
www.ssoar.info

Epistemic Landscapes Reloaded: An Examination
of Agent-Based Models in Social Epistemology
Fernández Pinto, Manuela; Fernández Pinto, Daniel

Veröffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Zur Verfügung gestellt in Kooperation mit / provided in cooperation with:
GESIS - Leibniz-Institut für Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:
Fernández Pinto, M., & Fernández Pinto, D. (2018). Epistemic Landscapes Reloaded: An Examination of Agent-Based
Models in Social Epistemology. Historical Social Research, 43(1), 48-71. https://doi.org/10.12759/hsr.43.2018.1.48-71

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur
Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden
Sie hier:
https://creativecommons.org/licenses/by/4.0/deed.de

Terms of use:
This document is made available under a CC BY Licence
(Attribution). For more Information see:
https://creativecommons.org/licenses/by/4.0

Diese Version ist zitierbar unter / This version is citable under:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-56493-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SSOAR - Social Science Open Access Repository 

https://core.ac.uk/display/286230003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ssoar.info
https://doi.org/10.12759/hsr.43.2018.1.48-71
https://creativecommons.org/licenses/by/4.0/deed.de
https://creativecommons.org/licenses/by/4.0
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-56493-4


Historical Social Research
Historische Sozialforschung

Manuela Fernández Pinto & Daniel Fernández Pinto:

Epistemic Landscapes Reloaded:
An Examination of Agent-Based Models in Social Epistemology.

doi: 10.12759/hsr.43.2018.1.48-71

Cite as:

Fernández Pinto, Manuela, and Daniel Fernández Pinto. 2018. Epistemic Landscapes
Reloaded: An Examination of Agent-Based Models in Social Epistemology.

Historical Social Research 43 (1): 48-71. doi: 10.12759/hsr.43.2018.1.48-71.

For further information on our journal, including tables of contents, article abstracts,
and our extensive online archive, please visit http://www.gesis.org/en/hsr.

Published in:

Historical Social Research 43 (2018) 1



Historical Social Research
Historische Sozialforschung

All articles published in HSR Special Issue 43 (2018) 1:
Agent-Based Modeling in Social Science, History, and Philosophy.

Dominik Klein, Johannes Marx & Kai Fischbach
Agent-Based Modeling in Social Science, History, and Philosophy. An Introduction.
doi: 10.12759/hsr.43.2018.1.7-27

Rogier De Langhe
An Agent-Based Model of Thomas Kuhn's The Structure of Scientific Revolutions.
doi: 10.12759/hsr.43.2018.1.28-47

Manuela Fernández Pinto & Daniel Fernández Pinto
Epistemic Landscapes Reloaded: An Examination of Agent-Based Models in Social Epistemology.
doi: 10.12759/hsr.43.2018.1.48-71

Csilla Rudas & János Török
Modeling the Wikipedia to Understand the Dynamics of Long Disputes and Biased Articles.
doi: 10.12759/hsr.43.2018.1.72-88

Simon Scheller
When Do Groups Get It Right? – On the Epistemic Performance of Voting and Deliberation.
doi: 10.12759/hsr.43.2018.1.89-109

Ulf Christian Ewert & Marco Sunder
Modelling Maritime Trade Systems: Agent-Based Simulation and Medieval History.
doi: 10.12759/hsr.43.2018.1.110-143

Daniel M. Mayerhoffer
Raising Children to Be (In-)Tolerant. Influence of Church, Education, and Society on
Adolescents’ Stance towards Queer People in Germany.
doi: 10.12759/hsr.43.2018.1.144-167

Johannes Schmitt & Simon T. Franzmann
A Polarizing Dynamic by Center Cabinets? The Mechanism of Limited Contestation.
doi: 10.12759/hsr.43.2018.1.168-209

Bert Baumgaertner
Models of Opinion Dynamics and Mill-Style Arguments for Opinion Diversity.
doi: 10.12759/hsr.43.2018.1.210-233

Dominik Klein & Johannes Marx
Generalized Trust in the Mirror. An Agent-Based Model on the Dynamics of Trust.
doi: 10.12759/hsr.43.2018.1.234-258

Bennett Holman, William J. Berger, Daniel J. Singer, Patrick Grim & Aaron Bramson
Diversity and Democracy: Agent-Based Modeling in Political Philosophy.
doi: 10.12759/hsr.43.2018.1.259-284

Anne Marie Borg, Daniel Frey, Dunja Šešelja & Christian Straßer
Epistemic Effects of Scientific Interaction: Approaching the Question with an Argumentative Agent-Based Model.
doi: 10.12759/hsr.43.2018.1.285-307

Michael Gavin
An Agent-Based Computational Approach to “The Adam Smith Problem”.
doi: 10.12759/hsr.43.2018.1.308-336

For further information on our journal, including tables of contents, article abstracts,
and our extensive online archive, please visit http://www.gesis.org/en/hsr.

Historical Social Research
Historische Sozialforschung

dx.doi.org/10.12759/hsr.43.2018.1.7-27
https://dx.doi.org/10.12759/hsr.43.2018.1.28-47
https://dx.doi.org/10.12759/hsr.43.2018.1.48-71
https://dx.doi.org/10.12759/hsr.43.2018.1.72-88
https://dx.doi.org/10.12759/hsr.43.2018.1.89-109
https://dx.doi.org/10.12759/hsr.43.2018.1.110-143
https://dx.doi.org/10.12759/hsr.43.2018.1.144-167
https://dx.doi.org/10.12759/hsr.43.2018.1.168-209
https://dx.doi.org/10.12759/hsr.43.2018.1.210-233
https://dx.doi.org/10.12759/hsr.43.2018.1.234-258
https://dx.doi.org/10.12759/hsr.43.2018.1.259-284
https://dx.doi.org/10.12759/hsr.43.2018.1.285-307
https://dx.doi.org/10.12759/hsr.43.2018.1.308-336


Historical Social Research 43 (2018) 1, 48-71 │ published by GESIS 
DOI: 10.12759/hsr.43.2018.1.48-71 

Epistemic Landscapes Reloaded: An Examination of 
Agent-Based Models in Social Epistemology 

Manuela Fernández Pinto & Daniel Fernández Pinto ∗ 

Abstract: »Epistemische Landschaften reloaded. Eine Analyse agentenbasierter 
Modelle in der sozialen Erkenntnistheorie«. Weisberg and Muldoon’s epistemic 
landscape model (ELM) has been one of the most significant contributions to 
the use of agent-based models in philosophy. The model provides an innovative 
approach to establishing the optimal distribution of cognitive labor in scientific 
communities, using an epistemic landscape. In the paper, we provide a critical 
examination of ELM. First, we show that the computing mechanism for ELM is 
correct insofar as we are able to replicate the results using another program-
ming language. Second, we show that small changes in the rules that deter-
mine the behavior of individual agents can lead to important changes in simu-
lation results. Accordingly, we claim that ELM results are robust with respect to 
the computing mechanism, but not necessarily across parameter space. We 
conclude by reflecting on the possible lessons to be gained from ELM as a class 
of simulations or cluster of models. 
Keywords: Social epistemology, epistemic landscape, agent-based models, divi-
sion of cognitive labor. 

1.  Introduction1  

In order to study the social organization of epistemic systems, particularly the 
problem of finding an optimal division of cognitive labor, social epistemolo-
gists have taken advantage of the conceptual and methodological tools offered 
by other scientific disciplines. Initial attempts to address the problem of the 
division of cognitive labor used rational choice theory and analytic models to 
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ers, for their thoughtful comments. 
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show that a scientist’s non-epistemic interests, such as personal credit, can play 
a role in diversifying research efforts within the scientific community and thus 
can actually contribute to the success of science (Kitcher 1990; Goldman and 
Shaked 1991; Brock and Durlauf 1999; Strevens 2003). These rational choice 
models, however, have important limitations, especially when applied to ques-
tions of social epistemology and philosophy of science (Fernández Pinto 2016). 
In these models, scientists have perfect information about both the distribution 
of other scientists in different research projects and the probability of success 
of different research projects. If these conditions are relaxed, however, the 
models do not yield an optimal distribution of cognitive labor (Muldoon and 
Weisberg 2011). In addition, rational choice models of the division of cognitive 
labor work with homogenous individual agents, whose preferences are deter-
mined through an expected utility function. Results at the social level are thus 
the aggregate of individual preferences, and scientific success is at the end 
explained through an invisible hand mechanism: the optimal division of cogni-
tive labor emerges unintentionally from the agents’ individual preferences. 
Philosophers have questioned this particular use of invisible hand explanations, 
where the working of the invisible hand mechanism is taken for granted, as 
opposed to being empirically uncovered (Ylikoski 1995; Sent 1997).2  

Given the limitations of rational choice models, social epistemologists have 
now opted for agent-based models and computer simulations to grant more 
complex dynamics of the division of cognitive labor (Hegselmann and Krause 
2006; Weisberg and Muldoon 2009; De Langhe 2018 in this Special Issue). 
One advantage of agent-based models is the heterogeneity of agents, where 
every agent is represented explicitly in the model and where different types of 
agents are allowed. Instead of having perfect information and expected utility 
maximization, agent-based models are “bottom-up” in the sense that the behav-
ior of the agents is generated by direct interaction in the model, instead of 
being imposed “top-down” by pre-established rules (Miller and Page 2007). In 
most cases, computer simulation models, such as agent-based models, are not 
analytical models in which equations are solved through mathematical manipu-
lation with closed form solutions, but numerical models which are solved 
through an incremental time-stepping procedure iterated over time. Numerical 
models might not have closed form solutions, but numerical solutions or ap-
proximations, which go beyond human computing capability or their closed 

                                                             
2  Note that this particular feature of early rational choice models in social epistemology 

might be overcome by the dynamics in social networks models (e.g., Zollman 2010), where 
the results at the social level are not just mere aggregations of individual preferences, but 
also depend on the network structure. In this sense, social network models might provide a 
better account of the underlying mechanism than early rational choice models, such as 
Kitcher’s model.  
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form solution, might be just too difficult to find, so that we resort to computa-
tional aid.  

One important contribution to addressing the problem of the division of 
cognitive labor using agent-based models is the epistemic landscape model 
(ELM) developed by Weisberg and Muldoon (2009). Mapping the microstruc-
ture of scientific research on an epistemic landscape in which the topology is 
given by the epistemic significance of research approaches, individual scien-
tists explore the landscape according to differing interests and preferences. 
ELM then shows the efficacy with which different groups of scientists make 
epistemic progress and climb to peaks of epistemic significance. Looking at the 
progress of different agent distributions, ELM provides an innovative approach 
to establishing the optimal distribution of cognitive labor, one that accounts 
better for the heterogeneity of agents in real science than rational choice mod-
els, and one that allegedly avoids inadequate invisible hand explanations inso-
far as the simulations show the underlying mechanism at work.  

The aim of this paper is twofold. First, we show that the computational 
mechanism of ELM is correct insofar as we are able to replicate the results 
using another programming language. Second, we show that small changes in 
the rules that determine the behavior of individual agents can lead to important 
changes in simulation results. Accordingly, we claim that ELM results are 
robust with respect to the computing mechanism, but not necessarily across 
parameter space. We conclude by reflecting on the possible lessons to be 
gained from ELM as a class of simulations, or cluster of models, and we sug-
gest some possible directions to move forward.  

The paper is divided in six sections. In the second section we present a brief 
description of the ELM model and the main results obtained by Weisberg and 
Muldoon. After reviewing Muldoon’s (2007) argument for robust simulations, 
in the third section we explain our technical reasons for attempting a replication 
of ELM in FreePascal. The fourth section describes the results of our simula-
tions (ELM-P). In the fifth section, we introduce two alternatives to Weisberg 
and Muldoon’s Follow Rule, and we present the results obtained with these 
changes. Finally, in the last section we compare and discuss the results ob-
tained using the original Follow Rule and the new alternatives, and we draw the 
conclusions of our analysis.  

2.  The Epistemic Landscape Model (ELM) 

Weisberg and Muldoon (2009) introduced their ELM as an alternative ap-
proach to rational choice models for the study of the division of cognitive labor 
in social epistemology. In particular, they are not interested in modeling situa-
tions where scientists aim at a unique narrow goal using different approaches – 
i.e., the type of situation encapsulated in Streven’s priority rule (2003) and 
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frequently illustrated with the example of the race to find the structure of DNA 
– but instead, they aim at modeling the more common situation of scientists 
studying the same research topic using different approaches, without constrain-
ing themselves to a single research outcome, and where the achievement of 
epistemic success by some does not necessarily imply the failure of others.  

In ELM then the division of cognitive labor is “represented as the distribu-
tion of agents throughout the landscape and scientific change as the exploration 
of the landscape” (2009, 228). An epistemic landscape or “grid” represents the 
particular research topic that interests a scientific community. A particular 
position in the landscape or “patch” represents the scientist’s (or the research 
group’s) particular “approach” to the study of the research topic in question. 
For Weisberg and Muldoon, an approach is composed of at least four aspects: 
(1) research questions, (2) instruments and techniques for data gathering, (3) 
methods for data analysis, and (4) background theories for data interpretation 
(2009, 228).3 The combination of all the possible approaches across these four 
aspects makes then the epistemic landscape.4  

Finally, the topography of the landscape is given by the epistemic signifi-
cance of the approach. Following Kitcher’s claim that science aims at signifi-
cant truths (1993), the higher the significance of the results yielded by a partic-
ular approach, the higher the patch corresponding to such approach in the 
epistemic landscape.5  

In addition, the authors introduce the notion of epistemic progress to 
acknowledge that the exploration of significant approaches that are not maxi-
mally significant also constitutes an important aspect of scientific research. 
Accordingly, epistemic progress is understood as “the percentage of patches 
with significance greater than zero that have been visited by the community of 
scientists” (2009, 237).  

In an agent-based model such as ELM, individual scientists or research 
groups are explicitly represented as individual agents moving across the land-
scape. In contrast to rational choice models, ELM is able to model the behavior 
                                                             
3  Weisberg and Muldoon recognize that approaches might have other non-epistemic compo-

nents such as technological significance or monetary value (2009, 229, note 4). One can ar-
gue that even other epistemic components, such as experimental design, need to be added 
to the account as well. 

4  As Weisberg and Muldoon duly note, if we were to take into account all the dimensions 
along which approaches may vary, the landscape would have high dimensionality. In favor 
of clarity and simplicity, ELM works with a three-dimensional landscape, where two dimen-
sions correspond to aspects of the approach, such as the aspects 1-4 previously mentioned, 
and the third dimension corresponds to the epistemic significance of the results obtained 
following the approach.  

5  Here the authors assume that a scientist or a research group that follow an approach that 
would in principle yield significant results would be in fact able to obtain such results. In 
this sense, the particular ability or talent of the scientist or the research group to develop 
the approach appropriately is not taken into account.  
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of different types of agents, who move in the landscape according to different 
rules. Weisberg and Muldoon (2009) specify the rules that determine the be-
havior of three different types of agents. The HE Rule fixes the behavior of 
control agents, who move across the landscape in the simplest way, starting 
with a population of agents randomly distributed in zero-significance zones. 
Figure 1 shows the flowchart according to which control agents decide how to 
move. 

Figure 1: Flowchart Representing the Coding of the HE Rule in ELM 

Controls only take into account the epistemic significance of the patches in 
their close neighborhood,6 in order to decide whether to move or not and in 
which direction. But of course, individual scientist or research groups do not 
explore approaches to a research topic completely in isolation, as controls do. 
In contrast, they learn from what their fellow scientists have done and make 
decisions accordingly. Assuming that the agents will have information about 
the patches in their neighborhood that have been already explored, Weisberg 
and Muldoon introduce two additional types of agents. Followers, or agents 
that tend to move to previously explored patches, and mavericks, or agents who 
tend to look for new unexplored patches in the landscape. 

Followers simulate conservative scientists who are more comfortable guid-
ing their research according to already explored approaches. According to the 
programming code, followers in ELM first evaluate whether any of the patches 
in their neighborhood has been explored.7 If any has been, then they evaluate 
                                                             
6  A neighborhood in ELM is equivalent to a Moore neighborhood or the eight patches sur-

rounding the patch where the agent is located.  
7  We found a discrepancy between the followers rule that Weisberg and Muldoon present in 

the paper and the followers rule coded in their NetLogo model. While the paper version re-
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whether the significance of the patch is greater or equal to the significance of 
their current patch, and move accordingly. Figure 2 presents the decision-
making process of followers as coded in ELM.  

Figure 2: Flowchart Representing the Coding of the Follow Rule in ELM 

 

Mavericks also take into account what their fellow scientists have done, but 
unlike followers, they prefer to move to unexplored patches in the landscape. 
They simulate scientists who are risk-takers. Accordingly, they first evaluate 
whether the significance of the patches in their neighborhood is greater than the 
significance of their current patch and if so, then they evaluate whether it has 
been already explored, moving always to unexplored patches when available. 
Figure 3 presents the decision-making process of mavericks coded in ELM. 

In their 2009 paper, Weisberg and Muldoon report having run simulations 
on controls for 50,000 cycles starting with 10 agents with an increment of 10 
agents at a time up to a total of 400 agents. For each group of agents (10, 20, 
30, etc.), they ran 100 simulations. They ran similar simulations with followers, 
but only through 1,000 cycles, and with mavericks, through 200, 500, and 
2,000 cycles. Finally they also ran simulations of two types of mixed popula-
tions, one with 400 followers and only one maverick through 1,000 cycles, and 
a second one with an increasing population from 10 to 400 followers, where 
mavericks were introduced 10 at a time, up to 50, through 500 cycles. 

                                                                                                                                
stricts the movement of followers exclusively to patches of greater significance, the code 
allows followers to move when the available patches have greater or equal significance.  
Alexander et al. (2015) have also identified the same discrepancy. As it will become clear in 
the following sections, this small difference in the specification of the rule yields signifi-
cantly different results. 
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Figure 3:  Flowchart Representing the Coding of the Maverick Rule in ELM 

 

The results of the simulations are given in terms of the epistemic progress of 
the agents. Given pure populations of controls, followers, and mavericks, 
Weisberg and Muldoon conclude that mavericks are most efficient at both 
finding peaks and making epistemic progress, whereas followers are the least 
efficient in both tasks. Controls do slightly better than followers both in finding 
peaks and in exploring significant zones (2009, 245, Figure 9). In the end, they 
conclude that mixed populations are ideal, where a small number of mavericks 
can find epistemic peaks quickly and significantly stimulate the epistemic 
progress of followers, while followers are good at exploring the breadth of the 
epistemic landscape (2009, 250). 

3.  Replication in a Different Programming Language 

As previously noted, one of the main motivations for developing agent-based 
models of the division of cognitive labor, and ELM in particular, is trying to 
capture the inherent complexity of the social organization of scientific commu-
nities that analytic models fail to capture and for which computer simulations 
seem a promising tool. Analytic models, however, have been praised precisely 
for their simplicity and clarity, as well as for the modeler’s control over the 
equations and mathematical calculations of the model. Agent-based models on 
the contrary often contain stochastic components that generate complex non-
linear behavior, which are not trivial for human beings to solve analytically and 
thus require computational simulations. Given the modelers’ inability to check 
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the calculations, one could in principle object that there is no way to know 
whether the results are correct or whether there is an error in the simulation.8  

Appealing to robustness analysis, Muldoon (2007) argues against this objec-
tion. He acknowledges that agent-based models are prone to computer failures 
that analytic models are not, and he identifies software errors – mistakes or 
unknown implementation details in the programming language or software 
library – as one of this type of failures (2007, 877). However, Muldoon argues 
that robustness analysis is an adequate way of overcoming these limitations. 
Given that there are a number of programming languages available, replicating 
simulation results in different programming languages would decrease the 
likelihood of programming errors, making the simulation results robust across 
different programing languages.  

Weisberg and Muldoon (2009) initially programmed the ELM in NetLogo, 
which is a program intended especially for agent-based model simulations. 
NetLogo is considered an interpreter as it executes code from a scripting lan-
guage designed specifically for the program. This allows for the easy coding of 
agent-based models without the need to code from a lower level of abstraction. 
Despite the many advantages of NetLogo, one might wonder, precisely because 
of the built-in functions of the program, whether the ELM is prone to the soft-
ware errors that Muldoon (2007) identifies.  

Following the argument for robustness analysis, we decided to program the 
ELM model in FreePascal in order to overcome possible software failures 
associated with the use of a higher abstraction language such as NetLogo. The 
FreePascal programming language and compiler – a more recent open source 
derivative of Apple’s proprietary Pascal language and compiler implementa-
tions – does not rely on any interpreter and therefore all aspects of the code can 
be tightly controlled by the programmer. This allowed us to develop a model-
ing framework that was flexible, enabling a large array of potential modifica-
tions which would be difficult to implement in a more rigid environment such 
as NetLogo.  

Using FreePascal has also other advantages. It is faster than languages such 
as NetLogo, while being also a cross-platform compatible language. In addi-
tion, thanks to the open source Lazarus IDE, rich user-interface applications are 
easy to develop in FreePascal. We realize that other programming languages 
(C, Python, Java) might also be fit for the coding and analysis of this model, 
and that compiler or even hardware related bugs might still be present, regard-
less of the level of abstraction of the programming language involved. 

The ELM and ELM-P (ELM model coded in FreePascal) have some differ-
ences inherent to the way in which both implementations were coded. In 
NetLogo agents have a given heading and their movement is controlled by 
                                                             
8  For further discussion about this phenomenon, also known as ‘epistemic opacity,’ see Hum-

phreys (2004, 147-51).  
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giving stay-forward-backwards or change-heading instructions, while in our 
model agents do not have a predetermined heading but evaluate their neighbor-
hood on each time step in order to make a decision to move to a new patch or 
stay on their current one. This creates a clear difference in coding structure 
which does not translate into relevant qualitative differences within our results. 
We made this coding decision as the addition of a heading variable was possi-
ble but not needed in FreePascal, while in NetLogo it’s an inherent property of 
the agent being used and therefore can be used with no additional programming 
effort. 

Another important difference between both implementations is the random 
number generator. Both FreePascal and Netlogo use the Mersenne twister 
algorithm for random number generation9 but their specific implementations 
are different. Although both random number generators have a good enough 
quality and should mimic the output of a non-deterministic process, differences 
between both implementations could arise because of this factor.  

4.  Results in ELM-P 

We have adapted the HE Rule in the ELM model to our programming struc-
ture, doing an evaluation of all neighborhood patches in analogy to the process 
used within the Follow and Maverick Rules. A flowchart describing our adap-
tation of the HE Rule is shown in Figure 4. 

Despite the evident differences in programming structure when comparing 
Figure 4 with Figure 1, we can still observe qualitatively similar results to those 
obtained by Weisberg and Muldoon (2009) when evaluating epistemic progress 
as a function of control agent and cycle number (Figure 5).  
 

                                                             
9  Netlogo random number generator: <https://ccl.northwestern.edu/netlogo/docs/program- 

ming.html>. FreePascal random number generator: <http://www.freepascal.org/docs-
html/rtl/ system/random.html> (both accessed January 16, 2018). 
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Figure 4: Flowchart Describing the Implementation of the HE Rule in the ELM-P 
Model 

 

 

Figure 5:  Epistemic Progress as a Function of Control Agent Number for 
Different Simulation Cycle Numbers 

 

Epistemic progress increases as a function of agents and as a function of cycles, 
with the largest epistemic progress being achieved with the largest number of 
cycles and agents (550 agents, 10,000 cycles). Our final epistemic progress 
values at 400 agents are also quantitatively similar to those published within 
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their paper for all cycle values. However it is worth noting that our curves at 
2,000 and 10,000 cycles are notably more logarithmic in shape, pointing to a 
faster ability of our controls to reach the peaks within the landscape, leading to 
a lower final epistemic progress (as controls that reach the peaks remain static). 
The ability to act after evaluating their entire neighborhood makes the controls 
more efficient than those acting only on information obtained from their last 
movement. These differences are however small and do not constitute a dra-
matic difference with the controls in the original paper. 

Figure 6:  Comparison between Controls, Mavericks, and Followers for a 200 
Period Cycle for Different Agent Numbers 

 

Our agents using the Follow Rule behave in a very similar manner to the origi-
nal followers in ELM. Giving priority to spaces of equal or greater significance 
creates a problem: all followers that are not initially located next to a zone of 
non-zero epistemic significance become stuck in a loop between their initial 
and subsequent positions.10 This is the main reason followers make very low 
epistemic progress, even with large number of agents. Figure 6 shows the com-
parison between followers, mavericks, and controls for a 200 period cycle 
length. 
                                                             
10  This problem has also been noticed by Alexander et al. (2015). 
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In our results mavericks are also by far the most efficient agents at making 
epistemic progress. Figure 6 shows the same relationship obtained by Weisberg 
and Muldoon where epistemic progress is largest for mavericks followed by 
controls and finally followers. Our mavericks also reach similar epistemic 
progress values at 400 agents, with an average epistemic progress of almost 
80% of the available non-zero epistemic landscape. Clearly our results are not 
equal to the results obtained by Weisberg and Muldoon as is expected from the 
programming implementation differences outlined in section 3. Nonetheless 
our results lead to the same conclusions and are quantitatively similar, as one 
can see when comparing their results (Weisberg and Muldoon 2009, 245, Fig-
ure 9) to ours (Figure 6).  

Figure 7: Epistemic Progress of Mixed Communities after 500 Cycles 

 

Finally, we also obtained similar results when dealing with mixed population of 
followers and mavericks. Weisberg and Muldoon ran simulations of 100-400 
followers, adding populations of 10-50 mavericks at a time, for 500 cycles. As 
expected, populations with a higher number of mavericks attain epistemic 
progress faster, and the addition of even a small number of mavericks increases 
dramatically the epistemic progress of the community. Figure 7 shows the 
behavior of mixed populations in ELM-P, which is fairly similar to the results 
obtained in ELM (for comparison, see Weisberg and Muldoon 2009, 247, Fig-
ure 10).  
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Given that the implementation in FreePascal rendered similar results to the 
original implementation in NetLogo, we conclude that the results of ELM are 
robust across different programing languages, i.e., that the computing mecha-
nism is correct and results are not due to calculation errors.  

5.  Alternative Follow Rules 

So far, we have performed the robustness checks across programing languages 
to avoid computing problems in ELM. However, as Muldoon (2006, 880) rec-
ognizes, checking for robustness across programming languages is just the first 
step towards model validation in computer simulations: “One may be able to 
program a simulation in as many languages as one might please, but that does 
not help to ground the simulation, or its underlying model, to the real world in 
a meaningful way.” Thus, in addition, we should run a stronger robustness 
analysis, i.e., “robustness across modalities and parameter space” (ibid.). Let us 
perform a couple of changes on the parameter space, accordingly, and observe 
the simulation results. 

As we explained in Section 4 one of the main problems with the original 
Follow Rule is the use of an equal or greater comparison when evaluating 
where to move next among visited patches in the Moore neighborhood. If we 
remove this restriction – by moving only to visited spaces of greater signifi-
cance – our followers become dramatically more efficient at exploring the 
epistemic landscape. We call this new implementation of the rule guiding the 
behavior of the followers the G-Follow Rule, given that followers are modified 
to use a greater than instead of an equal or greater comparison when selecting 
where to move, (in this way avoiding their return to the last explored patch). 
Although our followers are still significantly less efficient than mavericks they 
do become more efficient than the original followers and even the original 
control group.  

Another alternative implementation of the rule guiding the behavior of fol-
lowers is the N-Follow Rule, according to which followers move to explored 
spaces with higher or equal significance as in the original Follow Rule, but 
NEVER to their own previously explored spaces. The N-Follow Rule makes 
the agents even more efficient at exploring the landscape than the original 
followers, the g-followers, and the controls, as can be seen in Figure 8.  
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Figure 8:  Average Epistemic Progress of the Original Follower, G-Followers, and 
N-Followers 

 

The implementation of different versions of the Follow Rule also leads to dif-
ferent results in mixed populations. G-followers and n-followers make signifi-
cantly more epistemic progress than the original followers when no mavericks 
or a small number of mavericks are present. Figure 9 illustrates such differ-
ences. 

As the number of mavericks increases, the type of follower used in the 
simulation matters less and less, given that the epistemic progress is increasing-
ly achieved by the mavericks. In other words, when the maverick population is 
small, 15% or less, the type of followers that we find in the epistemic commu-
nity makes a difference in the community’s epistemic achievements. This dif-
ference is important because mavericks are presumably more costly than fol-
lowers (Weisberg and Muldoon 2009, 250), which encourages scientific 
communities to maintain the number of mavericks as low as possible. In this 
sense, the more epistemic progress achieved by a community with a low per-
centage of mavericks, the better.  
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Figure 9: Average Epistemic Progress of Mixed Populations of 400 Agents in 
500 Cycles with Original Followers, G-Followers, and N-Followers 

 

Another way of measuring the progress of the scientific community on ELM is 
to look at the number of approaches or patches explored in the landscape re-
gardless of their significance. Weisberg and Muldoon call this a measure of 
total progress, since it gives us information about the overall activity of the 
scientific community, and not only of its success (2009, 248). In principle, 
followers make important contributions to the total progress of a community, 
given that they are much better at exploring Moore neighborhoods than maver-
icks, thus covering larger parts of the landscape faster. But here as well the type 
of follower that one is implementing in the model matters greatly (see Figure 
10). On a landscape of 10,201 total approaches, as in ELM, the original follow-
ers contribute much less at exploring the landscape than n-followers or g-
followers. G-followers in fact seem to contribute significantly to total progress, 
regardless of the number of mavericks in the community.  
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Figure 10: Total Progress of Mixed Populations of 400 Agents in 500 Cycles 
with Original Followers, G-Followers, and N-Followers 

 

Such differences might have important consequences for the lessons drawn 
from the simulation. For instance, if one is implementing the original Follow 
Rule, one could say that the best way to obtain total progress in an area of 
scientific research is to have a mixed population of followers and mavericks 
with a higher percentage of mavericks. On the other hand, if one is implement-
ing the G-Rule, one could claim that the number of mavericks only matters for 
epistemic progress, but not for total progress. Similarly, if one is implementing 
the original Follow Rule, one might claim that individual learning, i.e., the 
behavior exhibited by controls, is more efficient as a learning strategy than 
social learning, i.e., the strategy exhibited by followers, insofar as controls 
perform better than original followers (Pöyhönen 2016). However, if one im-
plements g-followers or n-followers, then one must conclude just the opposite. 
Thus, differences in the Follow Rule implemented in the model can lead to 
different results, and radically different recommendations. 

6.  Discussion  

As we already mentioned, followers in ELM are supposed to learn from the 
achievements of other agents and use this information to find patches of greater 
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significance. As Weisberg and Muldoon acknowledge, one of the limitations of 
the Follow Rule as implemented in ELM is that followers get stuck pretty 
easily. First, “if followers bump into each other on the way up, they can get 
stuck following each other around to a suboptimal region of the hill” (Weisberg 
and Muldoon 2009, 241-2). Second, if followers start far away from the hills, 
“they end up following their own trail. Or if around others, they end up circling 
around the trails each other make” (ibid., 242). We trace this particular limita-
tion of the Follow Rule to the way it was originally implemented in ELM, 
where agents first evaluate whether any of the patches in their neighborhood 
have been explored, and if they have been, then they evaluate whether the 
significance of these patches is greater or equal to the significance of their 
current patch, and move accordingly. The problem with this implementation of 
the rule, as Alexander et al. (2015) have already noted, is that followers move 
to patches of great or equal significance, without distinguishing whether the 
previously explored patch has been explored by themselves or by other agents. 
Thus, the original Follow Rule allows the following move. Suppose there is a 
follower at a zero-significance zone surrounded by zero-significance patches as 
Figure 11a illustrates: 

Figure 11a: Follower in Zero Significance Moore Neighborhood 
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Since there aren’t any significance patches in her Moore neighborhood, she 
randomly chooses to move, as follows: 

Figure 11b: Follower Moving Randomly in a Zero-Significance Zone 
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Let’s assume that she is not close to a hill and, after the move, her new Moore 
neighborhood looks like this: 

Figure 11c: Follower’s New Moore Neighborhood 
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For the next move, the follower would identify the explored patch in her neigh-
borhood and evaluate its significance. Since the significance is equal to the 
patch she is currently in (i.e., zero), then she would move back to this patch 
(see Figure 11c). In other words, the follower in this case would not be able to 
take into account that the explored patch in her Moore neighborhood has been 
explored by her, and she would easily get stuck back and forth between patches 
that only she has explored.  

At first sight this does not look like a natural implementation of the Follow 
Rule. If the rule aims to model the behavior of scientists who learn from the 
successful work that other scientists have done, it would not make sense for 
followers to move back to their own unsuccessful approaches for solving a 
scientific problem.  

One way to avoid the previous situation is to implement the rule allowing 
followers to move to previously explored patches only if the significance is 
greater than the significance of the patch where they currently are. This is the 
way we implemented the G-Follow Rule (see Section 5). The rationale behind 
the G-Follow Rule is that follower scientists would change their approach to 
research if they have access to other explored approaches that have already 
proved to be more successful. If there are other explored approaches that have 
not proved to be more successful, scientists would not have particular motiva-
tions to pick that approach among other available approaches. As we already 
mentioned, the implementation of the G-Follow Rule makes followers much 
more efficient not only than original followers, but also more efficient than 
control agents (see Figure 8, and compare with controls in Figure 6).  

One could argue that the G-Follow Rule is also unnecessarily limited insofar 
as followers might have good reasons to move to other previously explored 
approaches even if they haven’t been more epistemically significant than their 
current approach. For example, scientists might argue that joining forces in 
exploring an approach might maximize the possibility of obtaining good results 
or they might find it convenient to adopt an already explored approach that is 
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more suitable for their labs and expertise than the one they are currently devel-
oping. Thus, in principle there can be reasons for followers to move to explored 
patches even if they have equal significance to their current patch. In this sense, 
to assume that followers do not coordinate their movements with other agents 
and that their movements do not have any adaptation costs are substantial ideal-
izations of the model that should be pointed out.  

In order to avoid both problems, i.e., the problem of followers going back to 
patches that they have already explored and the problem of not allowing fol-
lowers to move to already explored patches that are of equal significance to 
their current patch, we implemented the N-Follow Rule, where followers move 
to patches of equal or greater significance, but excluding their own previously 
explored patches (see Figure 8). As noted earlier, the N-Follow Rule makes 
followers much more efficient at exploring the landscape and making epistemic 
progress.  

We think our results are coherent with the rationale that scientists building 
on research approaches that have already proved successful should make more 
epistemic progress than controls who explore the landscape randomly (cf., 
Pöyhönen 2016). It makes sense then for our g-followers to be more efficient 
than controls. Moreover, scientists who not only take advantage of what other 
scientists have achieved, but also avoid going back to research approaches that 
they already know to be unsuccessful should make more epistemic progress. It 
makes sense then for our n-followers to be more efficient than our g-followers. 
Accordingly, g-followers seem to capture better the behavior expected from 
scientists exploring a research topic than do the original followers, and n-
followers do it even better than g-followers. 

One point that becomes clear with the implementation of alternative rules 
for the behavior of followers is that small changes in the coding of the rules can 
result in major changes in the behavior of the agents. Notice, for instance, that 
the only change in the code that we made from the original Follow Rule to the 
alternative G-Rule was the change from accepting the move to patches of equal 
or greater significance (≥) to only accepting the move to patches of greater 
significance (>). This minor change in the implementation of the rule resulted 
in making g-followers around 10 times more efficient than their original coun-
terparts. Similarly, by restraining followers from going back to their previously 
explored patches, n-followers became around 15 times more efficient than their 
original counterparts. Different types of followers also lead to different results 
when interacting with mavericks in mixed populations. Especially in mixed 
populations with a small percentage of mavericks, which type of Follow Rule 
is used seems to matter when accounting for the epistemic progress of the 
community. Moreover, the type of Follow Rule used also matters when ac-
counting for the total progress of the community, regardless of the percentage 
of mavericks.  
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So what are the lessons to be learned from comparing the original results in 
ELM to the results obtained with changes to the Follow Rule in ELM-P? We 
could say that results regarding the performance of followers when compared 
to mavericks and controls in the original ELM are not robust, given that they 
do not hold across parameter changes.11 A similar conclusion can be made 
regarding the contribution of followers to total progress, given that alternative 
followers significantly contribute to total progress even without mavericks, 
while this was not the case with original followers.  

One result that seems to hold across parameter changes here is that mixed 
populations increase their efficiency with a higher percentage of mavericks, 
and mavericks do seem to provide pathways for followers to find zones of 
greater significance and thus boost followers’ contribution to epistemic pro-
gress (Weisberg and Muldoon 2009, 250). However, in mixed populations with 
a small percentage of mavericks, our alternative followers contribute much 
more to epistemic progress than suggested by the original results, probably 
leading to different optimal balances between followers and mavericks within a 
scientific community.  

Even though we only presented a couple of alternatives to the Follow Rule, 
the G-Rule, and the N-Rule, there are numerous ways to implement such a rule 
– other possible alternatives would include making followers wait in cycles in 
which they do not find explored patches around them, or letting them see 
patches beyond their Moore neighborhood (Weisberg 2013; Thoma 2015). 
Parameter changes with respect to the behavior of controls and mavericks 
should also be explored to better understand the mechanisms guiding the be-
havior of each type of agent, as well as the relation between different types of 
agents in ELM. Moreover, altering the topology of the landscape (Pöyhönen 
2016), considering the capacity of the agents to explore each patch, or taking 
into account the risk of certain strategies, would all help exploring the parame-
ter space of ELM and contribute to further understanding of the scope and 
fruitfulness of the model. 

In this sense, even if some results are not robust across the parameter space 
in ELM, further exploration of the model, i.e., further alternation of parameters, 
could in principle lead us to uncover core mechanisms to understand the divi-
sion of cognitive labor in scientific communities. If we understand ELM not as 
an individual model, but as a class of simulations (Muldoon 2006) or cluster of 
models (Ylikoski and Aydinonat 2014), which implement the same basic dy-

                                                             
11  We use the concept of robustness analysis instead of the more precise term derivational 

robustness analysis (Woodward 2006) to refer to the testing of the model across different 
parameter values. If the same conclusions are derived from such testing, then the results are 
considered to be derivationally robust (Kuorikoski and Lehtinen 2009; Ylikoski and Aydi-
nonat 2010). 
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namic while altering different parameters at a time, then we could in principle 
obtain epistemically significant conclusions. In Muldoon’s words:  

Our proper object of analysis is this class of simulations. To generate this 
class, we create multiple models that implement the same basic dynamic by 
different modalities and across parameter space. In doing so, we create inde-
pendent pathways of investigation, which allows us to isolate any particular 
implementation detail by examining its effects on the simulation. (Muldoon 
2006, 880) 

Accordingly, one should be cautious about drawing any general lessons from 
an individual implementation of ELM. Agent-based models, such as ELM, are 
incredibly powerful and flexible tools for model building, but their advantages 
come at a cost: the models are not analytically tractable and they have a large 
parameter space (de Marchi and Page 2014). This means, among other things, 
that ABMs are highly manipulable, and thus it comes down to the modeler to 
justify her parameter choices and further explore the parameter space.  

A careful exploration of the cluster of models could potentially lead to un-
covering epistemically interesting results, for instance well-justified lessons 
regarding the mechanisms guiding the distribution of cognitive labor in scien-
tific communities and possible ways to optimize it.12 Such an understanding 
requires a systematic analysis of ELM:  

An ability to make reliable inferences about real-world systems presupposes a 
systematic understanding of the ways in which the changes in the assumptions 
of the model changes its results. (Ylikoski and Aydinonat 2014, 30) 

In this sense, results obtained through implementing g-followers and n-
followers in this paper, as well as other contributions to the exploration of the 
parameter space of ELM (Weisberg 2013; Alexander et al. 2015; Thoma 2015; 
Pöyhönen 2016), can be understood as contributing to this larger endeavor.  

Robustness analysis however won’t be enough. If ELM aims at capturing in 
any significant way the mechanisms that guide the division of cognitive labor 
in scientific communities in the real world, then even for a theoretical model 
such as ELM the parameters explored should be realistic or credible. Following 
Kuorikoski and Lehtinen,  

[i]f the substantial assumptions are not realistic, no amount of robustness 
analysis suffices to change our views about which results of the model could 
also be taken to hold in the real world. Robustness analysis is thus useless if 
all assumptions are unrealistic, and its epistemic relevance rides on there be-
ing at least some realistic assumptions. (2009, 127) 

                                                             
12  Pöyhönen makes a similar point: “By tracing differences in outcomes to differences in 

modeling assumptions, the different models can together be seen to lead to a clearer pic-
ture of the potential and correct interpretation of epistemic landscape modelling – and 
more generally, to a better understanding of the possible mechanisms through which cogni-
tive diversity influences the conduct of scientific research” (2016, 20). 
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Hence, in addition to the potential robust results that the exploration of the 
cluster of agent-based models may yield, we need a better way for deciding 
among the infinite possibilities of parameter space exploration, and in particu-
lar for deciding among possible rules of agent behavior. In this sense, rules that 
are more natural, more realistic, more credible, or portray a higher degree of 
empirical adequacy13 seem more promising for the exploration of the parameter 
space than rules which seem utterly unrealistic, incredible, or just empirically 
inadequate. For instance, we consider that it is more natural to implement fol-
lowers in ELM according to the G-Follow Rule than according to the original 
Follow Rule because we do not expect scientists to go back to research ap-
proaches that they have already tried unsuccessfully.  

Of course, whether ELM is a fruitful model for capturing the mechanisms 
guiding the division of cognitive labor in science or not is an open empirical 
question. If it is, then further exploration of the cluster of models should generate 
some robust results, while the set of parameters to be explored remains credible. 

7.  Conclusion 

Weisberg and Muldoon have made an important contribution to the study of the 
division of cognitive labor in social epistemology and philosophy of science, 
encouraging philosophers to explore epistemic problems through agent-based 
models. Our contribution to this effort in the paper is twofold. First, we show 
that the computational mechanism of ELM is correct insofar as we are able to 
replicate the results in FreePascal. Second, we show that small changes in the 
rules that determine the behavior of individual agents can lead to important 
changes in simulation results. Accordingly, we claim that ELM results are in 
general robust with respect to the computing mechanism, but not necessarily 
across parameter space. In other words, we find that with some small changes 
in the parameters, some of the results in ELM do not hold anymore.  

A fruitful way to move forward is to understand ELM, and similar ABMs, 
as a class of simulations or cluster of models, requiring further exploration of 
the parameter space, which could lead potentially to finding robust results, and 
thus contribute to understanding the underlying mechanisms guiding the distri-

                                                             
13  We follow Longino (1995) in our preference of the term ‘adequacy’ over the more common-

ly used term ‘accuracy’ to describe the relation of agreement between the model and its 
target system, in this case, the scientific community. An ABM would have a high degree of 
empirical adequacy if, for example, it is properly parametrized and empirically validated. 
This is an important challenge for computer simulation models in social epistemology (Mar-
tini and Fernández Pinto 2017), given the empirical data available for such purpose. Howev-
er, even if the models are theoretical and highly idealized, we still consider that the relevant 
parameters should be realistic if the models aim at capturing core mechanisms of the target 
system.  
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bution of cognitive labor in science. In addition to obtaining robust results, the 
exploration of the parameter space in ELM also requires the search for more 
credible or realistic assumptions, so that the model, even if highly idealized, is 
appropriately set to capture the mechanism guiding the distribution of cognitive 
labor in real-world science. 
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