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Abstract
Meningiomas are the commonest types of tumours in the central nervous system (CNS). It is a benign type of tumour divided into
three WHO grades (I, II and III) associated with tumour growth rate and likelihood of recurrence, where surgical outcomes and
patient treatments are dependent on the meningioma grade and histological subtype. The development of alternative approaches
based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy could aid meningioma grade determi-
nation and its biospectrochemical profiling in an automated fashion. Herein, ATR-FTIR in combination with chemometric
techniques is employed to distinguish grade I, grade II and grade I meningiomas that re-occurred. Ninety-nine patients were
investigated in this study where their formalin-fixed paraffin-embedded (FFPE) brain tissue samples were analysed by ATR-
FTIR spectroscopy. Subsequent classification was performed via principal component analysis plus linear discriminant analysis
(PCA-LDA) and partial least squares plus discriminant analysis (PLS-DA). PLS-DA gave the best results where grade I and
grade II meningiomas were discriminated with 79% accuracy, 80% sensitivity and 73% specificity, while grade I versus grade I
recurrence and grade II versus grade I recurrence were discriminated with 94% accuracy (94% sensitivity and specificity) and
97% accuracy (97% sensitivity and 100% specificity), respectively. Several wavenumbers were identified as possible biomarkers
towards tumour differentiation. The majority of these were associated with lipids, protein, DNA/RNA and carbohydrate alter-
ations. These findings demonstrate the potential of ATR-FTIR spectroscopy towards meningioma grade discrimination as a fast,
low-cost, non-destructive and sensitive tool for clinical settings.

Keywords Meningioma . Infrared spectroscopy . ATR-FTIR . Chemometrics

Introduction

Meningioma and glioma tumours constitute the majority of
primary brain cancers [1]. Gliomas are a more aggressive

and intrinsic type of tumour, which comprise neuroepithelial
tumours originating from the glial or supporting cells of the
central nervous system (CNS) [2]. Meningiomas are the
commonest type of brain tumours, showing differentiation
towards the meninges surrounding the brain and the spinal
cord [3]. They are slow-growing extrinsic tumours with vari-
able prognosis, occasionally growing to a very large size. The
majority occur in a supratentorial location, while a few can
arise in the posterior cranial fossa and, rarely, as extracranial
meningiomas [4]. They often manifest as single or sporadic
lesions, producing non-descript symptoms. The symptoms are
variable in nature depending on the location and the size of the
lesion. The most common presenting symptom is headache.
However, symptoms may include any sensory and/or motor
deficits and gait disturbance.

Multiple meningiomas are commonly associated with
neurofibromatosis type II [5]. Meningiomas can be
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divided into WHO grade I (benign), grade II (atypical)
and grade III (anaplastic) [3]. Grade I meningiomas are
the commonest type of tumours, with slower growth and
lower likelihood of recurrence, exhibiting histological pat-
terns other than papillary, chordoid, clear cell or rhabdoid
[6]; grade II meningiomas also have a slower growth but
higher likelihood of recurrence, exhibiting 3 of the fol-
lowing parameters (macronuclei, spontaneous necrosis,
hypercellularity, small cell formation, sheeting architec-
ture), and have clear cell or chordoid cell types [6]; and
grade III meningiomas are a very rare type of tumour with
fast growing rate and much higher likelihood of recur-
rence, being cancerous aggressive, and histologically, they
can resemble other tumours (melanomas, carcinomas and
sarcomas) [6]. Accurate histological assessment is impor-
tant since surgical outcomes and treatment are dependent
on the meningioma grade and subtypes [5]. Moreover, the
degree of surgical resection and Simpson grading have an
important role also in patient outcome.

The pathogenesis and molecular genetics of meningio-
ma are not very well understood; however, signalling
pathways and growth factor alterations have been reported
[6]. For example, cell cycle dysregulation and telomerase
activation have been recognised as important steps in me-
ningioma progression, where telomerase dynamics, cell
cycle control and the mechanisms responsible for deoxy-
ribonucleic acid damage control are highly entwined [6,
7]. Some WHO grade I meningiomas are linked to muta-
tions of the NF2 gene on chromosome 22 (location
q12.2), which leads to the condition known as neurofibro-
matosis type II where benign tumour proliferates through
the CNS [6]. NF2 codes for the protein merlin that acts as
a tumour suppressor in many different cell types. This
protein interacts with the intermolecular amino-terminal
domain and the carboxyl-terminal domain through phos-
phorylation that also controls the binding to its effector
proteins [6]. In WHO grade I meningiomas, other proteins
of 4.1 family members can also be downregulated, such as
4.1B (DAL-1) [6, 8]. Additionally, epidermal growth fac-
tor receptors (EGFRs) tend be overexpressed in grade I
meningiomas, and the platelet-derived growth factor re-
ceptor beta (PDGFRB) gene is upregulated and
overexpressed in this type of tumour [6]. On the other
hand, WHO grade II meningiomas are characterised by
chromosome mutations (mainly deletions) [6, 9], such as
mutations in the 1p and 14q regions responsible for hous-
ing tumour suppressor genes, and further alterations in
chromosome 1 [6]. Alterations in chromosome 10, includ-
ing the PTEN gene located near the p23.3 region of chro-
mosome 10, and other genetic non-NF2 aberrations are
associated with higher-grade meningiomas [6, 9]. PTEN
is responsible for tumour suppression and production of
the phosphatidylinositol-3,4,5-triphosphate 3-phosphate

protein negatively that regulates the AKT/PKG pathway
that has been linked to the pathogenesis and proliferation
of meningiomas and other tumours [6, 9].

Infrared (IR) spectroscopy is a powerful technique to in-
vestigate biological materials [10]. The interaction of IR with
the biochemical molecules that make up a tissue sample gen-
erates a spectrochemical fingerprint, allowing one to extract
both quantitative and qualitative information. The IR signal,
obtained by a change of the molecular dipole moment, reflects
vibrational movements by the chemical bonds in the material,
such as stretching and bending vibrations. This signal is spe-
cific for each type of sample and can be used to diagnose
samples and to identify possible spectral biomarkers associat-
edwith tumour appearance and differentiation [11]. The signal
within the fingerprint region (1800–900 cm−1) contains im-
portant spectrochemical signatures of key biomolecules, such
as lipids (C=O symmetric stretching at 1750 cm−1, CH2 bend-
ing at 1470 cm−1), proteins (Amide I at 1650 cm−1, Amide II
at 1550 cm−1, Amide III at 1260 cm−1), nucleic acids (asym-
metric phosphate stretching at 1225 cm−1, symmetric phos-
phate stretching at 1080 cm−1), carbohydrates (CO–O–C sym-
metric stretching at 1155 cm−1), glycogen (C–O stretching at
1030 cm−1) and protein phosphorylation (970 cm−1) [10, 12,
13].

In order to obtain meaningful and reliable information,
the IR spectra within the fingerprint region are processed
through specific computational techniques, known as
chemometrics. The spectral data initially undergo pre-
processing techniques to correct the baseline and to re-
move possible physical variations not related to disease
changes, and then chemometric models are built and val-
idated, whereby possible spectral biomarkers as well as
sensitivity and specificity metrics can be obtained [14].
Multivariate classification models, such as principal com-
ponent analysis plus linear discriminant analysis (PCA-
LDA) [15] and partial least squares plus discriminant
analysis (PLS-DA) [16], are commonly employed to pro-
cess IR spectral data, since these techniques allow to ex-
tract relevant spectral features associated with tumour dif-
ferentiation and also to classify the samples into groups in
a predictive fashion.

Gliomas comprise neuroepithelial tumours differentiat-
ing towards the glial or supporting cells of the CNS [2].
They are broadly classified into glioblastomas, astrocyto-
mas, oligodendrogliomas, ependyomas and glioneuronal
tumours [2]. Gliomas have been widely investigated using
IR spectroscopy [16–23], while meningiomas have
attracted relatively little attention [1, 24]. Meningiomas
represent 20% to 35% of all primary intracranial tumours
[4], and determining their WHO grade is essential to de-
fine appropriate treatment pathways. Herein, IR spectros-
copy was applied to distinguish WHO grade I, II and I
meningioma tumours that recurred.
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Materials and methods

Samples and spectral acquisition

Ninety-nine 10-μm-thick formalin-fixed paraffin-embedded
(FFPE) bra in t i s sue samples (70 WHO grade I
meningiomas, 24 WHO grade II meningiomas and 5 WHO
grade I meningiomas that re-occurred) were analysed by a
Bruker Tensor 27 FTIR spectrometer with Helios ATR attach-
ment (Bruker Optics Ltd., Coventry, UK). All samples were
sourced from the Brain Tumour NorthWest (BTNW) biobank
(National Research Ethics Service’s ethics approval NRES14/
EE/1270). All experiments were approved by the STEMH
(Science, Technology, Engineering, Medicine and Health)
ethics committee at the University of Central Lancashire
(STEMH 917). The H&E images for all samples are available
upon reasonable request to the BTWN biobank; the sample
details are depicted in Electronic Supplementary Material
(ESM) Table S1. The sampling area, defined by an internal
reflective element (diamond crystal), was approximately
250 μm× 250 μm. Samples were placed onto aluminium-
covered slides [25], which, in turn, were affixed onto a mov-
ing platform with the sample facing up. De-parrafinisation
was performed prior to commencing measurements using lo-
cal protocols using xylene and ethanol [10]. Moving the plat-
form upward allowed the specimen to contact the diamond
crystal for spectral acquisition. Spectral resolution was
8 cm−1, over the range between 4000 and 400 cm−1, with 32
co-addition scans. Ten spectra were collected per tissue sam-
ple in different random locations to minimise bias. After each
sample, the ATR crystal was cleaned with distilled water and a
new background spectrum was acquired to take into account
ambient changes before the next sampling. The time to ana-
lyse each tissue sample was approximately 10 min.

Data analysis

The spectral data analysis was performed within a MATLAB
R2014b environment (MathWorks, Natick, USA) using the
Classification Toolbox for MATLAB [26]. The biofingerprint
spectra (1800–900 cm−1) were pre-processed by Savitzky-
Golay 2nd derivative (window of 7 points, 2nd-order polyno-
mial fit) and vector normalisation, a common pre-process
employed in biological-derived spectral data for correcting
random noise and baseline distortions and to improve the
signal-to-noise ratio [10, 14]. An outlier test was performed
using Hotelling’s T2 versus Q residual test [14], and no spec-
tral outlier was observed in the dataset (see ESM Fig. S3).
Thereafter, the samples for grade I and grade II meningiomas
were divided into training (70% of samples) and validation
(30%) sets using the Kennard-Stone uniform sample selection
algorithm [27]. Cross-validated PCA-LDA and PLS-DAwere
built using venetian blinds cross-validation with 10 data splits.

PCA-LDA is a supervised discriminant analysis algorithm
based on a principal component analysis (PCA) model follow-
ed by a linear discriminant analysis (LDA) classifier [15].
Initially, the pre-processed spectral data is reduced by PCA
to a small number of principal components (PCs) accounting
for the majority of the data explained variance [28]. Each PC
is composed of scores and loadings: the first representing the
variance on sample direction, thus being used to assess
similarities/dissimilarities between samples, and the latter
representing the variance on wavenumber direction, being
used to find important spectral biomarkers. Then, a LDA
model is built using the PCA scores, where the samples are
assigned to classes based on a Mahalanobis distance calcula-
tion [15]. PLS-DA is another very popular supervised discrim-
inant analysis technique that combines feature extraction and
classification in a single routine [16]. In PLS-DA, a partial
least squares (PLS) model is applied to the data reducing the
pre-processed spectral data to a few numbers of latent vari-
ables (LVs); however, different from PCA-LDA, the input
class labels for the training samples (e.g. + 1 or − 1) are used
during this process, since PLS maximises the co-variation
between the spectral information and the sample category.
The samples are assigned to classes based on a straight line
that divides the classes’ spaces [16].

Model evaluation

The classification models were validated through the calcula-
tion of the accuracy, sensitivity and specificity in the valida-
tion set. Accuracy represents the total number of samples cor-
rectly classified considering true and false negatives, sensitiv-
ity represents the proportion of positive samples that are cor-
rectly classified and specificity represents the proportion of
negative samples that are correctly classified [29]. These met-
rics are calculated as follows:

Accuracy %ð Þ ¼ TPþ TN

TPþ FPþ TNþ FN
� 100 ð1Þ

Sensitivity %ð Þ ¼ TP

TPþ FN
� 100 ð2Þ

Specificity %ð Þ ¼ TN

TNþ FP
� 100 ð3Þ

where TP stands for true positives, TN for true negatives, FP
for false positives and FN for false negatives.

Results

This study is composed of 99 patients separated into 3 groups:
grade I meningiomas (n = 70, 700 spectra), grade II meningi-
omas (n = 24, 240 spectra) and grade I meningiomas that re-
occurred (n = 5, 50 spectra) (see ESM Table S1). Sample
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groups were pre-defined based on histopathologic evidence
before spectral acquisition. Figure 1 shows an example of
H&E slide for WHO grade I and grade II meningiomas. The
raw and pre-processed (Savitzky-Golay 2nd derivative and
vector normalisation) IR spectra for each sample class are
shown in Fig. 2 a–c and in Figs. S1 and S2 (see ESM).
Grade I and grade II meningiomas exhibit higher levels of
variability in comparison with grade I recurrence most likely
due to the smaller number of grade I recurrence spectra
(Fig. 2b). The difference-between-mean (DBM) spectrum
for grade II (+ coefficients) and grade I (− coefficients) me-
ningiomas is shown in Fig. 2 d, where 15 spectral markers
were found with absolute coefficient intensity > 0.01:
1725 cm−1 (lower coefficient in grade II, C=O stretching in
fatty acids), 1708 cm−1 (lower coefficient in grade II, C=O
stretching in thymine), 1698 cm−1 (higher coefficient in grade
II, C2=O stretching in guanine), 1663 cm−1 (lower coefficient
in grade II, C=O stretching in cytosine), 1639 cm−1 (lower
coefficient in grade II, Amide I), 1624 cm−1 (higher coeffi-
cient in grade II, base carbonyl stretching and ring breathing
mode in nucleic acids), 1604 cm−1 (lower coefficient in grade
II, adenine vibration in DNA), 1562 cm−1 (higher coefficient
in grade II, ring base), 1550 cm−1 (lower coefficient in grade
II, Amide II), 1530 cm−1 (lower coefficient in grade II, C=N
and/or C=C stretching), 1512 cm−1 (higher coefficient in
grade II, C–H in-plane bending), 1481 cm−1 (lower coefficient
in grade II, Amide II), 1454 cm−1 (higher coefficient in grade
II, asymmetric methyl deformation), 1396 cm−1 (higher coef-
ficient in grade II, symmetric CH3 bending of the methyl
groups of proteins) and 1068 cm−1 (higher coefficient in grade
II, C–O stretching in ribose) [12]. Nine spectral markers with
absolute coefficients > 0.01 were found in the DBM spectrum
for grade II (+ coefficients) versus grade I recurrence (− coef-
ficients) (Fig. 2e): 1708 cm−1 (lower coefficient in grade II,
C=O stretching in thymine), 1643 cm−1 (lower coefficient in
grade II, Amide I), 1624 cm−1 (higher coefficient in grade II,
base carbonyl stretching and ring breathing mode in nucleic
acids), 1600 cm−1 (lower coefficient in grade II, C=O

stretching in lipids), 1512 cm−1 (higher coefficient in grade
II, C–H in-plane bending), 1490 cm−1 (lower coefficient in
grade II, C=C and/or in-plane C–H bending), 1454 cm−1

(higher coefficient in grade II, asymmetric methyl deforma-
tion), 1339 cm−1 (higher coefficient in grade II, collagen) and
1068 cm−1 (higher coefficient in grade II, C–O stretching in
ribose) [12]. The DBM spectrum for grade I recurrence (+
coefficients) versus grade I (− coefficients) meningiomas
(Fig. 1f) indicates 10 spectral markers with absolute coeffi-
cients > 0.01: 1698 cm−1 (higher coefficient in grade I recur-
rence, C2=O stretching in guanine), 1663 cm−1 (lower coeffi-
cient in grade I recurrence, C=O stretching in cytosine),
1647 cm−1 (higher coefficient in grade I recurrence, Amide
I), 1624 cm−1 (lower coefficient in grade I recurrence, base
carbonyl stretching and ring breathing mode in nucleic acids),
1550 cm−1 (lower coefficient in grade I recurrence, Amide II),
1527 cm−1 (lower coefficient in grade I recurrence, C=N and/
or C=C stretching), 1496 cm−1 (higher coefficient in grade I
recurrence, C=C stretching and/or C–H bending), 1460 cm−1

(lower coefficient in grade I recurrence, asymmetric CH3

bending in collagen), 1393 cm−1 (higher coefficient in grade
I recurrence, symmetric CH3 bending in proteins) and
1335 cm−1 (lower coefficient in grade I recurrence, CH ring
deformation in polysaccharides or pectin) [12].

The spectral data underwent chemometric analysis by
means of PCA-LDA, as a first discriminant attempt, and then
by PLS-DA as a final and best discriminant model. The fol-
lowing comparisons were investigated: (1) grade I versus
grade II meningioma, (2) grade I versus grade I meningiomas
that re-occurred and (3) grade II versus grade I meningiomas
that re-occurred.

Grade I versus grade II meningiomas

The pre-processed data were initially separated into two sub-
sets: training (70% of the samples) and validation (30% of the
samples) using the KS algorithm. The training set was used for
model construction while the validation set for final model

Fig. 1 H&E slides. (a) WHO grade I meningioma (transitional meningioma). (b) WHO grade II meningioma (clear cell)
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evaluation. PCA-LDAwas applied to the spectral data using
10 PCs (98% explained variance, see ESM Fig. S5), where
training and validation accuracies were estimated at 89% and
71%, respectively (Table 1). Despite having reasonable accu-
racies and sensitivity (89% in the validation set), the

specificity in validation was 20%, indicating that many grade
I meningiomas were predicted as grade II. PLS-DAwas then
applied to the spectral data as a most powerful alternative for
class differentiation. PLS-DA model was built with 11 LVs
(93% spectral explained variance, see ESM Fig. S5), generat-
ing accuracies of 97% and 79% in the training and validation
sets, respectively (Table 1). The sensitivity and specificity in
the validation set were equal to 80% and 73%, respectively,
with an area under the curve (AUC) value equal to 0.82, which
indicates a good classification model. The PLS-DA discrimi-
nant function (DF) graph and receiver operating characteristic
(ROC) curve to discriminate grade I and grade II meningio-
mas are depicted in Fig. 3. PLS-DA coefficients (see ESM
Fig. S6) were used to extract biomarker information through
an automatic peak detection algorithm that sought for the 8

Table 1 Quality metrics for PCA-LDA and PLS-DA models to distin-
guish grade I vs. grade II samples

Algorithm Dataset Accuracy (%) Sensitivity (%) Specificity (%)

PCA-LDA Training 89 98 62

Validation 71 89 20

PLS-DA Training 97 96 99

Validation 79 80 73

Grade I

Grade I-rec.

Grade II

Grade I

Grade I-rec.

Grade II

a b

c d

e f

Fig. 2 Infrared spectra for
meningioma tumour samples
(grade I, grade I recurrence and
grade II). (a) Raw spectra and (b)
pre-processed spectra (Savitzky-
Golay 2nd derivative and vector
normalisation), where black line
represents mean spectrum. (c)
Mean spectrum for each class
overlaid. (d) Difference-between-
mean (DBM) spectrum for grade
II (+) vs. grade I (−)
meningiomas. (e) DBM spectrum
for grade II (+) vs. grade I
recurrence (−) meningiomas. (f)
DBM spectrum for grade I
recurrence (+) vs. grade I (−)
meningiomas, where solid dots
represent spectral wavenumbers
with absolute coefficients > 0.01

Spectrochemical differentiation of meningioma tumours based on attenuated total reflection...



most relevant peaks representing the wavenumbers with
highest absolute coefficients (Table 2). PCA-LDA and PLS-
DA model residuals are shown in ESM Fig. S4a and b.

Grade I versus grade I meningiomas that re-occurred

Cross-validated PCA-LDA was applied to the spectral data
using 17 PCs (97% explained variance) (ESM Fig. S7), where

both training and validation accuracies were estimated at 95%
(Table 3). Despite having excellent values of accuracy and
sensitivity (99%), the specificity is again low in validation
(32%), indicating that many grade I meningiomas were pre-
dicted as grade I that re-occurred. PLS-DAwas applied to the
spectral data with 17 LVs (95% spectral explained variance)
(see ESM Fig. S7), generating accuracies of 96% and 94% in
the training and validation sets, respectively (Table 3). The
sensitivity and specificity in the validation were both equal
to 94%, with an AUC value equal to 0.98, which indicates
an almost perfect classification. The PLS-DA DF graph and
ROC curve to discriminate grade I and grade I recurrence
meningiomas are depicted in Fig. 4. The wavenumbers with
highest absolute PLS-DA coefficients (see ESM Fig. S8) are
depicted in Table 4. PCA-LDA and PLS-DA model residuals
are shown in Fig. S4c and S4d (see ESM).

Grade II versus grade I meningiomas that re-occurred

Cross-validated PCA-LDA was applied to the spectral data
using 12 PCs (96% explained variance) (see ESM Fig. S9),
where both training and validation accuracies were estimated
at 90% (Table 5). Once more, the specificity of PCA-LDA is
highly affected (45%), despite having the good accuracies and
sensitivity (99%). PLS-DA was applied to the spectral data
with 13 LVs (95% spectral explained variance) (see ESM

a

b
Spectra

Fig. 3 PLS-DA results to distinguish grade I vs. grade II meningiomas.
(a) Discriminant function (DF) plot for samples’ spectra. (b) Receiver
operating characteristic (ROC) curve, where AUC stands for area under
the curve

Table 2 Spectral markers
identified by PLS-DA in order to
discriminate grade I and grade II
meningiomas

Wavenumber (cm−1) Tentative assignment Relative intensitya P value

1651 Amide I ↓ 0.035 (*)

1593 NH2 adenine ↓ < 10−7 (**)

1546 Amide II ↑ 0.637

1500 δ(CH) in-plane ↑ < 10−4 (**)

1454 δ(CH3) asymmetric ↓ < 10−13 (**)

1377 v(C–O) ↓ 0.030 (*)

1227 vas(PO2
−) ↓ 0.051

1122 v(C–O) in carbohydrates ↑ 0.014 (*)

P value was calculated by an ANOVA test

δ bending, v stretching, vas asymmetric stretching

*P value < 0.05 considered statistically significant; **P value < 0.001 considered statistically highly significant
a ↑ = higher intensity in grade II meningioma; ↓ = lower intensity in grade II meningioma

Table 3 Quality metrics for PCA-LDA and PLS-DA models to
distinguish grade I vs. grade I recurrence samples

Algorithm Dataset Accuracy (%) Sensitivity (%) Specificity (%)

PCA-LDA Training 95 99 34

Validation 95 99 32

PLS-DA Training 96 96 100

Validation 94 94 94

Lilo T. et al.



Fig. S9), generating accuracies of 99% and 97% in the training
and validation sets, respectively (Table 5). The sensitivity and
specificity in the validation were both equal to 97%, with an
AUC value equal to 0.99, which indicates a close-to-perfect
classification. The PLS-DA DF graph and ROC curve to dis-
criminate grade II and grade I recurrence meningiomas are
depicted in Fig. 5, where the wavenumbers with highest ab-
solute PLS-DA coefficients are depicted in Table 6. PCA-

LDA and PLS-DA model residuals are shown in Fig. S4e
and S4f (see ESM).

Discussion

Normal and tumour brain tissues have been previously dis-
criminated using IR or Raman spectroscopy [1], where neo-
plastic tissues (meningioma, glioma and brain metastasis)
were found to be statically significant from normal tissues
using PCA-LDA as the multivariate spectral analysis tech-
nique. Hands et al. [30] reported serum diagnostic of brain
tumours using ATR-FTIR spectroscopy with support vector
machines (SVMs) with the sensitivity of 89.4% and speci-
ficity of 78.0% to distinguish cancerous from non-cancerous
samples and the sensitivity of 82.1% and specificity of
75.0% to distinguish glioma from meningioma tissue. Bury
et al. [31] reported the use of ATR-FTIR spectroscopy to
analyse plasma samples in order to distinguish non-cancer
from different cancerous brain samples. Normal and menin-
gioma samples were differentiated with 87% accuracy using
PCA-LDA and 95% accuracy using SVM, and meningioma
samples were diagnosed among several groups of samples
(normal, high-grade glioma, low-grade glioma and brain me-
tastasis) with an accuracy of 63% using PCA-LDA and an
accuracy of 100% using SVM.

a

b
Spectra

Fig. 4 PLS-DA results to distinguish grade I vs. grade I recurrence
meningiomas. (a) Discriminant function (DF) plot for samples’ spectra.
(b) Receiver operating characteristic (ROC) curve, where AUC stands for
area under the curve

Table 4 Spectral markers
identified by PLS-DA in order to
discriminate grade I and grade I
recurrence meningiomas

Wavenumber (cm−1) Tentative assignment Relative intensitya P value

1755 v(C=O) in lipids ↓ < 10−3 (**)

1693 Amide I (antiparallel β-sheet) ↑ < 10−3 (**)

1477 δ(CH2) in lipids ↓ 0.229

1423 δ(CH2) in polysaccharides ↑ 0.722

1400 vs(COO
−) in amino acids (aspartate, glutamate) ↓ < 10−5 (**)

1369 v(C–N) in cytosine and guanine ↓ 0.542

1346 δ(CH2) in collagen ↓ 0.940

1246 vas(PO2
−) ↑ < 10−4 (**)

P value was calculated by an ANOVA test

δ bending, v stretching, vs symmetric stretching, vas asymmetric stretching

**P value < 0.001 considered statistically highly significant
a ↑ = higher intensity in grade I recurrence meningioma; ↓ = lower intensity in grade I recurrence meningioma

Table 5 Quality metrics for PCA-LDA and PLS-DA models to
distinguish grade II vs. grade I recurrence samples

Algorithm Dataset Accuracy (%) Sensitivity (%) Specificity (%)

PCA-LDA Training 90 99 47

Validation 90 98 45

PLS-DA Training 99 98 100

Validation 97 97 100

Spectrochemical differentiation of meningioma tumours based on attenuated total reflection...



Herein, WHO grade I and grade II meningiomas were dis-
criminated with 79% accuracy in the validation set (80% sen-
sitivity, 73% specificity, AUC= 0.82) using PLS-DA, a simpler
and less susceptible method to overfitting than SVM, indicating
a satisfactory clinical performance taking into consideration the
complexity of the data obtained, as demonstrated by the patient
demographics in Table S1 (see ESM) and the inherent
spectrochemical complexity of tissue samples. Despite having
high accuracies and sensitivities, the lower specificities of the

PCA-LDA models indicate that these models are skewed to-
wards the bigger class size, so the model is classifying the
samples from this class more accurately (high sensitivity) than
the samples from the smaller class (low specificity). The accu-
racy is influenced by the class size, so it tends to follow the
sensitivity. The PLS-DA models, on the other hand, have a
better consistency between sensitivity and specificity, thus in-
dicating no overfitting. The statistically significant spectral
markers were mainly associated with proteins (Amide I,
Amide II), carbohydrates (v(C–O)) and DNA/RNA functional
groups (NH2 adenine, vas(PO2

−)) (Table 2). Proteins play an
important role in the molecular pathways for meningiomas,
where, for example, integrin exhibits different expression pro-
files within different grades of meningioma [32]. In addition,
Amide I, Amide II and carbohydrate absorptions have been
associated with differences between normal and meningioma
tissues [31], and δ(CH), δ(CH3), v(C–O) and vas(PO2

−) have
been found to be related to spectral markers associated with
brain tumours in general [30]. These findings indicate that IR
spectroscopy allied with chemometrics could be used to aid
clinical differentiation of grade I and grade II meningioma tu-
mours in a non-destructive, fast and sensitive way.

“Grade I” and “grade I recurrence”were found to be clearly
different, in which a discriminant performance of 94% accura-
cy (94% sensitivity and specificity) was obtained to distinguish
both types of tumours. This indicates that one can assess the
presence of recurrence in comparison with regular grade I tu-
mours in an objective and automatic fashion by using IR spec-
troscopy and chemometrics. This is immensely important strat-
ification information, which cannot be routinely derived or
inferred from the histological examination of meningiomas
lying within a WHO grade. The spectral markers associated
with recurrence (Table 4) were mainly protein (Amide I),
lipids, collagen and DNA/RNA changes (vas(PO2

−)). DNA
alterations, in special DNA methylation, are highly associated
with meningioma progression, especially as a discriminant fea-
ture between NF2-mutated and non-NF2-mutated tumours
[33]. By evaluating the spectral profile of all patients in grade

a

b
Spectra

Fig. 5 PLS-DA results to distinguish grade II vs. grade I recurrence
meningiomas. (a) Discriminant function (DF) plot for samples’ spectra.
(b) Receiver operating characteristic (ROC) curve, where AUC stands for
area under the curve

Table 6 Spectral markers
identified by PLS-DA in order to
discriminate grade II and grade I
recurrence meningiomas

Wavenumber (cm−1) Tentative assignment Relative intensitya P value

1639 Amide I ↓ 0.579

1597 NH2 adenine ↑ 0.001 (*)

1547 Amide II ↓ 0.425

1523 v(C=N) ↑ 0.018 (*)

1454 δ(CH3) asymmetric ↑ < 10−3 (**)

1265 vas(PO2
−) ↑ < 10−11 (**)

1242 Amide III ↑ < 10−5 (**)

1122 v(C–O) in carbohydrates ↓ 0.251

P value was calculated by an ANOVA test

*P value < 0.05 considered statistically significant; **P value < 0.001 considered statistically highly significant
a ↑ = higher intensity in grade I recurrence meningioma; ↓ = lower intensity in grade I recurrence meningioma
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I cohort, 12 patients (patients 2, 11, 16, 22, 26, 30, 34, 38, 50,
56, 57 and 69) were found to have these spectral markers
following the same trend observed in grade I recurrence, in
terms of relative intensity. This corresponds to 17% of grade
I cohort, and these patients could be potential candidates to
have grade I re-occurring in the future, once their spectral
marker profiles are similar to the ones in grade I recurrence
cohort. In this case, these patients could be followed closely in
the clinical scenario to evaluate if the tumour will re-occur in
the future. Since meningioma re-occurs with an average time
of 10 years, this pilot study does not have this confirmative
information for these patients, although the estimated recur-
rence rate of 17% is close to the usual meningioma grade I
recurrence rate of 10%. This is just a hypothesis that needs
further validation, but if this methodology is proved true, one
could use this spectrochemical information to follow up pa-
tients with higher likelihood of recurrence and provide them
with more specific treatments and closer attention, reducing
existent costs associated with unknown recurrence odds.

Finally, grade II and grade I recurrence were discriminated
based on their spectrochemical profile with an accuracy of 97%
(97% sensitivity and 100% specificity) and the main spectral
markers associated with recurrence (Table 6) were proteins
(Amide I, Amide II and Amide III), carbohydrates (v(C–O))
and DNA/RNA alterations (NH2 adenine, vas(PO2

−)), therefore
indicating that these tumour types are very different. An impor-
tant advantage of using ATR-FTIR spectroscopy is that due to
its non-destructive nature [34], the same tissue section could
theoretically be used for conventional histological analysis or
other complementary techniques such as Raman
microspectroscopy [35]. Moreover, the sensitivity and specific-
ity for meningioma tumour detection towards clinical diagnosis
might improve in future applications using FTIR
microspectroscopy due to its relatively larger spatial resolution
in comparison with ATR-FTIR spectroscopy, which enables the
acquisition of richer spatially distributed spectrochemical
information.
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