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Abstract

We show that thin rectangular ribbons, defined as energy-minimising configurations of the Sad-

owsky functional for narrow developable elastic strips, have a propensity to form spherical shapes

in the sense that forceless solutions lie on a sphere. This has implications for ribbonlike objects

in (bio)polymer physics and nanoscience that cannot be described by the classical wormlike chain

model. A wider class of functionals with this property is identified.

PACS numbers: 87.10.Pq, 82.35.Pq, 68.47.Pe
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INTRODUCTION

Understanding the configurations and stresses of biopolymers lying on a surface is im-

portant in a number of biomolecular processes, including the packing of DNA inside viral

capsids [15], cytokinesis in animal and yeast cells during which mainly membrane-bound

actin filaments provide the forces necessary for cell division [16], and cell wall synthesis in

bacteria [1, 29]. Graphene nanoribbons have also been studied on surfaces [36] with a view

to assembling ribbon-like nanomaterials with desirable properties.

A classical theoretical approach to the study of such filamentous objects is to use the

wormlike chain (WLC) model [23] in which the polymer is assumed to have only entropic

bending elasticity (characterising the persistence length). For biopolymers, like DNA, that

also have torsional elasticity, the torsional directed walk or rodlike chain (RLC) is a more

appropriate model [22, 25].

If the biopolymer is ribbonlike, i.e., much thinner than it is wide, then the polymer

essentially behaves as a thin sheet. Such sheets (e.g., paper) tend to deform isometrically,

i.e., without stretching. The deformed shape of an intrinsically flat ribbon is therefore part

of a developable surface. Accordingly, an elastic developable strip model has been proposed

for ribbonlike filaments [9, 32]. Since developable surfaces can be completely reconstructed

from the strip’s deformed centreline, the problem of finding equilibrium solutions for such

strips can be formulated as a variational problem on a space curve for an energy functional

in which the width 2w appears merely as a parameter [33, 35]. In the limit of a narrow strip,

w → 0, this functional reduces to the Sadowsky functional [27, 28]∫
κ2
(
1 + η2

)2
ds, (1)

where s is arclength, κ is the curvature, η = τ/κ and τ is the torsion of the curve. The

straight generators of the surface make an angle β = arctan(1/η) with the tangent to the

centreline (see Fig. 1). More precisely, the Sadowsky functional (1) is valid in the limit

|wη′| � 1, which means that w does not have to be small if the angle the generator makes

with the centreline varies only very gradually with arclength s. A strip deformed in the

shape of a cylinder, for example, which has η′ = 0, is described by Eq. (1) (for arbitrary

w). An asymptotic analysis of the validity of functional (1), in terms of geometrical and

load parameters, is given in [4]. The Sadowsky functional originated in mechanical studies
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FIG. 1: A developable strip is made up of straight generators in the rectifying plane of tangent, t,

and binormal, b, to the centreline, r. The generators make an angle β with the tangent. n is the

principal normal.

of Möbius strips [27, 28]. The functional is a singular limit of the finite-width functional

near inflection points of the centreline [3, 17, 33].

There is a long line of research, stretching back to Manning’s work [21], on equilibrium

paths of elastic lines on curved surfaces. Generally, a filament lying on a physical surface

requires a distributed reaction force from the surface onto the (intrinsically straight) filament.

The surface has to be stiff enough to provide the required force, which will increase with the

curvature of the surface. These external forces acting on the filament induce internal forces

and hence stresses in the material. For the important ideal model problem of a spherical

surface, for instance, both the WLC and RLC model require a reaction force [11, 14, 21, 30].

Here we show that, remarkably, Sadowsky strips are spherical if forceless, meaning that

no distributed force is required to constrain them to a spherical surface. So no tensile

or compressive stresses need to be sustained by the material. We like to speculate that

nature may have found ways to exploit this fact in the interaction between biofilaments and

surfaces or vesicles. By contrast, we mention the well-known fact that forceless solutions
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of the Kirchhoff rod (RLC) are helices (with the straight rod and the ring as degenerate

states), while for the special case of the Euler elastica (WLC) they are rings (or straight

rods).

In fact, the Sadowsky functional is just the simplest functional of a family of functionals

whose equilibrium curves are spherical. Therefore, in the next section we start with the

more general formulation of a geometric variational problem on a space curve.

GEOMETRIC VARIATIONAL PROBLEMS ON SPACE CURVES

A space curve γ: [0, L]→ R3 without inflection points is completely characterised (up to

Euclidean motions) by its curvature κ(s) (> 0) and the ratio η(s) = τ(s)/κ(s), where τ(s)

is the torsion. We consider functionals on such curves of the form

U(γ) =

∫ L

0

l(κ, η) ds. (2)

Functionals of this type appear in a range of applications. For instance, the classical case

l = κ2 gives the Euler elastica used as a model for the bending of elastic rods or polymers.

The case l = (Aκ+Bη)κ gives the isotropic Kirchhoff rod having both bending and torsional

stiffness [19], while l = (A + Bη2)κ2 describes a thin strip whose material frame is locked

to the Frenet frame and which therefore bends only about a single principal axis [20]. The

linear function l = A+Bκ+Cτ , meanwhile, which gives rise to generalised (Lancret) helices

(having constant η), has been proposed for protein chains [2]. Functionals U as in Eq. (2)

also appear in the localised induction hierarchy, an idealised model of the evolution of vortex

filaments in three-dimensional inviscid incompressible fluids [19], and its generalisations [26].

The kinematics of space curves is furthermore related to integrable systems such as the

nonlinear Schrödinger equation and the modified Korteweg-de Vries equation [10, 18].

Critical points of U satisfy the following equilibrium conditions [31]: (a) balance equations

for the components of the internal force F = (Ft, Fn, Fb)
ᵀ and moment M = (Mt,Mn,Mb)

ᵀ

expressed in the Frenet frame {t,n, b} (tangent, principal normal and binormal):

F′ + ω × F = 0, (3)

M′ + ω ×M + t× F = 0, (4)

where ω = (κη, 0, κ)ᵀ is the curvature (Darboux) vector in the Frenet frame and t = (1, 0, 0)ᵀ,
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and (b) the ‘constitutive’ relations

Mt =
1

κ

∂l

∂η
, Mb =

∂l

∂κ
− η

κ

∂l

∂η
. (5)

The force vector is a constant vector in space and F2 and F · M are first integrals of the

equations (3), (4). A further conserved quantity is the Hamiltonian given by

H = κ
∂l

∂κ
− l + Ft.

The equations can alternatively be derived through Euler-Poincaré reduction [33] or by

direct variation [5, 12, 13].

FORCELESS SPACE CURVES

We now consider the special case of forceless solutions, F = 0. For such solutions the

moment vector is conserved and the Hamiltonian becomes H = κlκ − l. Generalising from

some of the integrands l in Eq. (2) reviewed above, we let l be the product of two factors:

l(κ, η) = κnp(η), (6)

where n is an arbitrary number (not necessarily an integer) and p(η) ∈ C3 is an arbitrary

positive function of its single argument η. The corresponding Hamiltonian is H = (n −

1)κnp(η) = h = const. For n 6= 0, 1, we have

κ =

(
h

(n− 1)p(η)

)1/n

> 0. (7)

The constitutive equations (5) allow us to solve for two components of the moment vector,

Mt =

[
h

(n− 1)p

]1−1/n
pη, Mb =

[
h

(n− 1)p

]1−1/n
(np− ηpη).

The remaining component is found by differentiating Mt and using the first component of

Eq. (4):

Mn =

(
h

n− 1

)1−2/n

p2/n−2
[
ppηη +

(
1

n
− 1

)
p2η

]
η′.
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It is easy to check that the above expressions satisfy the third component of Eq. (4) identi-

cally and that the second component can be written as

A2η
′′ + A1η

′2 +

(
h

n− 1

)2/n

A0 = 0, (8)

A2 = p2/n
[
ppηη +

(
1

n
− 1

)
p2η

]
, (9)

A1 = p2/n−1

[
p2pηηη +

(
4

n
− 3

)
ppηpηη + 2

(
1

n
− 1

)2

p3η

]
, (10)

A0 = p[(1 + η2)pη − nηp]. (11)

We now recall the criterion for a curve to be spherical:

Theorem [34]. The necessary and sufficient conditions for a C4 regular curve r(s) to lie on

a sphere are

(i) the curvature κ does not vanish (hence the torsion τ is defined),

(ii) there exists a C1-function f(s), such that

fτ =

(
1

κ

)′
, f ′ +

τ

κ
= 0 .

The curve satisfying this criterion lies on a sphere of radius R =
√
κ−2 + f 2. Note that the

above theorem does not require nonvanishing torsion of the curve.

Differentiating the expression for the curvature Eq. (7) we obtain(
1

κ

)′
=

1

n

(
n− 1

h

)1/n

p1/n−1pηη
′.

We define f = 1
nκ

(
n−1
h

)1/n
p1/n−1 pη

η
η′, assuming that limη→0

pη(η)

η
exists and is finite. After

substitution of κ this becomes f = 1
n

(
n−1
h

)2/n
p2/n−1 pη

η
η′. Differentiating f with respect to

s and inserting the result into the equation f ′ + η = 0, we arrive, after simplification, at a

second-order equation for η:

B2η
′′ +B1η

′2 +

(
h

n− 1

)2/n

B0 = 0, (12)

B2 = p2/n−1pηη, (13)

B1 = p2/n−2
[
p(pηηη − pη) +

(
2

n
− 1

)
p2ηη

]
, (14)

B0 = nη3. (15)
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We can now ask the question: for what p(η) does Eq. (12) coincide with Eq. (8)? If

it does, then solutions of Eq. (8) are spherical. To answer the question, we match the

coefficients of our two equations, which gives two new equations:

A2B0 = A0B2, (16)

A1B0 = A0B1. (17)

These are two nonautonomous ordinary differential equations for p(η).

Eq. (16) simplifies to

η2ppηη −
(
η2 +

1

n

)
p2η + ηppη = 0.

Its general solution is

p(η) = C

(
η2 +

N

n

)N
,

where C and N are integration constants. Note that the ratio pη(η)

η
is well defined for

η = 0. Direct substitution of the above p(η) into the second condition Eq. (17) reveals

that it is satisfied only for N = n (the arbitrary prefactor constant C is clearly of no

importance). Thus, we conclude that all forceless inflection-free minimisers of the functional

l(κ, η) = κnp(η), n 6= 0, 1, are spherical only for

l(κ, η) = Cκn(1 + η2)n, C = const . (18)

The radius of the sphere is R =
∣∣n−1
n

M
h

∣∣, where M2 = M2
t +M2

n+M2
b > 0. A special analysis

reveals that for n = 1, Eq. (18) gives, among other solutions, arbitrary planar curves (η = 0).

For n = 0, Eq. (18) is trivial, but Eq. (6) gives Lancret helices, for arbitrary nonconstant p.

THE SADOWSKY FUNCTIONAL – FORCELESS STRIP SOLUTIONS

For n = 2 in Eq. (18) we obtain the Sadowsky functional Eq. (1):

US(γ) =

∫ L

0

κ2
(
1 + η2

)2
ds. (19)

For forceless strips Eqs (3), (4) and (5) reduce to

M ′
t = κMn, M ′

n = κηMb − κMt, M ′
b = −κηMn, (20)

Mt = 4κη(1 + η2), Mb = 2κ(1− η4), (21)
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while the Hamiltonian is

H = κ2(1 + η2)2. (22)

The remaining normal component of the moment may be found from the first (or third)

equation in (20) and (22):

Mn = 4(1 + η2)η′. (23)

Combination with the second equation in (20) and again (22) then gives

2(1 + η2)η′′ + 4ηη′2 + hη = 0, (24)

where h is the value of the Hamiltonian. The theorem above tells us that solutions of this

equation represent spherical curves, i.e., centrelines of narrow forceless rectangular strips are

spherical curves. The radius of the sphere equals R = M
2h

.

Integrating Eq. (24) once gives the moment first integral

G(η, η′) := 4(1 + η2)2(4η′2 + h) = M2. (25)

Analysis of the derivatives of G(η, η′) reveals that there always exists only one critical point

at the origin and that it is always a centre point. Therefore, all the orbits in the phase plane

are closed (see Fig. 2).

Further integration of Eq. (25) yields

± 2√
h

∫ η

0

1 + η2√
A2 − (1 + η2)2

dη = s− s0 ,

where A2 = M2

4h
= hR2 ≥ 1, the inequality following from Eq. (25). Evaluation of the

integral delivers the final equation

√
2A

[
2E

(
η

√
2A

(A− 1)(A+ 1 + η2)
,

√
A− 1

2A

)
− F

(
η

√
2A

(A− 1)(A+ 1 + η2)
,

√
A− 1

2A

)]
−

−2η

√
A− 1− η2
A+ 1 + η2

= ±
√
h(s− s0) ,

(26)

where F(z, k) =
∫ z
0

(1−k2 sin2 u)−
1
2 du and E(z, k) =

∫ z
0

(1−k2 sin2 u)
1
2 du are the incomplete

elliptic integrals of the first and second kind, respectively (with k the elliptic modulus), and
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FIG. 2: Phase portrait for Eq. (25) with orbits for M = 2.05, 2.25, 3, 4, 5 and 10 (inner to outer)

highlighted (h = 1).

s0 is an integration constant. Once this equation is solved for η, the curvature can be

computed as

κ =

√
h

1 + η2
.

As follows from Eq. (25), η′ goes through a maximum or minimum when η = 0, while η

goes through a maximum or minimum, η = ±
√
A− 1, when η′ = 0. Using this, the period

can be computed from Eq. (26) as

T = 4

√
2A

h

[
2E

(√
A− 1

2A

)
−K

(√
A− 1

2A

)]
,

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respec-

tively. The curvature is then periodic with period T/2. The expression for the Hamiltonian

implies that zeroes of η correspond to maxima of the curvature, κmax =
√
h, while η has

extrema at points where κ has a minimum, κmin =
√
h
A

= 1
R

(see Figs. 3 and 4). Note that

the torsion τ averaged over a period T is zero. Solutions are therefore achiral.

We also note that the tangential component of the moment is proportional to η: Mt =

4
√
hη. Thus the tangent to the centreline makes an angle with the moment vector with

cosine equal to Mt/M = 2η/A. This implies that the tangent to the centreline is oriented

9



orthogonally to the fixed axis of the moment vector at points where η = 0, while the

tangent to the centreline is aligned with the moment vector at points where η = ±A/2.

Since −
√
A− 1 ≤ η ≤

√
A− 1, the latter occurs at maximum |η| if A = 2, i.e., η = ±1

(Fig. 4a gives an example for h = 1, M = 4).

Shapes of strips on the sphere are shown in Figs. 3 and 4. Here the strips are drawn with

a small width to illustrate that they rotate relative to the (imaginary) spherical surface. The

angle χ between the normal to the developable surface of the ribbon at its centreline and

the normal to the sphere can be found from the equation κ cosχ = 1
R

. We see that at points

of vanishing η, where the generator is orthogonal to the centreline, this angle reaches its

maximum value, while it vanishes at points of maximum |η|. In the latter case the tangent

plane to the ribbon’s surface is also tangent to the sphere.

Strips are generally not closed on the sphere, but periodic boundary conditions (in both

space and curvature) could be imposed, which would fix one of the two free parameters

(M,h), leaving a one-parameter family of closed solutions. Note that these structures would

be closed as a strip since periodicity of curvature and torsion enforces periodicity of the

Frenet frame and alignment of the end generators. They would have high-order spatial sym-

metry, namely Dnd symmetry (n being a mode number), with planes of reflection symmetry

through the moment vector alternating with axes of π-rotation symmetry perpendicularly

intersecting the central moment axis and transversely intersecting the symmetry planes.

Non-closed (quasi-periodic) strip solutions, meanwhile, have D∞h symmetry. Structures

with either of these symmetry groups must indeed have zero force as there can neither be a

force component in a plane of reflection symmetry nor along an axis of rotation symmetry.

DISCUSSION

We have shown that a class of energy functionals for elastic filaments, which includes the

Sadowsky energy for a narrow strip, has spherical forceless extremals. For the Sadowsky case

solutions depend on two parameters, the values of the two first integrals, i.e., the magnitude

of the moment (M) and the Hamiltonian (h), which is also the (normalised) bending energy

density. The radius of the sphere is M
2h

.

The class of functionals with this property may be wider. However, it does not include

the corrected Sadowsky functional constructed in [8] (although this correction only affects

10



(a) (b) (c)

FIG. 3: Forceless Sadowsky strip solutions. (Top) Curvature κ(s), torsion τ(s) and their ratio η(s),

s ∈ [0, 3T ], for (a) M = 2.05 (T = 8.91355), (b) M = 2.25 (T = 9.02503), (c) M = 3 (T = 9.44378).

(Bottom) Corresponding spherical shapes for s ∈ [0, 5T ]. The black arrow indicates the moment

vector. (h = 1.)

(a) (b) (c)

FIG. 4: Continued from Fig. 3 for (a) M = 4 (T = 9.99339), (b) M = 5 (T = 10.52595), (c)

M = 10 (T = 12.91809).
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solutions where |η| > 1, so solutions for which |η| ≤ 1 everywhere are still spherical). Nor

does it include the narrow limit (w → 0) of the functional for annular strips derived in [6],

nor, seemingly, the functional for narrow residually-stressed strips derived in [7]. It would

be interesting to find all functionals of the form (2) (or, more generally, functionals with

l = l(κ, η, κ′, η′, ...) [31]) with unconstrained spherical solutions, analogous to all functionals

with forceless helical solutions having been characterised in [2].

We stress that in this paper we have not considered any constraint on the strip. In

particular, the surface of the strip is not required to lie in the surface of the sphere, although

solutions, as in Fig. 3a, that remain close to the equator (i.e., have small geodesic curvature),

rotate out of the surface only very little. Strips adhered to a spherical surface (similar to the

growing crystals studied in [24]) would obviously have Gaussian curvature 1/R2, with R the

radius of the sphere. The surface of the strip would then not be developable and therefore

not be described by the Sadowsky functional. However, the Sadowsky functional can still

be expected to provide a good approximation for the mechanics of a physical ribbon if the

stretching energy Us is much smaller than the bending energy Ub. Now, for an adhered

ribbon whose geodesic curvature is much smaller than its normal curvature, we estimate

Us ∼ t(w/R)4 and Ub ∼ t3/R2, where t is the thickness of the ribbon (both energies per unit

area). We thus require w/R � t/w (in addition to t/w � 1 for any ribbon model) and we

conclude that the (approximate) validity of the Sadowsky model for such adhered spherical

ribbons does not extend to arbitrarily thin ribbons.

We thank an anonymous referee for insightful comments that helped us to improve the

paper.
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