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Statistical Inference for Networks of High-Dimensional
Point Processes

Xu Wang, Mladen Kolar & Ali Shojaie

January 14, 2020

Abstract

Fueled in part by recent applications in neuroscience, high-dimensional Hawkes pro-
cess have become a popular tool for modeling the network of interactions among multi-
variate point process data. While evaluating the uncertainty of the network estimates
is critical in scientific applications, existing methodological and theoretical work have
only focused on estimation. To bridge this gap, this paper proposes a high-dimensional
statistical inference procedure with theoretical guarantees for multivariate Hawkes pro-
cess. Key to this inference procedure is a new concentration inequality on the first- and
second-order statistics for integrated stochastic processes, which summarizes the en-
tire history of the process. We apply this concentration inequality, combining a recent
result on martingale central limit theory, to give an upper bounds for the convergence
rate of the test statistics. We verify our theoretical results with extensive simulation
and an application to a neuron spike train data set.

Keyword: Hawkes process; high dimensional inference; hypothesis testing; confidence in-
tervals.

1 Introduction

Multivariate point process data have become prevalent in many applications areas. Exam-
ples include neural spike train data in neuroscience containing times of neuron spikes of a
collection of neurons (Okatan et al., 2005), social media data recording times when each
individual in an online community takes an action (Zhou et al., 2013), and high frequency
financial data recording times of market orders (Chavez-Demoulin and McGill, 2012). These
processes can be represented by a graphical model G = (V,E) (Lauritzen, 1996), where each
node v ∈ V represents a component of the multivariate point process, and each directed
edge, (u→ v) ∈ E, indicates that the history of the source node u influences the probability
of future events of the target node v. Multivariate point process data provide opportunity
to learn the latent connectivity structure of this network.
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In his seminal paper, Hawkes (1971) proposed a class of point process models, in which
the probability of future events of each component can be influenced by the entire history of
past events of others. The multivariate Hawkes process model has become a popular tool for
studying the connectivity structure of the network because of its flexibility and interpretabil-
ity in modeling the dependence structure between different point processes. From its early
application in earthquake prediction (Ogata, 1988), this model has been widely applied to
learn the latent connectivity structure in many fields, including neuroscience (Chen et al.,
2017), social media (Zhou et al., 2013), and finance (Linderman and Adams, 2014).

In the original model (Hawkes, 1971) and later theoretical developments (Hawkes and
Oakes, 1974; Reynaud-Bouret and Roy, 2007; Reynaud-Bouret and Schbath, 2010; Bacry
et al., 2015; Hansen et al., 2015; Etesami et al., 2016) the Hawkes process is considered as
a mutually-exciting process, in which an event can only excite the process. In other words,
each event of each component may trigger future events of all point processes including
itself. However, in many applications, it is desired to allow for inhibitory effects of past
events. For example, a spike in one neuron may inhibit the activities of other neurons
(Babington, 2001), which means that it decreases the probability that other neurons would
spike. Recently, Costa et al. (2018) and Chen et al. (2017) have considered a broader class
of the Hawkes processes that allow for both excitatory and inhibition effects in single and
multivariate Hawkes process, respectively.

In modern applications, learning the connectivity network of multivariate point processes
often poses additional challenges due to high-dimensionality. This is because the number of
components measured, i.e. the number of neurons, is often large compared to the observed
time period, i.e. the duration of neuroscience experiments. Recent work by Hansen et al.
(2015) and Chen et al. (2017) has addressed this challenge by proposing `1-regularized esti-
mation procedures. However, existing procedures for learning networks of multivariate point
processes do not provide measures of uncertainty, which are critical in scientific applications.

Recent literature on statistical inference in high dimensions (e.g., Javanmard and Mon-
tanari, 2013; Zhang and Zhang, 2014; van de Geer et al., 2014; Ning and Liu, 2017) provides
the ideal starting point for developing inference procedures for multivariate point processes.
However, the vast majority of existing approaches consider the setting of independent data.
Therefore, these results can not be applied to time series settings. One notable exception is
the recent work by Zheng and Raskutti (2018), which develops a statistical inference proce-
dure for high-dimensional vector auto-regressive (VAR) models. However, while a significant
step forward, the VAR model captures the past history for a fixed and pre-specified time
lag (or order). In contrast, the Hawkes process is dependent on the entire past history.
Therefore, developing a high-dimensional inference procedure for the multivariate Hawkes
process introduces significant additional challenges. In particular, this dependence on the
entire history complicates the proof of convergence of the test statistic for the multivariate
Hawkes process.

In this paper, we provides the first high-dimensional inference procedure for multivariate
Hawkes processes with both excitatory and inhibitory effects. To this end, we adopt the de-
correlated score test framework of Ning and Liu (2017) to high-dimensional point processes.
To overcome the theoretical challenges stemming from the dependence structure, we develop
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a new concentration inequality on the first- and second-order statistics of the multivariate
Hawkes process. Importantly, unlike previous results by Costa et al. (2018) and Chen et al.
(2017), our results apply to integrated stochastic processes that summarize the entire history
of each component. Such processes are necessary for developing high-dimensional inference
procedures. Thus, instead of using the thinning process representation (Brémaud and Mas-
soulié, 1996) or a coupling construction technique (Chen et al., 2017), our proof is based
on a careful investigation on the transition structure of the Hawkes process. We combine
this concentration inequality with the recent martingale central limit theorem of Zheng and
Raskutti (2018) to obtain an upper bound for the convergence rate of our test statistics. We
also provide confidence intervals for the model parameters by extending the semi-parametric
efficient confidence region of Zheng and Raskutti (2018) for VAR models to the setting of
Hawkes processes.

The rest of this paper is organized as follows. Section 2 introduces the linear Hawkes
process and reviews its basic properties. Our hypothesis testing and the inference procedure
is outlined in Section 3. In Section 4, we present theoretical results that guarantee the weak
convergence of our test statistics under null and alternative hypothesis. The construction of
confidence intervals and their theoretical justification is presented in Section 5. We investi-
gate the properties of the proposed estimator using simulations in Section 6 and illustrate
its utility in neuroscience applications in Section 7. Proofs of the main theorems are given in
Section 9 and we conclude with a short discussion in Section 8. Proofs of technical lemmas
are given in the Appendix.

2 The Linear Hawkes Process

Let B(R) denote the Borel σ-field of the real line, and let {tk}k∈Z defined in range [0, T ]
be a sequence of real-valued random variables such that tk+1 > tk and t1 ≥ 0. Here, time
t = 0 is a reference point in time, e.g., the start of an experiment. For A ∈ B(R), we
define a simple point process N on R as a family {N(A)}A∈B(R) that takes on non-negative
integer values such that the sequence {tk}k∈Z consists of event times of the process N , i.e.,
N(A) =

∑
k 1tk∈A. In this consruction, the process N is essentially a simple counting process

with isolated jumps of unit height which occur at {tk}k∈Z. We write N([t, t+ dt)) as dN(t),
where dt denotes an arbitrarily small increment of t.

Let N be a p-variate counting process N ≡ {Ni}i∈{1,...,p}, where, as above, Ni satisfies
Ni(A) =

∑
k 1tik∈A for A ∈ B(R) and {ti1, ti2, . . . } denote the event times of Ni. Let Ht

be the history of N prior to time t. The intensity process {λ1(t), . . . , λp(t)} is a p-variate
Ht-predictable process, defined as

λi(t)dt = P(dNi(t) = 1|Ht). (1)

Hawkes (1971) proposed a class of point process models in which past events can affect the
probability of future events. This process is called the linear Hawkes model, if the intensity

3
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function for unit i takes the form

λi(t) = µi +

p∑
j=1

(
ωij ∗

dNj

dt

)
(t), (2)

where (
ωij ∗

dNj

dt

)
(t) =

∫ ∞
0

ωij(∆) ∗ dNj(t−∆) =
∑
k:tjk≤t

ωij(t− tjk). (3)

Here, µi is the background intensity of unit i, and ωi,j(·) : R+ → R is the transfer function,
where ωi,j(t − tjk) represents the influence from the kth event of unit i on the intensity of
unit i at time t.

Motivated by neuroscience applications (Linderman and Adams, 2014; de Abril et al.,
2018), we consider a parametric transfer function ωi,j(·) such that

ωij(t) = xj(t)βij, (4)

xj(t) =

∫ t−

0

kj(t− s)dNj(s). (5)

Here, the transition kernel kj(·) : R+ → R represents the decay of the influence of a past
event. A commonly used example is the exponential transition kernel, kj(t) = e−t, considered
by Bacry et al. (2015). In this formulation, βij represents the strength of the influence of unit
j’s past event on the intensity of unit i. A positive βij, which implies that the past events of
one unit excites future events of another, is often considered in literature (e.g. Bacry et al.,
2015; Etesami et al., 2016). However, we might also wish to allow for negative βij values
to represent inhibitory effect of one unit’s past events on another unit (Chen et al., 2017).
For example, in neuroscience, it is well known that a spike of one neuron may inhibit the
activities of other neurons (Babington, 2001).

Denoting x(t) = (x1(t), . . . , xp(t)) ∈ R1×p and βi = (βi1, . . . , βip)
> ∈ Rp×1, we can write

λi(t) = µi + x(t)βi, (6)

Then, letting Yi(t) = dNi(t)/dt, and εi(t) = Yi(t) − λi(t), the linear Hawkes process can be
written compactly as

Yi(t) = µi + x(t)βi + εi(t). (7)

As we will discuss later, a key challenge in this ‘linear model’, stems from heteroscedasticity,
i.e., the fact that

σ2
i (t) ≡ V ar (εi(t)|Ht) = λi(t)(1− λi(t)) (8)

may not necessarily be 1 and depends on x(t).

Throughout this paper, we assume that the linear Hawkes model described above is
stationary, meaning that for all units i = 1, . . . , p, the spontaneous rates µi and strengths of
transition βij are constant over the time range [0, T ] (Brémaud and Massoulié, 1996; Daley
and Vere-Jones, 2003).
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3 Testing

We consider testing a d-dimensional subset of {βij}1≤j≤p; that is, βiJ = {βij, j ∈ J ⊂
{1, . . . , p}} and ‖J‖0 = d:

H0 : βij = 0, j ∈ J. (9)

For ease of notation, we primarily focus on the case of single parameter; that is, we consider
testing H0 : βij = 0, which corresponds to d = 1. However, our inferential framework is
developed for the more general case of d ≥ 1.

Since the variance of noise σ2
i (t) defined in (8) is not necessarily one, for convenience we

scale the columns x(t). More specifically, let x̃j(t) = xj(t)/σi(t) for j = 1, . . . , p. Before
defining the test statistics, we first define the orthogonal projection of x̃j(t) onto x̃−j(t),
where x̃−j(t) = (x̃1(t), . . . , x̃j−1(t), x̃j+1(t), . . . , x̃p(t)). Let the projection coefficient w∗j =(
w∗j0 w∗j,−j

)
∈ Rp be such that

x̃j(t)−
(
1, x̃−j(t)

)>
w∗j ⊥ x̃−j(t) (10)

Denoting the orthogonal complement of x̃j(t) after removing its projection onto x̃−j(t) as

x̃∗j(t) ≡ x̃j(t)−
(
1, x̃−j(t)

)>
w∗j , (11)

we have

E
[
x̃∗j(t)

]
= 0. (12)

Using this construction, our de-correlated score statistic is defined as

Sij =
1

T

T∑
t=1

ε̃i(t) x̃
∗
j(t). (13)

Remark 3.1: The reason we construct the de-correlated score statistics based on x̃∗j(t),
rather than defining it directly based on x̃j(t), is that we do not know the true value of
the nuisance parameters, µi and βi,−j, and use estimates of these nuisance parameters. The
construction of the de-correlated score statistics helps make the error induced by the estima-
tion of the nuisance parameter asymptotically negligible; see Ning and Liu (2017) for more
details.

Remark 3.2: Zheng and Raskutti (2018) also considers a similar de-correlated score
statistics but in VAR model setting under an assumption of unit variance noise over the
entire time range. The difference between our score statistics and theirs is that our score
takes into account the variance of noise when constructing the score statistics due to the
fact that the variance of noise is not the same at each t. In addition, the variance of noise
depends on the intensity value which is time varying, which makes the technical proof more
challenging in our case.
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Now, let

Υj = Cov
(
ε̃i(t) x̃

∗
j(t)
)

= E
((
x̃∗j(t)

)2
)
, (14)

VT =
√
T Υ

−1/2
j Sij, (15)

UT = ‖VT‖2
2. (16)

Note that in the simple case testing a univariate βij, Υj is a scalar. When testing multiple
parameters βiJ , ΥJ = Cov (ε̃i(t) x̃

∗
J(t)) is defined similarly, but now ΥJ is a d × d matrix

since x̃∗J(t) is now a d-dimension vector.

In practice, we do not know βi and w∗j , so we estimate them as follows.

• Step 1: Calculating µ̂i, β̂i, and σ̂2
i (t): estimate β̂i using lasso regression with the

original unscaled data (Yi(t), x(t)). More specifically,

µ̂i, β̂i = arg min
µi∈R,β∈Rp

1

T

T∑
t=1

(Yi(t)− µi − x(t)βi)
2 + λ‖βi‖1. (17)

Then,

λ̂i(t) = x(t)β̂i (18)

σ̂2
i (t) = λ̂i(t)(1− λ̂i(t)). (19)

As shown in Lemma 1.5, µ̂i, β̂i, σ̂
2
i (t) are consistent for µi, βi, σ

2
i (t). This follows from

the prediction consistency of lasso. We also sho that the restricted eigenvalue condition
(REC) required for the consistency of lasso (Bickel et al., 2009) is met in our case. This
follows from the bounded eigenvalue of the cross-covariance matrix of the design matrix
{x(t)}1≤t≤T , which is obtained using the assumptions made in the next section.

• Step 2: Calculating ŵj based on ̂̃xj(t) =
xj(t)

σ̂i(t)
: ŵj is estimated using a lasso regression

with outcome ̂̃xj and design matrix ̂̃x−j:
ŵj = arg min

w∈Rp
1

T

T∑
t=1

(̂̃xj(t)− (1 ̂̃x−j(t))w)2

+ λ‖w‖1. (20)

Using a similar lasso proof for estimation/prediction consistency, we can show the
consistency of ŵj for w∗j . Similar to Step 1, the REC condition for lasso is also met
by the bounded eigenvalue of the cross-covariance matrix induced by the assumptions
made in the next section.

• Step 3: Calculating Υ̂j: let ̂̃x∗j(t) = ̂̃xj(t)− (1 ̂̃x−j(t)) ŵj. Then, Υ̂j is estimated by

the sample covariance

Υ̂j =
1

T

T∑
t=1

(̂̃x∗j(t))2
. (21)
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Note that when testing a univariate βij in (9), Υ̂j is a scalar; however, when testing

multiple βiJ = {βij, j ∈ J}, Υ̂J = 1
T

∑T
t=1

(̂̃x∗J(t)
)>̂̃x∗J(t). Our results are valid for this

case as long as d ≡ ‖J‖0 � p.

• Step 4:

ε̂i(t) = Yi(t)− µ̂i − x−j(t)β̂i,−j (22)

Ŝij =
1

T

T∑
t=1

ε̂i(t)

σ̂i
̂̃x∗j(t) (23)

V̂T =
√
T Υ̂

−1/2
j Ŝij (24)

ÛT = ‖V̂T‖2
2. (25)

In the next section, we show that with high probability ÛT converges to UT , which in
turn converges weakly to a χ2 distribution with d degrees of freedom, which is 1 for
testing univariate βij; the non-centrality parameter is zero under the null hypothesis,
and depends on the true parameters under the alternative.

Remark 3.3: Although here we use the lasso regression for µi, βi, σi(t) and wj, we may use
other estimators to obtain consistent estimates of these parameters as long as they have the
same order of prediction and estimation errors as the lasso regression.

4 Theoretical Guarantees

We start by stating our assumptions. For a square matrix A, let Λmax(A) and Λmin(A) be its
maximum and minimum eigenvalues, respectively, and let A> denote its transpose. Define
Θ = {βij}1≤i,j≤p ∈ Rp×p and µ = {µi}1≤i≤p ∈ Rp.

Assumption 1 Let Ω be a p × p matrix whose entries are Ωj,k = α
∫∞

0
|ωj,k(∆)|d∆, for

1 ≤ j, k ≤ p. Then, there exists a generic constant γΩ such that Λmax(ΩTΩ) ≤ γ2
Ω < 1.

This assumption is the same as Assumption 1 in Chen et al. (2017), and is a necessary
requirement for a stationary Hawkes process. The constant γΩ does not depend on the
dimension p. For any fixed p, Brémaud and Massoulié (1996) shows that the intensity
process of the form (2) is stable in distribution, and thus a stationary process N exists given
this assumption. Since our connectivity coefficients of interest, Θ, are ill-defined without a
stationarity, this assumption provides the necessary context for our inferential framework.

Assumption 2 There exists a constant ρΩ such that

max
1≤i≤p

{ p∑
l=1

Ωil,

p∑
l=1

Ωli

}
≤ ρΩ <∞.

Assumption 2, which was also considered in Basu and Michailidis (2015) for VAR models,
requires maximum in- and out- intensity flows. This assumption helps in bounding the eigen-
values of the cross-covariance of x(t). As discussed by Chen et al. (2017), this assumption

7
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prevents the intensity from concentrating to a single process. Assumption 2 can be replaced
by assumptions on the structure of Ω if the magnitude of each entry of Ω is upper bounded.
Note that if we assume a stronger condition in Assumption 2 with ρΩ < 1, then Assumption
1 is satisfied by the Perron-Frobenius theorem.

Assumption 3 There exists λmin and λmax such that

0 < λmin ≤ λi(t) ≤ λmax < 1

for all i = 1, . . . , p and t ∈ [0, T ].

Assumption 3, which is similar to Assumption 4 in Chen et al. (2017), requires that
intensity values are bounded between 0 and 1. This assumption prevents degenerate processes
for all units.

Assumption 4: There exists b > a > 0 such that the transfer kernel function satisfies

0 < max
1≤j≤p

kj(t) ≤ a exp(−bt)

The lower bound, max1≤j≤p kj(t) > 0, is needed to avoid trivial transfer functions (kj(t) =
0). We also need max1≤j≤p kj(t) ≤ a exp(−bt) for b > a in order to have an integrable transfer
function and to control the total influence from the past. Assumption 4 implies the following
properties of the transfer function.

• Assumptions 3 and 4 imply bounded βi; that is, ∃Cβ, ‖βi‖∞ ≤ Cβ <∞.

• Assumption 4 prevents unbounded influences from past:

κ ≡ max
i=1,...,p

T∑
t=1

kj(t) ≤
a exp(−b)

1− exp(−b)
<∞. (26)

• Let ω∗nij be n-th auto-convolution of ωij. Under Assumption 4,

ω∗nij (t) ≤ βija
n t(n−1)

(n− 1)!
exp(−bt).

For example, for n = 2, 3,

ω∗2ij (t) =

∫ T

0

ωij(t− s)ωij(s)ds ≤ βija
2

∫ t

0

a exp(−b(t− s))a exp(−bs)ds = βija
2t exp(−bt);

ω∗3ij (t) =

∫ T

0

ω∗2ij (t− s)ωij(s)ds ≤
∫ t

0

βija
2(t− s) exp(−b(t− s))a exp(−bs)ds = βija

3 t
2

2
exp(−bt).

• Finally, we obtain

Ψij(t) =
∞∑
n=1

ω∗nij (t) ≤ βija exp(−(b− a)t); (27)

ξ ≡ max
1≤i≤p

p∑
j=1

T∑
t=1

|Ψij(t)| ≤ ρCβ
a exp(−(b− a))

1− exp(−(b− a))
<∞. (28)
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Let sj = ‖w∗j‖0 and s = max1≤j≤p sj; ρi = ‖βi‖0 and ρ = max1≤i≤p ρi. Then, for specific
connectivity matrix structures, the sparsity of w∗j follows from the sparsity of the connectivity
matrix, Θ, similar to the case of VAR models (Zheng and Raskutti, 2018). In particular, for
a stationary linear Hawkes process, we show that if the connectivity matrix is block diagonal,
s ≤ ρ+ 1 (see Lemma S.4 in the Appendix). In general, the relationship between sparsity of
w∗j and the sparsity of Θ is not straightforward, but, the sparsity of w∗j depends on the sign
and scale of the connectivity coefficients, as well as the transition kernel.

Using the above assumptions, we next state results on weak convergence of ÛT under the
null hypothesis. For brevity, we define Π0 as the feasible set of (Θ, µ), where Assumption
1-4 are satisfied under the null hypothesis.

Theorem 1. Suppose the linear Hawkes model defined in (2) satisfies Assumptions 1-4.

Further, suppose β̂i, ŵj and Υ̂j are estimated by (17), (20) and (21). Let Fd be the cdf of

χ2-distribution with d degrees of freedom. Then, if (ρ ∨ s) log p = o
(√

T
)

and T > C for

some constant C, under the null hypothesis in (9), ÛT defined in (25) satisfies

sup
(Θ,µ)∈Π0,x∈R

∣∣∣P(ÛT ≤ x)− Fd(x)
∣∣∣ ≤ C1

T 1/8
+ C2

(
(ρ ∨ s) log p√

T

)1/2

+
C3

pC4
. (29)

Theorem 1 shows that ÛT converges to χ2
d in distribution (d = 1 when testing univariate βij).

This result is an extension of the result for the VAR model by Zheng and Raskutti (2018).
Despite differences between the Hawkes process and the continuous VAR model discussed
before, we obtain the same rate of convergence using the properties of the Hawkes process.
Note that the difference between ÛT from Fd(x) is dominated by T−1/8 rather than T−1/2.
This difference from the standard CLT is due to the time dependence of the point process
data (see Lemma 1.1).

Next, we consider the distribution of ÛT under the alternative hypothesis. More specifi-
cally, for φ > 0, we assume

Ha : βij = T−φ∆. (30)

Let ∆̃ = Υ
1/2
j ∆, where Υj is defined in (14) and ∆ is set in (30). We define Πa as the feasible

set of (Θ, µ) such that Assumption 1-4 are satisfied under the alternative hypothesis.

Theorem 2. Suppose the linear Hawkes model defined in (2) satisfies Assumptions 1-4.

Further, suppose β̂i, ŵj and Υ̂j are estimated by (17), (20) and (21). Let Fd,‖∆̃‖22
be the

cdf of a non-central χ2-distribution with d degrees of freedom and non-centrality parameter

‖∆̃‖2
2. Then, if (ρ∨s) log p = o

(√
T
)

and T > C for some constant C, under the alternative

hypothesis in (9), ÛT defined in (25) satisfies one of the following

If φ = 1
2
,

sup
(Θ,µ)∈Πa,x∈R

∣∣∣P(ÛT ≤ x
)
− Fd,‖∆̃‖22(x)

∣∣∣ ≤ C1

T 1/8
+ C2

(
(s ∨ ρ) log p√

T

)1/2

+
C3

pC4
; (31)

9
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If 0 < φ < 1
2
,

sup
(Θ,µ)∈Πa,x∈R

∣∣∣P(ÛT ≤ x
)∣∣∣ ≤ C1

T 1/8
+
C2

pC3
+ C4 exp

{
−C5T

1
2
−φ + C6

√
x
}

; (32)

If φ > 1
2
,

sup
(Θ,µ)∈Πa,x∈R

∣∣∣P(ÛT ≤ x
)
− Fd(x)

∣∣∣ ≤ C1

T 1/8
+ C2

(
(s ∨ ρ) log p√

T

)1/2

+
C3

pC4
+ C3T

1−2φ
3 .

(33)

Theorem 2 establishes the asymptotic distribution of ÛT under the alternative hypothesis.
Here, depending on the scaling of βij with respect to T , i.e. φ, the asymptotics are different:

when φ > 1/2, our test does not distinguish Ha from H0, since in both cases ÛT convergences

to χ2
d; when φ < 1/2, ÛT diverges to +∞ in probability; finally, when φ = 1/2, ÛT converges

to a non-central χ2-distribution with d degree of freedom and non-centrality parameter ‖∆̃‖2
2.

This result is an extension of Theorem 3.2 in Zheng and Raskutti (2018) to the linear Hawkes
model. As before, in spite of differences between the Hawkes process and the VAR model,
we obtain the same rate of convergence using the properties of the Hawkes process.

5 Confidence Regions

In this section, we construct confidence intervals for βij. Similar to Ning and Liu (2017),
our confidence interval is based on the one-step estimator of βij for the de-correlated score
function,

b̂ij = β̂ij −
(
Υ̃j

)−1
S̃j. (34)

Here, β̂ij is the lasso estimator in (17),

Υ̃j =
1

T

T∑
t=1

̂̃x∗j(t)̂̃xj(t), (35)

which follows the construction of Zheng and Raskutti (2018) and is constructed slightly

differently from Υ̂j for theoretical convenience. Let

S̃j =
1

T

T∑
t=1

Yi(t)− µ̂i − β̂ix(t)

σ̂i(t)
̂̃x∗j(t), (36)

and note that S̃j involves the entire β̂i instead of β̂i,−j, which is different from Ŝj.

Next, let

R̂T ≡ T (̂bij − βij)>Υ̂j (̂bij − βij). (37)
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In the following, we show that R̂T converges weakly to ÛT ; therefore, we construct an
asymptotically 1− α confidence region for βij as

CR(α) = {θ : T (̂bij − θ)>Υ̂j (̂bij − θ) ≤ χ2
d(1− α)}. (38)

Theorem 3. Suppose the linear Hawkes model from (2) satisfies Assumptions 1-4. Further,

suppose β̂i, ŵj and Υ̂j are estimated by (17), (20) and (21). Then, there exists constants
C, c1, c2 such that

P

(∣∣∣R̂T − ÛT
∣∣∣ > C

√
s ∨ ρ log p

T

)
≤ c1 exp(−c2 log p). (39)

As mentioned before, β̂i can be obtained from any consistent estimator with the same order
of the estimation error as lasso defined in (17).

6 Simulation Studies

In this section, we verify our theoretical results and investigate the power and convergence
properties of the proposed inference procedure. We consider the linear Hawkes model with
the transfer function specified in (6). For the connectivity matrix Θ = {βij}1≤i,j≤p, we
consider three structures: chain, block and random (Figure 1). The scale of non-zero βij is
set to be 0.3 and the transfer kernel function kij(t) is chosen to be exp(−t). This setting
satisfies our assumptions of a stable Hawkes process.

To assess the performance of our method, we use it to test each of the p2 coefficients
in the connectivity matrix. We calculate the type-I error (i.e. the rejection rate among
zero coefficients) and the power (i.e. the rejection rate among non-zero coefficients). We also
investigate the convergence of the 95% confidence intervals for zero and non-zero coefficients.
We consider graphs of p = 50 units and experiments lengths T ∈ {200, 1000, 2000}. As a
benchmark, we compare the performance of our test method against an oracle procedure,
which knows what coefficients are non-zero.

Figure 2 illustrates the simulation results for chain, block and random structure sepa-
rately. It can be seen that as the experiment length increases, our test properly controls the
type-I error rate. Moreover, the 95% confidence intervals have reasonable converge. Finally,
our test also achieves power close to the oracle procedure.

7 Application

In this section, we consider the task of learning the functional connectivity network among
population of neurons, using the spike train data from (Bolding and Franks, 2018). In this
experiment, spike times are recorded at 30 kHz on a region of the mice olfactory bulb (OB),
while a laser pulse is applied directly on the OB cells of the subject mouse. The laser pulse

11
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Chain Block Random

Figure 1: Connectivity matrix under chain, block and random graph structures (zero-value
coefficients in red and non-zero coefficients in white).

has been applied at increasing intensities from 0 to 50 (mW/mm2). The laser pulse at each
intensity level lasts 10 seconds and is repeated 10 times on the same set of neuron cells of
the subject mouse. The experiment in total collects spike train data on 23 mice.

We consider the spike train data collected at two intensity levels, 0 mW/mm2 (Condi-
tion 1) and 5 mW/mm2 (Condition 2), of the subject mouse with the most neurons (29
neurons). In particular, we use the spike train data from one laser pulse at each intensity
level. Since one laser pulse spans 10 seconds and the spike train data is recorded at 30 kHz,
there are 300,000 time points per replicate. We apply our inference procedure separately for
each intensity level, and obtain the estimated connectivity coefficients and the corresponding
95% confidence interval for the 29-neuron network.

Figure 3 illustrates the estimated connectivity coefficients in a graph representation,
where each node represents a neuron and a directed edge indicates a statistically significant
estimated connectivity coefficient. We see there are few common edges between the networks
in the two conditions (gray edges); moreover, each condition has its own functional connec-
tivity structures (red edge for Condition 1 and blue edge for Condition 2). This agrees with
the observation by neuroscientists that the OB response is sensitive to the intensity level of
the external stimuli (Bolding and Franks, 2018). Figure 3 also shows the 95% confidence
interval for the estimated connectivity coefficients corresponding to the edges that are unique
to each condition.

8 Discussion

In this paper, we proposed a statistical inference procedure with theoretical guarantees for
high-dimensional linear Hawkes processes. To overcome the challenges from the the Hawkes
process on its entire history, we develop a new concentration inequality on the first- and
second-order statistics for an integrated stochastic process; these integrated processes sum-
marize the entire history for each component. We combine this new concentration inequality
with a recent martingale central limit theorem, to give an upper bounds for the conver-

12
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Figure 2: Simulation results under chain, block and random graph structure. CI0:95%
confidence interval for zero-coefficients; CIa:95% confidence interval for non-zero coefficients.
Oracle: score test under the true model with zero coefficients known; ds: de-correlated score
test with nuisance coefficients.

gence rate of the test statistics. We also provide confidence intervals for the parameters
as an extension of the semi-parametric efficient confidence region considered in Zheng and
Raskutti (2018). Our results establish the first inferential framework for high-dimensional
point processes.

In this paper, we consider a parametric transition function for the Hawkes process. Given
the complex nature of the point process, one may consider nonparametric models for the
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Figure 3: Estimated functional connectivities among neuronal populations from the spike
train data. The gray edges are shared between two conditions of different pulse power level,
the red edges are unique to condition 1 (0 mW/mm2), and the blue edges are unique to
condition 2 (5 mW/mm2). 95% confidence intervals (CI) are shown for 15 unique edges
corresponding to the edges that are unique to each condition and with largest estimated
connectivity coefficients at one of the conditions.

transition functions and learn the form adaptively from the data. In addition, since non-
linear link functions are often used when analyzing spike train data (Paninski et al., 2007;
Pillow et al., 2008), it would also be of interest to develop statistical inference procedure for
non-linear Hawkes processes.

9 Proof of Main Results

9.1 Proof of Theorem 1

First, to overcome the challenge of the unknown variance σ2
i (t) in ÛT as defined in (25), we

introduce Û0
T defined as

Û0
T = ‖V̂ 0

T ‖2
2; (40)

V̂ 0
T =
√
T
(
Υ̂0
j

)−1/2
Ŝ0
ij; (41)

Υ̂0
j =

1

T

T∑
t=1

(xj/σ
2
i (t)−

(
1 x−j/σ

2
i (t)
)
ŵj)(xj/σ

2
i (t)−

(
1 x−j/σ

2
i (t)
)
ŵj)

>(x̃∗j)>; (42)

Ŝ0
ij =

1

T

T∑
t=1

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
. (43)

As we see from the definition, the difference between Û0
T and ÛT defined in (25) is that we

replace σ̂i(t) by σi(t).
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We first prove the bound for Û0
T − UT and then complete the proof using

sup
x∈R
|P (ÛT ≤ x)− Fd(x)| ≤ sup

y∈R
|P (Û0

T ≤ y)− Fd(y)|

+ Fd(x+ δ)− Fd(x− δ) + P (|ÛT − Û0
T | > δ), (44)

where we use Lemma 1.8 to bound P
(
|ÛT − Û0

T | > δ
)

and use the properties of the χ2

distribution to bound |Fd(x+ δ)− Fd(x− δ)| ≤ C(d)δ as in Zheng and Raskutti (2018).

Now we focus on bounding
∣∣∣P (Û0

T ≤ x
)
− Fd(x)

∣∣∣. The proof first links P
(
Û0
T ≤ x

)
and

Fd(x) via P (UT ≤ x) and then bounds the error among the three parts.

Note that ∀ε > 0,

P
(
Û0
T ≤ x

)
− Fd(x) ≤ P (UT ≤ x+ ε) + P (

∣∣∣Û0
T − UT

∣∣∣ > ε)− Fd(x)

≤ |P (UT ≤ x+ ε)− Fd(x+ ε)|+ Fd(x+ ε)− Fd(x) + P (
∣∣∣Û0

T − UT
∣∣∣ > ε)

Fd(x)− P (Û0
T ≤ x) = P (Û0

T > x)− (1− Fd(x))

≤ P (UT > x− ε) + P (
∣∣∣Û0

T − UT
∣∣∣ > ε)− (1− Fd(x))

≤ |Fd(x− ε)− P (UT ≤ x− ε)|+ Fd(x)− Fd(x− ε) + P (
∣∣∣Û0

T − UT
∣∣∣ > ε).

Then,

sup |P (Û0
T ≤ x)− Fd(x)| ≤ sup

y∈R
|P (UT ≤ y)− Fd(y)|︸ ︷︷ ︸

A

+ Fd(x+ ε)− Fd(x− ε)︸ ︷︷ ︸
B

+P (|Û0
T − UT | > ε)︸ ︷︷ ︸

C

(45)

First, we bound part A, i.e. P (UT ≤ y)−Fd(y). The difference between this proof and ordi-
nary proofs of weak convergence of a sample average is that here our data is time dependent.
Therefore, instead of using an ordinary central limit theorem (CLT), we use a martingale
CLT. This technique is also used for VAR models by Zheng and Raskutti (2018). The result
is stated in the following lemma.

Lemma 1.1. Suppose the stationary linear Hawkes model from (6) satisfies Assumptions

1-4, and β̂i, ŵj and Υ̂j are estimated by (17), (20) and (21). Then, ∀u ∈ Rd,

sup
y∈R
|P (UT + u ≤ y)− Fd,‖u‖22(y)| ≤ C(‖u‖2, d, s)T

−1/8, (46)

where C(‖u‖2, d, s) is a constant that depends on, and is non-decreasing w.r.t, ‖u‖2, d and
s.

The proof is based on a martingale difference sequence CLT, and extends the previous
result for VAR models (Lemma 5.3 in Zheng and Raskutti (2018)) to the linear Hawkes
model (2).
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By Lemma 1.1, for s, d� T , we have

sup
y∈R
|P (UT ≤ y)− Fd(y)| ≤ C2T

−1/8 (47)

Next, we bound part B. Note that χ2
d distribution has bounded density and continuous and

differentiable cdf. This implies that there exists a constant C3 > 0 s.t.

|Fd(x+ ε)− Fd(x− ε)| ≤ C3ε, (48)

which gives a bound for part B.

Next, we check part C.

|Û0
T − UT | =

∣∣∣T(Ŝ0
ij

)>(
Υ̂0
j

)−1
Ŝ0
ij − STijΥ−1

j Sij

∣∣∣
≤
∣∣∣T(Ŝ0

ij

)>(
(Υ̂0

j

)−1 −Υ−1
j )Ŝ0

ij + T
(
Ŝ0
ij

)>
Υ−1
j Ŝij − STijΥ−1

j Sij

∣∣∣
≤ ‖Υ1/2

j (Υ̂0
j

)−1
Υ

1/2
j − I‖∞‖

√
TΥ

−1/2
j Ŝ0

ij‖2
1

+ ‖
√
TΥ

−1/2
j (Sij − Ŝ0

ij)‖2
1

+ 2‖VT‖2‖
√
TΥ

−1/2
j (Sij − Ŝ0

ij)‖2 (49)

Let E =
√
TΥ

−1/2
j (Sij − Ŝ0

ij), then

|Û0
T − UT | ≤ ‖E‖2

2 + 2‖VT‖2‖E‖2 + ‖Υ1/2
j Υ̂−1

j Υ
1/2
j − I‖∞(‖VT‖2 + ‖E‖2)2 (50)

First, we bound ‖E‖2
2 using the following lemma.

Lemma 1.2. Suppose the stationary linear Hawkes model from (6) satisfies Assumptions
1-4, and let Υx = Cov(x(t)) and Υj be defined in (14). Then,

0 < C1(β) ≤ Λmin

(
Υx

)
≤ Λmax

(
Υx

)
≤ C2(β) <∞ (51)

c1Λmin

(
Υx

)
≤ Λmin

(
Υj

)
≤ Λmax

(
Υj

)
≤ c2Λmax

(
Υx

)
. (52)

The proof uses a result on eigenvalues of the cross-covariance matrix of the outcome under
a covariance-stationary process given by Prop. 2.3 in Basu and Michailidis (2015) and a
modified result linking the spectral density of the cross-covariance matrix and the covariance
matrix of the outcome given by (Bacry et al., 2011) or Theorem 3 in (Etesami et al., 2016).

By Lemma 1.2, there exists constant C s.t.

‖E‖2 ≤ C
√
T
∥∥∥Ŝ0

ij − Sij
∥∥∥

2
. (53)
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Next, we bound
∥∥∥Ŝ0

ij − Sij
∥∥∥

2
.

Ŝ0
ij − Sij = (ŵj − w∗j )>

1

T

T∑
t=1

ε̃i(t)

(
1

x̃−j(t)

)

+
1

T

T∑
t=1

x̃∗j(t)
(
1 x̃−j(t)

)(( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

))

− (ŵj − w∗j )>
(

1

T

T∑
t=1

(
1

x̃>−j(t)

)(
1 x̃>−j(t)

))(( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

))
. (54)

Next, we introduce two lemmas to bound the terms 1
T

∑T−1
t=0 x̃

∗
j(t)

(
1

x̃−j(t)

)
and 1

T

∑T
t=1 ε̃i(t)

(
1

x̃−j(t)

)
.

Lemma 1.3. Under Assumption 1-4 and the linear Hawkes model (2), for T > C log p,
for some constant C > 0,

P

(
‖ 1

T

T−1∑
t=0

(x̃j(t)− w∗j0 − x̃−j(t)w∗j )
(

1
x̃−j(t)

)
‖∞ > C

√
log p

T

)
≤ C1 exp(−C2 log p) (55)

The proof essentially depends on deviation bounds for the first-order and quadratic forms of
x̃(t), described in Lemma S.2 and Lemma S.3.

Lemma 1.4. Under Assumption 1-4 and the linear Hawkes model (2) ,

P

(
‖ 1

T

T∑
t=1

ε̃i(t)

(
1

x̃−j(t)

)
‖∞ > C

√
s log p

T

)
≤ C1 exp(−C2 log p). (56)

The proof is a direct application of the martingale inequality given by van de Geer (1995)
as xj(t), σi(t) are bounded under Assumption 3 and 4.

The next lemma helps us bound the estimation error of β̂ and ŵ.

Lemma 1.5. Let θi = (µi, βi), ρi = ‖βi‖0 and defineH = 1
T

∑T
t=1

(
1
x(t)

)(
1 x(t)

)
. Suppose

the linear Hawkes model (2) satisfies Assumption 1-4 and θ̂i is given by (17). Then, for

λ �
√

log p
T

, when T ≥ C(ρi + 1) log p ,

‖θ̂i − θi‖2 ≤ C
√

(ρi + 1) log p/T

(θ̂i − θi)>H(θ̂i − θi) ≤ C(ρi + 1) log p/T

‖θ̂i − θi‖1 ≤ C(ρi + 1)
√

log p/T .

with probability at least 1− c1 exp(−c2 log p).

The proof of this lemma follows typical proofs of estimation and prediction consistency
of lasso. However, instead of assuming the restricted eigenvalue condition (REC) condition
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required for the consistency of lasso, we show that for a model satisfying our assumptions
the REC condition is met. This leads to bounded eigenvalues of the covariance matrix as
shown in Lemma 1.2. The introduction of ρi+1, instead of is ρi, is because by Assumption 3
µi > 0.

Lemma 1.6. Let sj = ‖w∗j‖0 and let H = 1
T

∑T
t=1

(
1̂̃x−j(t)
)(

1 ̂̃x−j(t)). Suppose the linear

Hawkes model (2) satisfies Assumptions 1-4, and ŵ is given by (20). Then, for λ �
√

si log p
T

,

‖ŵj − w∗j‖2 ≤ C
√

(ρi + 1) ∨ si log p/T

(ŵj − w∗j )>H(ŵj − w∗j ) ≤ C(ρi + 1) ∨ si log p/T

‖ŵj − w∗j‖1 ≤ C
√

(ρi + 1) ∨ si log p/T ,

with probability at least 1− c1 exp(−c2 log p).

The proof is similar to that of Lemma 1.5. Since ŵj is based on a ̂̃x(t) instead of x̃(t),

the proof in addition needs to bound the difference σ̂2
i (t) − σ2

i (t) as O(
√

(ρi+1) log p
T

) based

on the estimation consistency by Lemma 1.5. That is why in the error bound we have both
ρi + 1 and sj.

By Assumptions 2 and 3, xj(t) is bounded for every j = 1, . . . , p and t = 0, . . . , T .
Therefore, by Lemmas 1.3-1.6,

‖Ŝ0
ij − Sij‖2 ≤ C

(si ∨ ρi) log p

T
(57)

Combining the above, ‖E‖2
2 ≤ C (si∨ρi) log p√

T
, with probability at least 1− c1 exp(−c2 log p).

Next, we obtain a bound for ‖VT‖2. We can directly use the intermediate result in the
proof in Theorem 3.1 of Zheng and Raskutti (2018) because the result only requires that
Lemma 1.1 holds for VT . Thus,

P (‖VT‖2 > y) ≤ CT−1/8 + Cy−2 (58)

To reach the final conclusion, we introduce the following lemma.

Lemma 1.7. Suppose the stationary linear Hawkes model defined in (6) satisfies Assump-

tion 1-4 and β̂, ŵ, and Υ̂j are given by (17), (20) and (14). Then,

‖Υ1/2
j Υ̂−1

j Υ
1/2
j − I‖∞ ≤ C

√
ρ log p/T

and

‖Υ1/2
j

(
Υ̂0
j

)−1
Υ

1/2
j − I‖∞ ≤ C

√
ρ log p/T

with probability at least 1− c1 exp(−c2 log p), where

Υ̂0
j =

1

T

T∑
t=1

(xj/σ
2
i (t)−

(
1 x−j/σ

2
i (t)
)
ŵj)(xj/σ

2
i (t)−

(
1 x−j/σ

2
i (t)
)
ŵj)

>(x̃∗j)>.
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Due to the difficulty involving σ̂2
i (t) in the estimator, we first bound the difference between

Υ̂0
j (which replace σ̂2

i (t) by σ2
i (t) in Υ̂j) from Υj using the 1st-order and the 2nd-order (i.e

the quadratic form) deviation bounds on x(t) by Lemma S.3. Then, we bound the difference

between Υ̂0
j and Υ̂j based on the consistency of σ̂2

i (t) to σ2
i (t).

Plugging in y =

(
si∨ρi log p√

T

)−1/4

into (58), we have

|Û0
T − UT | ≤ C

(
si ∨ ρi log p√

T

)1/2

(59)

with probability at least 1− c1 exp(−c2 log p)− c3T
−1/8 − c4

(
si∨ρi log p√

T

)1/2

.

Further, taking ε = C

(
si∨ρi log p√

T

)1/2

, we get

sup
x∈R
|P (Û0

T ≤ x)− Fd(x)| ≤ C1

T 1/8
+ c2

((si ∨ ρi) log p√
T

)1/2
+
C3

pC4
. (60)

The next lemma helps us bound |ÛT − Û0
T |.

Lemma 1.8. Suppose the linear Hawkes model defined in (2) satisfies Assumption 1 - 4.
Then, ∣∣∣ÛT − Û0

T

∣∣∣ ≤ C

(
ρ log p√

T

)1/2

with probability at least 1− c1 exp(−c2 log p)− c3T
−1/8 − c4

(
(s∨ρ) log p√

T

)1/2

.

To bound
∣∣∣ÛT − Û0

T

∣∣∣, it is enough to bound Υ̂j−Υ̂0
j which can be bounded using the result

in Lemma 1.7, and to bound Ŝij − Ŝ0
ij where Ŝ0

ij defined in (43) is Ŝij with σ̂2
i (t) by σ2

i (t).

Thus, in the main proof of Lemma 1.8, we show
∥∥∥Ŝij − Ŝ0

ij

∥∥∥2

2
is bounded by C ρi log p

T
with

probability at least 1 − c1 exp(−c2 log p). To finish the proof, we use the weak convergence

result for Û0
T to χ2

d which is proofed in the above (60).

Then, following Lemma 1.8, δ =
(
ρ log p√

T

)1/2

,

sup
x∈R
|P (ÛT ≤ x)− Fd(x)|

≤ sup
y∈R
|P (Û0

T ≤ y)− Fd(y)|+ Fd(x+ δ)− Fd(x− δ) + P (|ÛT − Û0
T | > δ)

≤ c1

T 1/8
+ c2

((s ∨ ρ) log p√
T

)1/2
+
c3

pc4
+

c5

T 1/8
+ c6

(ρ log p√
T

)1/2
+
c7

pc8

≤ C1

T 1/8
+ C2

((s ∨ ρ) log p√
T

)1/2
+
C3

pC4
.
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9.2 Proof of Theorem 2

As before, we start by bounding Û0
T − UT , where Û0

T defined in (40).

First, consider φ = 1/2. In this case, ∀ε > 0,

sup
x∈R

∣∣∣P (Û0
T ≤ x)− Fd,‖∆̃‖22(x)

∣∣∣ ≤ sup
y∈R

∣∣∣P (‖VT − ∆̃‖2
2 ≤ y)− Fd,‖∆̃(y)‖22

∣∣∣︸ ︷︷ ︸
A

+ Fd,‖∆̃‖22
(x+ ε)− Fd,‖∆̃‖22(x− ε)︸ ︷︷ ︸

B

+P (|Û0
T − ‖VT − ‖∆̃‖2

2| > ε)︸ ︷︷ ︸
C

Note that by Lemma 1.2 on the bounded eigenvalue of the covariance matrix Υj, ‖∆̃‖2
2 ≤

Λmax

(
Υj

)
‖∆‖2

2. Then, for part A, applying Lemma 1.1 on the martingale CLT, we get

sup
y∈R

∣∣∣P (‖VT − ∆̃‖2
2 ≤ y)− Fd,‖∆̃‖22(y)

∣∣∣ ≤ C‖∆‖2T
−1/8

For part B, we use an intermediate result from Zheng and Raskutti (2018),

: Fd,‖∆̃‖22
(x+ ε)− Fd,‖∆̃‖22(x− ε). ≤ C(d)ε

The derivation of the result is purely based on the properties of non-central χ2 distribution,
thus is applicable in our case; see the proof of Theorem 3.2 in Zheng and Raskutti (2018).

Next, we bound part C. Let E =
√
T
(
Υj

)−1/2
Ŝij − VT + ∆̃. Then,∣∣∣∣Û0

T −
∥∥∥VT − ∆̃

∥∥∥2

2

∣∣∣∣ ≤ ‖E‖2
2 +

∥∥∥VT − ∆̃
∥∥∥

2
‖E‖2

+

∥∥∥∥∥
(

Υj

)1/2(
Υ̂0
j

)−1(
Υj

)1/2

− I

∥∥∥∥∥
∞

(∥∥∥VT − ∆̃
∥∥∥

2
+ ‖E‖2

)2

Let S̃ij = 1
T

∑T
t=1(Ỹi(t)−µi− x̃−j(t)βi,−j)x̃∗j , and define W ∗

j such that x̃∗j(t) =
(
1 x̃(t)

)
W ∗
j .

Let Υ = E
((

1 x̃(t)
)( 1

x̃(t)

))
. Then,

Υj = Cov(x̃∗j(t)) = Cov
((

1 x̃(t)
)
W ∗
j

)
= (W ∗

j )>ΥW ∗
j .

Next,

VT − ∆̃ =
√
T
(
Υj

)−1/2
Sij − ∆̃

=
√
T
(
Υj

)−1/2(
Sij −Υjβij

)
=
√
T
(
Υj

)−1/2(
S̃ij + (W ∗

j )>
(

1

T

T∑
t=1

(
1

x̃>(t)

)
x̃j(t)−Υ·,j

)
βij
)
.
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Therefore, taking βij =
√
T∆, then by Lemma 1.2 of bounded eigenvalue Υj and Lemma

S.1 of bounded w∗j and S.3 of deviation bound for the 1st-order and the quadratic form of
x̃(t),

‖E‖2 ≤
∥∥∥√T(Υj

)−1/2(
Ŝ0
ij − S̃ij

)∥∥∥
2

+

∥∥∥∥∥(Υj

)−1/2
W ∗
j

(
1

T

T∑
t=1

(
1
x̃(t)

)(
1 x̃(t)

)
−Υ·,j

)
∆

∥∥∥∥∥
2

≤
√
TC

∥∥∥Ŝ0
ij − S̃ij

∥∥∥
2

+ C
√
d‖W ∗

j ‖1

∥∥∥∥∥ 1

T

T∑
t=1

(
1
x̃(t)

)(
1 x̃(t)

)
−Υ

∥∥∥∥∥
∞

≤ C
√
T‖Ŝ0

ij − S̃ij‖2 + C

√
s log p

T
.

Recall that d is the dimension of βij. When testing a univariate βij (9), d = 1. If d > 1,
then W ∗

j ∈ Rd×(p+1). Now,

Ŝ0
ij − S̃ij =(ŵj − w∗j )>

1

T

T∑
t=1

(
1

x̃−j(t)

)(
ε̃i(t) + T−1/2∆>x̃j(t)

)
+

((
µ̂i β̂i,−j

)
−
(
µi βi,−j

)) 1

T

T∑
t=1

(
1

x̃−j(t)

)
x̃∗j(t)

−
((

µ̂i β̂i,−j

)
−
(
µi βi,−j

)) 1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

) (
ŵj − w∗j

)
≡ I + II + III.

Then, by Lemma 1.4 and Lemma 1.6 on the lasso estimation consistency of ŵj together with
Assumption 4 of bounded transition kernel function, we get

I ≤ C

√
(s ∨ ρ) log p

T

(√
log p

T
+ T−1/2∆

)
≤ (s ∨ ρ) log p

T
.

Also, by Lemma 1.3 and Lemma 1.5 of the lasso estimation consistency on µ̂i, β̂i, II ≤ C log p
T
.

Finally, by the lasso prediction consistency by Lemma 1.5 and Lemma 1.6,

III ≤ C

√
(s ∨ ρ) log p

T

√
ρ log p

T
.

Combining the above, with probability at least 1− c1 exp(−c2 log p), we have

‖Ŝ0
ij − S̃ij‖2

2 ≤
(s ∨ ρ) log p

T
.

Thus, ‖E‖2 ≤ C (s∨ρ) log p√
T

.

Next, by Lemma 1.1 and the tail bound for χ2 distribution (Lemma 1 in Laurent and
Massart (2000)),

P

(∥∥∥VT − ∆̃
∥∥∥

2
> y

)
≤ C1T

−1/8 + C2y
−2. (61)
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Then, taking y =

(
(s∨ρ) log p√

T

)−1/4

,

∣∣∣∣Û0
T −

∥∥∥VT − ∆̃
∥∥∥2

2

∣∣∣∣ ≤ C

(
(s ∨ ρ) log p√

T

)1/2

,

with probability at least 1− c1 exp(−c2 log p)− c3T
−1/8 − c4

(
(s∨ρ) log p√

T

)1/2

.

Then, following Lemma 1.8 (and the discussion for φ = 1/2), and taking δ =
(
ρ log p√

T

)1/2

,

sup
x∈R
|P (ÛT ≤ x)− Fd(x)| ≤ sup

y∈R
|P (U0

T ≤ y)− Fd(y)|

+ Fd(x+ δ)− Fd(x− δ) + P (|ÛT − Û0
T | > δ)

≤ c1 exp(−c2 log p) + c3T
−1/8 + c4

(
(s ∨ ρ) log p√

T

)1/2

+ c5

(
ρ log p√

T

)1/2

+ c6 exp(−c7 log p) + c8T
−1/8 + c9

(
(s ∨ ρ) log p√

T

)1/2

≤ C1 exp(−C2 log p) + C3T
−1/8 + C4

(
(s ∨ ρ) log p√

T

)1/2

.

Next, we discuss 0 < φ < 1/2. By Lemma 1.7,
∥∥∥Υ

1/2
j

(
Υ̂j

0)−1
Υ

1/2
j − I

∥∥∥
∞

converges to 0

w.r.t T , then for T > c for some constant c, with probability at least 1− c1 exp(−c2 log p),

ÛT = T Ŝ0
ij

(
Υ̂j

0)−1
Ŝ0
ij

≥ T‖
(
Υ̂j

0)−1/2
Ŝ0
ij‖2

2

(
1− d

∥∥∥Υ
1/2
j

(
Υ̂j

0)−1
Υ

1/2
j − I

∥∥∥
∞

)
≥ CT‖

(
Υ̂j

0)−1/2
Ŝ0
ij‖2

2

≥ C

(
T‖
(
Υ̂j

0)−1/2
(Ŝ0

ij − Sij)‖2 − ‖VT‖2

)2

.

But,

Ŝ0
ij − Sij =(ŵj − w∗j )>

1

T

T∑
t=1

(
1 x̃−j(t)

)
ε̃i(t)

− 1

T

T∑
t=1

(
x̃j(t)−

(
1 x̃−j(t)

)
ŵj
)
x̃>j (t)βij

+
1

T

T∑
t=1

(
x̃j(t)− ŵ>j

(
1

x̃−j(t)

)) (
1 x̃−j(t)

)
(

(
µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)
)

≡E1 + E2 + E3.
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By Lemma 1.4 and Lemma 1.6, ‖E1‖2 ≤ (s∨ρ) log p
T

, with probability at least 1−c1 exp(−c2 log p).

Also, by Lemma 1.5, 1.6 and 2.1, we can show

‖E3‖2 = ‖ 1

T

T∑
t=1

(
x̃j(t)− ŵ>j

(
1

x̃−j(t)

))(
1 x̃−j(t)

)
(

(
µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)
)‖2

≤

∥∥∥∥∥(ŵj − w∗j )>
1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

)
(

(
µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)
)

∥∥∥∥∥
2

+
√
d

∥∥∥∥∥ 1

T

T∑
t=1

(
x̃j(t)−

(
1 x̃−j(t)

)
w∗j +

(
1 x̃−j(t)

)
(w∗j − ŵj)

)( 1
x̃−j(t)

)∥∥∥∥∥
∞

∥∥∥∥( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)∥∥∥∥
1

≤

∥∥∥∥∥(ŵj − w∗j )>
1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

)
(

(
µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)
)

∥∥∥∥∥
2

+
√
d

∥∥∥∥∥ 1

T

T∑
t=1

x̃∗j(t)

(
1

x̃−j(t)

)∥∥∥∥∥
∞

∥∥∥∥( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)∥∥∥∥
1

+
√
d‖w∗j − ŵj‖1

∥∥∥∥∥ 1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

)∥∥∥∥∥
∞

∥∥∥∥( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

)∥∥∥∥
1

≤ C1

√
(s ∨ ρ) log p

T

√
ρ log p

T
+ C2

√
ρ log p

T

√
ρ log p

T
+ C2

√
(s ∨ ρ) log p

T

√
ρ log p

T

≤ C
(s ∨ ρ) log p

T
,

with probability at least 1− c1 exp(−c2 log p).

To bound E2, we can write, by Lemmas 1.6, S.1 and S.3,

‖ 1

T

T∑
t=1

(
x̃j(t)−

(
1 x̃(t)

)
ŵj
)
x̃j(t)−Υj‖∞

≤ ‖W ∗
j ‖1

∥∥∥∥∥ 1

T

T∑
t=1

(
1
x̃(t)

)(
1 x̃(t)

)
−Υ

∥∥∥∥∥
∞

(62)

+ (1 + ‖ŵj − w∗j‖1)

∥∥∥∥∥ 1

T

T∑
t=1

(
1
x̃(t)

)(
1 x̃(t)

)∥∥∥∥∥
∞

≤ C

√
(s ∨ ρ) log p

T
(63)

with probability at least 1− c1 exp(−c2 log p).

Then, by Lemma 1.2 and βij = T−φ∆,

‖E2‖2 ≥ T−φ‖Υj∆j‖2 − C
√

(s ∨ ρ) log p

T
T−φ ≥ CT−φ.
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Hence,

T
∥∥∥(Υ̂j

0)−1/2(
Ŝ0
ij − Sij

)∥∥∥2

2
≥
(
C1T

1/2−φ − C2
(s ∨ ρ) log p√

T

)2

≥ CT 1−2φ, (64)

with probability at least 1− c1 exp(−c2 log p).

In addition, by Lemma 1.1 and taking the intermediate results in the proof of Theorem
3.2 in Zheng and Raskutti (2018) about the tail bound of χ2 distribution,

P (‖VT‖2 ≥ c1T
1/2−φ − c2

√
x) ≤ cT−1/8 + C exp(−(c1T

1/2−φ − c2

√
x)2).

Therefore,

P (Û0
T ≤ x) ≤ c1 exp(−c2 log p) + c3T

−1/8 + c4 exp(−(c5T
1/2−φ − c5

√
x)2).

Then, following Lemma 1.8 (see the discussion for 0 < φ < 1/2), we have

P (Û0
T ≤ x) ≤ c1 exp(−c2 log p) + c3T

−1/8 + c4 exp(−(c5T
1/2−φ − c5

√
x)2)

Lastly, we discuss the case of φ > 1/2. As before, one key part to bound
∣∣∣Û0

T − UT
∣∣∣ is

Ŝ0
ij − Sij.

Ŝ0
ij − Sij = (ŵj − w∗j )>

1

T

T−1∑
t=0

ε̃i(t)x̃
>
−j(t)

+
1

T

T−1∑
t=0

x̃∗j
(
1 x̃−j

)(( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

))

− (ŵj − w∗j )>
(

1

T

T−1∑
t=0

(
1
x̃−j

)(
1 x̃−j

))(( µ̂i
β̂i,−j

)
−
(
µi
βi,−j

))

− T−(1+φ)

T∑
t=1

(x̃j(t)−
(
1 x̃(t)

)
ŵj)x̃j(t)∆

By (63) and Lemma 1.2,∥∥∥∥∥ 1

T

T∑
t=1

(x̃j(t)−
(
1 x̃(t)

)
ŵj)x̃j(t)∆

∥∥∥∥∥
2

≤ ‖Υj∆‖2 + Cs

√
log p

T
≤ C

For the first three items, we use Lemmas 1.3-1.6 and Assumption 4, then

‖
√
T
(
Υj

)−1/2
(Ŝ0

ij − Sij)‖2 ≤ C1
(s ∨ ρ) log p√

T
+ C2T

1/2−φ,

with probability at least 1− c1 exp(−c2 log p).
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Then, combining (61) with y =

(
(s∨ρ) log p√

T

)−1/4

∧ T (2φ−1)/6 , then following (16),

∣∣∣Û0
T − UT

∣∣∣ ≤ C1

(
(s ∨ ρ) log p√

T

)1/2

+ C2T
(2φ−1)/3,

with probability at least

1− c1 exp(−c2 log p)− c3T
−1/8

(
(s ∨ ρ) log p√

T

)1/2

− C5T
(2φ−1)/3,

if (s∨ρ) log p = o(
√
T ) and T > C for some constant C. Therefore, taking ε = C1

(
(s∨ρ) log p√

T

)1/2

+

C2T
(1−2φ)/3,

sup |P (Û0
T ≤ x)− Fd(x)| ≤ C1

T 1/8
+ C2

((s ∨ ρ) log p√
T

)1/2
+
C3

pC4
+ C3T

1−2φ
3

Then, following Lemma 1.8 (Remark for φ > 1/2), taking δ =
(
ρ log p√

T

)1/2

,

sup |P (ÛT ≤ x)− Fd(x)| ≤ sup
y∈R
|P (U0

T ≤ y)− Fd(y)|

+ Fd(x+ δ)− Fd(x− δ) + P (|ÛT − Û0
T | > δ)

≤ c1

T 1/8
+ c2

((s ∨ ρ) log p√
T

)1/2
+
c3

pc4
+ c3T

1−2φ
3

+ c4

(
ρ log p√

T

)1/2

+
c5

T 1/8
+ c6

((s ∨ ρ) log p√
T

)1/2
+

c7

pC4
+ c8T

1−2φ
3

≤ C1

T 1/8
+ C2

((s ∨ ρ) log p√
T

)1/2
+
C3

pC4
+ C5T

1−2φ
3 .

9.3 Proof of Theorem 3

The proof extends the proof of Theorem 3.4 in Zheng and Raskutti (2018) for the VAR
model to the case of linear Hawkes model.

First, note that

S̃ij = Ŝij +
1

T

T∑
t=1

(x̃j(t)− x̃∗j(t))x̃>j (t)(β̂ij − βij) = Ŝij + Υ̃j

(
β̂ij − βij

)
,

where Ŝij is defined previously (23).

Then,

b̂ij − βij = −
(

Υ̃j

)−1

Ŝij
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Thus,

R̂T =
(
Ŝij
)>(

Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

Ŝij

Next,

R̂T − ÛT =
(
Ŝij
)>((

Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

−
(

Υ̂j

)−1)
Ŝij

According to the proof in Lemma 1.8, we know P

(
‖Ŝij−Sij‖2 >

(si∨ρi) log p
T

)
≤ c1 exp(−c2 log p).

In addition, Sij is bounded based on Assumption 3 and 4 and Lemma S.1 which leads that

x̃∗j(t) is bounded for all t. Thus, Ŝij is bounded with high probability. Therefore, we focus

on bounding

(
Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

−
(

Υ̂j

)−1

.

Let E ≡ Υ̃j − Υ̂j. We write E into E = Υ̃j − Υ̃0
j + Υ̃0

j − Υ̂0
j + Υ̂0

j − Υ̂j.

First, we bound E0 ≡ Υ̃0
j − Υ̂0

j . Notice that

‖E0‖∞ ≤

∥∥∥∥∥ 1

T

T∑
t=1

(
x̃j(t)−

(
1 x̃−j(t)

)
ŵj

)(
1 x̃−j(t)

)
ŵj

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

T

T∑
t=1

(
x̃j(t)−

(
1 x̃−j(t)

)
w∗j

)
x̃−j(t)

∥∥∥∥∥
∞

(‖w∗j‖1 + ‖w∗j − ŵj‖1)

+ max

∣∣∣∣∣(ŵj − w∗j )> 1

T

T∑
t=1

((
1

x̃−j(t)

)(
1 x̃−j(t)

))
(ŵj − w∗j )

∣∣∣∣∣
+

∥∥∥∥∥ 1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

)
w∗j

∥∥∥∥∥
∞

‖ŵj − w∗j‖1.

With probability at least 1−c1 exp(−c2 log p), the first item on RHS is bounded by C
√

ρ log p
T

by Lemma 1.3 and 1.6; the second item is bounded by C s∨ρ log p
T

based on Lemma 1.6 and
Assumption 4. For the third item, by Lemmas 1.2, S.1 and S.3,∥∥∥∥∥ 1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

)
w∗j

∥∥∥∥∥
∞

≤ ‖Υ−j,−jw∗j‖∞

+

∥∥∥∥∥ 1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

)
−Υ−j,−j

∥∥∥∥∥
∞

‖w∗j‖1

≤ Λmax

(
Υ

)
max(w∗j ) + c

√
ρ log p

T
≤ C

Then, by Lemma 1.6 and combining the first two items in E0, ‖E0‖∞ ≤ C
√

s∨ρ log p
T

, with

probability at least 1− c1 exp(−c2 log p).
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By Lemma 1.7, we know that

P

(
‖Υ̂0

j − Υ̂j‖2 >

√
ρi

log p

T

)
≤ c1 exp(−c2 log p).

Following a similar proof as we did to bound Υ̂0
j− Υ̂j in Lemma 1.7 based on the consistency

of σ̂i(t) to σi(t), we can show that

P

(
‖Υ̃0

j − Υ̃j‖2 >

√
ρi

log p

T

)
≤ c1 exp(−c2 log p).

Therefore, ‖E‖∞ ≤ C
√

s∨ρ log p
T

, with probability at least 1− c1 exp(−c2 log p).

Next, we have(
Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

−
(

Υ̂j

)−1

=

(
Υ̃j

)−1(
Υ̂j −

(
Υ̃j

)(
Υ̂j

)−1(
Υ̃j

))(
Υ̃j

)−1

,

and (
Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

−
(

Υ̂j

)−1

≤ E + E> + E
(
Υ̂j

)−1
E>.

Based on Lemma 1.2 and 1.7, there exists C > 0 such that with probability at least 1 −
c1 exp(−c2 log p),

Λmin

(
Υ̂j

)
≥ Λmin

(
Υj

)
− d‖Υ̂j −Υj‖∞ ≥ C

which implies Λmax

(
Υ̂j

)−1
< C−1 and ‖E

(
Υ̂j

)−1

E>‖∞ ≤ Cd‖E‖∞ with probability at least

1− c1 exp(−c2 log p).

Then,∥∥∥∥(Υ̃j

)
Υ̂−1
j

(
Υ̃j

)
−
(

Υ̂j

)∥∥∥∥
2

≤ d

∥∥∥∥(Υ̃j

)
Υ̂−1
j

(
Υ̃j

)
−
(

Υ̂j

)∥∥∥∥
∞
≤ d‖E‖∞

Let P =

(
Υ̃j

)
Υ̂−1
j

(
Υ̃j

)
−
(

Υ̂j

)
and Q = Υ̂j, using the invertible matrix inequality result

given by Lemma A.2 in (Zheng and Raskutti, 2018) that

‖
(
P +Q

)−1 −Q−1‖2 ≤
‖Q−1‖2‖P‖2

1− ‖Q−1‖2‖P‖2

we show

‖
(

Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

−
(

Υ̂j

)−1

‖∞ ≤ ‖
(

Υ̃j

)−1

Υ̂j

(
Υ̃j

)−1

−
(

Υ̂j

)−1

‖2

≤ C

∥∥∥∥(Υ̃j

)
Υ̂−1
j

(
Υ̃j

)
−
(

Υ̂j

)∥∥∥∥
2

≤ Cd‖E‖∞ ≤ C

√
s ∨ ρ log p

T

with probability at least 1− c1 exp(−c2 log p).
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Appendix: Proof of Technical Lemmas

To proof Theorem 1-3, we introduce technical lemmas 1.1-1.8 which essentially depends on
Lemma S.1-S.3. We give proof of all these lemmas. We also use results from previous work
in Lemma D.1-D.4. We refer audience to the original source for details.

Lemma 1.1-1.8

Proof of Lemma 1.1

The main part of the proof is based on the result on the martingale difference sequence. Our
proof extends the previous result in VAR model (Lemma 5.3 in (Zheng and Raskutti, 2018))
to the linear Hawkes model (2).

Let

ξT,t = − 1√
T

(
Υj

)−1/2 εi(t)

σi(t)
x̃∗j(t) (65)

where σi(t) defined in (8) and x̃∗j(t) defined in (11).

As defined previously, HT,t is information filtration of the past. Then (ξT,t,HT,t) is a mar-

tingale difference sequence, and VT =
∑T−1

t=0 ξT,t. To complete the proof, we use Lemma D.1
as follows, which is a technical Lemma from (Zheng and Raskutti, 2018) which is a modified
version of Lemma 4 by (Grama and Haeusler, 2006). Although the original application of
this Lemma is on VAR model, the Lemma requires a martingale difference sequences as an
object to consider thus can be applied to ξT,t.

Lemma D.1 Let (ξn,i,Hn,i)0≤i≤n be a martingale difference sequence taking values in Rd. Let

Xk
n =

∑k
i=1 ξni, and 〈Xn〉k =

∑k
i=1 ani ≡

∑k
i=1 E

(
ξniξ

>
ni|Hn,i−1

)
. Define Rn,d

δ = Ln,dδ +Nn,d
δ ,

Ln,dδ =
n∑
i=1

E‖ξni‖2+2δ
2 , Nn,d

δ =
n∑
i=1

E‖〈Xn〉n − I‖1+δ
tr ,

Then ∀u ∈ Rd, r ≥ 0, 0 < δ ≤ 1/2, when Rn,d
δ ≤ 1,

P
(
‖Xn

n + u‖2 ≤ r
)
− P

(
‖Z + u‖2 ≤ r

)
≤ C(‖u‖2, d, δ)

(
Rn,d
δ

) 1
3+2δ

where Zd×1 ∼ N(0, I), C(‖u‖2, d, δ) is non-decreasing as ‖u‖2 increases.

By Lemma D.1, to complete the proof, we need to check the bound for Rn,d
δ = Ln,dδ +Nn,d

δ .

First, by Lemma 1.2, both Λmax

(
Υ−1
j

)
and Λmax

(
Υ−1
j

)
are bounded. Second, by the bounded

intensity by Assumption 3 (i.e. 0 < λmin ≤ λi(t) ≤ λmax < 1) and Yi(t) ∈ {0, 1},
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εi(t) = Yi(t)− λi(t) and σi(t) are bounded. Third, by Lemma S.1, ‖w∗j‖∞ ≤ ‖w∗j‖2 ≤ C. At

last, xj(t) = xj(t) ≤
∫ T

0
kj(t)dt is bounded by Assumption 4. Therefore,

‖x̃∗j(t)‖2
2 = ‖x̃j‖2

2 + ‖
(
1 x̃−j

)
w∗j‖2

2 ≤ (1 + ds‖w∗j‖2
∞) max

1≤j≤p
|xj(t)/σi(t)|2 ≤ Cds,

which implies

Ln,dδ =
T∑
t=1

E‖ξTt‖2+2δ
2 ≤ CT−(1+δ)

T∑
i=1

E‖ 1

σi(t)
εi(t)x̃

∗
j(t)‖2+2δ

2 ≤ C(d, δ)T−δ(ds)1+1δ

Remark: Note that we have an easier proof comparing to Zheng et al (2018) because in
our case according to assumptions to the Hawkes model, x(t) and εi(t) are bounded deter-
ministically, while in Zheng et al (2018), they consider sub-gaussian error so they need to
proof the bound Ln,dδ based on x(t) and εi(t) with high probability. d here is dimension of
βij to test. In our case (9), d = 1 but the proof is applicable for any fixed low dimension d > 1.

Next, we check the bound for Nn,d
δ . Notice that

T−1∑
t=0

E
(
ξT,tξ

>
T,t|Ht

)
− I =

(
Υj

)−1/2
(

1

T

T∑
t=1

x̃∗j(t)
(
x̃∗j(t)

)> −Υj)
(
Υj

)−1/2

By Lemma 1.2, the rank of
(
Υj

)−1/2
(

1
T

∑T
t=1 x̃

∗
j(t)
(
x̃∗j(t)

)>−Υj

)(
Υj

)−1/2
is at most d. By

matrix norm inequality as introduced in A.3 (Zheng and Raskutti, 2018) that for B ∈ Rd×d

‖B‖tr ≤ d‖B‖2,

then

NT,d
δ = E

∥∥∥∥∥(Υj

)−1/2
(

1

T

T∑
t=1

x̃∗j(t)
(
x̃∗j(t)

)> −Υj)
(
Υj

)−1/2

∥∥∥∥∥
1+δ

tr

≤ E

(
d

∥∥∥∥∥(Υj

)−1/2
(

1

T

T∑
t=1

x̃∗j(t)
(
x̃∗j(t)

)> −Υj)
(
Υj

)−1/2

∥∥∥∥∥
2

)1+δ

≤ CE
(
d2

∥∥∥∥∥(
1

T

T∑
t=1

x̃∗j(t)
(
x̃∗j(t)

)> −Υj)

∥∥∥∥∥
∞

)1+δ

where the last step is based on matrix norm inequality

‖Bd‖2 ≤ d‖Bd‖∞

and Lemma 1.2.

32



We introduce the follow Lemma to bound

‖ 1

T

T∑
t=1

x̃∗j(t)
(
x̃∗j(t)

)> −Υj‖∞ ≤ (1 + ‖w∗j,−j‖2
1)‖ 1

T

T∑
t=1

x̃(t)
(
x̃(t)

)> − E( 1

T

T∑
t=1

(
x̃(t)

)>
x̃>(t)

)
‖∞

+ ‖wj0‖2
1‖

1

T

T∑
t=1

x̃(t)− E
(
x̃(t)

)
‖∞

Lemma S.3 Under Assumption 1-4 and the stationary linear Hawkes model defined in
(6), we have

P

(
‖ 1

T

T∑
t=1

(
x̃(t)

)>
x̃(t)− E 1

T

T∑
t=1

(
x̃(t)

)>
x̃(t)‖∞ > δ

)
≤ c1 exp

(
− c2 min

{√T

s
δ,
T

s
δ2
})
(66)

and

P

(
‖ 1

T

T∑
t=1

x̃(t)− E
(
x̃(t)

)
‖∞ > Cδ

)
≤≤ c1 exp(−c2Tδ

2).

Remark: The proof is essentially based on the deviation bound of the 1st-order and
quadratic form show in (81) and (80) in Lemma S.2 and apply Taylor expansion to reach
the conclusion.

By Lemma S.3,

NT,d
δ ≤

∫ ∞
0

P

((
d2‖ 1

T

T∑
t=1

(
x̃∗j(t)

)>
x̃∗j(t)−Υj‖∞

)1+δ
> r

)
dr

=

∫ ∞
0

P

(
d2‖ 1

T

T∑
t=1

(
x̃∗j(t)

)>
x̃∗j(t)−Υj‖∞ > r1/(1+δ)

)
dr

≤
∫ ∞

0

c1 exp

(
− c2 min

(T
s
r2/(1+δ)/d4 ,

√
T

s
r1/(1+δ)/d2

))
dr

= C(δ) max{T−(1+δ)/2s(1+δ)/2d2(1+δ), T−(1+δ)s(1+δ)d4(1+δ)}

where the last step is based on the integral of gamma function.

Assume s = o(T ) and d = o(T ) and combine the two parts,

Rn,d
δ = Ln,dδ +Nn,d

δ ≤ C(δ, s, d)(T−(1+δ)/2 + T−δ)

Here C(δ, s, d) is increasing with s which implies bounding Rn,d
δ becomes more difficulty

when the sparsity s and/or the dimension of parameter to test d becomes larger.
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Therefore, by Lemma D.1, we have ∀x ≥ 0, u ∈ Rd, and δ ∈ [0, 1/2], when T > C(δ),

|P (ÛT + u ≤ x)− Fd,‖u‖22(x)| ≤ C(‖u‖2
2, d, δ)

(
RT,d
δ

) 1
3+2δ

(67)

The best rate is achieved when taking δ = 1/2, when T > C,

|P (ÛT + u ≤ x)− Fd,‖u‖22(x)| ≤ C(‖u‖2
2, s, d)T−1/8 (68)

�

Proof of Lemma 1.2

For consider bounding the eigenvalue of Υx = Cov(x(t)).

Without loss of generality, consider a discrete time scenario with unit time window (dt = 1).
Then, xj(t) =

∑t−1
s=1 kj(t− s)Yj(s) and xj(1) = 0. Let

Kt−1 =


k1(1)e1 k1(2)e1 k1(3)e1 . . . . . . k1(t− 1)e1

k2(1)e2 k2(2)e2 k2(3)e2 . . . . . . k2(t− 1)e2

. . . . . .
kp(1)ep kp(2)ep kp(3)ep . . . . . . kp(t− 1)ep

 ∈ Rp×(t−1)p,

where ej ∈ Rp with 1 on the j-th entry and 0 all other entires.

Let Yt = (Y1(t), . . . , Yp(t))
> ∈ Rp. Then, x(t) = Kt−1Yt−1, where Yt = (Y (t), . . . , Y (1))>.

Υx = Cov(x(t)) = Kt−1Cov(Yt−1)K>t−1

Therefore, to bound the eigenvalue of Υx, we need

• Condition 1: 0 < minj kj(1) ≤ maxj
∑∞

t=1 kj(t) ≤ C <∞

• Condition 2: 0 < ΛminCov(Y ) ≤ ΛmaxCov(Y ) < 1

The first condition is met by assuming an integrable and non-trivial transfer kernel function
by Assumption 4. We show the second condition is met by a specific structure of the transfer
function.

We first introduce a result (Prop. 2.3,(Basu and Michailidis, 2015)) linking the eigen-value
of cross-covariance matrix with its spectral radius. Although the original application of this
result is for the VAR model, this result is valid for a cross-covariance stationary process.

Let Y = (Y (T ), . . . , Y (1)) ∈ RTp, Σ = Cov(Y ) ∈ RTp×Tp and Γ(l) = Cov(Y (t), Y (t+l)). De-
fine the spectral density function, which is the Fourier transformation on the cross-covariance
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Γ(l), fΓ(θ) = 1
2π

∫∞
−∞ Γ(l) exp(−iθl)dl.

Lemma D.2 Under the linear Hawkes process with cross-covariance stationary,

2πm(fΓ) ≤ ΛminΣ ≤ ΛmaxΣ ≤ 2πM(fΓ)

Here

M(fΓ) = ess sup
θ∈[−π,π]

√
ΛmaxfΓ(θ)fΓ(θ)∗

m(fΓ) = ess inf
θ∈[−π,π]

√
ΛminfΓ(θ)fΓ(θ)∗

Next, we introduce the result linking the spectral density Γ to the spectral density of the
matrix of transition function Ω.

Lemma D.3 The Fourier transform of the normalized covariance matrix of a stationary
multivariate Hawkes process with window size z is given by

fΓ(w) = 2

(
I − fΩ(w)

)−1

diag(Λ)

(
I − f ∗Ω(w)

)−1

The result is a direct extension of Theorem 1 in (Bacry et al., 2011) or Theorem 3 in (Etesami
et al., 2016) from assuming non-negative transfer function to a general real function. This
result extends the class of linear Hawkes process including non-mutually exciting structure.
The proof is directly established by re-writing a real function into its positive part and its
negative part, and then complete the proof by the distributive property of the convolution
operation.

By Lemma D.2 and Lemma D.3,

2 min(Λ)

M

(
I − f ∗Ω(w)

) ≤ Λ(fΓ) ≤ 2 max(Λ)

m

(
I − f ∗Ω(w)

)
Therefore, one sufficient condition to bound the spectral radius of fΓ is to assume

• Bounded intensity function as assumed in Assumption 3;

• Λmax

∫∞
0
|Ω(t)|dt < 1 which leads m

(
I − f ∗Ω(w)

)
> 0 as assumed in Assumption 1;

• Bounded row and column sum of Ω as assume in Assumption 2; that is,

M

(
I − f ∗Ω(w)

)
≤ 1 +

(
max
1≤i≤p

p∑
j=1

Ωij + max
1≤j≤p

p∑
i=1

Ωij

)
/2 <∞
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Since for a fixed time range T , both Λ and Ω are constants only containing β, we have

0 < C1(β) ≤ Λmin

(
Υx

)
≤ Λmax

(
Υx

)
≤ C2(β) <∞

By Assumption 3 of bounded intensity such that 0 < λmax ≤ λi(t) ≤ λmin < 1, 0 <
c1 ≡ min{λmax(1 − λmax), λmin(1 − λmin)} ≤ σ2

i (t) = λi(t)(1 − λi(t)) ≤ 1/4 ≡ c2. Let

Υ = Cov

(
x(t)/σi(t)

)
,

c−1
2 Υx ≤ Υ ≤ c−1

1 Υx. (69)

Notice that

Cov(x̃∗j(t))
−1 =

(
Υ−1

)
jj

which means that Cov(x̃∗j(t))
−1 is a principal submatric of Υ−1. Then, by the Cauchy’s

interlace theorem for eigenvalues of Hermitian matrices,

Λmin

(
Cov(x̃∗j(t))

−1
)
≥ Λmin

(
Υ−1

)
Λmax

(
Cov(x̃∗j(t))

−1
)
≤ Λmax

(
Υ−1

)
Therefore,

c1Λmin

(
Υ−1
x

)
≤ Λmin

(
Υ−1
j

)
≤ Λmax

(
Υ−1
j

)
≤ c2Λmax

(
Υ−1
x

)
�

Remark: In the above, we specify the condition to upper bound M

(
I−f ∗Ω(w)

)
in order to

be comparable with the results in VAR model shown in (Basu and Michailidis, 2015). Other
condition could also be available to bound the spectral radius of fΓ. For example, we could
consider a bounded transition function value; i.e., max1≤i,j≤p Ωij ≤ CΩ < ∞, and consider
sparsity of the transition matrix Ω such that ρ =

∑p
i=1 ρi, as defined previously ρi = ‖βi‖0,

where ρ does not goes up with p. Then M

(
I − f ∗Ω(w)

)
≤ 1 + ρCΩ.

Proof of Lemma 1.3

Lemma 1.3 is similar to Lemma 5.6 in (Zheng and Raskutti, 2018). One of the key part of
the proof is the construction of w∗ such that E

(
x̃∗j(t)x̃k(t)

)
= 0 for any k 6= j.
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WLOG, consider j = 1 for convenience of notation. Notice that x>k (t) = x(t)ek, ek =
(0, . . . , 0︸ ︷︷ ︸
k − 1 0’s

, 1, 0, . . . , 0︸ ︷︷ ︸
p− k − 1 0’s

)> ∈ Rp. Denote W ∗
j such that x̃∗j(t) =

(
1 x̃(t)

)
W ∗
j . Then,

1

T

T∑
t=1

x̃∗j(t)x̃
>
k (t) = W ∗

j

(
1

T

T∑
t=1

(
1
x̃(t)

)
x̃(t)

)
ek

Also, note that E
(

1
T

∑T
t=1 x̃

∗
j(t)x̃

>
k (t)

)
= 0, k 6= j by the definition of w∗j .

Then, by Lemma S.3 of the 1st and 2nd order deviation bound on x̃(t) and Lemma S.1
of bounded w∗j , we have

‖ 1

T

T∑
t=1

x̃∗j(t)x̃
>
k (t)‖∞ = ‖ 1

T

T∑
t=1

x̃∗j(t)x̃
>
k (t)− E

( 1

T

T∑
t=1

x̃∗j(t)x̃
>
k (t)

)
‖∞

≤ ‖W ∗
j ‖1

∥∥∥∥∥ 1

T

T∑
t=1

(
1
x̃(t)

)
x̃(t)

)
− E

(
1

T

T∑
t=1

(
1
x̃(t)

)
x̃(t)

)∥∥∥∥∥
∞

‖ek‖1

≤ (‖w∗j‖1 + 1)

∥∥∥∥∥ 1

T

T∑
t=1

(
1
x̃(t)

)
x̃(t)

)
− E

(
1

T

T∑
t=1

(
1
x̃(t)

)
x̃(t)

)∥∥∥∥∥
∞

‖ek‖1

≤ C

√
s log p

T

with probability at least 1− c1 exp(−c2 log p).

At the end, we take a union bound over all k 6= j to reach the conclusion. �

Proof of Lemma 1.4

The deviation bound for linear Hawkes process has been discussed in previous literature
(Chen et al., 2017). We first introduce a Lemma given in (Chen et al., 2017) which is a
direct result based on the martingale inequality from Theorem 3.1 in (van de Geer, 1995).

Lemma D.4 Under the linear Hawkes model, let H(t) be a bounded function that is Ht-
predictable. Then, for any ε > 0, the inequality

1

T

∫ T

0

H(t)

{
λi(t)dt− dNi(t)

}
≤ 4

{
λmax

2T

∫ T

0

H2(t)dt

}1/2

ε1/2

holds with probability at least 1− c exp(−εT ) for some constant c, for any i = 1, . . . , p.

By Assumption 2, there exists constant C such that ‖x(t)‖2
2 ≤

(∑p
j=1

∫ T
0
|kj(t)|dt

)2

< C.
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By {εi(t),Ht} is a martingale sequence and Lemma D.4 taking ε = log p
Td

and union bound
over low dimension d,

P

(
‖ 1

T

T∑
t=1

εi(t)xj(t)‖∞ > C

√
log p

T

)
≤ c1 exp(−c2 log p) (70)

Next consider ‖ 1
T

∑T
t=1 ε̃i(t)x̃

∗
j(t)‖∞.

Let H(t) = 1
σi(t)

x̃∗j(t). Notice that ‖x̃∗j(t)‖2
2 ≤ ‖x̃j(t)‖2

2 ≤ C by the choice of w∗ and Assump-
tion 4 of bounded transition kernel function. Then, according Assumption 3 of bounded
intensity function which lead bounded σ2

i (t),

1

T

T∑
1

H2(t) ≤ C

Therefore, applying Lemma D.4,

P

(
‖ 1

T

T∑
t=1

ε̃i(t)x̃
∗
j(t)‖∞ > C

√
log p

T

)
≤ C1 exp(−C2 log p) (71)

Another result by Lemma D.4, taking H(t) = 1,

P

(
‖ 1

T

T∑
t=1

ε̃i(t)‖∞ > C

√
log p

T

)
≤ C1 exp(−C2 log p) (72)

�

Proof of Lemma 1.5

The proof is typical for estimation consistency in lasso estimates. We start with the basic
inequality induced by the construction of the lasso estimator in (17). We then bound the
prediction error of the lasso regression using the results of Lemma 1.4. Next, as one of
the key part, we show that the restricted eigen-value condition (REC) is satisfied with high
probability in the linear Hawkes process under our setting based on what we show about the
bounded eigenvalue of Υx in Lemma 1.2.

By the construction of the lasso estimator,

µ̂i, β̂i = arg min
µ∈R,β∈Rp

1

T

T∑
t=1

(Yi(t)− µ− x(t)β)2 + λ‖β‖1,
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we have

1

T

T∑
t=1

(Yi(t)− µ̂i − x(t)β̂i)
2 + λ‖β̂i‖1 ≤

1

T

T∑
t=1

(Yi(t)− µi − x(t)βi)
2 + λ‖βi‖1

Let H = 1
T

∑T
t=1

(
1

(x(t))>

)(
1 (x(t))>

)
and u = µ̂i−µi, v = β̂i−βi. Define s = {j : βij 6= 0}

and sc = {j : βij = 0}. Re-organize the above,

(
u v>

)
H

(
u
v

)
≤ 2

∥∥∥∥∥ 1

T

T∑
t=1

εi(t)

(
1

(x(t))>

)∥∥∥∥∥
∞

∥∥∥∥(uv
)∥∥∥∥

1

+ λ‖vs‖1 − λ‖vsc‖1

≤ 2

∥∥∥∥∥ 1

T

T∑
t=1

εi(t)

(
1

(x(t))>

)∥∥∥∥∥
∞

∥∥∥∥(uv
)∥∥∥∥

1

+ λ‖vs‖1 − λ‖vsc‖1

≤ 2

∥∥∥∥∥ 1

T

T∑
t=1

εi(t)

(
1

(x(t))>

)∥∥∥∥∥
∞

∥∥∥∥(uv
)∥∥∥∥

1

+ λ‖vs‖1 − λ‖vsc‖1

By Lemma 1.4,

P

(∥∥∥∥∥ 1

T

T∑
t=1

εi(t)

(
1

(x(t))>

)∥∥∥∥∥
∞

≤ C
√

log p/T

)
≥ 1− c1 exp(−c2 log p)

Taking λ = 4C
√

log p/T leads that

0 ≤
(
u v>

)
H

(
u
v

)
≤ 3λ

2
‖vs‖1 −

λ

2
‖vsc‖1 +

1

2
λ‖u‖1 ≤

3λ

2
‖
(
u vs

)
‖1 −

λ

2
‖vsc‖1

Let θ =

(
u
v

)
∈ Rp+1. Define θs = (u, vs) and θsc = (vsc). Then,

0 ≤ θTHθ ≤ 3λ

2
‖θs‖1 −

λ

2
‖θsc‖1

‖θsc‖1 ≤ 3‖θs‖1

Next we introduce Lemma A.1 from (Zheng and Raskutti, 2018) (with only change in nota-
tion) to bound the minimum eigen-value of H with high probability.

Lemma A.1: Assume Assumption 1-4 are satisfied and a stationary linear Hawkes model
satisfying (6). For any set J ⊂ {1, . . . , p}, H satisfies the following REC

inf{θ>Hθ : θ ∈ C(J, κ), ‖θ‖2 ≤ 1} ≥ C1 ≥ 0

with probability at least 1−2 exp(−cT ), when |J | log p ≤ C2T . Here C(J, κ) = {θ : ‖θJc‖1 ≤
κ‖θJ‖1}, constant C depends on βi. c and C2 depend on κ and βi.
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Here we give a sketch of proof. Let Γ̌ = E
((

1T

x

)(
1T x

))
. The proof can be split

into two parts. First, by Lemma D.6 in (Zheng and Raskutti, 2018) and Lemma S.2 (the
concentration bound for the 1st-moment and quadratic form of x(t)), we show

∣∣θ> (H − Γ̌
)
θ
∣∣

are bounded with high probability for any θ ∈ C(J, κ). Since

inf{θ>Hθ : θ ∈ C(J, κ), ‖θ‖2 ≤ 1}
≥ ΛminΓ̌− sup

{∣∣θ> (H − Γ̌
)
θ
∣∣ : θ ∈ C(J, κ), ‖θ‖2 ≤ 1

}
≥ 1

2
ΛminΓ̌,

with probability at least 1 − c1 exp(−c2T ), the second part is to show Λmin

(
Γ̌
)

is bounded
from 0. By Lemma 1.2, the bounded minimum eigenvalue of Γx, we have ΛminE

(
x>(t)x(t)

)
≥

Λmin (Γx) > 0, which implies that the p-unit multivariate process {xj(t)}1≤j≤p are not lin-
early correlated. In addition, by Assumption 3, the process xj(t) is not a trivial process of
constants, we conclude the minimum eigenvalue of Γ̌ is strictly positive (otherwise, we met
contradiction to the result of Lemma 1.2 or Assumption 3).

Therefore, by Lemma A.1,

C1‖
(
u v>

)
‖2

2 ≤
(
u v>

)
H

(
u
v

)
≤ 3λ

2
‖
(
u v>s

)
‖1

≤ 3

2
4C

√
log p

T

√
ρi + 1‖

(
u v>

)
‖2

≤ 6C

√
log p

T

√
ρi + 1‖

(
u v>

)
‖2

Then, combining all constants into one term,

‖θ‖2 ≤ C
√

(ρi + 1) log p/T

θ>Hθ ≤ C(ρi + 1) log p/T

‖θ‖1 ≤ 4‖θs‖1 ≤ 4
√
ρi + 1‖θs‖2 ≤ C(ρi + 1)

√
log p/T

�

Proof of Lemma 1.6

The proof is almost the same as Lemma 1.5 except that 1) we work with the scaled data

(Ỹi(t), x̃(t)) and 2) we use Lemma 1.3 instead of Lemma 1.4 to bound estimation error on
ŵj. �
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Proof of Lemma 1.7

Notice that

‖Υ1/2
j Υ̂−1

j Υ
1/2
j − I‖∞ ≤ ‖Υ

1/2
j Υ̂−1

j Υ
1/2
j − I‖2

≤ (Λmin

(
Υj

)
)−1‖Υ̂j −Υj‖2

≤ dC‖Υ̂j −Υj‖∞

Next, we bound ‖Υ̂j −Υj‖∞.

Let

Υ̂0
j =

1

T

T∑
t=1

(xj/σ
2
i (t)−

(
1 x−j/σ

2
i (t)
)
ŵj)(xj/σ

2
i (t)−

(
1 x−j/σ

2
i (t)
)
ŵj)

>(x̃∗j)>
The difference between Υ̂0

j and Υ̂j is that we replace σ̂2
i (t) by the true value σ2

i (t). Thus, to

bound the difference between Υ̂j−Υj, we bound the two parts Υ̂0
j−Υj and Υ̂j−Υ̂0

j separately.

Then, first consider,

Υ̂0
j −Υj =

(
1

T

T∑
t=1

x̃∗j
(
x̃∗j
)> −Υj

)

+(ŵj − w∗j )>
(

2

T

T∑
t=1

(
1

x̃−j(t)

)
x̃∗j(t)

)

+(ŵj − w∗j )>
(

1

T

T∑
t=1

(
1

x̃−j(t)

)(
1 x̃−j(t)

))
(ŵj − w∗j )

=E1 + 2E2 + E3

By Assumption 3 and 4 and Lemma S.1, we have xj(t), σ
2
i (t) bounded for all t. In addition,

by Lemma S.1, x̃∗j(t) ≤ 1
σi(t)
‖w∗j‖1‖xj(t)‖∞ ≤ C. Then, by Lemma 1.5 of the lasso estimation

consistency,

‖E2‖2 ≤ ‖C(ŵj − w∗j )‖1 ≤ C

√
ρi ∨ sj

log p

T

‖E3‖2 ≤ C‖ŵj − w∗j‖2
1 ≤ ρi ∨ sj

log p

T

with probability at least 1− c1 exp(−c2 log p).

Next, we look at E1. WLOG, consider j = 1,

x̃∗j(t)
(
x̃∗j(t)

)>
=
(
x̃j(t)− w∗j0 − w∗j,−jx̃−j(t)

)(
x̃j(t)− w∗j0 − w∗j,−jx̃−j(t)

)>
=
(
x̃j(t)− w∗j,−jx̃−j(t)

)(
x̃j(t)− w∗j,−jx̃−j(t)

)>
+
(
w∗j0
)2 − 2w∗j0

(
x̃j(t)− w∗j,−jx̃−j(t)

)
=
(
1 −(w∗j,−j)

>) 1

σ2
i (t)

x(t)x>(t)

(
1

−w∗j,−j

)
+
(
w∗j0
)2 − 2w∗j0

1

σi(t)
x(t)

(
1

−w∗j,−j

)
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Then,

‖E1‖∞ = ‖
(
1 −(w∗j,−j)

>)‖2
2‖

1

T

T∑
t=1

1

σ2
i (t)

x(t)x>(t)− E
(

1

σ2
i (t)

x(t)x>(t)

)
‖∞

+ 2‖w∗j0‖2‖
(

1
−w∗j,−j

)
‖2‖

1

T

T∑
t=1

1

σi(t)
x(t)− E

(
1

σi(t)
x(t)

)
‖∞

Therefore, by the 1st and 2nd deviation bound on x(t) shown Lemma S.3 (81) and (80)
together with Lemma S.1,

‖E1‖∞ ≤
√

log p

T

with probability at least 1− c1 exp(−c2 log p).

Combining all together,

‖Υ̂0
j −Υj‖∞ ≤ C

√
ρi ∨ sj log p

T

with probability at least 1− c1 exp(−c2 log p).

Next, we bound Υ̂0
j − Υ̂j. Let Di = σ̂i(t)

σi(t)
. Then,

Υ̂0
j − Υ̂j =

1

T

T∑
t=1

(D2
i − 1)(̂̃xj(t)− ̂̃x−j(t)ŵj,−j)2 − 2(Di − 1)ŵj0

(̂̃xj(t)− ̂̃x−j(t)ŵj,−j)
≤ ‖D2

i − 1‖∞
1

T

T∑
t=1

(̂̃xj(t)− ̂̃x−j(t)ŵj,−j)2 + 2‖Di − 1‖∞
1

T

T∑
t=1

∣∣∣ŵj0(̂̃xj(t)− ̂̃x−j(t)ŵj,−j)∣∣∣
By Assumption 3 of bounded intensity function, the prediction consistency in Lemma 1.5,

‖D2
i − 1‖∞ = ‖ σ̂

2
i (t)− σ2

i (t)

σ2
i (t)

‖∞

≤ C‖λ̂i(t)− λi(t)‖∞
≤ C

√
ρi log p/T

with probability at least 1− c1 exp(−c2 log p).

By Lemma 1.6 together with Lemma S.1 and Assumption 4,

1

T

T∑
t=1

(̂̃xj(t)− ̂̃x−j(t)ŵj,−j)2 ≤ 1

T

T∑
t=1

(̂̃x∗j(t) + ŵj0

)2

=
1

T
‖̂̃x∗j + ŵj0‖2

2

≤ 1

T
‖x̃∗j‖2

2 +
1

T
‖x̃∗j − ̂̃x∗j‖2

2 + ‖w∗j0‖2
2 + ‖w∗j0 − ŵj0‖2

2

≤ C1 + C2
ρi ∨ sj log p

T
+ C3 + C4

ρi ∨ sj log p

T
≤ C ′
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with probability at least 1− c1 exp(−c2 log p) when T � (ρi ∨ sj) log p.

Following a similar derivation based on the estimation consistency of lasso for w∗j , we can
show that

1

T

T∑
t=1

∣∣∣ŵj0(̂̃xj(t)− ̂̃x−j(t)ŵj,−j)∣∣∣
is bounded with probability at least 1− c1 exp(−c2 log p).

Then,

Υ̂0
j − Υ̂j ≤ C

√
ρi ∨ sj log p/T

with probability at least 1− c1 exp(−c2 log p) when T � ρi log p.

Therefore, combining all the above,

‖Υ1/2
j Υ̂−1

j Υ
1/2
j − I‖∞ ≤ C

√
ρi ∨ sj log p/T

and

‖Υ1/2
j

(
Υ̂0
j

)−1
Υ

1/2
j − I‖∞ ≤ C

√
ρi ∨ sj log p/T

with probability at least 1− c1 exp(−c2 log p). �

Proof of Lemma 1.8

We start with the proof under null hypothesis, that is to consider βij = 0. We actually get
the same the result under alternative hypothesis and we discuss this at the end.

Due to the difficulty involving the unknown variance σi(t) in ÛT as defined in (25), we

introduce Û0
T which is defined as

Û0
T = ‖V̂ 0

T ‖2
2 (73)

V̂ 0
T =
√
T Υ̂

−1/2
j Ŝ0

ij (74)

Ŝ0
ij =

1

T

T∑
t=1

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
(75)

We see that the difference between Ŝ0
ij and Ŝij defined in (23) is that we place σ̂i(t) by σi(t).

Based on the technical details in the proof of Theorem 1, we can find that to bound
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∣∣∣ÛT − Û0
T

∣∣∣, it is enough to bound Ŝij − Ŝ0
ij and Υ̂j − Υ̂0

j .

By the proof of Lemma 1.7, we have
∣∣∣Υ̂j − Υ̂0

j

∣∣∣ ≤ √
ρi log p/T with probability at least

1− c1 exp(−c2 log p). Therefore, in the follows, we show
∥∥∥Ŝij − Ŝ0

ij

∥∥∥2

2
is bounded by C ρi log p

T

with probability at least 1− c1 exp(−c2 log p).

First, we see the follows:

Ŝij − Ŝ0
ij =

1

T

T∑
t=1

1

σ̂i(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σ̂i(t)− ŵj0 − x−j(t)/σ̂i(t)ŵj,−j

)
− 1

T

T∑
t=1

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
=

1

T

T∑
t=1

σ2
i (t)

σ̂2
i (t)

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0σ̂i(t)/σi(t)− x−j(t)/σi(t)ŵj,−j

)
− 1

T

T∑
t=1

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
=

1

T

T∑
t=1

(
σ2
i (t)

σ̂2
i (t)
− 1

)
1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
+

1

T

T∑
t=1

σ2
i (t)

σ̂2
i (t)

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)
ŵj0

(
1− σ̂i(t)

σi(t)

)

=
1

T

T∑
t=1

(
σ2
i (t)

σ̂2
i (t)
− 1

)
1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
+

1

T

T∑
t=1

σ2
i (t)

σ̂2
i (t)

1

σi(t)

(
Yi(t)− µ̂i − x−j(t)β̂i,−j

)
ŵj0

σ2
i (t)− σ̂2

i (t)

σi(t)
(
σi(t) + σ̂i(t)

)
≡ A+B

For ease of notation, we take β =

(
µi
βi

)
and xt =

(
1 x(t)

)
for short. Then,

σ2
i (t)− σ̂2

i (t) = xtβ(1− xtβ)− xtβ̂(1− xtβ̂) = (β − β̂)>x>t
(
1− xt(β̂ + β)

)
Note that 1−xt(β̂+β) is bounded with probability at least 1−c1 exp(−c2 log p) according to
Lemma 1.4 on lasso prediction consistency and Assumption 3 of bounded intensity function.
In addition, by Assumption 4 of bounded transition kernel function and Lemma 1.4, with
probability at least 1− c1 exp(−c2 log p),

‖σ2
i (t)− σ̂2

i (t)‖∞ ≤ ‖β − β̂‖1‖xt‖∞‖1− xt(β̂ + β))‖∞ ≤ Cρi
√

log p/T
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which implies that σ̂2
i (t) is bounded for all t with probability at least 1− c1 exp(−c2 log p).

Again for ease of notation, define β−j =

(
µi
βi,−j

)
and x−jt =

(
1 x−j(t)

)
. Then,

Yi(t)− µ̂i − x−j(t)β̂i,−j = εi(t) + (µi − µ̂i) + x−j(t)(βi,j − β̂i,−j)
= εi(t) + x−jt (β−j − β̂−j)

Then, we write part A as follows:

A =
1

T

T∑
t=1

(
σ2
i (t)− σ̂2

i (t)
)
εi(t)

1

σ̂2
i (t)σi(t)

(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
+

1

T

T∑
t=1

(
σ2
i (t)− σ̂2

i (t)
)
x−jt (β−j − β̂−j)

1

σ̂2
i (t)σi(t)

(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
= (β − β̂)>

1

T

T∑
t=1

x>t εi(t)
(
1− xt(β̂ + β)

) 1

σ̂2
i (t)σi(t)

(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
+ (β − β̂)>

(
1

T

T∑
t=1

x>t
(
1− xt(β̂ + β)

) 1

σ̂2
i (t)σi(t)

(
xj(t)/σi(t)− ŵj0 − x−j(t)/σi(t)ŵj,−j

)
x−jt

)
(β−j − β̂−j)

≡ A1 + A2

Let Ci(t) =
(
1 − xt(β̂ + β)

)
1

σ̂2
i (t)σi(t)

(
xj(t)/σi(t) − ŵj0 − x−j(t)/σi(t)ŵj,−j

)
. By Assumption

3 of bounded intensity function, Assumption 4 of bounded transition kernel function and
Lemma S.1, we can show that with probability at least 1 − c1 exp(−c2 log p), Ci(t) ≤ C.
Then, by Lemma 1.5 of estimation consistency on βi,

‖A1‖∞ ≤ ‖β̂ − β‖1‖
1

T

T∑
t=1

x>t εi(t)Ci(t)‖∞ ≤ C
ρi log p

T

probability at least 1− c1 exp(−c2 log p). The last inequality is by Lemma D.4 (van de Geer,
1995) (described in Lemma 1.4) where we take H(t) = x>t Ci(t).

By the same reason for bounding A1,

‖A2‖∞ ≤ Ci(t)‖xj(t)‖2
∞‖β̂ − β‖2

2≤ C
ρi log p

T
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Next, we bound part B in a similar fashion.

B =
1

T

T∑
t=1

(
εi(t) + (β − β̂)x>t

)
ŵj0

σ2
i (t)− σ̂2

i (t)

σ̂2
i (t)
(
σi(t) + σ̂i(t)

)
= (β − β̂)>

1

T

T∑
t=1

εi(t)x
>
t

(
1− xt(β̂ + β)

) ŵj0

σ̂2
i (t)
(
σi(t) + σ̂i(t)

)
+ (β − β̂)>

(
1

T

T∑
t=1

x>t
(
1− xt(β̂ + β)

) ŵj0

σ̂2
i (t)
(
σi(t) + σ̂i(t)

)x−jt )(β−j − β̂−j)

≡ B1 +B2

Similar as bounding part A1, by the consistency of σ̂(t) to σi(t) discussed before, Assumption

3 and 4 and Lemma S.1, we can show that
(
1 − xt(β̂ + β)

) ŵj0

σ̂2
i (t)
(
σi(t)+σ̂i(t)

) is bounded with

probability at least 1− c1 exp(−c2 log p). Then, applying Lemma D.4 (van de Geer, 1995),

‖B1‖2 ≤ C
ρi log p

T

With the same reason bounding B1 plus Assumption 4 of bounded transition kernel function,

‖B2‖2 ≤ C
ρi log p

T

Therefore,

‖Ŝij − Ŝ0
ij‖2 ≤ Cρi

log p

T
, (76)

with probability at least 1− c1 exp(−c2 log p).

Finally, we repeat what we have done in Theorem 1 to bound
∣∣∣Û0

T − UT
∣∣∣ and take advantage

of the weakly convergence result of Û0
T to χ2

d, we reach the conclusion that

∣∣∣ÛT − Û0
T

∣∣∣ ≤ C

(
ρi log p√

T

)1/2

with probability at least 1− c1 exp(−c2 log p)− c3T
−1/8 − c4

(
ρi log p√

T

)1/2

.

Remark: Although we proof the result under the null hypothesis in the above, for φ = −1
2

and φ > −1
2
, we can show that ÛT has the same weakly convergence results as Û0

T shown in
Theorem 2 under the alternative hypothesis using the same proof steps above but with the
weakly convergence results of Û0

T to χ2
d,‖∆‖2 and χ2

d respectively for each case.
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For 0 < φ < 1
2
, we can repeat the proof in Theorem 2 at (64), we write an extra step

as follows, using the result we just show in (76),

T
∥∥∥(Υ̂j

)− 1
2
(
Ŝij − Sij

)∥∥∥2

2
≥ T

∥∥∥(Υ̂j

0)− 1
2
(
Ŝij − Ŝ0

ij + Ŝ0
ij − Sij

)∥∥∥2

2
(77)

≥ T

∥∥∥∥(Υ̂0
j

)−1/2
(
C1T

1/2−φ − C2
ρi log p√

T
− C3

(sj ∨ ρi) log p√
T

)∥∥∥∥2

2

(78)

≥ CT 1−2φ. (79)

Then, we continue with everything else the same in the proof of Theorem 2 for 0 < φ < 1/2

to reach the same result for P
(
ÛT ≤ x

)
as that for P

(
Û0
T ≤ x

)
.

Lemmas S.1 - S.3

Lemma S.1 Let sj = ‖w∗j‖0 and s = maxj=1,...,p sj. Under Assumption 1-4 and the linear
Hawkes model (2), there exist some constant C, s.t.,

‖w∗j‖2
2 ≤ C

‖w∗j‖1 ≤ C
√
sj

Proof of Lemma S.1 : By Lemma 1.2 of bounded eigenvalue of Υx, we have

‖w∗j‖2
2 = 1 + ‖w∗j,−j‖2

2 ≤ 1 + Λmax(Υ−1
x )2
−j,−j‖(Υx)j,j‖2

2 ≤ C

Then,

‖w∗j‖1 ≤
√
sj‖w∗j‖2 ≤ C

√
sj

�

Lemma S.2: Assume Assumption 1 - 4 are satisfied. Consider the linear Hawkes model
follows (2). Then, ∀δ > 0 and i, j ∈ {1, . . . , p},

P

(∣∣∣∣∣ 1

T

T∑
t=1

xi(t)xj(t)
> − E

(
1

T

T∑
t=1

xi(t)xj(t)
>
)∣∣∣∣∣ > δ

)
≤ C1 exp(−C2 min

{√T

ρ
δ,
T

ρ
δ2
})

,

(80)

where ρ = max‖βi‖0 and C1, C2 are constants.

In addition,

P

(∣∣∣∣∣ 1

T

T∑
t=1

xj(t)− Exj(t)

∣∣∣∣∣ > δ

)
≤ c1 exp(−c2Tδ

2). (81)
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Proof of Lemma S.2 :
The key to proof Lemma S.2 is first to write the quadratic form of x>(t)x(t) and x(t) into in-
dependent noise term εi(t), then we bound the deviation based on Hansen-Wright inequality
to bound the deviation from the corresponding expectation. Another key technical issue is
to bound the l2-norm of the transformation matrix that links the independent noise part and
x(t). This step is made possible by the technical assumptions on the structure of transition
functions and also the bounded mean intensity specified in Assumption 3 and 4.

Let Yjt = (Yj(t), . . . , Yj(1))> ∈ R>. Then xj(t) =
∑t−1

s=1 kj(t− s)Yj(s), t > 1, xj(1) = 0.

Let

Kj =


0 kj(1) kj(2) kj(3) . . . . . . kj(T − 1)
0 0 kj(1) kj(2) . . . . . . kj(T − 2)
0 0 0 kj(1) . . . . . . kj(T − 3)
0 . . . . . . . . . .
0 0 0 0 0 0 kj(1)
0 0 0 0 0 0 0

 ∈ RT×T

Then,

xj = KjYjT

In addition, by Proposition 1 in (Bacry et al., 2011),

Yj(t) = Λj + Ψj ∗ εj(t) = Λj +
t−1∑
s=1

Ψj(t− s)εj(s)

Here ε(s) = (ε1(s), . . . , εp(s))
> ∈ Rp and Ψj(t) = (Ψj1(t), . . . ,Ψjp(t)), Ψjl(t) =

∑∞
n=1 ω

∗n
jl (t),

where ω∗njl is n-th auto-convolution of ωjl.

Let

Ξj =


Ψj(1) Ψj(2) Ψj(3) . . . . . . Ψj(T )

0 Ψj(1) Ψj(2) . . . . . . Ψj(T − 1)
0 0 Ψj(1) . . . . . . Ψj(T − 2)
. . . . . . . . . .
0 0 0 0 0 Ψj(1)

 ∈ RT×Tp

Let ε = (ε(T ), . . . , ε(1))> ∈ RTp , then

YjT = Λj + Ξjε

Then,

xj = Kj(Λj + Ξjε) = KjΛj +KjΞjε

xj − Exj = KjΞjε
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Then,
x>i xj − Ex>i xj = Λ>i K

>
i KjΞjε+ Λ>j K

>
j KiΞiε+ ε>Ξ>i K

>
i KjΞjε

Next, we bound each of the items on RHS in the above.

First, notice that

‖Λ>i K>i KjΞj‖2
2 ≤ ‖Λi‖2

2Λmax

(
K>i KjΞjΞ

>
j K

>
j Ki

)
where the second inequality is based on Perron–Frobenius theorem and the last inequality
is based on Assumption 2 and 4.

By Assumption 3, ‖Λi‖2
2 ≤ λmaxT . Also,

Λmax

(
K>i KjΞjΞ

>
j K

>
j Ki

)
≤ Λmax (Ki)

2 Λmax (Kj)
2 Λmax (Ξj)

2

≤

(
T∑
t=1

ki(t)

)2( T∑
t=1

kj(t)

)2( p∑
k=1

T∑
t=1

Ψik(t)

)2

≤ C

where the second inequality is based on Perron–Frobenius theorem and the last inequality
is based on Assumption 2 and 4.

Therefore, by the inequality result on sub-gaussian deviation bound (Vershynin 2010, Prop
5.10) and Eε = 0, we have

P (
∥∥Λ>i K

>
i KjΞjε

∥∥
2
> Tδ) ≤ c1 exp(− T 2δ2

λmaxTC
) = c1 exp(−c2Tδ

2)

Similarly,

P (
∥∥Λ>j K

>
j KiΞiε

∥∥
2
> Tδ) ≤ c1 exp(− T 2δ2

λmaxTC
) = c3 exp(−c4Tδ

2)

Next, we bound ε>Ξ>i K
>
i KjΞjε based on the special structure of Ki and Ξi.

By Assumption 4, kj(t) ≤ a exp(−bt) and Ψij ≤ C exp(−ct), where c = b − a. By the
sparse signal assumption, for each i, there at most s items of Ψil(t) 6= 0. So instead of
considering the entire p-unit system, we only consider at most 2s units such that Ψil(t) 6= 0
and Ψjl(t) 6= 0. Then, let

K̃ = C1


0 exp(−bt) exp(−2bt) exp(−3bt) . . . . . . exp(−b(T − 1))
0 0 exp(−bt) exp(−2bt) . . . . . . exp(−b(T − 1))
0 0 0 exp(−bt) . . . . . . exp(−b(T − 3))
0 . . . . . . . . . .
0 0 0 0 0 0 exp(−bt)
0 0 0 0 0 0 0

 ∈ RT×T ,
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and

Ξ̃ = C1


0>2s exp(−ct)1>2s exp(−2ct)1>2s exp(−3ct)1>2s . . . . . . exp(−c(T − 1))1>2s
0>2s 0>2s exp(−ct)1>2s exp(−2ct)1>2s . . . . . . exp(−c(T − 2))1>2s
0>2s 0>2s 0>2s exp(−ct)1>2s . . . . . . exp(−c(T − 3))1>2s
0>2s . . . . . . . . . .
0>2s 0>2s 0>2s 0>2s 0>2s 0>2s exp(−ct)1>2s
0>2s 0>2s 0>2s 0>2s 0>2s 0>2s 0>2s

 ∈ RT×2sT ,

where a>2s = (a, a, . . . , a)︸ ︷︷ ︸
2s

and a ∈ {0, 1}.

Then, ∥∥Ξ>i K
>
i KjΞj

∥∥2

2
≤
∥∥∥Ξ̃>K̃>K̃Ξ̃

∥∥∥2

2

Let Θ = K̃Ξ̃, then we calculate

Θ1,k(s−1)+1 =
k∑
s=1

exp(−as) exp(−c(k + 1− s)) ≤ C2 exp(−ak)

Therefore,
∥∥∥K̃Ξ̃

∥∥∥2

2
≤
∥∥∥Θ̃
∥∥∥2

2
where

Θ̃ = C2


0>2s exp(−a)1>2s exp(−2a)1>2s exp(−3a)1>2s . . . . . . exp(−a(T − 1))1>2s
0>2s 0>2s exp(−a)1>2s exp(−2a)1>2s . . . . . . exp(−a(T − 2))1>2s
0>2s 0>2s 0>2s exp(−a)1>2s . . . . . . exp(−a(T − 3))1>2s
0>2s . . . . . . . . . .
0>2s 0>2s 0>2s 0>2s 0>2s 0>2s exp(−a)1>2s
0>2s 0>2s 0>2s 0>2s 0>2s 0>2s 0>2s

 ∈ RT×2sT .

Next, we check M = Θ̃>Θ̃. Due to the structure of Θ̃, we get

M = C2
2



0>2s 0>2s 0>2s 0>2s . . . . . . 0>2s
0>2s m11

>
2s m1 exp(−a)1>2s m1 exp(−2a)1>2s . . . . . . m1 exp(−a(T − 2))1>2s

. . m21
>
2s m2 exp(−a)1>2s . . . . . . m2 exp(−a(T − 3))1>2s

. . . m31
>
2s . . . . . . m3 exp(−a(T − 4))1>2s

. . . . . . . . . . .

. . . . . . mT−11
>
2s

. . . . . . 0>2s


∈ R2sT×2sT ,

where mt =
∑>

l=1 exp(−al) ≤ C3 exp(−a) for t = 1, . . . , T − 1. We only write out the upper
triangle part of M in the above since M = MT .

Therefore,

‖M‖2
2 ≤ 2

>∑
i=1

2s
T−1∑
k=1

mi exp(−ka) ≤ C4sT
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Since {εi(t)}1≤i≤p;t=1,...,T are mutually independent centered at 0 with bounded variance of
each εi(t) according to the linear Hawkes model (2), we apply Hanson-Wright inequality and
get

P

( ∣∣∣∣ε>Ξ>i K
>
i KjΞjε− E

(
ε>Ξ>i K

>
i KjΞjε

)∣∣∣∣ > Tδ

)
≤ c5 exp(−c6 min{Tδ/‖M‖2, T

2δ2/‖M‖2
2})

≤ c5 exp(−c6 min{Tδ/
√
C4sT , T

2δ2/(C4sT )})

Therefore, combining the deviation bound for Λ>i K
>
i KjΞjε, we get

P

( ∣∣x>i xj − Ex>i xj∣∣ > Tδ

)
≤ P

( ∣∣Λ>i K>i KjΞjε
∣∣ > Tδ

)
(82)

+ P

( ∣∣Λ>j K>j KiΞiε
∣∣ > Tδ

)
(83)

+ P

( ∣∣ε>Ξ>i K
>
i KjΞjε

∣∣ > Tδ

)
(84)

≤ C1 exp(−C2 min
{√T

s
δ,
T

s
δ2
}

) (85)

The above gives a 2nd-order deviation bound. Now we deviate the 1st order deviation bound.

Since in the above we have ‖KjΞj‖2
2 ≤

∥∥∥K̃Ξ̃
∥∥∥2

2
≤
∥∥∥Θ̃
∥∥∥2

2
≤ CT exp(−2a) , by the inequality

result on sub-gaussian deviation bound (Vershyim 2010, Prop 5.10) and Eε = 0,

P (

∣∣∣∣∣ 1

T

T∑
t=1

xj(t)− Exj(t)

∣∣∣∣∣ > δ) ≤ c1 exp(−T
2δ2

TC
) = c1 exp(−c2Tδ

2) (86)

�

Corollary S.2: Assume Assumption 1 - 4 are satisfied. Consider the linear Hawkes model
follows (2). ∀u, v ∈ Rr, x(t) ∈ Rr,

P

( ∣∣∣∣∣ 1

T

T∑
t=1

xi(t)u
Tvxj(t)

> − E
(

1

T

T∑
t=1

xi(t)u
Tvxj(t)

>
)∣∣∣∣∣ > δ

)
≤ C1r

2 exp(−C2 min
{√T

s
δ

1

‖u‖1‖v‖1

,
T

s
δ2 1

‖u‖2
1‖v‖2

1

})
.

Proof of Corollary S.2 :
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Notice that ∣∣∣∣∣ 1

T

T∑
t=1

xi(t)u
Tvxj(t)

> −
(

1

T

T∑
t=1

xi(t)u
Tvxj(t)

>
)∣∣∣∣∣

=

∣∣∣∣∣uT
(

1

T

T∑
t=1

x>i (t)xj(t)− E
(

1

T

T∑
t=1

x>i (t)xj(t)

))
v

∣∣∣∣∣
≤ ‖u‖1‖v‖1

∥∥∥∥∥ 1

T

T∑
t=1

x>i (t)xj(t)− E
(

1

T

T∑
t=1

x>i (t)xj(t)

)∥∥∥∥∥
∞

Applying Lemma S.2 and taking an union bound, we have

P

(∥∥∥∥∥ 1

T

T∑
t=1

x>i (t)xj(t)− E
(

1

T

T∑
t=1

x>i (t)xj(t)

)∥∥∥∥∥
∞

> δ

)

= P

( ⋃
1≤i,j≤l

∥∥∥∥∥ 1

T

T∑
t=1

x>i (t)xj(t)− E
(

1

T

T∑
t=1

x>i (t)xj(t)

)∥∥∥∥∥
∞

> δ

)

≤ r2C1 exp(−C2 min
{√T

s
δ,
T

s
δ2
})

Therefore, we complete the proof by replacing δ by δ
‖u‖1‖v‖1 . �

Proof of Lemma S.3 :
Lemma S.3 plays an important role in proof the other technical lemmas. By Lemma S.2
and Corollary S.2, we get the deviation bound for quadratic form of the design columns
x(t); however, different from previous work e.g. (Zheng and Raskutti, 2018), in our case, the
variance of error term σ2(t) is a function of the mean structure, therefore, we need to deal
with a more complex case bounding the deviation of 1

T

∑T
t=1

1
σ2(t)

x>(t)x(t) from its mean.
To achieve this, we use Taylor expansion to expand the term on its 2nd order. Then apply
the results on the 1st order and 2nd order (the quadratic form) deviation bound of x(t) to
derive the deviation bound for 1

T

∑T
t=1

1
σ2(t)

x>(t)x(t).

Note that under stationary condition, E
(
x(t)

)
=
∫ t

0
k(s)dΛ, where Λ is mean intensity vector

for Y1, . . . , Yp. By Assumption 3 and 4, E
(
x(t)

)
is bounded.

First, consider

hjk(x(t), θ = (µ, β)) ≡ 1

σ2(t)
xj(t)xk(t) =

1

σ2(t)
x(t)Ijkx

>(t)

where Ijk = eje
>
K and ei are vector containing all 0’s except 1 at position i.

52



Next, we check derivative of h:

h′jk(E
(
x(t)

)
, θ) = σ−4(t)(1− 2(µ+ E

(
x(t)

)
β))β>E

(
x(t)

)
IjkE

(
x>(t)

)
+ σ−4(t)E

(
x(t)

)
(Ijk + ITjk)

= C1β
> + c2E

(
xj(t)

)
(eTj + eTk )

= C1β
> + C2(eTj + eTk )

where the last step is because E
(
x(t)

)
and θ can be regarded as constants independent with

t under stationary stochastic process and bounded according to Assumption 3 an 4.

Then,

‖ 1

T

T∑
t=1

h′jk(E
(
x(t)

)
, θ)
(
x(t)− E

(
x(t)

))>‖∞ = C‖C1β
> + C2(eTj + eTk )‖1‖

1

T

T∑
t=1

x(t)− E
(
x(t)

)
‖∞

≤ C(C1ρmax{β}+ 2C2)δ

with probability at least 1−c1 exp(−c2Tδ
2) due to the consistency of 1

T

∑T
t=1 x(t) to E

(
x(t)

)
proofed in Lemma S.2 (81). For example, δ =

√
log p
T

Next, check h(2)(E
(
x(t)

)
, θ). Similar as above, due to the constancy of 1

T

∑T
t=1 x(t) to E

(
x(t)

)
and θ = (β, µ),

h
(2)
jk (E

(
x(t)

)
, θ) = c1ββ

> + c2(c3ββ
> + c4β(eTj + eTk ))− 2c5β(eTj + eTk ) + 2c6Ijk

= C1ββ
> + C2β(eTj + eTk ) + C3(Ijk + Ikj)

Thus, according to the implication of Assumption 4 that max β is bounded and T � ρ2,

‖h(2)
jk (E

(
x(t)

)
, θ)‖1 ≤ C1ρ

2 max{β}2 + C22 max{β}+ 2C3 ≤ C

Then, by the quadratic form deviation bound proofed in Lemma S.2 (80),

‖ 1

T

T∑
t=1

x(t)h
(2)
jk (E

(
x(t)

)
, θ)x>(t)− E

(
x(t)h

(2)
jk (E

(
x(t)

)
, θ)x>(t)

)
‖∞

≤ ‖ 1

T

T∑
t=1

x>(t)x(t)− E
(
x(t)>x(t)

)
‖∞‖h(2)(E

(
x(t)

)
, θ)‖1

≤ Cδ

with probability at least 1− c1 exp(−c2 min{
√

T
s
δ, T

s
δ2}).

In addition, by Assumption 3 and Assumption 4 and its implication on bounded β, µ,

‖h(2)
jk (E

(
x(t)

)
, θ)E

(
x>(t)

)
‖1

≤ ‖C1ββ
>E
(
x>(t)

)
+ C2β(eTj + eTk )E

(
x>(t)

)
+ C3(Ijk + Ikj)E

(
x>(t)

)
‖1

≤ C1

(
max |λ(t)|+ |µ|

)
‖β‖1 + 2C2 maxE

(
x(t)

)
+ 2C3 maxE

(
x(t)

)
≤ C ′1ρmax β + C ′2
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Thus,

‖ 1

T

T∑
t=1

(
x(t)− E

(
x(t)

))>
h

(2)
jk (E

(
x(t)

)
, θ)E

(
x>(t)

)
‖∞

≤ C‖h(2)
jk (E

(
x(t)

)
, θ)E

(
x>(t)

)
‖1‖

1

T

T∑
t=1

x(t)− E
(
x(t)

)
‖∞

≤
(
C ′1ρmax β + C ′2

)
δ

with probability at least 1− c1 exp(−c2 min{
√

T
s
δ, T

s
δ2}).

Now, we expand h around E
(
x(t)

)
, we get

hjk(x(t), θ) = hjk(E
(
x(t)

)
, θ) + h′jk(E

(
x(t)

)
, θ)
(
x(t)− E

(
x(t)

))
+

1

2

(
x(t)− E

(
x(t)

))
h

(2)
jk (E

(
x(t)

)
, θ)
(
x(t)− E

(
x(t)

))>
+o(

(
x(t)− E

(
x(t)

))(
x(t)− E

(
x(t)

))>
)

Then,

1

T

T∑
t=1

hjk(x(t), θ)− E
(
h(x(t), θ)

)

=
1

T

T∑
t=1

(
x(t)− E

(
x(t)

))
h′jk(E

(
x(t)

)
, θ)

+
1

T

T∑
t=1

x(t)h
(2)
jk (E

(
x(t)

)
, θ)x>(t)− E

(
x(t)h

(2)
jk (E

(
x(t)

)
, θ)x>(t)

)

−2
1

T

T∑
t=1

(
x(t)− E

(
x(t)

))>
h

(2)
jk (E

(
x(t)

)
, θ)E

(
x>(t)

)
+o

(
1

T

T∑
t=1

x(t)x>(t)− E
(
x(t)x>(t)

)
− 2

1

T

T∑
t=1

(
x(t)− E

(
x(t)

))>E(x(t)
))

Therefore, combining the deviation bound for each of the item on the RHS, we reach the
conclusion that

‖ 1

T

T∑
t=1

hjk(x(t), θ)− E
(
hjk(x(t), θ)

)
‖∞ ≤ C(ρ,max{β})δ

with probability at least 1− c1 exp(−c2 min{
√

T
s
δ, T

s
δ2}).

Following similar steps above and based on the 1st-order consistency of x(t) to Ex(t) shown
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in (81), we can also proof

‖ 1

T

T∑
t=1

1

σi(t)
xj(t)− E

(
1

σi(t)
xj(t)

)
‖∞ ≤ C(ρ,max{β})δ

with probability at least 1− c1 exp(−c2Tδ
2).

Finally, to a conclusion that involves entire x(t), we take a union bound over all p2 (j, k)
pairs for the quadratic form or p variable for the 1st-order deviation bound. The final form
of probability actually does not change if we assume log p � o(

√
T ) �
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Let sj = ‖w∗j‖0 and s = max1≤j≤p sj; ρi = ‖βi‖0 and ρ = max1≤i≤p ρi.

Lemma S.4 Assume Assumption 1-4 are satisfied and a stationary linear Hawkes model
satisfying (6). For the connectivity matrix of block structure, s ≤ ρ+ 1.

Proof of Lemma S.4 :

By the choice of w∗j in (10),

Cov
(
x̃j(t)− x̃−j(t)w∗j,−j, x̃−j(t)

)
= 0

Under stationary condition of the linear Hawkes process and by Assumption 1, as indicated
in (Chen et al., 2017), the mean intensity, Λ = (λ1, . . . , λp)

>, can be written as

Λ =
∞∑
i=1

Ωiµ,

where Ωi is the ith power of the transition matrix Ω. This implies that under stationary
condition, σ2

j (t) = σ2
j = λj(1− λj). Therefore, the choice of w∗j in (10) implies

Cov
(
xj(t)− x−j(t)w∗j,−j, x−j(t)

)
= 0

Then,

w∗j,−j = Cov (xj(t), x−j(t)) (Cov (x−j(t), x−j(t)))
−1

= Cov (xj(t), x−j(t))
(

(Υx)−j,−j

)−1

By Lemma 1.2 of the bounded eigenvalue of Υx,

‖w∗j,−j‖0 ≤ ‖{k : j 6= k, Cov (xj(t), xk(t)) 6= 0}‖0

Without loss of generality, consider a discrete time scenario with unit time window (dt = 1).
Then, xj(t) =

∑t−1
s=1 kj(t− s)Yj(s) and xj(1) = 0.

Cov (xj(t), xk(t)) = Cov

(
t−1∑
s=1

kj(t− s)Yj(s),
t−1∑
s=1

kj(t− s)Yj(s)

)

=
t−1∑
s=1

t−1∑
s′=1

kj(t− s)kj(t− s′)Cov (Yj(s), Yj(s
′))

Therefore,

‖{k : j 6= k, Cov (xj(t), xk(t)) 6= 0}‖0 ≤ ‖{k : j 6= k, Cov (Yj(t), Yk(t)) 6= 0}‖0.

Consider a connectivity matrix of block structure, for each j, all units that the unit j depends
on must stay in one of the blocks on the connectivity matrix. Therefore, the possible number
of units it depends on is at most ρ; that is,

‖{k : j 6= k, Cov (Yj(t), Yk(t)) 6= 0}‖0 ≤ ρ,
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which implies

s = max
1≤j≤p

‖w∗j‖0 ≤ 1 + max
1≤j≤p

‖w∗j,−j‖0 ≤ ρ+ 1

�

Remark: The lemma above makes use of the block structure of a connectivity matrix
where units are correlated within clusters. Therefore, to analyze the sparsity of w∗j , we only
need to check the size of cluster that unit j is in. Due to the sparsity assumption on the
connectivity matrix, the largest size of cluster is upto ρ. For a general structure connectivity
matrix, the order between sparsity of w∗j and the sparsity of β is not straightforward. The
sparsity of w∗j depends on the sign and scale of the connectivity coefficients and also the
transition kernel.
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