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Modelling Practices and  
Practices of Modelling  

Giorgio Fotia ∗ 

Abstract: »Modellierungspraktiken und Praktiken der Modellierung«. Modelling 
represents a core method of investigation in the sciences. Relying on a number 
of case studies, I want to explore the main concepts that denote the practice of 
modeling in pure and applied sciences. I argue that these concepts could be 
seen as metaphors to reflect upon when exploring how the practices of model-
ing are characterised across different disciplines. 
Keywords: Mathematical models, numerical models, computational science, 
scientific discovery, data-science. 

1.  Introduction 

Modelling is pervasive in the sciences, where it represents a core method of 
investigation as well as a subject of research per se. This paper considers some 
concepts that characterise the practice of modeling in pure and applied science. 
I argue that these concepts could be useful metaphors in trying to understand 
how models are used to investigate or represent reality. 

2.  Topics in Modelling 

There are many examples of how mathematical models are exploited in science 
and engineering. Effectively, J. T. Oden points out that mathematical models 
“provide the vehicle with which precision is given to theory and to the mental 
processes used to establish and perpetuate what is known in science and engi-
neering” (Oden 2002, 13).  

Use cases include, among others, fluid dynamics and turbulence, wave 
propagation in complex layered media, and the prediction of the behaviour of 
complex engineered systems. With reference to this latter application area, in 
Fig. 1 some results of an integrity analysis simulation for a component of the 
Large Hadron Collider (LHC) at CERN in Geneva are shown. The numerical 
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This remark suggests that the concept of reliability of predictions is essential to 
the practice of computational modelling. In fact, it is generally agreed that the 
reliability of a computer simulation (i.e the measure of confidence that can be 
assigned to it) 

depends upon the assessment and control of errors inevitable in the computa-
tional process – modeling errors due to the impossibility of capturing all of na-
ture with mathematical abstraction and approximation error due to the impos-
sibility of solving exactly the mathematical models. (Oden 2002, 15) 

Another concept that is worth further methodological investigations is the use 
of computing as an heuristic tool (Lax 1999, 24-8 passim). In a recent inter-
view, P. D. Lax reports that John Von Neumann already realised in 1945 that 
computing, that is the practice of running a numerical model on a computer,  

[...] gives us those hints without which any progress is unattainable, what the 
phenomena are that we are looking for.” In other words, computing may be 
used not only for solving concrete problems “but rather to explore which way 
science should be developed (Lax 2004, 3). 

Not surprisingly, computational models are now well established as a tool for 
theoretical investigation in science, (see e.g. McCurdy et al. 2002). For exam-
ple, massive computation of turbulence – performed by solving the exact equa-
tions of hydrodynamic turbulence – have provided new quantitative data and 
enhanced the understanding of this area (see e.g. Yeung, Zhai, and Sreenivasan 
2015). This suggests to us that it is worthwhile to further investigate the con-
cept of computing as an instrument for discovery in the sciences and to under-
stand how computational models are used in this endeavour.  

Further opportunities to reflect upon the way to describe the practice of 
modeling in the sciences are provided by examining how these practices are 
viewed from the perspective of the now emerging data-driven science.  

In recent years, in fact, data driven science has emerged as a novel frame-
work, due to recent developments in the technology of experimentation and 
measurement. This trend has forced scientists to change their attitudes toward 
data, and data methods are leading to transformative changes across the engi-
neering, physical and biological sciences as well as the social sciences. Striking 
examples include, among many others, data-intensive computing systems 
(Mattmann 2014), genomics and systems biology (Stephens et al. 2015), medi-
cine and health (Rotmensch 2017), urban informatics (Ota et al. 2016, Zhao et 
al. 2016), political and social sciences (Alvarez 2016), and social media and 
computer-mediated communication (Olshannikova et al. 2017, Barberá 2015). 

Indeed, in most cases the term data-driven modeling seems to have rele-
vance as opposed to a-posteriori validation (or optimisation) of models (Efron 
2016, Hastie 2015). But this is not necessarily true. Interestingly enough, the 
use of such rich data sets has been recently proposed in conjunction with more 
traditional analysis, modeling, and computation. In fact, on one hand, numeri-
cal simulation of large complex systems can easily strain available computa-
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tional resources. Similarly, experiments can generate overwhelming amounts of 
data. On the other hand, recent advances in data-driven methods are allowing 
for significant advances in the prediction and control of highly complex, often 
networked, systems.  

This approach, known as Dynamic Data-Driven Applications Systems 
(DDAS), represents an emerging paradigm in computational science, in which 
“simulations and experiments (or field data) interact in real time to dramatical-
ly improve the fidelity of the simulation tool, its accuracy, and its reliability” 
(NSF 2006, 37). Homeland security, control of hazardous materials, environ-
mental remediation, manufacturing processes, and vehicle flight control are just 
a few of the recent applications of this technology (Darema 2004). As recently 
pointed out (Kuske at al. 2017), it is expected that the combination of these 
approaches may provide a transformative mathematical framework for model-
ing the behaviour of complex systems. This interesting remark suggests that it 
might be useful to investigate how, and in what sense, these different modelling 
techniques are interconnected.  

To sum up, there are a number of concepts that characterise the practice of 
modeling in the sciences. What emerges is a practice-based overview of what 
modelling in the context of different domains of applied sciences means in 
operational terms and a glimpse of what could be entailed if the practice of 
modelling is analysed from this viewpoint. 

3. Conclusion 

In this paper, I attempted to explore the concept of modeling in the context of 
different domains of applied sciences from the perspective of modeling as a 
practice. However, there are a number of issues that would need further analy-
sis. For instance, it would be useful to further explore the relationship between 
theory and practice that emerges as a consequence of resorting to computations 
for discovery in the pure sciences. 

Further opportunities to reflect upon the way to describe the practice of 
modeling in the sciences can be elicited by examining these concepts from the 
perspective of the emerging domain of data-driven science. To this end it 
would be important, for example, to compare a number of use cases across 
different disciplines.  

Exploring how practices of modeling are characterised across disciplines 
seems to me a promising way to examine how, and in what sense, practices of 
modeling are interconnected, and whether and how the concept of modelling in 
the sciences can be appropriately (re)defined.  
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4.  Discussion 

Paul Fishwick’ questions 
Paul Fishwick was the respondent to my talk. While agreeing that computation 
is undoubtedly a pillar of contemporary science, Paul pointed out that models 
can also be seen as ways of physically encoding information using a specific 
technology, with associated analogies and metaphors. As such, they can be 
considered to be informational representations of our world. He considers that, 
if one wants to characterise exhaustively the practice of modeling, diagrammat-
ic and physical representations, and mathematical notation, should be consid-
ered as well, and he asked me to comment on this issue. Another question he 
raised was about the potential connections between the concepts and the prac-
tices I discussed and the arts and humanities. 

My answer 
I consider that while information representation may be part of the effort of 
building a computational model, whether their role is essential or not is strong-
ly dependent on the particular goal of the model building process and of the 
application problem one may want to solve. However, I do agree with Paul in 
considering that these representations should be taken into account if one wants 
to unravel how modeling is used in practice. As far as the potential connections 
between the concepts and the practices I discussed and the arts and humanities, 
we both agreed that data science can provide the appropriate framework for 
non-traditional research and discovery in the humanities. In this same frame-
work, we posit that the concept of computing as an instrument for discovery in 
the sciences I described can be a useful metaphor to reflect upon when trying to 
unify the description of the practices of modeling in many different domains, 
both in science and in the humanities.  
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