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Abstract

Exchange economies are defined by a mapping between an atomless space of

agents and a space of characteristics where the commodity space is a separable

Banach space. We characterize equilibrium stability of economies relaying on

the continuity of the equilibrium correspondence. We provide a positive answer

to an open question about the continuity of the Walras correspondence in infinite

dimensional spaces. In addition, we do not assume neither differentiability nor

a fixed set of agents for the different economies, like it is usually assumed in the

stability literature.

Keywords: Essential Stability, Walras Correspondence, Infinitely Many

Commodities, Large Economies, Nowhere Equivalence

1. Introduction

The existence of a competitive equilibrium is followed by questions regard-

ing the characterization of the equilibrium set in order to analyze efficiency,

uniqueness or regularity properties. These results, and specifically those of reg-
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ularity, are closely related to the finiteness of the equilibrium set. It is the finite5

property that allows to define a concept of locally stable equilibria. For this

purpose, it is required to analyze how the set of equilibria responds to small

perturbations in exogenous parameters that characterize agents and, therefore,

economies. This relation between parameters and equilibrium sets has been cap-

tured in the literature through correspondences that associate economies with10

its equilibria. The approach generally consists of proving conditions over this

equilibrium correspondence in order to conclude that it defines finite sets. This

is the aim of the pioneering work of Debreu (1970) assuming differentiability

conditions and using the Theorem of Sard (1942).

Furthermore, Kannai (1970), Hildenbrand (1970) and Hildenbrand and Mertens15

(1972) introduce the study on the continuity of the equilibrium correspondence

for pure exchange economies. All these studies, also including Balasko (1975),

understand parameters as exogenous characteristics that define the agents (i.e.

consumption sets, tastes or endowments). In particular, it turns to be a crucial

point the way in which a topology in the space of economies is defined.20

In this study, we use a concept of stability for competitive economies re-

lated to the continuity property of the equilibrium correspondence, i.e., essen-

tial stability that was introduced in the fixed point theory by Fort (1950) and,

accordingly to game theory by Wen-Tsun and Jia-He (1962). In particular,

the translation from game theory to economies states that an equilibrium is25

essentially stable if it is possible to approximate it by equilibria of “similar”

economies, i.e. economies that are close to the economy of reference under a

metric in the space of economies that has to be precised. Generally speak-

ing, defining the space of economies by a metric space requires to parameterize

the family of economies of interest with respect to the dimensions of similarity.30

In our case, the dimensions are consumption sets, preference relations and en-

dowments. It is possible to extend our analysis to other parameterizations of

economies, e.g. externalities, tax structures or information, by requiring that

the metric space of economies remains complete. Mas-Colell (1977a) raised the

following question regarding the equilibrium set:35
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Is there a dense set of economies having a finite set of equilibria?

We shall see the answer is yes, but this is not by itself a very inter-

esting property; what one wants (for, say, estimation or prediction

purposes) is that those equilibria be “essential”, i.e., that they do

not disappear by performing an arbitrarily small perturbation of the40

economy.

This quotation emphasizes that for our purposes the most accurate definition

should be regarding essentiality instead of regularity. We remark that every reg-

ular equilibrium is essential but the converse is not true. Furthermore, in order

to characterize this concept, we need to study the relation between parameters45

and equilibria instead of the equilibrium set.

Recently, the continuity of the equilibrium correspondence in general equi-

librium theory was stated by Dubey and Ruscitti (2015) and He et al. (2017).

We extend their results taking into consideration infinite dimensional commod-

ity spaces and by characterizing stability when the continuity property in the50

equilibrium correspondence can not be obtained directly. In fact, our results

answer the question posited in Dubey and Ruscitti (2015) about the possibility

of getting stability results in infinite dimensional economies. In addition we

remark that we have not restricted the economies to have the same space of

agents as it has typically been done in the literature.55

2. The model

We characterize an economy by a relation between agents and characteristics.

The characteristics of the agents and, also, the quantity of them may vary across

economies. Therefore, the representation of an economy could be a map between

the space of agents and the space of characteristics for which it is necessary to60

define at first, the commodity space. In turn, it induces a distribution over the

space of characteristics.

In the following subsections we define a general spaces of agents, character-

istics and characteristics types that are common to the space of economies we
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study.65

2.1. Space of agents

The space of economic agents is an atomless measure space (A,A, µ)

which is also separable. That is, for any coalition A′ ∈ A such that µ(A′) > 0

there is a A-measurable coalition A′′ ⊂ A such that 0 < µ(A′′) < µ(A′) where

A is separable with respect to a suitable distance.70

2.2. The commodity space and the space of characteristics

The commodity space is defined by a separable Banach space (L, ‖·‖) whose

positive cone has a non-empty interior. Consequently, the price space is given

by the positive cone of the topological dual of L, L∗+. We endow this space

with the weak-star topology w∗. Each consumption set X is a subset of L+.75

Endowed with the weak topology w, (L,w) is also a complete topological vector

space. By ‖ · ‖-topology we mean the topology induced by the norm ‖ · ‖. An

analogous notation is given to the w-topology.

We consider a convex and w-compact subset Q of the space L which includes

all consumption sets and the vectors 0 and u, where u ∈ intL+ and ‖u‖ = 1.80

Clearly, Q is w-closed (whence ‖ · ‖-closed since Q is convex) and ‖ · ‖-bounded

(Diestel (1984), p. 17). The norm on Q, ‖ · ‖Q, is induced from ‖ · ‖. Notice

that (Q, ‖ · ‖Q) is a Polish space since L is Polish (Fristedt and Gray (1996),

Proposition 3, p. 350). The weak topology on Q, wQ, is the relativization to Q

of w. Even though (L,w) is not metrizable, it is (Q,wQ) since Q is w-compact85

(Dunford and Schwartz (1958), Theorem 3. p. 434). Furthermore, (Q,wQ)

is separable (Aliprantis and Border (2006), Lemma 3.26, p. 85) and obviously

complete. Consequently (Q,wQ) is a locally compact Polish space. The positive

cone of Q, denoted Q+, is Q+ = L+ ∩Q. Since Q+ is a closed subset of Q then

it also a locally compact Polish space. The vector u belongs to the norm interior90

of Q+ since it belongs to intL+∩Q and ‖u‖Q = 1. A typical element of Q, X, is

a consumption set. We denote by F a ‖·‖-closed subset of Q such that (F, ‖·‖F )

is the corresponding topological subspace, where ‖ · ‖F is the relativization of
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‖ · ‖ to F .1 Taking into account the considerations at the beginning of this

section, we have that (F, ‖·‖F ) is a Polish space since (L, ‖·‖) is also Polish. As95

we shall assume later, all initial endowments and Walrasian allocations belong

to F .

Regarding the consideration of having a w-compact subset of the commodity

space L, we note that similar assumptions are made in large economies even if

the commodity space is finite dimensional. Indeed, Hildenbrand (1974) p. 85-86100

states a condition on consumption sets which in turn implies that the family

of such spaces is a compact set (Theorem 1, p. 96). The works of Khan and

Yannelis (1991) and Noguchi (1997) assume that each consumption set is weak-

compact. Bewley (1991) takes as commodity space the non-separable space l∞

and assumes the existence of a common consumption set which is a weak*-105

compact subset of l+∞. More recently, Khan and Sagara (2016) also assumes the

existence of a common consumption set which is weak-compact and metrizable.

On the other hand, several papers on topologies on the space of preferences

take as commodity spaces locally compact ones (see Back (1986), Chichilnisky

(1980), Kannai (1970) Remark 1, Mas-Colell (1977b) among others). In this110

sense, the consideration of Q is consistent with that literature and we shall

make use of some important results of it.

Consider the preference relation (X,�) such that �⊂ X ×X is a transitive

and irreflexive binary relation on X. Let P be the set preference relations. For

each (X,�) ∈ P we associate the set P := {(x, y) ∈ X × X | (x, y) /∈�}. In115

addition we shall also consider the endowment vector e belonging to X.

Let us consider now the set of all monotonic preference relations in P as

follows Pmo := {(X,�) ∈ P, such that for all x, y in X, if x ≥ y and x 6=

y then x � y}. Hence, the space of characteristics is given by Pmo × F

1See our Assumption BA (3) in section 4. This space plays the role of the norm compact

subset of the commodity space in the definition of the economy number (4) p. 236 in Khan

and Yannelis (1991). Note that this assumption is always satisfied for the finite dimensional

case.
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where a typical element is ((X,�), e) ∈ Pmo × F .120

2.3. Space of characteristic types

Fix a particular space of agents (A,A, µ). Let X : (A,A, µ) → Q+ the

correspondence that associates a consumption set to each agent in the space.

Consequently, denote� (a) ⊂ X(a)×X(a) the preference relation of agent a ∈ A

provided the space of agents. Given the relation ((X(a),� (a)) and x, y ∈ X(a),125

we shall say that x � (a) y if and only if (x, y) ∈ � (a). Similarly, define a

Bochner integrable, X-valued and measurable function e : (A,A, µ) → F that

specifies the endowments for the agents in the given space. Thus, we shall say

that e ∈ L1(µ, F ) which allows us to well define the aggregate endowment by∫
A
edµ.130

We formally define an economy by means of a mapping between the space

of agents and the space of characteristics.

Definition 1. An economy is a function E : (A,A, µ) → Pmo × F which is

measurable with respect to a given countably-generated sub-σ-algebra G of A,

and the Borel σ-algebra B(Pmo × F )135

The sub-σ-algebra G gives place to the measure space (A,G, µ) which defines

the characteristic type space since G can be viewed as the σ-algebra induced by

E .

Thus, for a given a ∈ A we have E(a) = ((XE(a),�E (a)), eE(a)) ∈ Pmo×F .

When it is clear which mapping E is considered, we shall represent an agent140

a ∈ A in a shorter way, that is, by ((X(a),� (a)), e(a)) ∈ P × F . Even more,

for the sake of simplicity, sometimes we shall write directly ((X,�), e) ∈ P ×F .

The image of the map that defines the economy should have a measurable

structure that we assume to be the σ-algebra of the Borelians on the space of

characteristics. For the sake of a simple notation, we omit those precisions.145

The characteristic type space is (A,G, µ) for a given economy E whose sub-

σ-algebra is G.
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2.4. Walrasian equilibirum

A Bochner-integrable function f : (A,A, µ) −→ Q+ is an allocation for

the economy E if f ∈ L1(µ,XE). Further, f is said to be attainable for E if150 ∫
A
fdµ =

∫
A
eEdµ.

The demand for agent a at prices p ∈ L∗+ in the economy E is given by

DE(a)(p), i.e., maximal elements for �E (a) in

BE(a)(p) = {x ∈ XE(a) : p(x− eE(a)) ≤ 0}.

Definition 2. An allocation for E, f : (A,A, µ)→ Q+, is walrasian if there is

a price vector p ∈ L∗+ such that:

(i) f(a) ∈ DE(a)(p) for µ-almost all a ∈ A,

(ii)
∫
A
fdµ =

∫
A
edµ.155

Thus, a walrasian allocation jointly with a corresponding price, (f, p), is called

a walrasian equilibrium.

3. Difficulties with a double infinity of agents and commodities

The aim of the present paper is to extend previous results on essential sta-

bility by allowing both infinitely many commodities and varying atomless space160

of agents. In order to compare what has been done previously, we can iden-

tify two kinds of stability results: those regarding continuity of walrasian and

Cournot-Nash correspondences. In the first case, as far as we know, all commod-

ity spaces are finite dimensional explicit or implicitly. Furthermore, sequences

of economies typically have varying sets of finite agents. In the second case,165

the set of agents is assumed fixed (see Carbonell-Nicolau (2010) or Correa and

Torres-Mart́ınez (2014)). Notice that even if we only consider economies with

finitely many agents and an infinite dimensional commodity space, essential sta-

bility is not ensured (See Dubey and Ruscitti (2015), p. 2). In addition, we add

uncountable varying sets of agents.170

In extending the analysis to the previously described contexts, we have the

following drawbacks
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• Essential stability relies on Fort’s Theorem (Fort (1950)) which requires

a metric set of prices. However, when considering infinite dimensional

spaces, price simplex is endowed with the weak∗-topogy which is not175

metrizable on the whole price space.

• Also due to Fort’s Theorem, the set of economies is required to be Baire.

This is the case if the set of characteristics is Polish. For this, it is suf-

ficient to take a locally compact commodity space. However, Hausdorff

topological vector spaces are locally compact if and only if they are finite180

dimensional (Aliprantis and Border (2006), Theorem 4.63, p. 150).

As for the first difficulty, if the price simplex is compact in the weak∗-

topology then it is metrizable. This solves the first problem. Regarding the

second one, we consider a locally compact subset of a non-locally compact com-

modity space by taking a suitable weak-compact subset Q of the space L (see185

Section 2.2). Then, we shall have that the set of characteristics is contained in

a compact set yet the commodity space is not locally compact. An alternative

approach is to embed the space (L, ‖ · ‖) into the Hilbert cube (H, dH) which

is a compact metrizable space. We profit from the fact that the topology of

H (the dH-topology) induced on L is equivalent to the ‖ · ‖-topology. Besides,190

no additional assumption is needed in comparison with the first approach. We

postpone the second approach to the Appendix B.

4. Space of Economies

We first consider economies without strongly convex preferences. In Sec-

tion 6, we introduce and assume this condition that simplifies the assumption195

required.

Basic Assumptions (BA). For each economy E we have:

1. X is contained in Q+ and contains 0 and u. It is a norm-closed and convex

subset of L+.

2. (X,�) is weak-relatively open in X ×X.200
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3. F is contained in every X and each walrasian allocation f belongs to the

space F .

Assumptions BA (1) and (2) are natural in these configurations. Assumption

BA (1) implies that each X is a w-closed subset of Q+ whence w-compact.

Because of Assumption BA (2) each preference P is a w × w-closed subset of205

L+ × L+ and then a wQ × wQ-closed subset of Q+ ×Q+.

BA (3) says that all individual endowments and Walras allocations belong

to a common set. An analogous assumption is made in Hart et al. (1974).

Assumption BA (3) becomes relevant in two aspects. First, because we are

not assuming neither that the commodity space is Q+, as most papers with210

infinitely many commodities do, nor that there is a common consumption set

X as in Khan and Sagara (2016). Consequently, this assumption allows us to

consider relevant sequences of economies through Skorokhod’s Theorem which

are essential in many proofs of the paper. Second, because every converging

sequence in the metric space (F, ‖ · ‖F ) is a converging sequence in the normed215

space (L, ‖ · ‖). Hence, in the proof of Theorems 1 and 2 we can deal with the

well known difficulty of joint continuity in infinite dimensional spaces.

We restrict the commodity space to the relevant subset Q and, within it,

to F where we assume that all initial endowments and Walras allocations take

values. Since every economy considers both aggregate initial endowments and220

aggregate feasible allocations, we show that every allocation with range in F is

Bochner integrable

Proposition 1. Every function f : A→ F ⊂ L which is (A,B(F ))-measurable

is Bochner integrable.

Proof. We start by claiming that f is (A,B(F ))-measurable if and only if it is225

(A,B(L))-measurable. Indeed, suppose that f is (A,B(F ))-measurable. Then,

for any B ∈ B(L), f−1(B) = f−1(B ∩ F ) ∪ f−1(B ∩ (L \ F )). f−1(B ∩ F ) ∈ A

since f is (A,B(F ))-measurable and f−1(B ∩ (L \ F )) = ∅ since f takes values

only in F . The converse is obvious.
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Since F is separable, there exists a sequence of (A,B(F ))-measurable sim-230

ple functions {fn}n∈N from A into F which converges in norm to f a.e. (see

Aliprantis and Border (2006) Theorem 4.38 1. p. 145). By previous claim,

the simple functions are (A,B(L))-measurable and since f is ‖ · ‖-bounded it is

Bochner integrable (Diestel (1977), Theorem 2, p. 45)

Remark 1. Let us consider the space (F, ‖ · ‖F ). Let {fn}n∈N be a sequence235

of (A,B(F ))-measurable functions from A into F , and let f : A → F be a

(A,B(F ))-measurable function such that fn(a) ‖·‖-converges to f(a) a.e. By the

above remark, each fn and f are Bochner integrable and since Q is ‖ ·‖-bounded

one can use the Dominated Convergence Theorem in Dunford and Schwartz

(1958), p. 328 to claim that the limit with respect to the norm ‖·‖ of
∫
A
fn(a)dµ240

is equal to
∫
A
f(a)dµ.

The following result shows that we can even follow an alternative version

of the Dominated Convergence Theorem when the weak topology wQ is con-

sidered. This result is required to ensure the closed-graph of the equilibrium

correspondence (See Appendix A.3).245

Proposition 2. Let (A,A, µ) be a finite measure space. Let x and the sequence

{xn}n≥1 be measurable functions from (A,A, µ) into F such that the limit with

respect to the w-topology of xn(a), or the w − limn→∞ xn(a), is equal to x(a)

a.e, then w − limn→∞
∫
A
xn(a)dµ =

∫
A
x(a)dµ.

Proof. Let {xn}n≥1 be a sequence from the measure space (A,A, µ) into F such250

that xn(a) converges to x(a) a.e with respect to w. Let f ∈ (L∗, w∗) arbitrary.

By weak-pointwise convergence of {xn}n≥1 one has that limn→∞f(xn(a)) =

f(x(a)) a.e. Since f is w-continuous it is ‖ · ‖-bounded and thus the se-

quence {f ◦ xn}n≥1 and f ◦ x are bounded and (A,B(R))-measurable whence,

strong measurable since R is separable. Consequently, for each n ≥ 1 both255

{f ◦ xn}n∈N and f ◦ x are integrable. Hence, by the Dominated Convergence

Theorem limn→∞
∫
A
f(xn(a))dµ =

∫
A
f(x(a))dµ (compare with Remark 1). On

the other hand, by Proposition 1 every xn and x are Bochner integrable, whence
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f
(∫
A
xn(a)dµ

)
=
∫
A
f(xn(a))dµ (Aliprantis and Border (2006) Lemma 11.45,

p. 427 ). Consequently, we deduce that w − limn

∫
A
xn(a)dµ =

∫
A
x(a)dµ.260

Let CwQ(Q×Q) be the set of all wQ × wQ-closed subsets of Q × Q. We

denote by τC the topology of closed convergence on CwQ(Q × Q). Since every

P belongs to CwQ(Q × Q), we can define a mapping g : P → CwQ(Q × Q) by

(X, �) 7→ P . It is easily verified that g is an injection. Indeed, let (X,�) 6=

(X ′,�′) in P and let us assume that P = P ′. If X = X ′, then we have that265

(X×X)\ �= (X ′×X ′)\ �′, whence �=�′ which contradicts (X,�) 6= (X ′,�′).

If X 6= X ′ one can assume without loss of generality that X \X ′ 6= ∅. It follows

from (X × X)\ �= (X ′ × X ′)\ �′ that for any y ∈ X \ X ′ that (y, y) ∈�

which contradicts irreflexivity. Consequently, we must have P 6= P ′ whenever

(X,�) 6= (X ′,�′).270

We define the topology τPC on P by τPC = {g−1(U) : U ∈ τC}. Thus τPC can

be seen as the topology τC induced on P.2 We characterize the preferences of

the space of characteristics in the following lemma which follows and adapts the

arguments of Theorem 1 in Hildenbrand (1974).

Lemma 1. Under Assumption BA (1)-(2) the following holds:275

1. (P, τPC ) is compact and metrizable (and hence, a Polish space)

2. A sequence of preferences {(Xn, �n)}n≥1 converges to (X, �) in (P, τPC )

if and only if Li(Pn) = P = Ls(Pn)

3. The set {((X, �), x, y) ∈ P × Q × Q : x, y ∈ Xand x 6� y} is closed

for the product topology τPC × wQ × wQ. Furthermore, τPC is the weakest280

topology on P for which the above set is closed.

The proof is given in Appendix A.1. The following corollary is useful to

achieve individual optimality in the proof of Theorem 1.

2See Hervés-Beloso et al. (1999) for another applications of the closed convergence topology

for infinite dimensional space of characteristic.
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Corollary 1. Let (X, �) ∈ P such that x, y ∈ X and x � y. There exists

an τPC -open neighborhood U(X, �), a wQ-open neighborhood Vx and a wQ-open285

neighborhood Vy, such that for all (X ′, �′) ∈ U(X, �) and for all (x′, y′) ∈

(X ′ ∩ Vx)× (X ′ ∩ Vy) we have x′ �′ y′.

Proof. Since the set {((X, �), x, y) ∈ P×Q×Q : x, y ∈ Xand x 6� y} is closed

for the product topology τPC × wQ × wQ, then P × Q × Q\{(X, �), x, y) ∈

P ×Q×Q : x, y ∈ Xand x 6� y} is τPC × wQ × wQ-open.290

The following lemma shows that Pmo is also Polish.

Lemma 2. Under Assumptions BA (1)-(2), the subset Pmo is a Polish space.

The proof is given in Appendix A.2. We state now an additional assumption

which concerns “small” perturbations of consumption sets. We note that this

assumption is not necessary when strongly convex preferences are concerned295

(see Section 6).

Assumption C. Let {Xn,�n}n≥1 be a sequence converging to (X,�) with

respect to τPC such that Xn, X : (A,A, µ) � Q. For all x ∈ L1(µ,X), there

exists a sequence {xn}n≥1 in L1(µ,Xn) which ‖ · ‖-converges pointwise to x.

From an economic point of view, it means that a small change in the con-300

sumption set has a relatively small impact in consumption bundles. Notice that

from a mathematical point of view, since X is the closed limit of {Xn}n≥1 for

every x ∈ X there exists a sequence {xn}n≥1 in L1(µ,Xn) which w-converges

pointwise to x. So, Assumption C imposes a stronger convergence. This assump-

tion is automatically satisfied when the commodity space is the positive cone305

L+ as it is usually assumed in the literature on infinite dimensional commodity

spaces.

Together with the assumption in the following section, we provide examples

of economies satisfying our configuration in Section 4.2.
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4.1. Nowhere Equivalence310

At this point we characterize the relationship between an agent space (A,A, µ)

and its characteristic type space (A,G, µ), where G is a sub-σ-algebra of A in-

duced by the measurable mapping E . Indeed, G is the σ-algebra generated by

E−1(B(Pmo)⊗B(F )). Next, we introduce the nowhere equivalence condition of

He et al. (2017) as follows.315

Let G be a countably generated sub-σ-algebra of the σ-algebra A. For any

A′ ∈ A, such that µ(F ) > 0, the restricted probability space (A′,AA′
, µA

′
) is

defined by: AA′
= {A′ ∩ A′′ : A′′ ∈ A} and µA

′
is the probability measure

rescaled from the restriction of µ to AA′
.

We shall say that A is nowhere equivalent to G if for every A′ ∈ A with320

µ(A′) > 0, there exists a A-measurable subset A′0 of A′ such that µ(A′0 M A
′
1) >

0 for any A′1 ∈ GA
′
, where A′0 M A′1 is the symmetric difference (A′0\A′1) ∪

(A′1\A′0). In what follows we require that the sub-σ-algebra and the algebra

associated to an economy to be nowhere equivalent.

325

Assumption NE. For each economy E : (A,A, µ)→ Pmo×F we have that

A is nowhere equivalent to the sub-σ-algebra G.

From an economic viewpoint, the above definition means that for a non-

trivial collection of agents A′, if (A,A, µ) and (A,G, µ) represent the respective330

spaces of agents and characteristics types, then AA′
and GA′

are the sets or

subcoalitions in A′ and the characteristic-generated subcoalitions of A′ respec-

tively. Nowhere equivalence means that the σ-algebra A is strictly richer than

its sub-σ-algebra G when they are restricted to the group of agents A′.

4.2. Examples335

The space C(K) of continuous functions on the compact metric space K

with the sup norm is a separable Banach space whose positive C(K)+ has a

nonempty norm interior.

13



Consequently, our analysis covers C(K). Although, for a given measure

space (M,M, ν), the spaces L∞(M,M, ν) and l∞ of essentially bounded mea-340

surable functions and of essentially bounded sequences respectively are not sep-

arable, our analysis cover these two spaces. On the one hand, due to the fact

that the weakly compact subsets of L∞(M,M, ν) are norm separable (Diestel

and Uhl (1977), Theorem 13, p. 252) with nonempty norm interior. On the

other hand, norm-bounded subsets of l∞ are weak∗-compact by Alaoglu’s The-345

orem and by Bewley (1991), p. 226, these are complete and separable metric

spaces. Some examples of these spaces are given below.

1. Perfectly competitive economies (Rustichini and Yannelis (1991)). Let

us consider the space L = C([0, 1]) of continuous functions on [0, 1] being

C+([0, 1]) its positive cone. Let Q be a convex subset of C+([0, 1]) contain-350

ing both 0 and u. We define the commodity space as the weak*-closure of

Q, Q̄, which is weakly*-compact (Dunford and Schwartz (1958), Theorem

14 (1), p. 269), metrizable and separable. Since Q is convex, it is closed

with respect to the norm topology (Schaefer (1971), 3.1, p. 130). Thus,

Pmo × Q̄ is a Polish space. Let (A,A, µ) be an atomless measure space .355

The economy is defined by a mapping from (A,A, µ) into Pmo×Q̄ which is

measurable with respect to the σ-algebra generated by E−1(Pmo×Q̄). For

all a ∈ A, X(a) = Q̄. Individual preferences are given by the utility func-

tion ua : Q̄→ R so that for an allocation x : A→ Q̄, ua(x(a)) =
√
‖x(a)‖.

Individual endowments belong to Q̄ and we take F = Q̄.360

Let us assume that the space (A,A\E−1(B(Pmo)⊗B(Q̄)), µ) satisfies the

“many more agents than commodities” condition of Rustichini and Yan-

nelis (1991).3 This economy satisfies Assumption BA while Assumption

C holds trivially. As for Assumption NE it is satisfied because of Lemma

4 in He et al. (2017).365

2. Discrete time infinite horizon economies (Bewley (1991), Suzuki (2013)).

3Assumption A1, p. 255. Take into account that because of their Theorem 4.1, p. 259,

(A,A, µ) may be considered as an agent space satisfying this assumption
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Let (A,A, µ) be an atomless agent space and let us consider the space l∞.

The set Q = {x ∈ l+∞ : ‖x‖∞ ≤ c}, c > 3, is the common consumption

set, i.e., X(a) = Q for all a ∈ A (Bewley (1991)). Thus, Pmo is defined on

Q × Q. Individual endowments satisfy (1, 1, ...) ≤ e(a) ≤ (c − 2)(1, 1, ...)370

for all a ∈ A and the utility functions are ua(x) =
∑∞
t=1 2−tx(a) for all

x : A→ Q̄. Thus, an economy is a function E from (A,A, µ) to Pmo ×Q

such that a.e. E(a) = ((Q, ua), e(a)) ∈ Pmo ×Q.

Let us observe that the vectors (0, 0, ..., 0) and u = (1, 1, ..., 1) belong to Q

which is weak*-compact and metrizable. Preferences are monotone and if375

we take F = Q then each endowment and each walrasian allocation belong

to F . Consequently, one easily checks that all items in Assumption BA

and C hold. Furthermore, Pmo ×Q is a Polish space. On the other hand,

if we assume that E is A-measurable, then the σ-algebra G generated by

E−1(B(Pmo) ⊗ B(Q)) is a sub-σ-algebra of A. G is countably generated380

since Pmo ×Q is second countable. Hence, if (A,A, µ) is saturated 4 A is

nowhere equivalent to G accordingly to He et al. (2017) Corollary 3 (ii),

p. 792 and Assumption NE is satisfied.

3. Standard representation (Hildenbrand (1974), Hart et al. (1974)). Let us

consider the space L∞. Let Q = {x ∈ L+
∞ : ‖x‖∞ ≤ c}, c > 1 and let385

F = {x ∈ L+
∞ : ‖x‖∞ ≤ b} for b < c. Q is w∗-compact and metrizable,

hence second countable. Let us consider the agent space (A,A, µ) given by

A = (Pmo×Q)× [0, 1], A = B(Pmo×Q)⊗B([0, 1]) and µ = δ⊗λ where δ

is a distribution on Pmo×Q and λ is the Lebesgue measure. Consumption

sets are equal to the commodity space Q and preferences are representable390

4He et al. (2017) p. 791: An atomless probability space (A,A, µ) is said to have the

saturation property for a probability distribution µ on the product of Polish spaces X and

Y if for every random variable f : A → X, which induces the distribution as the marginal

distribution of µ over X, there is a random variable g : A → Y such that the induced

distribution of the pair (f, g) on (A,A, µ) is µ. A probability space (A,A, µ) is said to be

saturated if for any Polish spaces X and Y , (A,A, µ) has the saturation property for every

probability distribution µ on X × Y .
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by a norm continuous, strictly monotone, concave function ua : Q → R+

in such a way that for a concave, continuous, strictly monotone function

νa : [0,∞) → R+ and every commodity bundle x : A → Q, we posit

ua(x) =
∫
A
νa(x(a))dµ(a).

Thus the economy E : (A,A, µ) → Pmo × Q is the standard repre-395

sentation of δ (Hart et al. (1974)). It induces a sub-σ-algebra G =

B(Pmo × Q) ⊗ {[0, 1], ∅} which is countably generated and for which A

is nowhere equivalent. Furthermore E is G-measurable.

4.3. Similarity between atomless economies

In this setup, two economies may have different agents in contrast to a fixed400

set of agents whose characteristics vary. Consequently, two economies may

differ in size as the support of the distribution of agents’ characteristics varies.

In order to define the space of economies and a concept of convergence in it, we

state some results over the space of characteristics.

Let E be the set all economies according to Definition 1 satisfying Assump-405

tion NE. LetM(Pmo×F ) be the set of all probability distributions on the Borel

σ-algebra B(Pmo×F ) = B(Pmo)⊗B(F ), where B(F ) is the σ-algebra generated

by the ‖ · ‖F -open subsets of F . We endow the space M(Pmo × F ) with the

weak∗ topology.5 Let E : (A,A, µ)→ Pmo × F and E ′ : (A′,A′, µ′)→ Pmo × F

be two elements of E. Accordingly to He et al. (2017) we shall say that E and410

E ′ are similar if they are close in the sense of having similar distributions and

total endowments.

We need to define a metric space of economies, since we require the use of

Theorem 2 in Fort (1951) in our Theorem 3. Therefore, we need a metrizable

topology over the set of distributions. Since Pmo×F is separable,M(Pmo×F )415

is separable and the weak∗ topology is metrizable by the Prohorov metric ρ

5A sequence {µn}n≥1 in M(Pmo × F ) converges to the measure µ in the weak∗ topology

σ(M(Pmo × F ), Cb(Pmo × F )) if and only if
∫
Pmo×F fdµn →

∫
Pmo×F fdµ for all f ∈

Cb(Pmo×F ) which is the Banach lattice of all bounded continuous real functions on Pmo×F .
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(Billingsley (1999), Theorem 5 Appendix III). Hence, for E and E ′, we posit the

distance:

dE(E , E ′) = ρ
(
µo(E)−1, µ′o(E ′)−1

)
+

∥∥∥∥∫
A

edµ−
∫
A′
e′dµ′

∥∥∥∥ .
Notice that dE is a pseudo-metric and hence (E, dE) is a pseudo-metric space.

In contrast, Theorem 2 in Fort (1951) requires a metric space. Thus, we con-420

struct a metric space from this in a standard way: let us define the equivalence

relation ∼ as E ∼ E ′ if and only if dE(E , E ′) = 0. Consequently, if [E ] and [E ′]

are two equivalence classes containing E and E ′ respectively and if E ′′ ∈ [E ]

and E ′′′ ∈ [E ′] then dE(E ′′, E ′′′) = dE(E , E ′) = 0. More generally, we have that

d̂E([E ], [E ′]) := dE(E , E ′) is a metric in the quotient space E/ ∼ for any E , E ′ ∈ E,425

i.e, (E/ ∼, d̂E) is a metric space.

In words, we can consider the distance dE as a metric on E if we define

the space of economies E as the equivalence classes of economies according to

Definition 1. Hereafter it will be always the case.

5. Walras correspondences430

The price simplex is given by S = {p ∈ L∗+ : p(u) = 1}. By Jameson

(1970), Theorem 3.8.6, S is weak*-compact and since L is separable, the topol-

ogy induced on S by the weak*-topology is metrizable by a translation invariant

metric on L∗ (Dunford and Schwartz (1958), Theorem 1, p. 426). Furthermore,

S is a norm-bounded subset of L∗ accordingly to Alaoglu’s Theorem (Dunford435

and Schwartz (1958), Corollary 3, p. 424).

Let x belongs to L1(µ,L). Endowed with the norm ‖x‖1 =
∫
A
‖x‖dµ,

(L1(µ,L), ‖ · ‖1) is a Banach space (Diestel (1977), p. 50) wich is also locally

convex (Schaefer (1971), p. 48). Furthermore, since every measure space con-

cerning agents is assumed to be separable, L1(µ,L) is a separable Banach space440

(Kolmogorov and Fomin (1975), p. 381). The topological dual of L1(µ,L) is

L∞(µ,L) and for the weak-topology wL1 on L1(µ,L) the space (L1(µ,L), wL1)

is also a locally convex topological vector space (Schaefer (1971) p. 52). It is
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known that we can construct an invariant metric on L1(µ,L) that generates a

weaker topology than wL1
. However, for every compact subset of (L1(µ,L), wL1

)445

both topologies induce equivalent topologies (Dunford and Schwartz (1958),

Theorem 3, p. 434).

Let E : (A,A, µ) → Pmo × F be an economy where E(a) = ((X(a),�

(a)), e(a)) ∈ Pmo × F µ-a.e. a ∈ A. Then, the attainable set for the econ-

omy E is A(E) :=
{
x ∈ L1(µ,X) :

∫
A
xdµ =

∫
A
edµ

}
. We enunciate the next450

proposition in order to show that for every economy E ∈ E the walrasian corre-

spondence is contained in a compact metric set.

Proposition 3. Given Assumptions BA, for every E ∈ E the set A(E) is a

weakly compact metric subset of L1(µ,L). Hence, it is a weakly compact metric

subset of L1(µ,Q)455

Proof. Let (A,A, µ) be the measure space of agents corresponding to the econ-

omy E . First, by Theorem 2 in Diestel (1977), we know that L1(µ,XE) is

weakly compact in L1(µ,L) and by the above argument it is metrizable so

that it is a compact metric subset of L1(µ,L). Let {xn}n≥1 be a sequence in

A(E) ⊂ L1(µ,XE) which converges weakly to x. Since
∫
A
xndµ =

∫
A
edµ for460

every n ≥ 1 and the fact that for every n ≥ 1 and a.e. a ∈ A, xn(a) belongs to

XE which is norm-bounded accordingly to Remark 1, it follows by Proposition

2 that w − limn→∞
∫
A
xndµ =

∫
A
xdµ =

∫
A
edµ. Thus x ∈ A(E) and the proof

is complete.

Thus, if we restrict the analysis to a set of finitely many economies, the465

attainable of all such economies is weakly compact as the following Corollary

states.

Corollary 2. If |E| < ∞ and there is a common measure space of agents

(A,A, µ), then
⋃
E∈E

A(E) is a weakly compact and metrizable subset of L1(µ,Q).

We endow the set
⋃
E∈E

A(E) with the pseudo-metric d ⋃
E∈E

A(E): for x, x′ in A(E)470

and A(E ′) respectively, d ⋃
E∈E

A(E)(x, x
′) = ρQ(µ ◦ (x)−1, µ′o(x′)−1) where ρQ is
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the Prohorov metric on the space of probability measuresM(Q) on (Q, B(Q)).

Since Q is separable, ρQ is a metrization of the topology of weak∗-convergence

on M(Q). Let us recall the discussion at the end of Section 4.3 and then let

us consider
⋃
E∈E

A(E) as a set of equivalence classes so that the metric d ⋃
E∈E

A(E)475

is well defined. Thus, the notion of convergence we shall consider on
⋃
E∈E

A(E)

is that of convergence in distribution, i.e., a sequence of measurable attainable

allocations {xn}n≥1 in
⋃
E∈E

A(E) converges to the measurable allocation x if the

sequence of distributions {µn ◦ x−1
n }n≥1 converges weakly to the distribution

µ ◦ x−1. Let A be a compact subset of
⋃
E∈E

A(E) which contains all walrasian480

allocations. We endow A with the topology induced by d ⋃
E∈E

A(E) on A and

denoted by dA. Since A is assumed to be compact, our definition should induce

some equilibrium selection of feasible allocations. This is also the case in Correa

and Torres-Mart́ınez (2014) or Carbonell-Nicolau (2010).

Definition 3. The Walras allocation correspondence WA : E � A assigns to485

every economy E ∈ E its corresponding walrasian allocation set WA(E) ⊂ A.

Definition 4. The walrasian equilibrium correspondence WE : E � S × A

associates each economy E ∈ E to its corresponding equilibria WE(E) ⊂ S ×A.

Related to the above definition there is that of Walras equilibrium distribu-

tion as stated in Hildenbrand (1974) p. 158. We adapt it to the context of our

model. For p ∈ S we define the set

Ep = {(Ẽ , x̃) ∈ (Pmo × F )× F : x̃ ∈ DẼ(p)}

Definition 5. A Walras equilibrium distribution for a distribution θ of agents’

characteristics in P ×F is a probability measure η on P ×F ×F equipped with490

its Borel σ-algebra such that:

1. The marginal distribution ηP×F equals θ,

2. Mean demand equals mean supply, and

3. There exists p ∈ S such that η(Ep) = 1.
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It is straightforward to verify that if (p, x) belongs to WE(E), where E :495

(A,A, µ)→ Pmo×F is the corresponding economy and agent space respectively,

then η = µ ◦ (E , x)−1 in M(Pmo × F × F ) is a Walras equilibrium distribution

for µ ◦ (E)−1. We are now ready for stating the next result.

Theorem 1. Given E′ ⊂ E such that WA(E) 6= ∅ for each E ∈ E, the cor-

respondence WA has a (dE, dA)-closed graph if Assumptions BA, NE and C500

hold.

The proof is given in Appendix A.3. Let us note that since A is dA-compact

the correspondence WA is (dE, dA)-upper hemi-continuous (Hildenbrand (1974)

p. 23). We now state an immediate consequence of the above theorem.

Corollary 3. The correspondence WE is (dE, w
∗×dA)-upper hemi-continuous505

Next, we show a special case of Theorem 1, namely, when there exist count-

ably many economies and the set of agents is fixed.

Corollary 4. If |E| = ℵ0 and there is a common measure space of agents

(A,A, µ), then the correspondence WA : (E, dE) �

( ⋃
E∈E

A(E), ‖ · ‖1
)

has a(
dE, d ⋃

E∈E
A(E)

)
-closed graph under the conditions of Theorem 1. If |E| < ∞510

then WA is

(
dE, d ⋃

E∈E
A(E)

)
-upper hemi-continuous.

Proof. The first part follows since ‖·‖1-convergence implies d ⋃
E∈E

A(E)-convergence.

Indeed, for the sequence {xn}n≥1 where each xn ∈WA(En) converging in ‖ · ‖1
to x one has that limn→∞ ‖xn − x‖1 = limn→∞

∫
A
‖xn − x‖dµ = 0. Since

‖
∫
A

(xn − x)dµ‖ ≤
∫
A
‖xn − x‖dµ (Diestel and Uhl (1977) Theorem 4. pg.515

46) we get that limn→∞
∫
A
xndµ =

∫
A
xdµ. Consequently by change of vari-

able limn→∞ µ ◦ x−1
n = limn→∞

∫
B(Pmo)⊗B(F )

d(µ ◦ x−1
n ) = limn→∞

∫
A
xndµ =∫

A
xdµ, that is equal to

∫
B(Pmo)⊗B(F )

d(µ ◦ x−1) = µ ◦ x−1. Consequently,

limn→∞ ρQ(µ ◦ x−1
n , µ ◦ x−1) = 0

For the second part, i.e. if |E| <∞ note that by Corollary 2 the set
⋃
E∈E

A(E)520

is weak-compact and metrizable, whence (Hildenbrand (1974) p. 23) upper

hemi-continuous.
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6. Economies with strongly convex preferences

In this section we introduce the strongly convex preference condition. To-

gether with the following modification of item (3) of Assumption BA it allows525

us to avoid Assumption C.

Assumption BA′ (3)

Each endowment e and each walrasian allocation f belong to a set F which

is ‖ · ‖-closed and contains both 0 and u. In addition, there is α > 0 such

that F is a subset of V (0, α) ∩ L+ ⊂ X, ∀X ⊂ Q+ where V (0, α) denotes a530

neighborhood centered in zero of radius α.

As for strongly convexity of preferences we follow the definition 4.7 (b) of

Debreu (1959). Other convexity definitions are given in Mas-Colell (1989) Def-

inition 2.2.3 or Hildenbrand (1974) p. 88.

Assumption SCO (Strong convexity) Let (X,�) be a preference relation535

and let x, and y be two vectors of X. If y � x then ty + (1 − t)x � x for all

t ∈ (0, 1).

Let Psco be the set of all strongly convex preference relations. Then:

Lemma 3. The subset Pmo,sco := Pmo ∩ Psco is a Polish space.

The proof is provided in Appendix A.4.540

In the following we shall consider the characteristic space given by Pmo,sco×

F . As usual, B(Pmo,sco) ⊗ B(F ) is the Borel σ-algebra of Pmo,sco × F and

M(Pmo,sco×F ) is the set of all probability distributions on B(Pmo,sco)⊗B(F ).

Since Pmo,sco is Polish, we can follow the same argument of Section 4.3.

We conclude this section with the following result whose proof is in Appendix545

A.5.

Theorem 2. The correspondence WA has a (dE, dA)-closed graph if Assump-

tions BA(1)-(2), BA′ (3), NE and SCO hold.
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7. Stability results

We have all the prerequisites to characterize essential equilibria. We remark550

that not every economy in E may reach an equilibrium. Since the stability

analysis require existence, we concentrate the attention on assumptions as those

given in Khan and Yannelis (1991) or Noguchi (1997). This allows us to state

the following.

Proposition 4. Let Ê be any subset of the space E such that WE(E) 6= ∅ for555

all E ∈ Ê, then we also have that WE(E) 6= ∅ in the dE-closure of Ê.

Proof. Let E ′ be an element of the dE-closure of Ê. Hence, there is a sequence

{En}n≥1 where En ∈ Ê for all n ≥ 1 such that E ′ = limn→∞ En. Consequently,

there exists a sequence {(pn, xn)}n≥1 where each (pn, xn) ∈ WE(En) ⊂ S × A.

By taking a subsequence if necessary, it σ∗×dA-converges to (p, x). By Corollary560

3, (p, x) ∈WE(E ′).

In what follows, denote by E a dE-closed subset of Ê defined in Proposition 4

above. We shall now study the stability of large economies with infinitely many

commodities by analyzing how a Walras equilibrium for an economy E changes

when their characteristics are perturbed. Formally, we need the following defi-565

nition.

Definition 6. Let E′ ⊆ E and E ∈ E′. A walrasian equilibrium (p, x) of E is

an essential equilibrium of E relative to E′ if for every ε > 0 there exists δ > 0

such that for every E ′ ∈ V (E , δ) ∩ E′ it follows that WE(E ′) ∩ V ((p, x), ε) 6= ∅.

Thus, essential stability is equivalent to the lower hemi-continuity of the570

Walras equilibrium correspondence. We remark that the open ball V (E , δ) is

generated by dE and the open ball V ((p, x), ε) is generated by the metric dA×S

which exists since both S and A are metrizable. We would like to ensure the

following properties:

(S1) The collection of essential economies E′ ⊂ E is a dense residual subset of575

E.
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(S2) If for E ∈ E we have that WE(E) is singleton, then it is essential.

(S3) There exists a minimal essential subset of WE(E) for E ∈ E and any of

such sets is connected.

(S4) Given a essential and connected set (E) ⊂WE(E), there exists an essential580

component of WE(E) that contains m(E).

(S5) Every essential subset of WE(E) is stable.

In order to ensure these properties we invoke Theorem 2 in Fort (1950).

Consequently, in our setting, the WE correspondence should be defined on a

complete metric space. In the following result we verify that this is the case.585

Proposition 5. Under Assumption BA the space (E, dE) is complete.

The proof is in Appendix A.6.

Theorem 3. Consider (E, dE). Then, (S1) is satisfied as well as for any E ∈ E

we have that properties (S2)-(S5) hold.

Proof. Given WE(E) 6= ∅ for E ∈ E jointly with the fact that WE is compact-590

valued and upper hemi-continuous, we can apply Theorem 2 in Fort (1951) in

order to achieve that there exists a dense residual subset E′ of E where WE is

lower-hemicontinuous (see also (Carbonell-Nicolau, 2010, Lemma 5)). Thus, as

every economy E ∈ E′ is a point of lower-hemicontinuity of WE, it follows from

Yu (1999), Theorem 4.1, that E is essential with respect to E′. With a similar595

argument, if WE(E) is a singleton, the equilibrium correspondence is continuous

at that point and essential relative to E by Theorem 4.3. in Yu (1999), that

is (S1). Properties (S2)-(S3) follows from applying Theorem 2.1 of Yu et al.

(2005). Property (S4) follows from Theorem 4.1. of Yu et al. (2005) since by its

definition of stability (Def. 8 (iii)) it is sufficient to show that minimal essential600

sets are stable.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

We would like to use Theorem 1 p. 96 of Hildenbrand (1974) since it works

for locally compact spaces Q other than RL. For that, we have to ensure that605

(CwQ(Q × Q), τC) is compact metrizable. This follows from the application of

Theorem 2 p. 19 of Hildenbrand (1974) to (Q × Q,wQ × wQ) that is a locally

compact Polish space.

1. Let {(Xn,�n)}n≥0 be a sequence in P such that it has a closed limit

(X,�). We shall prove that it belongs to P. This is equivalent to610

g(P) being closed in CwQ(Q × Q). Indeed, let us consider the sequence

{g ((Xn,�n))}n∈N = {Pn}n∈N in CwQ(Q × Q) where Pn = {(x, y) ∈

Xn×Xn : x 6�n y}. We already noted that (CwQ(Q×Q), τC) is a compact

metric space. Then, the sequence {Pn}n≥1 converges to P if and only

if P = Li(Pn) = Ls(Pn) (Hildenbrand (1974), B.II. Theorem 2, p. 19).615

Let us define X = projQ+
P and �= X ×X \ P . We have to prove that

g((X,�)) = P .

Let us note that for x ∈ X it follows that (x, x) ∈ P . Indeed, for x ∈ X

there exists x′ ∈ Q+ such that (x, x′) ∈ P . Since P = Li(Pn) = Ls(Pn),

there exists a sequence {(xn, x′n)}n≥1 belonging to Pn for each n ≥ 1620

and limn→∞(xn, x
′
n) = (x, x′) for the topology wQ+

× wQ+
(Hildenbrand

(1974), p. 15). Since �n is irreflexive for each n ≥ 1 it follows that

(xn, xn) ∈ Pn and then (x, x) ∈ P .

The argument above implies that X is the closed limit of the sequence

{Xn}n≥1 and it is nonempty since 0 ∈ Xn for all n ≥ 1. Following the625

arguments of Hildenbrand (1974), p. 97, we note that X is convex and �

is irreflexive and transitive.

Finally, we only need to show that g((X,�)) = P which is direct since

g((X,�)) = {(x, y) ∈ projQ+
P × projQ+

P : (x, y) ∈ P} = P .

2. and 3. follows from mimicking the proof of Theorem 1(b) of Hildenbrand630

(1974). 2

24



Appendix A.2. Proof of Lemma 2

First, we shall prove that Pmo with the metric of the closed convergence

is a Gδ-set, i.e., a countable intersection of open sets in P. We follow the

approach given in Lemma of p. 98 by Hildenbrand (1974). Let dwQ
be the met-635

ric for which (Q,wQ) is metrizable. For every m ∈ N we define the set Pm ={
(X,�) ∈ P : ∃ x, y ∈ X,x ≥ y, x 6� y and dwQ

(x, y) ≥ 1
m

}
. Let {(Xn,�n)}n≥1

be a sequence in Pm, then there exists a sequence {(xn, yn)}n≥1 such that

xn ≥ yn, xn 6�n yn and dwQ
(xn, yn) ≥ 1

m . Since both xn and yn belong to Q

which is w-compact, there are subsequences also denoted by xn and yn which w-640

converge to x and y respectively. Let Pn = {(x′, y′) ∈ (Xn, Xn) : x′ 6�n y′} from

which we deduce that (xn, yn) ∈ Pn for each n ≥ 1. By Lemma 1, (X,�) ∈ P

and Li(Pn) = Ls(Pn) = P . We want to prove that the closed limit (X,�) be-

longs to Pm. It is easily verified that both x and y belong to Ls(Xn) = X. Notice

that (x, y) ∈ Ls(Pn) so that x 6� y. Since Q+ is w-closed, it follows that x ≥ y.645

We claim that dwQ
(x, y) ≥ 1

m . Otherwise, we would have that there exists n0

such that for all n > n0, dwQ
(xn, yn) < 1

m which is a contradiction. Conse-

quently, (X,�) ∈ Pm whence Pm is τPC -closed. Note that Pmo =
⋂
m∈N

(P \ Pm)

and thus Pmo is a Gδ-set.

Second, by the classical Alexandroff lemma (see Aliprantis and Border (2006),650

Lemma 3.34 p.88), we conclude that Pmo is completely metrizable. In addition,

by Corollary 3.5 p. 73 in Aliprantis and Border (2006) we know that Pmo as

subset of a separable metric space P is separable. Thus, Pmo is a Polish space.

2

Appendix A.3. Proof of Theorem 1655

Regarding the closed graph property, let {(An,An, µn)}n≥1 be a sequence

of agent spaces and let {(An,Gn, µn)}n≥1 be a sequence of characteristic type

spaces such that for n ≥ 1, Gn is a countably generated sub-σ algebra of An.

Let {En}n≥1 be a sequence of Gn-measurable mappings form (An,An, µn) into

Pmo × F which converges weakly to E : (A,A, µ)→ Pmo × F in the sense that660

lim
n→∞

ρ(µn◦En, µoE) = 0 and lim
n→∞

∥∥∥∫An
endµn −

∫
A
edµ

∥∥∥ = 0. The economy E is
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G-measurable where G is a sub-σ-algebra of A induced by E−1(B(Pmo)⊗B(F )).

Let {xn}n≥1 be a sequence such that xn ∈WA(En) and xn is An-measurable for

all n ≥ 1 and which dA-converges. It means that µn◦x−1
n

ρ−−−−→
n→∞

γ for γ ∈M(F ).

We want to prove that there exists a A-measurable allocation x ∈ A such that665

µ ◦ x−1 = γ. We notice that a similar result is proved in Theorem 1 of He

et al. (2017) but with a finite dimensional commodity space. In their proof, the

authors make use of Lemma 2.1 (iii) in Keisler and Sun (2009) and the fact that

the nowhere equivalence holds. Applied to our setting, that lemma works since

the space Pmo×F×F is Polish. Consequently, we can follow the guidelines of He670

et al. (2017) to obtain a A-measurable allocation x ∈ A such that µ ◦ x−1 = γ.

In addition, we have that the sequence
{
ηn = µn ◦ (En, xn)−1

}
n≥1

converges to

η = µ ◦ (E , x)−1 and the marginals ηPmo×B and ηB are µ ◦ E−1 and µ ◦ x−1

respectively.

Now, we have to prove that x ∈ WA(E). In doing so we shall make use of675

Skorokhod’s Theorem (Billingsley (1999), Theorem 6.7, p. 70) to the sequence

{ηn}n≥1 −−−−→
n→∞

η. So, there is a measure space (Ω,O, ν) and measurable map-

pings {(Ên, x̂n)}n≥1 and (Ê , x̂) from (Ω,O, ν) into (Pmo × F ) × F such that

{(Ên(ω), x̂n(ω))}n≥1 converges with respect to τPC × ‖ · ‖F × ‖ · ‖F a.e. in Ω to

(Ê(ω), x̂(ω)), and we have that {ηn = ν ◦ (Ên, x̂n)−1}n≥1and η = ν ◦ (Ê , x̂)−1.680

Since ηn = ν ◦ (Ên, x̂n)−1 = µn ◦ (En, xn)−1 and considering the fact that there

exists a price sequence {pn}n≥1 where each pn ∈ S such that (pn, xn) ∈WE(En)

for all n ≥ 1, we deduce that (pn, x̂n) is a Walras equilibrium for Ên for all

n ≥ 1 whence x̂n ∈WA(Ên) for all n ≥ 1. The argument is identical to the one

in the last paragraph of this proof. Since {(Ên(ω), x̂n(ω))}n≥1 converges a.e. to685

(Ê(ω), x̂(ω)) with respect to τPC×‖·‖F×‖·‖F , we claim that x̂ ∈WA(Ê). Indeed,

take into account that
∫

Ω
x̂ndν =

∫
Ω
êndν for all n ≥ 1, limn→∞ x̂n(ω) = x̂(ω)

a.e. and the fact that x̂n(ω) is norm-bounded a.e. ω in Ω. Thus, we can apply

the Dominated Convergence Theorem (Dunford and Schwartz (1958), Th. 10 p.

328) to get
∫

Ω
x̂dν = limn→∞

∫
Ω
x̂ndν. Since limn→∞ ên(ω) = ê(ω) a.e. (in ‖·‖)690

and it is norm-bounded, we deduce by the Dominated Convergence Theorem,

again, that
∫

Ω
êdν = limn→∞

∫
Ω
êndν. Hence,

∫
Ω
x̂dν =

∫
Ω
êdν. Furthermore,
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since the sequence {pn}n≥1 belongs to S there is a subsequence also denoted

by {pn}n≥1 which converges to p ∈ S in the weak*-topology. Hence, since

{x̂n(ω)}n≥1 and {ên(ω)}n≥1 converge for ‖ · ‖ to x̂(ω) and ê(ω) respectively a.e.695

ω ∈ Ω, (p, x̂(ω)) 7→ p(x̂(ω)) and (p, ê(ω)) 7→ p(ê(ω)) are jointly continuous a.e.

ω ∈ Ω. Hence, pn(x̂n(ω)) = pn(ên(ω)) for all n implies p(x̂(ω)) = p(ê(ω)) a.e.

ω ∈ Ω.

Finally, we show that x̂(ω) ∈ DÊ(ω)(p) a.e. ω ∈ Ω. Suppose not, then

there exists ξ ∈ L1(ν, X̂) such that ξ(ω) �ω x̂(ω) and p(ξ(ω)) < p(ê(ω)) for700

ω in a non-null subset of Ω. By Assumption C and Corollary 1 there exists a

sequence {ξn}n≥1 converging to ξ pointwise in norm such that ξn ∈ L1(ν, X̂n)

and ξn(ω) �ω x̂n(ω) a.e. for n large enough. Because of equilibrium conditions

in Ên it follows that pn(ξn(ω)) > pn(ên(ω)) a.e. and, taking limits, we get

p(ξ(ω)) ≥ p(ê(ω)) which contradicts the above converse inequality.705

Consequently, η = ν ◦ (Ê , x̂)−1 is a Walras equilibrium distribution for Ê

which is equal to µ ◦ (E , x)−1 Therefore, ν ◦ Ê−1 = µ ◦ E−1 that is to say, both

economies have the same distribution. Further, ν ◦ ê−1 = µ ◦ e−1 where ê is

the endowment of the economy Ê . By Lemma 8 (f), p. 182, in Dunford and

Schwartz (1958) we get
∫

Ω
êdν =

∫
A
edµ which means that both economies E710

and Ê have the same mean endowment.

Recall that (x̂, p) ∈WE(Ê) implies
∫

Ω
x̂dν =

∫
Ω
êdν. In addition, note that

the marginal ηB = ν ◦ x̂−1 = µ ◦ x−1 whence, again by Lemma 8 (f), p. 182, in

Dunford and Schwartz (1958), we obtain
∫

Ω
x̂dν =

∫
A
xdµ from which we get∫

A
xdµ =

∫
A
edµ since mean endowments are equal.715

Let us note that ν◦(Ê , x̂)−1(Ep) = 1 which implies that µ ◦(E , x)−1(Ep) = 1.

Thus µ({a ∈ A : (E(a), x(a)) ∈ Ep}) = 1 which implies that, a.e. a ∈ A,

x(a) ∈ DE(a)(p). Hence (p, x) is a walrasian equilibrium for E . 2

Appendix A.4. Proof of Lemma 3

First we shall prove that Psco with the metric of the closed convergence is a720

Gδ-set in a Polish space P (see Lemma 1 and 2). Let dwQ
be the metric for which

(Q,wQ) is metrizable. For every m and k in N, k ≥ 2, we define the set Pmk =
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{(X,�) ∈ P : there exists x, y ∈ X, and t ∈ R, such that dwQ
(x, y) ≥ 1

m ,
1
k ≤

t ≤ 1 − 1
k , y � x and ty + (1 − t)x 6� x}. Let {(Xn,�n)}n≥1 be a sequence in

Pmk which converges in the closed topology to (X,�). Consequently, there exist725

sequences {(xn, yn)}n≥1 and {tn}n≥1 such that xn, yn ∈ Xn, dwQ
(xn, yn) ≥ 1

m ,

1
k ≤ tn ≤ 1− 1

k , yn �n xn and tnyn + (1− tn)xn 6�n xn for all n ≥ 1.

Since (xn, yn) belongs to Q×Q for n ≥ 1 which is weak-compact there is a

subsequence also denoted by {(xn, yn)}n≥1 which wQ ×wQ-converges to (x, y).

In the same way, the sequence {tn}n≥1 belongs to [ 1
k , 1−

1
k ] ⊂ R whence there730

exists a subsequence also denoted by {tn}n≥1 which converges to t in [ 1
k , 1−

1
k ].

By Lemma 1 (X,�) ∈ P and Li(Pn) = Ls(Pn) = P . We want to prove that

the closed limit (X,�) actually belongs to Pmk. Let us note that (x, y) ∈ P

and because of Corollary 1 it follows that ty + (1 − t)x 6� x. Finally, because

of continuity of the distance function dwQ
it follows that dwQ

(x, y) ≥ 1
m . Thus735

Pmk is a closed subset of P. It is straightforward that Psco =
⋂
m≥1

⋂
k≥2

(P \Pmk),

whence it is a Gδ-set which, in turn, implies that Pmo,sco is also a Gδ-set in P.

In order to conclude the proof, we follow the last part of the proof of Lemma 2

to conclude that Pmo,sco is a Polish space. 2

Appendix A.5. Proof of Theorem 2740

For the first part, we transcript the proof of Theorem 1 taking into account

that we are considering the set Pmo,sco instead of Pmo. Let us take the proof

since the third paragraph. Hence, suppose that there exists ξ ∈ L1(ν, X̂) such

that ξ(ω) � (ω)x̂(ω) and p(ξ(ω)) < p(ê(ω)) for ω in a non-null subset of Ω.

Since both preferences (Assumption SCO) and the consumption set are convex745

it follows that for all t ∈ (0, 1), tξ(ω) + (1 − t)x̂(ω) � (ω)x̂(ω). Furthermore

p(tξ(ω) + (1 − t)x̂(ω)) < p(ê(ω)) for all t ∈ (0, 1). For t close enough to 0, one

easily checks that tξ(ω) + (1 − t)x̂(ω) belongs to V (0, α) ∩ L+. Consequently,

by Assumption BA′ (3) tξ(ω) + (1− t)x̂(ω) belongs to Xn for all n ≥ 1 and by

Corollary 1 tξ(ω)+(1− t)x̂(ω) �n (ω) x̂n(ω) a.e. for n large enough. Because of750

equilibrium conditions in Ên it follows that pn(tξ(ω) + (1− t)x̂(ω)) > pn(ên(ω))

a.e. Taking limits we get p(tξ(ω) + (1 − t)x̂(ω)) ≥ p(ê(ω)) which contradicts
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the above converse inequality. The rest of the proof is identical with that of

Theorem 2. 2

Appendix A.6. Proof of Proposition 5755

The proof is equivalent for preferences Pmo or Pmo,sco since both spaces

are Polish (see Lemmata 2 and 3). We use the notation Pmo for simplicity.

Let {En}n≥1 be a Cauchy sequence on E where, by definition, each En is a

Gn-measurable function from (An,An, µn) into Pmo × F , being Gn a sub-σ-

algebra of a countably generated sub-σ-algebra An such that Gn is generated760

by E−1
n (B(Pmo)⊗ B(Q)) and for which An is nowhere equivalent for all n ≥ 1.

We have that {µn ◦ (En)−1}n≥1 and {
∫
An

endµn}n≥1 are also Cauchy sequences

on M(P × F ) and F respectively. Since (M(Pmo × F ), ρ) is complete there

exists a measure δ ∈M(Pmo×F ) such that limn→∞ ρ(µn ◦ (En)−1, δ) = 0 and

since (F, ‖ · ‖F ) is a complete normed space, there exists a vector z in F such765

that limn→∞ ‖
∫
An

endµn − z‖F = 0. Since F ⊂ L+ is ‖ · ‖- closed we have that

z ∈ F ⊂ L+. Thus the sequence {En}n≥1 converges. It only remains to show

that it does in E, that is to say, that there exists a G-measurable function E

from (A,A, µ) to Pmo×F such that (X(a),� (a), e(a)) ∈ Pmo×F for all a ∈ A,

µ ◦ E−1 = δ,
∫
A
edµ = z, and G being a sub-σ-algebra of A that is countably770

generated for which A is nowhere equivalent.

Let us consider the following measure space (A,A, µ) whereA = (Pmo × F )×

[0, 1], A = B(Pmo × F ) ⊗ B([0, 1]) and µ = δ ⊗ λ where λ is the Lebesgue

measure. Thus, E : (A,A, µ) → Pmo × F is the standard representation of δ

which induces the sub-σ-algebra G = B(Pmo×F )⊗{[0, 1], ∅} of A.6 It can be775

shown that (A,A, µ) is atomless, A is nowhere equivalent to G which, in turn, is

countably generated since (Pmo × F )× [0, 1] is second countable. Furthermore,

E is G-measurable and it is the distributional limit of the sequence {En}n≥1.

Furthermore, since (Pmo×F )× [0, 1] is a Hausdorff space, B((Pmo×F )× [0, 1])

separates points and then it is separable (Dudley (1999), Theorem 5.3.1, p.780

6For details on the standard representation, see Hildenbrand (1974) p. 156.
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186). Since both Pmo × F and [0, 1] are separable, B((Pmo × F ) × [0, 1]) =

B(Pmo × F )⊗ B([0, 1]).

For each agent a ∈ A, his/her initial endowment is given by e(a) := ProjFE(a).

Hence, let us note that the marginal distribution (µn ◦ (En)−1)F = µn ◦ (en)−1

converges weakly to the marginal distribution (µ◦e−1), each en is integrable and

e is A-measurable and Bochner integrable. By Skorokhod’s Theorem (Billings-

ley (1999), Theorem 6.7, p. 70), there exist a measure space (Ω,A, ν) and

measurable mappings Ên = ((X̂n, �̂n), ên) and Ê = ((X̂, �̂), ê) from (Ω,A, ν)

into Pmo × F such that (i) {Ên(ω)}n≥1 converges a.e. ω ∈ Ω to Ê with respect

to the topology τPC × ‖ · ‖F , (ii) νoÊ−1
n = µn ◦ E−1

n , and νoÊ−1 = µ ◦ E−1. In

consequence, since Ên and Ê are measurable, ên and ê as projection on F are

measurable. Moreover, the convergence given by (i) implies that ν ◦ ê−1
n con-

verges to ν ◦ ê−1 and the distributions in (ii) imply that νoê−1
n = µn ◦ e−1

n and

νoê−1 = µ ◦ e−1. Since the sequence {ên(ω)}n≥1 is norm-bounded, we have by

the Dominated Convergence Theorem (Dunford and Schwartz (1958), Th. 10

p. 328)

lim
n→∞

∫
Ω

ên(ω)dν =

∫
Ω

ê(ω)dν,

Thus, using repeatedly a change of variables and Dominated Convergence:

lim
n→∞

∫
An

endµn = lim
n→∞

∫
B(F )

d
(
µn ◦ e−1

n

)
= lim
n→∞

∫
B(F )

d
(
ν ◦ ê−1

n

)
= lim

n→∞

∫
Ω

êndν =

∫
Ω

êdν

=

∫
B(F )

d
(
ν ◦ ê−1

)
=

∫
B(F )

d
(
µ ◦ e−1

)
=

∫
A

edµ 2

Thus, z =
∫
A
e(a)dµ and the proof is complete.7

7Actually, since
∫
Ω ê(ω)dν =

∫
A e(a)dµ and µ ◦ E−1 = ν ◦ Ê−1, E and Ê are equivalents

modulo ∼.
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Appendix B. An alternative approach: compactification of the com-785

modity space.

Appendix B.1. Basic Assumptions and compactification of the com-

modity space

Given that L is a Banach separable space, it is possible to define a compact-

ification (see Corollary 3.41 in Aliprantis and Border (2006) p. 91). Moreover,790

L can be understood as a subset of the Hilbert cube H.8 Thus, the metric

compact space (H, dH) is the compactification of (L, ‖ · ‖) where the former is a

Polish space. The metric dH induces a metric on L, dH,L which is equivalent to

‖ · ‖. Thus ‖ · ‖-open sets are dH,L-open and viceversa. Let (H×H, dH×H) be

the metrizable product space which is a compactification of the product space795

(L× L, ‖ · ‖ × ‖ · ‖).9

Basic Assumptions (BA′′)

For each economy E we have:

1. There exists a vector u ∈ intL+ such that ‖u‖ = 1.

2. There is a set E ⊂ L+ which is closed and convex, satisfies E − E ⊂ E800

and X ⊂ E.

3. Every X is a convex and closed subset of L+ containing both u and 0.

4. (X,�) is relatively open in X ×X.

5. Aggregate endowments are strictly positive.

6. Individual endowments and walrasian allocations belong to F which is a805

closed subset L+ such that F ⊂ X for all X.

8More precisely, let f : L→H be an embedding between L and H. Then L is a topological

subspace of H by identifying L with its image f(L) which is a topological subspace of H.

Recall that f : L→ f(L) is an homeomorphism.
9Let us take (f, f) : L × L → f(L) × f(L) ⊂ H × H. From previous footnote, it is clear

that (f, f) is an homeomorphism between L× L and f(L)× f(L).
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Remark 2. Assumption BA′′(1) says that there exists a reference commodity

bundle u with such properties. This is a technical Assumption. BA′′(2) re-

stricts all individual consumption vectors to E. This condition will allow us to

define an appropriate topological structure in the set of preferences. Condition810

BA′′(3) implies that each consumption set is closed for the topology dH induced

on L while Assumption BA′′(4) is a classical one. BA′′(5) restricts all total en-

dowments to be strictly positive while BA′′(6) says that individual endowments

belong to a common subset as well as those allocations that are walrasian. No-

tice that F is ‖ · ‖-closed so it is dH-closed and thus dH-bounded since H is815

dH-compact. Since F ⊂ L+ it is ‖ · ‖-bounded.

Remark 3. Let us note that because of Assumption BA′′(3) it follows that P is

dH×H-closed in H×H and thus it is closed in L× L for the induced topology.

Appendix B.2. Space of Economies

Let C(H×H) be the set of all closed subsets of H×H. We denote by τC the820

topology of closed convergence on C(H×H). Since every P belongs to C(H×H),

we can define a mapping g : P → C(H ×H) by (X, �) 7→ P . As in Section 4

one can observe that g is an injection. Then we define a topology τPC on P by

τPC = {g−1(U) : U ∈ τC}. The proof of our Lemma 1 is a direct adaptation for

the present topology. In particular, take into account the subset E in BA′′(2)825

When L = R` for ` > 0, Hildenbrand (1974) uses the topology induced by

the closed convergence on the space C(L×L) rather than C(H×H). This is so

because R` is locally compact.

Note that above, though we are considering the space H, the relevant topo-

logical results take place in L (or L × L) with the relative topologies. Indeed,830

X ⊂ L and �⊂ X ×X ⊂ L× L. P is also a subset of L× L and it is a closed

subset of the latter for the topology dH×H,L×L = ‖ · ‖ × ‖ · ‖.

We state now Assumption C′ which concerns “small” perturbations of con-

sumption sets which takes into account the topological space (P, τρC) and its

connection with (H, dH) rather than (Q, ‖ · ‖Q) as in Assumption C.835
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Assumption C’

Let (Xn,�n) be a sequence converging to (X,�) with respect to τPC such

that Xn, X : (A,A, µ)� E. For all x ∈ L1(µ,X), there exists a sequence (xn)

in L1(µ,Xn) which dH,L-converges pointwise to x.840

The set S and the correspondences WA and WE are the same as those in

Section 4. Then, the results of Sections 5 to 7 follow with this approach.

References

Aliprantis, C. D., Border, K. C., 2006. Infinite Dimensional Analysis: A Hitch-

hiker’s Guide. Springer, google-Books-ID: 6jjY2Vi3aDEC.845

Back, K., Jan. 1986. Concepts of similarity for utility functions. Journal of

Mathematical Economics 15 (2), 129–142.

URL http://www.sciencedirect.com/science/article/pii/

0304406886900042

Balasko, Y., 1975. The Graph of the Walras Correspondence. Econometrica850

43 (5/6), 907–912.

URL http://www.jstor.org/stable/1911333

Bewley, T. F., 1991. A Very Weak Theorem on the Existence of Equilibria

in Atomless Economies with Infinitely Many Commodities. In: Studies in

Economic Theory. Springer, Berlin, Heidelberg, pp. 224–232.855

URL https://link.springer.com/chapter/10.1007/

978-3-662-07071-0_9

Billingsley, P., 1999. Convergence of probability measures. Wiley, New York,

oCLC: 387624.

Carbonell-Nicolau, O., Jan. 2010. Essential equilibria in normal-form games.860

Journal of Economic Theory 145 (1), 421–431.

URL http://www.sciencedirect.com/science/article/pii/

S0022053109000829

33

http://www.sciencedirect.com/science/article/pii/0304406886900042
http://www.sciencedirect.com/science/article/pii/0304406886900042
http://www.sciencedirect.com/science/article/pii/0304406886900042
http://www.jstor.org/stable/1911333
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_9
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_9
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_9
http://www.sciencedirect.com/science/article/pii/S0022053109000829
http://www.sciencedirect.com/science/article/pii/S0022053109000829
http://www.sciencedirect.com/science/article/pii/S0022053109000829


Chichilnisky, G., Oct. 1980. Continuous Representation of Preferences. The Re-

view of Economic Studies 47 (5), 959–963.865

URL https://academic.oup.com/restud/article/47/5/959/1592096

Correa, S., Torres-Mart́ınez, J. P., Nov. 2014. Essential equilibria of large gen-

eralized games. Economic Theory 57 (3), 479–513.

URL https://link.springer.com/article/10.1007/s00199-014-0821-3

Debreu, G., 1959. Theory of value: an axiomatic analysis of economic equilib-870

rium. Wiley, google-Books-ID: TRe8AAAAIAAJ.

Debreu, G., 1970. Economies with a Finite Set of Equilibria. Econometrica

38 (3), 387–392.

URL http://www.jstor.org/stable/1909545

Diestel, J., Jan. 1977. Remarks on Weak Compactness in {$l 1(\mu,x)$}.875

Glasgow Mathematical Journal 18 (1), 87–91.

URL https://www.cambridge.org/core/journals/

glasgow-mathematical-journal/article/remarks-on-weak-compactness-in-l1x/

2C03F0427CAED882E7C5E522781DB68D

Diestel, J., 1984. Sequences and Series in Banach Spaces. Graduate Texts in880

Mathematics. Springer-Verlag, New York.

URL //www.springer.com/gp/book/9781461297345

Diestel, J., Uhl, J. J., Jun. 1977. Vector Measures. American Mathematical Soc.,

google-Books-ID: NCm4E2By8DQC.

Dubey, R. S., Ruscitti, F., Apr. 2015. A remark on the continuity of the Walras885

correspondence in pure exchange economies. Economic Theory Bulletin 3 (1),

33–41.

URL http://link.springer.com/article/10.1007/s40505-014-0064-2

Dudley, R. M., Jul. 1999. Uniform Central Limit Theorems, 1st Edition. Cam-

bridge University Press, New York.890

34

https://academic.oup.com/restud/article/47/5/959/1592096
https://link.springer.com/article/10.1007/s00199-014-0821-3
http://www.jstor.org/stable/1909545
https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/remarks-on-weak-compactness-in-l1x/2C03F0427CAED882E7C5E522781DB68D
https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/remarks-on-weak-compactness-in-l1x/2C03F0427CAED882E7C5E522781DB68D
https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/remarks-on-weak-compactness-in-l1x/2C03F0427CAED882E7C5E522781DB68D
https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/remarks-on-weak-compactness-in-l1x/2C03F0427CAED882E7C5E522781DB68D
https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/remarks-on-weak-compactness-in-l1x/2C03F0427CAED882E7C5E522781DB68D
//www.springer.com/gp/book/9781461297345
http://link.springer.com/article/10.1007/s40505-014-0064-2


Dunford, N., Schwartz, J. T., 1958. Linear Operators: General theory. Inter-

science Publishers, google-Books-ID: DuJQAAAAMAAJ.

Fort, M. K., 1950. Essential and Non Essential Fixed Points. American Journal

of Mathematics 72 (2), 315–322.

URL http://www.jstor.org/stable/2372035895

Fort, M. K., 1951. Points of continuity of semi-continuous functions. Publ. Math.

Debrecen 2, 100–102.

Fristedt, B. E., Gray, L. F., Dec. 1996. A Modern Approach to Probability

Theory. Springer Science & Business Media.

Hart, S., Hildenbrand, W., Kohlberg, E., Aug. 1974. On equilibrium allocations900

as distributions on the commodity space. Journal of Mathematical Economics

1 (2), 159–166.

URL http://www.sciencedirect.com/science/article/pii/

0304406874900068

He, W., Sun, X., Sun, Y., May 2017. Modeling infinitely many agents. Theoret-905

ical Economics 12 (2), 771–815.

URL http://onlinelibrary.wiley.com/doi/10.3982/TE1647/abstract

Hervés-Beloso, C., Estevez-Toranzo, M., Verdejo, A., Jan. 1999. Topologies on

the Space of Economic Agents. Journal of Economics Sup. 8, 69–78.

Hildenbrand, W., Jun. 1970. On economies with many agents. Journal of910

Economic Theory 2 (2), 161–188.

URL http://www.sciencedirect.com/science/article/pii/

0022053170900037

Hildenbrand, W., 1974. Core and Equilibria of a Large Economy. (PSME-5).

Princeton University Press, google-Books-ID: knp9BgAAQBAJ.915

Hildenbrand, W., Mertens, J. F., 1972. Upper Hemi-Continuity of the

Equilibrium-Set Correspondence for Pure Exchange Economies. Economet-

35

http://www.jstor.org/stable/2372035
http://www.sciencedirect.com/science/article/pii/0304406874900068
http://www.sciencedirect.com/science/article/pii/0304406874900068
http://www.sciencedirect.com/science/article/pii/0304406874900068
http://onlinelibrary.wiley.com/doi/10.3982/TE1647/abstract
http://www.sciencedirect.com/science/article/pii/0022053170900037
http://www.sciencedirect.com/science/article/pii/0022053170900037
http://www.sciencedirect.com/science/article/pii/0022053170900037


rica 40 (1), 99–108.

URL http://www.jstor.org/stable/1909724

Jameson, G. J. O., 1970. Ordered linear spaces. Springer-Verlag, google-Books-920

ID: PDQZAQAAIAAJ.

Kannai, Y., 1970. Continuity Properties of the Core of a Market. Econometrica

38 (6), 791–815.

URL http://www.jstor.org/stable/1909693

Keisler, H. J., Sun, Y., Aug. 2009. Why saturated probability spaces are925

necessary. Advances in Mathematics 221 (5), 1584–1607.

URL http://www.sciencedirect.com/science/article/pii/

S0001870809000644

Khan, M. A., Sagara, N., Dec. 2016. Relaxed large economies with infinite-

dimensional commodity spaces: The existence of Walrasian equilibria.930

Journal of Mathematical Economics 67, 95–107.

URL http://www.sciencedirect.com/science/article/pii/

S0304406816301422

Khan, M. A., Yannelis, N. C., 1991. Equilibria in Markets with a Continuum

of Agents and Commodities. In: Equilibrium Theory in Infinite Dimensional935

Spaces. Studies in Economic Theory. Springer, Berlin, Heidelberg, pp.

233–248, google-Books-ID: 5PDrCAAAQBAJ.

URL https://link.springer.com/chapter/10.1007/

978-3-662-07071-0_10

Kolmogorov, A. N., Fomin, S. V., Jun. 1975. Introductory Real Analysis.940

Courier Corporation, google-Books-ID: U FIAwAAQBAJ.

Mas-Colell, A., Dec. 1977a. Indivisible commodities and general equilibrium

theory. Journal of Economic Theory 16 (2), 443–456.

URL http://www.sciencedirect.com/science/article/pii/

0022053177900187945

36

http://www.jstor.org/stable/1909724
http://www.jstor.org/stable/1909693
http://www.sciencedirect.com/science/article/pii/S0001870809000644
http://www.sciencedirect.com/science/article/pii/S0001870809000644
http://www.sciencedirect.com/science/article/pii/S0001870809000644
http://www.sciencedirect.com/science/article/pii/S0304406816301422
http://www.sciencedirect.com/science/article/pii/S0304406816301422
http://www.sciencedirect.com/science/article/pii/S0304406816301422
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_10
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_10
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_10
http://www.sciencedirect.com/science/article/pii/0022053177900187
http://www.sciencedirect.com/science/article/pii/0022053177900187
http://www.sciencedirect.com/science/article/pii/0022053177900187


Mas-Colell, A., 1977b. On the Continuous Representation of Preorders. Inter-

national Economic Review 18 (2), 509–513.

URL http://www.jstor.org/stable/2525763

Mas-Colell, A., 1989. The Theory of General Economic Equilibrium: A Differ-

entiable Approach. Cambridge University Press.950

Noguchi, M., Feb. 1997. Economies with a continuum of consumers, a contin-

uum of suppliers and an infinite dimensional commodity space. Journal of

Mathematical Economics 27 (1), 1–21.

URL http://www.sciencedirect.com/science/article/pii/

0304406895007598955

Rustichini, A., Yannelis, N. C., 1991. What is Perfect Competition? In:

Equilibrium Theory in Infinite Dimensional Spaces. Studies in Economic

Theory. Springer, Berlin, Heidelberg, pp. 249–265.

URL https://link.springer.com/chapter/10.1007/

978-3-662-07071-0_11960

Sard, A., 1942. The measure of the critical values of differentiable maps. Bulletin

of the American Mathematical Society 48 (12), 883–890.

URL http://www.ams.org/home/page/

Schaefer, H. H., 1971. Topological Vector Spaces. Graduate Texts in Mathemat-

ics. Springer-Verlag, New York.965

URL //www.springer.com/gp/book/9781468499285

Suzuki, T., 2013. Competitive equilibria of a large exchange economy on the

commodity space $\ell \infty$. In: Kusuoka, S., Maruyama, T. (Eds.), Ad-

vances in Mathematical Economics Volume 17. Advances in Mathematical

Economics. Springer Japan, Tokyo, pp. 121–138.970

URL https://doi.org/10.1007/978-4-431-54324-4_4

Wen-Tsun, W., Jia-He, J., 1962. Essential equilibrium points of n-person non-

cooperative games. Scientia Sinica 11 (10), 1307–1322.

37

http://www.jstor.org/stable/2525763
http://www.sciencedirect.com/science/article/pii/0304406895007598
http://www.sciencedirect.com/science/article/pii/0304406895007598
http://www.sciencedirect.com/science/article/pii/0304406895007598
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_11
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_11
https://link.springer.com/chapter/10.1007/978-3-662-07071-0_11
http://www.ams.org/home/page/
//www.springer.com/gp/book/9781468499285
https://doi.org/10.1007/978-4-431-54324-4_4


Yu, J., Apr. 1999. Essential equilibria of n-person noncooperative games.

Journal of Mathematical Economics 31 (3), 361–372.975

URL http://www.sciencedirect.com/science/article/pii/

S0304406897000608

Yu, J., Yang, H., Xiang, S., Nov. 2005. Unified approach to existence and

stability of essential components. Nonlinear Analysis: Theory, Methods &

Applications 63 (5), e2415–e2425.980

URL http://www.sciencedirect.com/science/article/pii/

S0362546X05003706

38

http://www.sciencedirect.com/science/article/pii/S0304406897000608
http://www.sciencedirect.com/science/article/pii/S0304406897000608
http://www.sciencedirect.com/science/article/pii/S0304406897000608
http://www.sciencedirect.com/science/article/pii/S0362546X05003706
http://www.sciencedirect.com/science/article/pii/S0362546X05003706
http://www.sciencedirect.com/science/article/pii/S0362546X05003706

	Introduction
	The model
	Space of agents 
	The commodity space and the space of characteristics 
	Space of characteristic types
	Walrasian equilibirum

	Difficulties with a double infinity of agents and commodities
	Space of Economies
	Nowhere Equivalence
	Examples
	Similarity between atomless economies

	Walras correspondences
	Economies with strongly convex preferences
	Stability results
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Proposition 5

	An alternative approach: compactification of the commodity space.
	Basic Assumptions and compactification of the commodity space
	Space of Economies


