) and �(�) are the seasonal AR and AR operators, respectively, whereas "(���) and 

#(�) are the seasonal moving average (MA) and MA operators, respectively. As monthly 

data were used in the models, the data frequency was set to 12. Here, ��,�, ��,� and $�,�	are the 

number of visitor arrivals, the search query data and the error term of the jth museum in 

period t, respectively. Also, ln is the nature logarithm operator. If �� = 0, a SARMAX model 

becomes a SARMA model. 

 If the time series in the model have unit roots, then SARIMA and seasonal autoregressive 

integrated moving average with explantory variables (SARIMAX) were used. A 

������	(�, ., 
) × (, /, �)�� model is presented in Equation 2 as follows: 

Ф(���)�(�)0��1 02 ln���,�� = 3 +���ln	(��,���)
�

 
+ "(���)#(�)$�,�, 

(2) 

where 0��1  and 02 are seasonal difference and difference operators, respectively, and 3 is a 

drifter term. Similar to the SARMA family of models, if �� = 0, a SARIMAX model 

becomes a SARIMA model. The lagged orders of P, p, Q and q and the rank of the seasonal 

difference (D) are determined by the Akaike information criterion (AIC), whereas the rank of 

difference (d) is determined by the number of the unit roots. 
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SARMAX/SARIMAX-MIDAS Model 

Similar to Equation (1) and (2), the SARMAX/SARIMAX-MIDAS models, which apply data 

of different frequencies, are expressed in Equations (3) and (4), respectively. 

Ф(���)�(�) ln���,�� =����,45� ln��,�65�45
�

45

 

�

 
++"(���)#(�)$�,�, 

(3) 

Ф(���)�(�)0��1 02 ln���,�� = 3 +����,45� ln��,�65�45
�

45

 

�

 
+ "(���)#(�)$�,�, 

(4) 

where ��,'��4 is the search query data of the jth museum in the (4t-l)th week in period t. There 

are � +  + 
 + � + ∑ ∑ 	45 
� parameters that need to be estimated but which are too large for 

the limited number of observations; non-linear least squares (NLS) is used to estimate a 

restricted model with fewer parameters. Two parametric functional constraints (Exponential 

Almon lag polynomial and Beta (analogue of probability density function)), which are widely 

used in previous research (Camacho and Pacce, 2017; Gunter et al., 2018) and unconstrained 

MIDAS models are estimated, respectively. The model was selected by AIC. It was assumed 

that there are four weeks in one month to align the data with different frequencies, indicating 

the number of visitor arrivals in a particular month is related to a fixed set of weekly lagged 

search query data (Ghysels et al., 2016). More details of the estimation of the MIDAS model 

can be found in Ghysels et al. (2016). 

ANN model 

The ANN model is a type of artificial intelligence model used widely in the field of tourism 

and hotel demand forecasting (Song and Li., 2008; Wu et al., 2017). This model was 

introduced by Pattie and Snyder (1996), with subsequent development by Law and Au 

(1999). The ANN model is composed of an input layer, one or more hidden layer(s) and an 

output layer. Each layer consists of nodes that are connected to other nodes at adjacent 
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layer(s). A weight is estimated to link each pair of the nodes. A more detailed introduction of 

the ANN model in the tourism research domain can be found in Law (2000). An iterative 

neural filter (INF) based on the common multilayer perception (MLP) method was used to 

select the optimal input layer for time series date based on the mean square errors (MSE). 

More details regarding the algorithm can be found in Crone and Kourentzes (2010). 

The mean absolute percentage error (MAPE) and root mean square error (RMSE), which are 

the most frequently used indices to measure forecasting accuracy in the tourism and 

hospitality field (Peng et al., 2014), were used to evaluate the forecasting behaviour of the 

various models. 

Findings and Discussions 

Unit Root Tests of Stationarity 

The Augmented Dickey-Fuller (ADF), Phillips-Perron, Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) tests and the Canova-Hansen (CH) seasonality test are carried out to examine the 

stationarity of all of the variables after natural logarithm. Only constant terms are included in 

the ADF and KPSS tests, respectively, and dummy variables are adapted in CH test. Due to 

the fact that there is a different number of weeks in each year, no seasonal cycle can be 

observed and thus CH test is not available for weekly data. Out of caution, the stationarity of 

the time series is confirmed in at least three of the four tests to ensure that the same 

integration order is used. The results of the unit root tests are presented in Table 3. Although 

the KPSS test rejected the null hypothesis that the time series are stationary for a number of 

variables, ADF and PP tests rejected the null hypothesis that the time series has a unit root for 

all of the variables at a 5% significance level and the CH test cannot reject the null hypothesis 

that the time series is stationary for all monthly data. Thus, it can be argued that all of the 
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data are stationary with the integration order of zero. This means that no difference is needed 

in the modelling process. 

Table 3. Results of Unit Root Tests 

Visitor Arrivals ADF PP KPSS CH  Integration Order 

British Museum -3.414*** -25.205*** 0.242 1.726  I(0) 

National Gallery -4.043*** -44.595*** 0.415* 1.669  I(0) 

Tate Modern -3.573*** -26.337*** 0.087 1.681  I(0) 

Natural History Museum  -4.538*** -54.468*** 0.362* 1.653  I(0) 

Science Museum -3.573*** -61.947*** 0.100 1.700  I(0) 

Monthly Index        

British Museum -3.701*** -39.054*** 0.673** 1.668  I(0) 

National Gallery -4.100*** -43.962*** 0.378* 1.731  I(0) 

Tate Modern -3.744*** -34.777*** 0.513** 1.669  I(0) 

Natural History Museum  -3.851*** -64.635*** 0.603** 1.648  I(0) 

Science Museum -3.711*** -52.079*** 0.685** 1.614  I(0) 

Weekly Index        

British Museum -7.768*** -232.836*** 1.727** -  I(0) 

National Gallery -8.836*** -255.754*** 0.546** -  I(0) 

Tate Modern -11.726*** -312.968*** 0.281 -  I(0) 

Natural History Museum  -8.693*** -210.393*** 0.938** -  I(0) 

Science Museum -8.949*** -141.777*** 0.285 -  I(0) 

Note: *, ** and *** represent significant at 10%, 5% and 1% significant level, respectively. 

Estimation Results 

Naïve I, seasonal Naïve, and SARMA	(1,0) × (1,0) provides the best fit in all seven rounds of 

estimation for the British Museum, the National Gallery and the Tate Modern. According to 

AIC, SARMA	(2,0) × (1,0) is the optimal model for the Natural History Museum and the 

January 2012 to December 2016 data for the Science Museum. For the case of the Science 

Museum, SARMA	(2,1) × (1,0) best fits the period from January 2012 to March 2017, while 

SARMA	(1,1) × (1,0) is more appropriate for other sample periods. When the search query 

data are introduced into the models, SARMAX	(1,0) × (1,0) is the most fit model for the 

British Museum, the National Gallery, Tate Modern and six out of seven sample periods for 

the Natural History Museum. The data on the Natural History Museum for the period from 

January 2012 to February 2017 has a lower AIC with SARMAX	(0,2) × (1,0). In terms of the 
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Science Museum, the model fits for five out of seven sample periods are best when 

SARMAX	(2,0) × (1,0) is used, whereas the periods from January 2012 to April 2017 and 

from January 2012 to June 2017 fit SARMAX	(0,0) × (1,0) best. In general, the AR(1) and 

SAR(1) terms are the most important factors for museum demand and Google Trends data in 

the current month is a significant explanatory variable for that demand. In the SARMAX-

MIDAS family of models, NLS with Exponential Almon lag polynomial fit all of the 

museums best except for the National Gallery. Also, AR(1) term and the Google Trend data 

of the last two weeks are included in all of the NLS estimated models, whereas the Google 

Trends index of the second last week is dropped by AIC in the National Gallery models. In 

addition, the online search data of the third last week is a significant determinant of the 

demand for the Science Museum. In the ANN models, 11 seasonal dummies and the Google 

Trends data of the current month are selected by MSE in all of the models. The details of the 

estimation results are available upon request. 

Forecasting Accuracy 

The forecasting accuracy of visitor arrivals to the five museums is measured by MAPE and 

RMSE, which are presented in Tables 4 and 5, respectively. The prediction errors for 1-, 2-, 

3- and 6-months-ahead are generated and compared among the different forecasting methods 

for the five museums. The figures in bold indicate the least forecasting error of the museum 

for each time horizon. Among the five museums, the smallest MAPE is 1.90%, which is 

generated by the SARMAX family of models in the two-month forecast of the Natural 

History Museum; whereas the largest is 50.45%, generated by the seasonal Naïve model in 

the two-month forecast for the Tate Modern. The most accurate and inaccurate forecast 

measured by RMSE are both observed in the six-month forecast of the seasonal Naïve model; 

the most accurate forecast is for the Science Museum (0.056) and the least accurate is for the 

Tate Modern (17.350). 
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The geometric means of the five museums’ forecasting accuracy indices measured by MAPE 

and RMSE are presented in Tables 6 and 7, respectively. The overall MAPE of all of the 

methods is less than 9%, indicating good forecasting behaviour. As the forecasting horizon 

extends, the geometric mean of MAPE for the six methods increases, from 6.09% in the 1-

month-ahead forecast to 8.95% in the 6-month-ahead forecast. Surprisingly, when the errors 

are measured by RMSE, the 1-month-ahead forecast (0.841) outperforms longer horizons but 

the 2-month-ahead forecast error is larger than the 3- and 6-month-ahead forecasts. This may 

be explained by the fact that the Easter Holiday in 2016 was in March but in April in 2017, so 

there is a significant drop in March 2017 and a sharp increase in April 2017 when compared 

to the same period in 2016. As RMSE is associated with fluctuations in the real data, the 2-

month-ahead forecast suffered a larger error than other horizons when the forecast started 

from January 2017. This might also explain the dramatic forecasting error for the Tate 

Modern in the 2-month-ahead forecast of the seasonal Naïve I model by MAPE. In terms of 

each method’s general performance, clear trends are observed in the errors of the ANN 

models, which ranged from 3.64% to 13.62% for MAPE and 0.439 to 1.786 for RMSE, 

respectively. The MAPE of the Naïve I model also increases from 9.67% in the 1-month-

ahead forecast to 15.58% in the 6-month-ahead. The patterns of the other methods across 

different forecasting horizons are less clear than for the ANN and Naïve I models. The 

variety of forecasting behaviour across different models for different time horizons and 

museums supports the previous finding that no model is superior to the other models across 

time and contexts (Song and Li, 2008).  
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Table 4. MAPE of Visitor Arrivals to the Five Museums 

British 

Museum 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

National 

Gallery 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

1st week    

 

6.19% 1st week    

 

1.48% 

2nd week    7.75% 2nd week    4.78% 

3rd week    4.10% 3rd week    2.78% 

1-step 7.38% 5.41% 5.79% 4.27% 4.00% 8.05% 1-step 7.38% 14.65% 4.63% 5.50% 2.83% 5.54% 

1st week    

 

5.71% 1st week    

 

4.58% 

2nd week    10.06% 2nd week    6.73% 

3rd week    9.97% 3rd week    7.35% 

2-steps 8.85% 5.02% 4.34% 5.41% 3.20% 10.82% 2-steps 8.85% 16.23% 5.05% 7.03% 2.98% 8.49% 

1st week    

 

12.53% 1st week    

 

9.64% 

2nd week    11.75% 2nd week    11.05% 

3rd week    9.21% 3rd week    11.95% 

3-steps 16.93% 4.76% 5.27% 5.27% 8.24% 6.77% 3-steps 16.93% 17.58% 4.11% 7.91% 5.67% 12.94% 

1st week    

 

6.91% 1st week    

 

14.60% 

2nd week    6.48% 2nd week    18.81% 

3rd week    6.09% 3rd week    20.76% 

6-steps 26.56% 7.11% 5.93% 7.67% 20.39% 9.09% 6-steps 26.56% 29.24% 23.64% 19.51% 19.55% 25.19% 

Natural 

History 

Museum 

Naïve-1 
Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

Tate 

Modern 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

1st week    

 

8.74% 1st week  1st week   

 

10.70% 

2nd week    7.32% 2nd week  2nd week   9.79% 

3rd week    5.96% 3rd week  3rd week   7.19% 

1-step 6.22% 5.69% 7.03% 6.23% 2.83% 10.24% 1-step 12.96% 44.29% 13.74% 11.08% 5.29% 9.36% 

1st week    

 

9.96% 1st week    

 

10.78% 

2nd week    7.71% 2nd week    9.16% 

3rd week    4.81% 3rd week    8.88% 
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2-steps 11.21% 7.50% 5.00% 1.90% 7.49% 5.87% 2-steps 19.37% 50.45% 24.62% 15.96% 15.26% 8.54% 

1st week    

 

13.40% 1st week    

 

6.55% 

2nd week    11.23% 2nd week    8.05% 

3rd week    5.08% 3rd week    8.93% 

3-steps 6.70% 6.87% 4.96% 3.82% 9.51% 4.73% 3-steps 15.47% 48.75% 26.19% 16.02% 7.60% 10.32% 

1st week    

 

11.18% 1st week    

 

9.68% 

2nd week    4.39% 2nd week    8.39% 

3rd week    7.55% 3rd week    6.28% 

6-steps 9.21% 3.41% 3.23% 3.04% 6.27% 5.48% 6-steps 16.84% 28.64% 14.41% 4.22% 13.67% 6.71% 

Science 

Museum 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 
       

1st week    

 

13.74%        

2nd week    12.37%        

3rd week    17.66%        

1-step 19.26% 3.84% 4.66% 6.84% 3.79% 13.29%        

1st week    

 

12.62%        

2nd week    12.02%        

3rd week    15.21%        

2-steps 18.53% 4.69% 8.01% 9.21% 5.58% 14.02%        

1st week    

 

9.54%        

2nd week    9.55%        

3rd week    7.24%        

3-steps 13.82% 5.27% 5.89% 8.11% 9.61% 7.20%        

1st week    

 

9.26%        

2nd week    9.91%        

3rd week    8.86%        

6-steps 8.38% 4.17% 5.54% 4.94% 13.73% 8.14%        
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Table 5. RMSE of Visitor Arrivals to the Five Museums 

British 

Museum 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

National 

Gallery 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

1st week    

 

0.627 1st week    

 

1.007 

2nd week    0.560 2nd week    1.284 

3rd week    0.502 3rd week    1.078 

1-step 0.489 0.246 0.215 0.503 0.118 0.503 1-step 1.437 1.835 0.821 0.741 0.761 1.002 

1st week    

 

1.169 1st week    

 

1.110 

2nd week    1.111 2nd week    1.001 

3rd week    1.173 3rd week    1.027 

2-steps 1.303 0.346 0.382 1.119 1.084 1.119 2-steps 2.526 2.254 1.105 0.834 0.849 1.189 

1st week    

 

1.394 1st week    

 

1.649 

2nd week    1.275 2nd week    1.038 

3rd week    1.268 3rd week    1.088 

3-steps 2.234 0.271 0.315 1.294 1.385 1.294 3-steps 0.999 1.34 1.057 0.761 1.055 1.239 

1st week    

 

0.851 1st week    

 

1.674 

2nd week    0.785 2nd week    2.468 

3rd week    0.842 3rd week    5.370 

6-steps 2.524 0.245 0.290 0.828 2.227 0.828 6-steps 5.306 6.492 4.828 3.567 6.019 8.080 

Natural 

History 

Museum 

Naïve-1 
Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

Tate 

Modern 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 

1st week    

 

3.181 1st week    

 

2.563 

2nd week    1.771 2nd week    2.158 

3rd week    1.579 3rd week    2.036 

1-step 2.621 1.746 1.514 1.174 1.850 1.766 1-step 1.295 8.151 2.108 1.273 1.182 2.993 

1st week    

 

1.870 1st week    

 

2.568 

2nd week    1.479 2nd week    3.079 

3rd week    1.452 3rd week    2.725 

2-steps 2.103 1.096 1.052 0.554 2.196 2.223 2-steps 2.927 9.389 4.091 2.159 1.946 3.449 
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1st week    

 

2.810 1st week    

 

4.626 

2nd week    1.714 2nd week    5.096 

3rd week    2.697 3rd week    4.219 

3-steps 0.989 0.900 0.842 0.788 1.694 3.519 3-steps 2.441 7.364 3.434 1.716 1.430 4.647 

1st week    

 

3.680 1st week    

 

2.423 

2nd week    3.065 2nd week    3.254 

3rd week    2.217 3rd week    2.477 

6-steps 1.100 0.185 0.166 0.437 1.579 1.077 6-steps 5.583 17.350 3.012 0.770 1.170 2.284 

Science 

Museum 
Naïve-1 

Seasonal 

Naïve 
SARMA SARMAX ANN 

SARMAX-

MIDAS 
       

1st week    

 

1.145        

2nd week    1.004        

3rd week    1.042        

1-step 2.498 0.221 0.237 0.480 0.083 1.074        

1st week    

 

1.239        

2nd week    1.545        

3rd week    2.266        

2-steps 2.788 0.191 0.261 0.364 0.516 1.542        

1st week    

 

1.247        

2nd week    1.040        

3rd week    1.525        

3-steps 1.492 0.159 0.192 0.287 0.663 2.488        

1st week    

 

1.536        

2nd week    1.359        

3rd week    1.558        

6-steps 0.583 0.056 0.106 0.163 0.734 1.216        
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Table 6. MAPE of the Different Models 

 Naïve-1 Seasonal Naïve SARMA SARMAX ANN SARMAX-MIDAS GM 

1 month ahead 9.67% 9.48% 6.55% 6.44% 3.64% 8.93% 7.08% 

2 months ahead 12.58% 10.77% 7.36% 6.39% 5.71% 9.16% 8.33% 

3 months ahead 13.26% 10.81% 6.98% 7.30% 7.98% 8.40% 8.88% 

6 months ahead 15.58% 9.67% 8.15% 6.24% 13.62% 9.27% 9.95% 

GM 12.59% 10.16% 7.24% 6.58% 6.90% 8.94%  

Note: GM stands for geometric mean. 

 

Table 7. RMSE of the Different Models 

 Naïve-1 Seasonal Naïve SARMA SARMAX ANN SARMAX-MIDAS GM 

1 month ahead 1.429 1.073 0.669 0.639 0.439 1.234 0.841 

2 months ahead 2.241 1.089 0.861 0.666 1.152 1.735 1.187 

3 months ahead 1.517 0.825 0.713 0.617 1.186 2.306 1.071 

6 months ahead 2.168 0.778 0.594 0.548 1.786 1.821 1.102 

GM 1.802 0.931 0.703 0.616 1.017 1.732  

Note: GM stands for geometric mean. 
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The Figures in Tables 4 through 7 indicate that the SARMAX family of models outperformed 

the SARMA models in predicting visitor arrivals to London museums. Pan et al. (2012), Pan 

and Yang (2017) and Yang et al. (2015) found that including of search query data in the 

model may enhance its predictive power when forecasting tourism and hotel demand for a 

destination. The present study confirms this finding and shows that search query data may 

also improve the accuracy of forecasting demand for attractions. Thus, the incorporation of 

search query data is not only useful for strategic planning and for the development of 

destinations, but also for managers of tourist attractions, who can gain valuable insights from 

online data. Given the convenience and feasibility of obtaining search query data, web-based 

tourism demand forecasting systems (Song et al., 2013; Song and Li, 2008) are becoming 

increasingly important for the tourism and hotel industry. 

Research has found the evidence that ANN is more accurate than the naïve models and 

exponential smoothing models (Law and Au, 1999; Law, 2000; Kon and Turner, 2005). 

Some scholars have also argued that the ARIMA family of models can outperform ANN to 

generate accurate forecasts of tourism demand (Claveria and Torra, 2014). The results of the 

present study complement the previous findings. Although the ARMAX family of models 

have been found to be the most accurate in general, ANN yields better results when used to 

forecast tourist demand for a museum in the short term. Tables 5 and 6 illustrate that the 1-

month-ahead geometric means of the ANN models are 3.64% and 0.439 for MAPE and 

RMSE, respectively, much less than those of other methods. ANN monopolises the least error 

of MAPE and three out of five of RMSE for all museums in the 1-month-ahead forecast. 

Thus, ANNs are more appropriate for those decision-makers who focus on demand in the 

short term. 
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Given that the search query data for the SARMAX-MIDAS model is updated weekly, it is 

assumed that its forecasting accuracy may be higher when more recent information is used 

than models using only monthly data. Unfortunately, the superiority of quarterly-monthly 

mixed data, obtained by Bangwayo-Skeete and Skeete (2015) and Camacho and Pacce 

(2017), is not successfully reproduced. Nonetheless, the mixed frequency method could 

outperform both the Naïve models according to MAPE and the Naïve I model according to 

RMSE. The change of the Easter Holiday dates in 2017 caused significant fluctuation in the 

arrivals for March and April when compared to 2016. This may explain why SARMX-

MIDAS does not outperform the seasonal Naïve I model when measured by RMSE. Data for 

online search behaviour have become a leading indicator of tourism demand. Larger online 

search data indicate that more people are interested in an attraction. However, research has 

yielded mixed results. Hirashima et al. (2017) found that monthly-weekly mixed data is less 

accurate in a prediction of tourism demand in Hawaii. Their estimation results show that the 

index of the last two or three weeks affects the demand of the current month. If the demand 

suggested by online search queries from the present month actually manifests next month, 

then the search data do not completely capture demand, which may lead to less accurate 

forecasts for the ARMAX-MIDAS model. Another issue is consumer heterogeneity, 

including long-term determinants such as economic factors (e.g. income level of visitors and 

the relative price of travel between the country of origin and the destination) and social-

demographic parameters (e.g. the culture and the country of origin, family status and mode of 

travel), all of which affect travel planning (Buhalis and Michopoulou, 2011). For example, 

for the museums under discussion, the proportion of the overseas visitors, who are more 

likely to plan their trips in advance than domestic visitors, exceeds 50% (London & Partners, 

2017). Moreover, other contextual factors, such as the presence of organised group 

excursions or the cancellation of roaming charges for the EU, may also shape visitors’ online  



27 

 

information search and influence the accuracy of forecasting. Although the SARMAX-

MIDAS model does not outperform the others, it is more accurate than the Naïve families in 

general and the geometric means of the five museums’ MAPEs for different forecasting 

horizons are all less than 10% (Table 5), indicating relatively high forecasting accuracy. 

Compared with the other models, SARMAX-MIDAS can provide weekly forecasts, which 

makes it a useful option for decision-makers who need to consider shorter-term predictions. 

Conclusions  

Researchers have increasingly turned to tourist online search behaviour to forecast tourism 

and hotel demand on the destination level. The application of search query data to predict the 

demand for attractions remains underdeveloped. Specifically, the forecasting accuracy of the 

MIDAS model with other frequently used models in tourism domain needed to be further 

confirmed. To address such research gaps, this study used the Naïve 1, seasonal Naïve, 

SARMA, SARMAX, ANN and SARMAX-MIDAS models to forecast tourism demand for 

the top five museums in London. MAPE and RMSE show that no model outperformed the 

other models in all situations. Overall, the SARMAX family of models is proved more 

accurate in terms of forecasting demand for museums in London, especially for the 2-, 3- and 

6-month-ahead forecasts. The ANN model offers superior predictive power when forecasting 

demand one month ahead. The performance of the SARMAX-MIDAS model is not superior 

to any other model, but the overall forecasting accuracy beats the Naïve family models, 

which are still acceptable.  

These findings indicate that different forecasting methods should be recommended to 

decision-makers based on their specific targets. In general, the SARMAX model, with its 

search trend data, is a safer choice because its overall forecasting error is less. However, if 

decision-making is focused on the short-term perspective, then the ANN model may be a 

better choice due to its merits in terms of short-run prediction. If the stakeholder needs to 
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update forecasts frequently, such as every week, then the SARMAX-MIDAS model provides 

a possible solution to that problem. Given the convenience and feasibility of obtaining online 

search data, the imperative to develop web-based tourism demand forecasting systems should 

be recognised. 

The main limitation of this study is its sample size. The sample period is from 2012 to 2016 

and 2017 data are used to evaluate forecasting accuracy. Even when monthly data are used, 

the sample size remains limited. However, despite both visits and online search data being 

available before 2012, and despite the proliferation of the Internet and Google as the 

dominant search engine, Internet users still made up only 80% of the EU and UK population, 

which are the major markets of London tourism, as of 2016 (Google Inc., 2016). More robust 

results may be obtained in future studies with a larger sample size. Additionally, different 

types of needs motivate tourists to visit different attractions (McKercher, 2017). Due to data 

availability, this study considered museums with free admission. Thus, in addition to other 

demand-generating regions, the results of the study should be crosschecked for other types of 

attractions. Considering how little light has been shed on attraction-level demand forecasting, 

future research should expand the forecasting models used here for museums to other types of 

attractions, as this effort should be valuable and useful for both academia and the tourism 

industry. 
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