
BIROn - Birkbeck Institutional Research Online

Fletcher, G. and Poulovassilis, Alexandra and Selmer, P. and Wood, Peter
(2019) Approximate querying for the Property Graph Language Cypher.
In: 2019 IEEE International Conference on Big Data, 9-12 Dec 2019, Los
Angeles, U.S.. (In Press)

Downloaded from: http://eprints.bbk.ac.uk/29920/

Usage Guidelines:
Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/286267629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.bbk.ac.uk/29920/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Approximate Querying for the Property Graph
Language Cypher

George Fletcher∗, Alexandra Poulovassilis†, Petra Selmer‡ and Peter T. Wood†
∗ Eindhoven Univ. of Technology, The Netherlands, Email: g.h.l.fletcher@tue.nl

† Birkbeck Knowledge Lab, Birkbeck, Univ. of London, UK, Email: {ap,ptw}@dcs.bbk.ac.uk
‡ Neo4j, London, UK, Email: petra.selmer@neo4j.com

Abstract—Graph databases are well-suited to managing large,
complex, dynamically evolving datasets. However, for data that
is irregular and heterogeneous, it may be difficult to formulate
queries that precisely capture a user’s information seeking
requirements. This points to the need for approximate query
processing capabilities that can automatically make changes to
a query so as to aid in the incremental discovery of relevant
information. In this paper we motivate and explore techniques for
providing such capabilities for the Cypher query language. This
is the first time that query approximation has been investigated in
the context of the property graph data model, which is becoming
increasingly prevalent in research and industry.

I. INTRODUCTION

Graph databases are well-suited to managing large, com-
plex, dynamically evolving datasets due to the inherent flexi-
bility and extensibility of graph data models and the efficiency
and scalability of native graph storage implementations. How-
ever, for data that is irregular and heterogeneous in nature, it
may be difficult to formulate queries that precisely capture
a user’s or developer’s information seeking requirements,
hence motivating the need for approximate query processing
capabilities that can automatically make changes to a query so
as to aid in the incremental discovery of relevant information.

Early work on approximating graph queries focussed on ap-
proximation of regular path queries (RPQs) [10] and conjunc-
tive regular path queries (CRPQs) [13] through edit operations
(addition, deletion, substitution) on the edge labels appearing
in the query, each with an associated cost. CRPQs assist in
the querying of graph-structured data by finding conjunctions
of paths through the data that match given regular expressions
over edge labels [2]. CRPQs are supported fully or in restricted
form in contemporary practical languages such as SPARQL
1.1 [11], G-CORE [1], and the Cypher query language of the
Neo4j graph DBMS.1

The benefits of supporting approximate CRPQs include:
correcting users’ erroneous queries, finding additional rele-
vant answers, and generating new queries which may return
unexpected results and bring new insights. Other recent work
has explored flexible querying of graph data through the use
of similarity measures — either structural or ontology-based
— for basic graph pattern queries; we review this work in
Section V. Our own recent work has focussed on the theoret-
ical and practical aspects of approximating CRPQs [19] and

1https://neo4j.com

approximating the property paths of SPARQL 1.1 queries [9],
both in the context of a simple graph data model.

In contrast, in this paper we explore the benefits of providing
such capabilities for the Cypher query language of the Neo4j
graph DBMS, which supports a more intricate property graph
data model [2]. Such capabilities are particularly useful for
Neo4j in that it is a schema-free DBMS. Hence the user does
not have immediate access to information such as the sets
of node and edge labels used in the data they are querying,
or constraints such as which labels occur on edges between
pairs of nodes with particular labels. We also propose here
for the first time data-driven ranking of approximate query
answers, whereas earlier work used only the edit distance of
the approximated query from the original query in order to
rank query answers.

II. APPROXIMATING CYPHER

Cypher is a graph query language originally developed
as part of the Neo4j graph DBMS and now supported by
several other products (e.g. SAP HANA Graph, Redis Graph,
AgensGraph, Memgraph). Cypher 9 is the first version of the
language developed under the auspices of the openCypher
Implementors Group2 and the version that we assume for
our purposes here [8]. Cypher adopts a property graph data
model which, in brief, comprises nodes (representing entities)
and relationships (synonymous with edges) between pairs of
entities; moreover, any number of properties, in the form of
a set of key-value pairs, may be associated with a node or a
relationship. We refer readers to the work of Francis et al. for
details of the formal semantics of Cypher queries, and for an
overview of Cypher’s many applications in industry [8].

We focus here on Cypher’s path patterns and their ap-
proximation. This is because path patterns are the core query
construct for matching fragments of the data graph within a
MATCH clause in Cypher. A Cypher path pattern, p, is of
the form χ1, ρ1, χ2,χn−1, ρn−1, χn where the χi are node
patterns and the ρi are relationship patterns. A node pattern
matches a set of nodes in the data graph, while a relationship
pattern matches a set of paths in the data graph.

A node pattern, χ, is a triple of the form (a, L, P) where
a is an optional name for the node pattern in the query (i.e.

2http://www.opencypher.org

a variable), L a possibly empty set of node labels, and P a
possibly empty map (set of key → value mappings).

A relationship pattern, ρ, is a quintuple of the form
(d, a, T, P, I), where d specifies the directionality of the graph
traversal (→, ← or ↔), a is an optional name for this
relationship pattern in the query, T a possibly empty set of
relationship types (edge labels), P a possibly empty map, and
I an optional interval indicating a lower and/or upper bound
for the length of the paths matched in the data graph (the
default being (1,1)). We note that the T and I components
provide a limited form of RPQ capability, and hence a path
pattern as a whole provides a limited form of CRPQ capability.
On the other hand, the node patterns and the P components
of the relationship patterns go beyond the syntax of CRPQs
and are oriented towards Cypher’s property graph data model.

To illustrate Cypher path patterns and the benefits of their
approximation, consider a journalist looking into international
financial crimes. For her investigations, she is using the
excellent up-to-date Offshore Leaks financial social network
data set, linking company officers and legal entities (i.e.,
companies) registered in the Bahamas.3

Suppose the investigator starts by looking for connections
between intermediary companies and those companies which
are in the same market as the parent company. She submits a
Cypher query Q1 containing the following path pattern in its
MATCH clause:

(c1:Entity)-[:intermediary_of]->(c2:Entity)
-[:related_company]->(c3:Entity)

In this query, c1, c2 and c3 are node names (variables),
Entity is a node label, and intermediary_of and
related_company are relationship types (edge labels). Un-
fortunately, there are no related_company relationships
in the graph, and query Q1 returns an empty result set.
Such mis-specification of relationships is very common during
exploratory analytics, and in such cases a Substitution edit
operation is useful by allowing replacement of an erroneous
edge label in the query by a different one. It is also useful
for seeking additional, potentially relevant, answers through
usage of different edge labels.

Following one substitution operation applied by the system
to Q1 (at a user-configurable cost), the investigator is presented
with the results of query Q′1, with path pattern:

(c1:Entity)-[:intermediary_of]->(c2:Entity)
-[:same_company_as]->(c3:Entity)

having over 15,000 matches in the graph, as well as the results
of query Q′′1 having path pattern:

(c1:Entity)-[:intermediary_of]->(c2:Entity)
-[:similar_company_as]->(c3:Entity)

with an additional 200 matches.
Previous investigations of a Substitution edit operation (and

Insertion and Deletion) evaluate a set of approximated queries

3https://offshoreleaks.icij.org/

that have the same edit distance from the original query in an
arbitrary order (see Section V). Here, we propose instead the
application of data-driven heuristics to order equal-distance
queries. For example, if the user elects to see the answers of
the most selective queries first, then the answers of Q′′1 will
be returned first and those of Q′1 will be returned last.

Suppose next that our investigator turns her attention to links
between officers and companies, with special attention to the
fact that companies often go by different names. She submits
query Q2 containing the following path pattern:

(o1:Officer)-[:officer_of]->(c1:Entity)
-[same_company_as]->(c2:Entity)

returning around 1,200 results in the graph. However, she
suspects that some officers are missing, and so requests
approximation of the query. By Insertion of an additional edge
into the start of the pattern, we are able to obtain additional
officers by seeing also probable connections between officers:

(v)-[:probably_same_officer_as]-(o1:Officer)
-[:officer_of]->(c1:Entity)
-[:same_company_as]->(c2:Entity)

giving an additional 234 officers to investigate (matching the
new variable v); and by seeing also officers having the same
name:

(v)-[:same_name_as]-(o1:Officer)
-[:officer_of]->(c1:Entity)
-[:same_company_as]->(c2:Entity)

returning over 3800 additional officers to investigate4. In
general, when there is an under-specification of a path pattern,
Insertion is useful by allowing the addition of an edge label.
It is also useful for seeking additional, potentially relevant,
answers, e.g., there might have been some answers returned
by the original query but, due to the heterogeneity of the data,
there may be additional relevant ones still to be found. As with
Substitution, the selection of different data-driven heuristics
by the user allows the results of equal-distance approximated
queries to be returned in specific orders.

Finally, trying to collect as many officers as possible, our
investigator poses query Q3 to find officers going under
multiple names and the addresses of their companies:

(o2:Officer)<-[:same_name_as]-(o1:Officer)
-[:registered_address]->(c1:Address)
-[:same_address_as]->(c2:Address)

Unfortunately, this search only returns 1 match in the graph.
Requesting query approximation, she is presented with the
results of the following pattern obtained by Deletion of an
edge (once again at a user-configurable cost):

(o1:Officer)
-[:registered_address]->(c1:Address)
-[:same_address_as]->(c2:Address)

4In the concrete syntax of Cypher as used in the above queries, traversing edges
in either direction is specified using -- rather than↔ as in the abstract syntax.

which leads to 5 further matches in the graph to investigate.
In general, if there is an over-specification of a path pattern,
Deletion is useful by allowing the removal of an edge label.
It is also useful for seeking additional, potentially relevant,
answers, similarly to the case of Insertion. Again, selection of
different data-driven heuristics by the user allows the results
of equal-distance queries to be returned in specific orders.

III. APPROXIMATING CYPHER PATTERNS

We now provide an algorithm for undertaking approximate
Cypher query evaluation, as illustrated above. It is a query
rewriting algorithm, similar in approach to that proposed by
Frosini et al. for approximation of SPARQL 1.1 property
paths [9]. In particular, given a Cypher path pattern p and a
user-specified maximum approximation cost, we incrementally
build a list of pairs (p′, c′) such that p′ is an approximated
version of p and c′ is the cost of deriving p′ from p (i.e. c′

is the sum of the costs of the edit operations applied to p to
obtain p′). This list of pairs is sorted in non-decreasing order
of the approximation costs, c′. The approximated patterns
p′ are evaluated in this order (using the normal Cypher
evaluation [8]) so that query answers are returned in order
of non-decreasing approximation cost.

Finer-grained ordering can be applied to the evaluation of
approximated patterns that have the same approximation cost,
based on their selectivity, e.g. most or least selective first, as
illustrated in the above examples. The user may elect to view
the results of the most selective queries first if a small number
of answers are expected and the user would prefer to explore
each answer in detail. Conversely, the user may elect to view
the results of the least selective queries first if a large number
of answers are expected and desired.

Algorithm 1 rewrites a path pattern p of the form
χ1, ρ1, χ2,χn−1, ρn−1, χn into a list of pairs (p′, c′), where
p′ is an approximated version of p and c′ is the cost of deriving
this approximation from p. We first initialise the variables
oldGen and pairs to contain just the input path pattern p.
For each path pattern p in oldGen we apply one step of
approximation to each of its node patterns and to each of its
relationship patterns and we assign the cost of applying that
approximation to the resulting path pattern. Each of these path
patterns is added to the set-valued variable newGen and to
the list-valued variable pairs (ordered by non-decreasing cost)
provided the maximum cost limit maxCost is not exceeded.
If the same path pattern is generated more than once, only the
one with the lowest cost is retained within pairs.

So far, these approximations have not changed the length
of the path pattern p; they have only modified one of its
components (a node pattern or a relationship pattern), gen-
eralising the Substitution edit operation illustrated earlier. We
also generate a set of path patterns that are derived from p
by removing a relationship pattern and adjacent node patterns
(cf. the Deletion operation illustrated above). These removals
of relationship patterns from p are captured by the function
removeRP in Algorithm 1.

Algorithm 1: Path Pattern Rewriting
Input: path pattern p, maximum edit cost maxCost
Output: list of path pattern/cost pairs, ordered by

non-decreasing cost

oldGen := {(p, 0)}
pairs := [(p, 0)]
while oldGen 6= ∅ do

newGen := ∅
foreach (p, c) ∈ oldGen do

foreach node pattern np ∈ p do
foreach (p′, c′) ∈ applyNPApprox(p, np) do

update newGen and pairs

foreach relationship pattern rp ∈ p do
foreach (p′, c′) ∈ applyRPApprox(p, rp) do

update newGen and pairs

foreach (p′, c′) ∈ removeRP(p) ∪ addRP(p) do
update newGen and pairs

oldGen := newGen

return pairs

Algorithm 2: applyNPApprox
Input: path pattern p, node pattern np within p
Output: set of path pattern/cost pairs

S := ∅
foreach (np′, cost) ∈ approxNP(np) do

p′ := replace np by np′ in p
S := S ∪ {(p′, cost)}

return S

Also generated is a set of path patterns that are derived from
p by the addition of a new relationship pattern and adjacent
node pattern (cf. the Insertion operation illustrated above).
The value of each new node pattern is (v, ∅, ∅), where v is
a new variable not appearing anywhere else in the query. For
each relationship type t in the graph, the new relationship
pattern is (↔, v, {t}, ∅, (1, 1)), where v is again a new variable
not appearing anywhere else in the query. These insertions
of relationship and node patterns into p are captured by the
function addRP in Algorithm 1. This process of producing a
new generation of path patterns from the current set continues
until no new-generation path patterns can be produced.

Algorithm 1 calls functions applyNPApprox (Algo-
rithm 2) and applyRPApprox (Algorithm 3) to apply one
step of approximation to a node pattern or a relationship
pattern of p, respectively. These two algorithms themselves
call Algorithm 4 and Algorithm 5, respectively, to generate
an approximated node pattern or an approximated relationship
pattern, respectively.

In Algorithm 4, given the label set L of a node pattern,
the function approxLabelSet returns a set of pairs of label

Algorithm 3: applyRPApprox
Input: path pattern p, relationship pattern rp within p
Output: set of path pattern/cost pairs

S := ∅
foreach (rp′, cost) ∈ approxRP(rp) do

p′ := replace rp by rp′ in p
S := S ∪ {(p′, cost)}

return S

Algorithm 4: approxNP
Input: node pattern np = (a, L, P)
Output: set of node pattern/cost pairs

return {((a, L′, P ′), c1 + c2) | (L′, c1) ∈
approxLabelSet(L) ∧ (P ′, c2) ∈ approxMap(P)}

sets and costs: the original label set L with cost 0, and each
set obtained from L by removing a label, with an associated
cost. Insertion and substitution are not applied to L for the
following reasons. Because a graph node will match a node
pattern only if its label(s) match all of the labels in L, inserting
a new label will not provide the user with additional answers.
Furthermore, substituting a node label l by a different label
will be subsumed by removing l from L (i.e., the latter will
match at least as many nodes as the former). Similarly, given
map P , the function approxMap returns a set of pairs of
maps and costs: the original map P with cost 0, and each map
obtained from P by removing a mapping, with an associated
cost. As for the function approxLabelSet, it is not necessary
to support either insert or substitution edit operations on P .

In Algorithm 5, given the relationship types component
T of a relationship pattern, the function approxRelTypeSet
returns a set of pairs of type sets and costs: the original type set
T with cost 0, and each set comprising a single type different
from each of the types in T , with an associated cost. Since T
is interpreted as a disjunction, it is not necessary to support
a delete edit operation on T . Also, adding a type t to T will
return the same set of new matches as replacing T by {t}. So
the insertion edit operation is not needed. Given an interval
I , the function approxInterval returns the original interval I
with cost 0, as well as all intervals (each with a cost) obtained
by expanding a path length by 1; it is not necessary to support
the contraction of a path length, as this will not generate any
new matches against the graph.

IV. EVALUATION

We have conducted a preliminary performance evalu-
ation of our query approximation algorithms, using the
Paradise Papers dataset5 (which, at around 1.5GB, is
much larger than the Offshore Leaks database we re-
ferred to in our earlier examples). The Paradise Papers
data comprises 867,931 nodes and 1,657,838 edges. It

5https://offshoreleaks.icij.org/pages/database

Algorithm 5: approxRP
Input: relationship pattern rp = (d, a, T, P, I)
Output: set of relationship pattern/cost pairs

return {((d, a, T ′, P ′, I ′), c1 + c2 + c3) |
(T ′, c1) ∈ approxRelTypeSet(T)∧
(P ′, c2) ∈ approxMap(P)∧
(I ′, c3) ∈ approxInterval(I)}

uses the following five node labels: Officer, Entity,
Intermediary, Address and Other, and the following
six edge labels: officer_of, registered_address,
connected_to, intermediary_of, same_name_as
and same_id_as. Each node and edge has a number of
properties. All nodes have a name property which is used
in most of our queries and for which indexes are created in
the Neo4j database. Inspired by the example queries over this
dataset described in several Neo4j blogposts6,7,8, we defined
the 10 queries listed in Table I for use in our evaluation.

For each query, we generated the set of approximated
queries resulting from one step of approximation (i.e. we set
the cost of each approximation to 1, and the maximum edit
cost input to Algorithm 1 to 1). We ran the original query
and each of its approximations six times on an otherwise idle
machine, discarding the first timing and averaging the next
five. The queries were executed on a MacBook Pro (2016)
running MacOS 10.14.6, at 2.9 GHz, with 16 GB RAM and
using Version 3.5.8 of Neo4j (Enterprise Edition).

Table II shows, for each query: the number of approximated
queries; the number of these that return non-empty results; the
number of results returned by these queries, in ascending order
of result size; and the execution time of the corresponding
query. All queries were initially run using a 2-minute timeout.
Any queries that timed out were then modified to just count
the number of results (entries in Table II with a ‘?’ for their
execution time only) Those that still timed out, were run with
a timeout of 10 minutes. Queries that have a ‘?’ for both their
result count and their execution time are ones that timed out
at 10 minutes.

We make the following observations about each of the 10
queries:

Query Q1 returns no results because related_to is not
a valid edge label. The edge label connected_to is the
semantically closest valid label. When this label is substituted
for related_to in Q1, the query returns 2114 results.

Query Q2 returns no results because edges labelled
intermediary_of go from nodes with label Other, rather
than Officer, to nodes with label Entity. When the node
label Officer is removed, the query returns 68539 results.

Query Q3 returns only one result because most
officer_of edges go from Officer nodes to Entity
nodes, not other Officer nodes. Removing the Officer

6https://neo4j.com/blog/depth-graph-analysis-paradise-papers/
7https://neo4j.com/blog/analyzing-paradise-papers-neo4j/
8https://offshoreleaks-data.icij.org/offshoreleaks/neo4j/guide/datashape.html

TABLE I
THE TEN QUERIES USED IN THE EVALUATION.

Q1: MATCH (e1)-[:intermediary_of]->(e2)-[:related_to]-(e3) RETURN e1.name, e2.name, e3.name
Q2: MATCH (o:Officer)-[:intermediary_of]->(e1:Entity)-[:officer_of]-(e2) RETURN o.name, e1.name , e2.name
Q3: MATCH (o1:Officer)-[:officer_of]->(o2:Officer)-[:registered_address]->(a:Address)

RETURN o1.name, o2.name, a.name
Q4: MATCH (o:Officer {name: ’The Duchy of Lancaster’})-[*1..2]-(e:Officer) RETURN o.name, e.name
Q5: MATCH (i:Intermediary)-[:connected_to]->(e:Entity:Intermediary)

WHERE i.name CONTAINS ’Appleby’ RETURN i.name, e.name
Q6: MATCH (a:Address {country: ’US’})--(o:Officer)--(e:Entity)

RETURN e.jurisdiction_description AS jurisdiction, COUNT(*) AS num ORDER BY num DESC
Q7: MATCH (o1:Officer)-[:officer_of]->(e1:Entity)-[:registered_address]->(a:Address)

<-[:registered_address]-(e2:Entity)<-[:officer_of]-(o1) WHERE a.name CONTAINS "Canon’s Court; PO Box"
RETURN o1.name, e1.name, a.name, e2.name

Q8: MATCH (o1:Officer)-[:registered_address]->(a:Address)<-[:registered_address]-(e2:Entity)
WHERE a.name CONTAINS "Canon’s Court; PO Box" AND o1.name=e2.name RETURN o1.name, a.name, e2.name

Q9: MATCH (o:Officer {name: ’The Duchy of Lancaster’})-[*1..3]-(e:Officer) RETURN o.name, e.name
Q10: MATCH (a:Address)--(o:Officer)--(e:Entity)

RETURN e.jurisdiction_description AS jurisdiction, COUNT(*) AS num ORDER BY num DESC

TABLE II
NUMBER OF ONE-STEP APPROXIMATIONS OF EACH QUERY; NUMBER OF THOSE RETURNING NON-EMPTY RESULTS; NUMBER OF RESULTS EACH RETURNS

(IN ASCENDING ORDER OF RESULT SIZE); AND CORRESPONDING EXECUTION TIMES

Query no. of no. with no. of query results, and
approx. non-empty query execution times (s)
queries results

Q1 40 6 193 2114 2316 17462 68539 99695
0.465 0.457 0.466 0.516 0.664 0.609

Q2 39 5 3893 9802 68539 1030945 12886966
0.226 0.241 0.442 2.128 ?

Q3 39 9 1 1 866 4577 16734 25330 227090 1285441 22944525
0.143 0.151 0.181 0.157 0.209 0.280 0.547 4.332 ?

Q4 24 10 7 7 7 10 12 76 83 128 350008 28876444
0.002 0.004 77.3 0.001 0.002 0.002 0.006 0.002 0.323 ?

Q5 27 1 50
0.005

Q6 30 2 35 38
3.75 1.3

Q7 65 11 1 16 16 16 40 40 142 1693 1790 12852 12852
0.038 0.042 0.047 0.486 0.043 0.044 0.044 0.318 0.065 0.106 0.110

Q8 39 10 1 1 2 3 4 4 4 8 9 11
0.039 0.042 0.037 0.154 0.037 0.041 0.538 0.039 0.039 0.038

Q9 24 10 63 83 314 546 907 2348 2894 350008 ? ?
0.002 0.002 0.002 0.004 0.004 0.012 0.010 0.301 ? ?

Q10 29 20

1 1 1 5 13 16 16 17 30 33
0.302 0.337 0.348 13.9 0.632 0.468 2.85 0.251 7.06 6.98

35 35 36 36 37 38 38 ? ? ?
22.2 118 0.495 3.48 4.56 1.24 65.7 ? ? ?

label from o1 or the Address label from a yield the same
single answer as the original query (the first two entries
with 1 result for Q3 in Table II). Possible alternative in-
tentions for this query include replacing officer_of by
same_name_as (yielding 866 results) or same_id_as
(yielding 4577 results), or by removing the Officer label
from o2 (yielding 1285441 results).

Query Q4 returns 7 officers who are connected by one or
two relationships to “The Duchy of Lancaster”. Removing the
node label Officer from e uncovers additional funds (since
they are entities not officers), among the 10 answers reported
in Table II. Inserting officer_of before o or before e
returns the same 7 answers as the original query. Applying
interval approximation increases the number of hops specified
in the interval from 2 to 3 and yields 76 new results not

returned by the original query.
Query Q9 is the approximated version of Q4 that has 3 hops

specified in the interval. Applying interval approximation to
Q9 increases the number of hops to 4, yielding 2894 results.
Removing the Officer node label from o causes the query
to time out, as does removing the property restriction on o.

Query Q5 returns no results because there are no nodes
labelled with both Entity and Intermediary. Removal
of the Intermediary label produces 50 answers.

Query Q6 returns no results because country is an
incorrect property name. Removing this mapping yields 35
jurisdictions, while removing the entire first relationship pat-
tern yields a further 3 jurisdictions (within the 38 returned).
It turns out that one of these “new” jurisdictions is simply a
modified spelling of one of the original ones.

Query Q10 is the approximated version of Q6 that yielded
35 results. By removing the node a and its following relation-
ship or the Address label from a, the same 38 jurisdictions
as above are returned. Removal of the relationship pattern
containing Officer yields 36 results, including two new
jurisdictions. Removal of the node label Officer from o
yields 37 results, including the final undiscovered jurisdiction
among the 41 in the data.

Query Q7 returns 16 results. Removing the relationship pat-
tern (e2:Entity)<-[:officer_of] produces a query
which finds officers registered at the same address as entities
of which they are officers, yielding one new answer.

Query Q8 returns only 4 answers. By adding
(v)-[:officer_of] before (e2:Entity), the
approximated query finds entities whose officers are
registered at the address, yielding 3 new results.

We see from Table II that there can be a large difference in
the number of results returned by the least and most selective
approximated queries, pointing to the potential usefulness of
our proposed data-driven heuristics for ordering the results
of equal-cost queries. Also, the query timings are encour-
aging from a performance perspective, in showing that the
user would not need to wait a long time for results from
most approximated queries to be returned. Finally, all of the
different types of approximations described in SectionIII are
potentially useful in the sense that, over our 10 test queries,
all of them yield approximated queries that return non-empty
results.

V. RELATED WORK

Query approximation and relaxation, sometimes referred to
as flexible querying, has been studied in the context of many
different data models and query languages.

Early work on flexible querying for semi-structured data was
undertaken in [14], where flexible answers corresponded to
paths whose set of edge labels contained those appearing in the
query. More generally, [10] explored approximate matching
of single-conjunct regular path queries (RPQs) using edit
operations (addition, deletion, substitution) on the edge labels
appearing in the query.

Several proposals for flexible RDF querying use similarity
measures between resources, constants or structures to retrieve
additional answers [5], [12], [15]. In [17] knowledge of the
semantic relationships between nodes is used for approximate
query matching, while [4] describes a framework for cost-
aware querying of weighted RDF data through predicates that
express flexible paths between nodes. Extending SPARQL
with keyword search capabilities, together with IR-style rank-
ing of query answers, is proposed in [7]. Relaxing RDF queries
based on user preferences is investigated in [3], [6].

A topic related to flexible querying is that of so-called
“why-not queries”, where users wish to find out why particular
answers are not returned by an original query [20]. However,
in order for the system to answer a why-not query, the user
must provide specific answer tuples (or mappings) that do not
appear among the original results.

VI. CONCLUDING REMARKS

In this paper we have motivated, specified, and illustrated
approximate querying for the path patterns of the Cypher prop-
erty graph query language. We have described a preliminary
performance study showing the promise of our approach, both
in terms of returning potentially useful answers for the user
and in terms of query performance.

Clearly a much more extensive performance study needs to
be undertaken. This could identify where further research may
be required in terms of optimisation techniques for evaluating
approximate Cypher queries, e.g. using a graph summary [16]
to avoid generating queries that are unsatisfiable.

Also important is the design of graphical interfaces to sup-
port users’ interaction with such query approximation facilities
— some preliminary ideas are given in [18]. Finally, extending
approximation to a wider subset of the Cypher language,
beyond just its path patterns, is also an open area of research.

REFERENCES

[1] R. Angles et al. G-CORE: A core for future graph query languages. In
SIGMOD, pages 1421–1432, 2018.

[2] A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets. Querying graphs.
Morgan & Claypool, 2018.

[3] P. Buche, J. Dibie-Barthélemy, and H. Chebil. Flexible SPARQL
querying of web data tables driven by an ontology. In FQAS, pages
345–357, 2009.

[4] J. P. Cedeño and K. S. Candan. R2DF framework for ranked path queries
over weighted RDF graphs. In Web Int., Mining and Semantics, pages
40:1–40:12, 2011.

[5] R. De Virgilio, A. Maccioni, and R. Torlone. A similarity measure for
approximate querying over RDF data. In EDBT, pages 205–213, 2013.

[6] P. Dolog, H. Stuckenschmidt, H. Wache, and J. Diederich. Relaxing
RDF queries based on user and domain preferences. J. Intell. Inf. Syst.,
33(3):239–260, 2009.

[7] S. Elbassuoni, M. Ramanath, and G. Weikum. Query relaxation for
entity-relationship search. In ESWC, pages 62–76, 2011.

[8] N. Francis et al. Cypher: An evolving query language for property
graphs. In SIGMOD, pages 1433–1445, 2018.

[9] R. Frosini, A. Calı̀, A. Poulovassilis, and P. T. Wood. Flexible query
processing for SPARQL. Semantic Web, 8(4):533–563, 2017.

[10] G. Grahne and A. Thomo. Regular path queries under approximate
semantics. Annals of Math. and Art. Int., 46(1-2):165–190, 2006.

[11] S. Harris and A. Seaborne, editors. SPARQL 1.1 Query Language, W3C
Recom., 21 March 2013.

[12] A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. Towards fuzzy
query-relaxation for RDF. In ESWC, pages 687–702, 2012.

[13] C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking approximate
answers to semantic web queries. In ESWC, pages 263–277, 2009.

[14] Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In
PODS, pages 40–51, 2001.

[15] C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL:
a virtual triple approach for similarity-based semantic web tasks. In
ISWC, pages 295–309, 2007.

[16] Y. Liu, T. Safavi, A. Dighe, and D. Koutra. Graph summarization
methods and applications: A survey. ACM Comput. Surv., 51(3):62:1–
62:34, June 2018.

[17] F. Mandreoli, R. Martoglia, G. Villani, and W. Penzo. Flexible query
answering on graph-modeled data. In EDBT, pages 216–227, 2009.

[18] A. Poulovassilis. Applications of flexible querying to graph data. In
Graph Data Management: Fundamental Issues and Recent Develop-
ments, pages 97–142. Springer, 2018.

[19] A. Poulovassilis, P. Selmer, and P. T. Wood. Approximation and
relaxation of semantic web path queries. J. Web Semantics, 40:1–21,
2016.

[20] M. Wang, J. Liu, B. Wei, S. Yao, H. Zeng, and L. Shi. Answering
why-not questions on SPARQL queries. Knowledge and Information
Systems, 58(1):169–208, Jan 2019.

