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bereits bei einer anderen Hochschule als Dissertation eingereicht: Ja / Nein.

Jena, den 20. Dezember 2019

[Sheeba Samuel]



To

Samuel and Leelamma, my parents for making me who I am today

John, my brother for being my role model

Thomas, my husband for everything



Acknowledgements

I would like to express my deepest gratitude to my advisor Prof. Dr. Birgitta König-

Ries. She created an environment with all the guidance and support to accomplish

this work. She not only believed in me but also allowed me to approach things in

my own way. I would like to thank her for her encouraging words and giving un-

precedented opportunities to expand my research horizon. I would like to thank my
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Abstract

Understandability and reproducibility of scientific results are vital in every field of

science. The scientific community is interested in the results of experiments which

are understandable, reproducible and reusable. Recently, there is a rapidly grow-

ing awareness in different scientific disciplines on the importance of reproducibility.

Several reproducibility measures are being taken to make the data used in the publi-

cations findable and accessible. However, these measures are usually taken when the

papers are published online. But, there are many challenges faced by scientists from

the beginning of an experiment to the end in particular for data management. The

explosive growth of heterogeneous research data and understanding how this data

has been derived is one of the research problems faced in this context. Provenance,

which describes the origin of data, plays a key role to tackle this problem by help-

ing scientists to understand how the results are derived. Interlinking the data, the

steps and the results from the computational and non-computational processes of a

scientific experiment is important for the reproducibility. The lack of tools which

address this requirement fully is the driving force behind this research work.

Working towards this goal, we introduce the notion of “end-to-end provenance man-

agement” of scientific experiments to help scientists understand and reproduce the

experimental results. The main contributions of this thesis are: (1) We propose a

provenance model “REPRODUCE-ME” to describe the scientific experiments using

semantic web technologies by extending existing standards. (2) We study compu-

tational reproducibility and important aspects required to achieve it. (3) Taking

into account the REPRODUCE-ME provenance model and the study on compu-

tational reproducibility, we introduce our tool, ProvBook, which is designed and

developed to demonstrate computational reproducibility. It provides features to

capture and store provenance of Jupyter notebooks and helps scientists to compare

and track their results of different executions. (4) We provide a framework, CAESAR

(CollAborative Environment for Scientific Analysis with Reproducibility) for the

end-to-end provenance management. This collaborative framework allows scientists

to capture, manage, query and visualize the complete path of a scientific experiment

consisting of computational and non-computational steps in an interoperable way.

We apply our contributions to a set of scientific experiments in microscopy research

projects.
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Zusammenfassung

Verständlichkeit und Reproduzierbarkeit der wissenschaftlichen Ergebnisse sind in

jedem Bereich der Wissenschaft unerlässlich. Die wissenschaftliche Gemeinschaft

ist vorrangig an den Ergebnissen von Experimenten interessiert, die verständlich,

reproduzierbar und wiederverwendbar sind. Aktuell ist eine deutliche Steigerung

des Bewusstseins für die Bedeutung der Reproduzierbarkeit in verschiedenen

wissenschaftlichen Disziplinen zu beobachten. Es werden verschiedene Maßnah-

men zur Reproduzierbarkeit ergriffen, um die in den Publikationen verwendeten

Daten zum Zeitpunkt ihrer Online-Veröffentlichung auffindbar und zugänglich zu

machen. Dabei stehen Forschende jedoch im gesamten Verlauf des Experiments

vor vielen Herausforderungen, insbesondere bezüglich des Datenmanagements.

Der Umgang mit dem explosionsartigen Wachstum heterogener Forschungs-

daten und die Gewährleistung der Nachvollziehbarkeit der Datenherkunft sind

Forschungsthemen, mit denen Wissenschaftler in diesem Kontext konfrontiert sind.

Provenance beschreibt den Ursprung der Daten. Sie spielt eine Schlüsselrolle bei der

Bewältigung dieser Problems, da sie den Beteiligten hilft zu verstehen, wie Ergeb-

nisse abgeleitet werden. Die Notwendigkeit, die Daten, die Verarbeitungsschritte

und die Ergebnisse der computergestützen sowie der nicht-computergestützten

Prozesse eines wissenschaftlichen Experiments miteinander zu verknüpfen, ist

für die Reproduzierbarkeit wichtig. Der Mangel an Werkzeugen, die bei der

vollständigen Erfüllung dieser Anforderung unterstützen, ist die Motivation zu

dieser Forschungsarbeit.

Um dieses Ziel zu erreichen, führen wir den Begriff des “End-to-End Provenance

Managements” wissenschaftlicher Experimente ein, der die Tätigkeit beschreibt,

die sicherstellt, dass Forschende dass experimentelle Ergebnisse veständlich und

reproduzierbar sind. Die wichtigsten Beiträge dieser Arbeit sind: (1) Wir schlagen

das Provenance-Modell “REPRODUCE-ME” vor, um wissenschaftliche Experi-

mente mithilfe von Semantic Web-Technologien unter Einbeziehung bestehender

Standards zu beschreiben. (2) Wir untersuchen die Reproduzierbarkeit von

Berechnungen und wichtiger Aspekte, die dazu erforderlich sind. (3) Wir stellen das

Werkzeug ProvBook vor, das zum Nachweis der Eignung des REPRODUCE-ME

Provenance-Modells und zur Bestätigung der Resultate der Studie zur rechnerischen

Reproduzierbarkeit entwickelt wurde. ProvBook erfasst und speichert die Herkunft

der Ausführung von Jupyter-Notebooks und hilft Wissenschaftler/innen, ihre
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Ergebnisse verschiedener Ausführungen zu vergleichen und zu nachzuvollziehen.

(4) Wir stellen CAESAR (CollAborative Environment for Scientific Analysis with

Reproducibility), ein kollaboratives Framework für das end-to-end Provenance

Management, vor. CAESAR ermöglicht, es Wissenschaftler/innen, den gesamten

Weg eines wissenschaftlichen Experiments, das aus rechnerischen und nicht rech-

nerischen Schritten besteht, interoperabel zu erfassen, zu verwalten, abzufragen

und zu visualisieren. Wir wenden unsere Beiträge auf eine Reihe wissenschaftlicher

Experimente in Forschungsprojekten der Mikroskopie an.
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Chapter 1

Introduction

With the advent of things like sensors, satellites, microscopes that can produce more

and more data and things like computers that can process more and more data, the

way that science is being done has dramatically changed. This change has happened

in the real as well as in the virtual world. As a result, it has become more complex

to keep track of how the experimental results are derived. This is important because

scientific experiments play an increasingly important role in coming up with the new

findings and in extending the knowledge of the world. The increasing magnitude

of data produced in the experiments and understanding how the results are derived

from them brings several old and new challenges to the light. Reproducibility is one

such challenge which has always been discussed in science even in the time of Galileo

(1564-1642) [Atmanspacher and Maasen, 2016]. And it is still under discussion with

more concerns towards the “Reproducibility Crisis” [Kaiser, 2015,Peng, 2015,Begley

and Ioannidis, 2015,Baker, 2016,Hutson, 2018] in this 21st century which is driven

by computational science.

A survey conducted by Nature in 2016 among 1576 researchers brought greater in-

sight into the reproducibility crisis [Baker, 2016]. According to the survey, 70% of

researchers have tried and failed to reproduce other scientists’ experiments. The

main reasons for the irreproducible research as cited in Baker’s paper involve selec-

tive reporting, the pressure to publish, poor analysis, unavailability of methods and

code, etc. They also mention that this crisis is different across domains. As per the

survey, more scientists in biology and pharmaceutical industry agreed that there is a

significant reproducibility crisis than the scientists from computer science or physics.

Reproducibility is one of the criteria for scientists in trusting the published results.

Though it is a very complex concept1, it does not have a common global standard

definition among all fields of science. This results in having different research works

and measures to enable reproducibility across disciplines.

Recently, several reproducibility measures are taken by different organizations to

tackle this problem along with the new research works in this area. The National

1The exact definition used in this thesis can be found in Chapter 4.
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Institute of Health (NIH) announced in 2016 the “Rigor and Reproducibility” guide-

lines2 to support reproducibility in biomedical research. Journals like Nature make

it mandatory to have the data used for experiments mentioned in the publications

to be findable and accessible. In 2014, Nature introduced a condition for publica-

tion requiring the authors to “make materials, data, code, and associated protocols

promptly available to readers without undue qualifications”3. The FAIR principles

have been introduced in this regard to enable findability, accessibility, interoperabil-

ity, and reuse of data [Wilkinson et al., 2016]. However, these measures are taken

at the top level when scientific papers are published online. Figure 1.1 shows the

different levels in a scientific research study. We consider the research lifecycle of

scientists from the data acquisition to the publication of results as a pyramid. The

bottom level consists of data acquisition where the data is collected from different

sources. The terms bottom, ground or grass root level will be used interchangeably

throughout this thesis. The sources can range from manual surveys and interviews

to image acquisition from a microscope. The data collection phase is followed by

data processing. The processed data is then curated and later analyzed for results.

The final results are eventually published to the scientific community. As we go up

the levels in the pyramid, the size of the data decreases. At the top level, publica-

tions share only a subset of the data which is collected at the bottom level.

It is not only important to take reproducibility measures at the top level but also

at grass root level during data creation by the scientists either working individually

or collaboratively. One of the main challenges faced at this level is the management

and exchange of experiments along with all the data required for understandability,

reproducibility, and reuse.

In order to reproduce own results or other scientist’s results, it is essential to know

the methods and steps taken to generate the output. A key factor to support sci-

entific reproducibility is the “provenance” information which tells about the origin

or history of the data. Recording and analysis of provenance data of a scientific ex-

periment play a vital role for scientists to repeat or reproduce [Taylor and Kuyatt,

1994] any experiment. Preservation of data and research methods is an important

requirement to track the provenance of results. At the same time, it is also required

to represent and express this information in an interoperable way so that scientists

can understand the data and results.

In this thesis, we aim to address how to support understandability, interoperability,

and reproducibility of experimental results. In order to do so, we bring together

the concepts of provenance [Herschel et al., 2017] and semantics [Berners-Lee et al.,

2001]. We examine the role of semantic web technologies for the end-to-end prove-

2https://www.nih.gov/research-training/rigor-reproducibility/principles-

guidelines-reporting-preclinical-research, Accessed on March 17, 2019.
3https://www.nature.com/authors/policies/availability.html, Accessed on March 17,

2019.

https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
https://www.nature.com/authors/policies/availability.html
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nance management of experiments to track the complete path towards their results.

The ultimate goal of this research is to provide a well-structured framework for the

preservation and accessibility of the experimental data and its provenance starting

from the bottom level of a research study. In order to achieve this aim, we focus on

the development of computational tools to help scientists capture, represent, man-

age and visualize the complete path taken for their experiments.

This chapter presents the motivation behind our research work in Section 1.1. We

provide basic terminology of the concepts that we use throughout this thesis in Sec-

tion 1.2. Section 1.3 presents an overview of our contributions. The structure of

the thesis is outlined in Section 1.4 which is followed by the list of publications that

have been published as parts of the works described in this thesis (Section 1.5).

1.1 Motivation

The concrete motivation for our work arises from the requirement to develop a

platform for the management and modeling of experimental data for the Collabora-

tive Research Center (CRC) ReceptorLight4. Scientists from two universities5, two

university hospitals6 and a non-university research institute7 work together to un-

derstand the function of membrane receptors and develop high-end light microscopy

techniques. Membrane receptors, an important factor in all biological processes,

4http://www.receptorlight.uni-jena.de/
5https://www.uni-jena.de/, https://www.uni-wuerzburg.de/
6http://www.uniklinikum-jena.de/, http://www.ukw.de/
7http://www.ipht-jena.de/

http://www.receptorlight.uni-jena.de/
https://www.uni-jena.de/
https://www.uni-wuerzburg.de/
http://www.uniklinikum-jena.de/
http://www.ukw.de/
http://www.ipht-jena.de/
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are complex protein molecules located in the cell membranes waiting for chemical

signals. When these chemical signals are received by the receptor, they change their

form and properties and communicate the signals to other parts of the cell.

Interviews with the scientists in the CRC as well as a workshop conducted to fos-

ter reproducible science8 helped us to understand the different scientific practices

followed in their experiments and their requirements of reproducibility and data

management. The detailed insights from the interviews are outlined in the Sec-

tion 7.2 and the excerpts from these interviews are presented in Appendix A.

There is a difference in the way of conducting experiments in different fields of

science. In Vitro experiments are performed in a controlled environment outside

of a living organism9. Many experiments in biology and medicine are classified in

the category of in vitro studies. The in silico experiments use computational mod-

els and simulations to conduct research. In all these experiments, the components

required to achieve reproducibility are data, procedures, execution environment con-

ditions and the agents responsible for the experiment. In most cases, samples used

in the in vitro experiments cannot be physically preserved for long but they can

be digitally conserved. Conservation of an object is the process of describing and

recording information related to the object so that it can be reproduced later [Pérez

and Pérez-Hernández, 2015].

From the interviews, we understood that most of the scientists in fields like biology

and medicine still use the conventional way of recording their data in hand-written

lab notebooks. The problem in this way of storage arises when a researcher leaves

the project and a new researcher joins the project. The new researcher has to get

information regarding the project, previously conducted tests, analysis and results

to understand the previous work. The difficulty in understanding the notes, fol-

lowing different approaches and standards, understanding undefined abbreviations

are the few challenges faced by the new researcher. The same situation also occurs

when two or more groups are working collaboratively on the same project in differ-

ent locations. There could be a chance of conflict in experimental data and results.

Hence, there should be a shared understanding of experimental data between the

scientists so that they can reuse and analyze the results. So, it is important that the

data and the results are shared and reused in an accepted way among the scientists

working collaboratively in the same or different research projects.

Experiments performed by scientists can also result in different anomalies and incon-

sistencies due to several reasons. They can be due to some configuration of a device,

property of a material or error in the procedure. In addition to device errors, it

can be a human error. To detect these errors, experimental data, processes, experi-

8http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/
9https://mpkb.org/home/patients/assessing_literature/in_vitro_studies,Accessed

on March 17, 2019.

http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/
https://mpkb.org/home/patients/assessing_literature/in_vitro_studies
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ment environment and details of responsible persons have to be properly structured

and documented. The scientists would like to track the errors and expose only

those datasets which resulted in the error by querying from the large volume of

data. Examples of such queries are “Which experiment used the material which

was referenced in the X journal but was not verified?” or “Which dataset from the

Experiment X resulted in the drop in the graph during the time period x to y?”.

The scientists would like to get answers to these questions for later analysis and

reproducibility of their experiments. Currently, scientists could not perform this

kind of analysis since the structure of the experiment is not modeled and expressed

in a uniform way.

1.2 Basic Terminology

In this section, we will introduce the basic terminology used in this research work.

This is necessary since some key terms used throughout the thesis are defined dif-

ferently in different domains.

1.2.1 Reproducibility and Provenance

Repeatability and Reproducibility are distinct terms although they are often used

interchangeably. The paper [Freire and Chirigati, 2018] provides a formal definition

of a reproducible computational experiment which is defined as follows:

Definition 1.2.1. “An experiment composed by a sequence of steps S that has been

developed at time T, on environment (hardware and operating system) E, and on

data D is reproducible if it can be executed with a sequence of steps S ′ (different or

the same as S) at time T ′ ≥ T , on environment E ′ (different or the same as E),

and on data D′ (different or the same as D) with consistent results.”

According to [Taylor and Kuyatt, 1994], repeatability, in the context of measure-

ments, is getting similar or close-by results whenever the measurement is carried out

under the same conditions which include the same procedure, observer, instrument,

and location. Reproducibility, on the other hand, is more stringent. It refers to

the capability of getting similar results whenever the measurement is carried out

by an independent observer using different conditions of measurement including the

method, location, or instrument.

Missier [Missier, 2016] describes that provenance plays an important part in achiev-

ing reproducibility. According to the Oxford Dictionary, provenance is defined as

“the source or origin of an object; its history or pedigree”. Provenance is the de-

scription of the process or a sequence of steps that together with the data and the

parameters led to the creation of a data product [Herschel et al., 2017]. There are

two forms of provenance in computational science [Freire et al., 2008]:
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• Prospective Provenance: captures the specification of a computational task

such as a script or a workflow and the steps that must be followed to generate

a data product.

• Retrospective Provenance: captures the execution of a computational task

including the steps and the environment used to derive a data product. It is

a detailed log of execution of a computational task. It captures what actually

happened during the execution of a computational task.

According to [Gupta, 2009], there are two types of provenance: data provenance and

process provenance. Data provenance is defined as a record trail of the origin of a

piece of data along with an explanation of how and why it got to the current state.

While, in process provenance, which is especially used in business applications, an

instrumented process capturing software tracks the life cycle of data generation and

transformation.

Provenance helps to understand how a result is derived by examining the sequence

of steps or the path taken by a scientist. The need for systematically capturing,

modeling and managing provenance is prevalent across domains and applications of

science. The different notions of provenance and the provenance management tools

are discussed in detail in Chapter 3.

1.2.2 Semantic Web

The term “Semantic Web” coined by Tim Berners-Lee refers to the vision of the

Web of Linked Data [Berners-Lee et al., 2001]. The Semantic Web is an extension

of the World Wide Web to support the Web of data in addition to the Web of doc-

uments10. It helps people to describe the data in common formats to integrate data

coming from different data stores using vocabularies. The Semantic Web technolo-

gies allow to share and reuse not only the data but also the relationships among

the data across various applications. The Linked Data [Bizer et al., 2009], which is

the collection of the interrelated datasets on the Web, is published and linked using

Resource Description Framework (RDF) [Cyganiak et al., 2014]. RDF is used as a

general method used in knowledge management applications to model or describe

the resources. These resources are described in the form of Subject-Predicate-Object,

which are also called triples. The subject describes the resource and the predicate

describes the relationship between the subject and the object. A collection of RDF

statements results in a labeled directed graph. RDF triples are stored in triplestores

which are queried using SPARQL [Prud’hommeaux and Seaborne, 2008]. SPARQL

is a query language to access and retrieve the RDF data. Apache Jena11, RDF4J12,

10https://www.w3.org/standards/semanticweb/
11https://jena.apache.org/
12http://rdf4j.org/

https://www.w3.org/standards/semanticweb/
https://jena.apache.org/
http://rdf4j.org/
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and OpenLink Virtuoso13 are some of the frameworks for building Semantic Web

applications. Describing the data in RDF makes it machine-readable so that the ma-

chines can process this data. In Linked Data, Uniform Resource Identifiers (URI)s

are used to identify any object or concept [Berners-Lee et al., 2001]. Using HTTP

URIs, people can look for useful information about the object.

An ontology is a common vocabulary which is used to define the concept and rela-

tionships for representing a domain [Noy et al., 2001,Studer et al., 1998]. Ontologies

are used by researchers to share domain knowledge. These are developed to share

a common understanding of the domain and enable the reuse of the domain knowl-

edge. They are also used to organize knowledge helping the people and machines to

communicate without ambiguity. The ontologies can be represented by using RDF.

The basic format of ontology representation is RDF/XML with other alternatives

provided by N3, Turtle, or JSON-LD [Lanthaler and Gütl, 2012]. The collection

of technologies such as RDF, Web Ontology Language (OWL) [McGuinness et al.,

2004], and SPARQL form the foundation of the Semantic Web.

1.3 Contributions

Reproducibility is not a one-button solution. The interaction of human beings in re-

producibility is inevitable. Keeping this in mind, we envision our main contributions

as follows:

1. The REPRODUCE-ME Data Model and Ontology

We conduct interviews and meetings with scientists from different scientific

disciplines to understand their experimental workflows. Based on the discus-

sions, we study the general components of the scientific experiments required to

ensure reproducibility. We study the existing provenance models and based on

that, we develop the REPRODUCE-ME Data Model to represent the complete

path of a scientific experiment. To share a common understanding of the scien-

tific experiments among people and machines, we encode the REPRODUCE-

ME Data Model in OWL2 Web Ontology Language. The REPRODUCE-ME

ontology is built on top of the existing well structured semantic web standards.

This contribution is presented in Chapter 4.

2. Support of computational reproducibility

We study different computational tools and how each tool supports provenance

management. The Computational notebook is one such tool which supports

computational reproducibility. However, the provenance support in this tool

is limited. Therefore, we develop ProvBook, an extension built on top of it to

capture the experimental results along with its provenance. The provenance

13https://virtuoso.openlinksw.com/

https://virtuoso.openlinksw.com/
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of several executions of the notebooks is captured over the course of time

and stored in them. Sharing the notebooks along with their provenance help

to ensure computational reproducibility. This contribution is presented in

Chapter 5.

3. Provenance difference of results

ProvBook also helps to compare and visualize the provenance difference of

results over several executions of a computational notebook. The extension

can be used to view the difference in input and output generated in the same

or different environment by same or different experimenters. This contribution

is presented in Chapter 5.

4. Semantic representation of computational notebooks and scripts

We extend the REPRODUCE-ME ontology to describe the provenance of

computational notebooks and scripts. The computational notebooks along

with its provenance information can be downloaded as RDF using ProvBook.

This helps the user to share a notebook along with its provenance in RDF and

also convert it back to a notebook using ProvBook. The REPRODUCE-ME

ontology also allows to semantically describe the computational experiments

provided by scripts along with its provenance information. The provenance

information of the computational notebooks and scripts in RDF can be used

in combination with the experiments that used them and help to get a track

of the complete path of the scientific experiments.

5. End-to-end provenance management of scientific experiments

We design and develop a framework, CAESAR (CollAborative Environment

for Scientific Analysis with Reproducibility) which captures, stores and

queries the experimental data represented using the provenance-based

semantic model. One part of the system tries to automatically capture

the experimental data while the other part requires the user to manually

record this information. The storage of the data also provides the ability

to eventually query it. The change of the experimental metadata is also

preserved to track its evolution. This contribution is presented in Chapter 6.

6. Support of a collaborative environment

We also support collaboration among teams and institutes in conducting repro-

ducible research, analysis, and sharing of results with the support of CAESAR

and JupyterHub. The framework provides user interface widgets and compo-

nents for collaborative authoring. This contribution is presented in Chapter 6.

7. Visualization of the complete path of a scientific experiment

We provide two visualization approaches as part of the framework so that

scientists could get an overall view of the experiment and also backtrack the
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Figure 1.2: Our contributions which can be used in the different levels of a research

study

steps in obtaining the results. The Dashboard and ProvTrack are the two mod-

ules in CAESAR which provides a complete overview and path of a scientific

experiment respectively. This contribution is presented in Chapter 6.

Figure 1.2 shows how our contributions fit in the different levels of the research study.

CAESAR can be used from the bottom level for the data management starting from

the data creation to the publication level. It provides end-to-end management of

experimental data by capturing, representing, storing, querying, comparing and

visualizing provenance information. The REPRODUCE-ME ontology, Metadata

editor, ProvBook, ProvTrack, and Dashboard are the main modules in CAESAR

which help in supporting understandability, reproducibility, and reuse of scientific

experiments.

1.4 Thesis Structure

This thesis is structured into the following chapters:

This chapter 1 presents the motivation for the overall research problem presented

in this thesis. We briefly present our contributions to tackle the specific problem

described in the introduction.

Chapter 2 presents the use case scenario and the research problems in a more for-

mal way. Based on these challenges, we define the main hypothesis of our work.

We define our goals to address the research problems. We also describe the research

methodology that is followed in this thesis.

Chapter 3 presents the current state of the art in the context of reproducibility and

the tools that support it. This is followed by a discussion on the gaps that exist in

the current state.
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Chapter 4 introduces the first contribution of our research work. It presents the

REPRODUCE-ME Data Model and the ontology that is used to describe the scien-

tific experiments and their provenance. We describe in detail the components which

are important for the understandability and reproducibility of scientific experiments

and how they are added in the ontology. We present the methodology that we fol-

lowed in the development of the REPRODUCE-ME ontology.

Chapter 5 presents the results to support computational reproducibility. We present

ProvBook tool which captures, visualizes and compares the different executions of

computational notebooks. This is followed by the semantic representation of com-

putational notebooks and scripts.

Chapter 6 presents CAESAR, a framework which is developed to capture, manage,

query and visualize provenance information of scientific experiments. It presents the

underlying architecture of CAESAR and discusses in detail how each phase of the

provenance lifecycle is implemented. It also describes how CAESAR integrates the

results from Chapter 4 and 5 to provide the complete path of a scientific experiment.

Chapter 7 presents how the evaluation was conducted for each component of our

work and their results primarily focusing on the REPRODUCE-ME provenance

model, ProvBook and CAESAR.

Chapter 8 concludes the thesis providing future lines of work.

1.5 Publications

Parts of the work described in this thesis have been published in peer-reviewed

conferences and journals already. They are as follows:

• Samuel, S., Taubert, F., Walther, D., König-Ries, B., & Bücker, H. M. (2017).

Towards reproducibility of microscopy experiments. D-Lib Magazine, 23(1/2).

(Corresponds to Chapter 6)

• Samuel, S. (2017). Integrative data management for reproducibility of mi-

croscopy experiments. In Proceedings of the 14th European Semantic Web

Conference, Part II (pp. 246-255). Springer, Cham. (Corresponds to Chap-

ter 4, and 6)

• Samuel, S., & König-Ries, B. (2017). REPRODUCE-ME: Ontology-Based

Data Access for Reproducibility of Microscopy Experiments. The Semantic

Web: ESWC 2017 Satellite Events (pp. 17-20). Springer, Cham. (Corre-

sponds to Chapter 4, 5, and 6)

• Samuel, S., & König-Ries, B. (2018). Combining P-Plan and the

REPRODUCE-ME ontology to achieve semantic enrichment of scientific
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experiments using interactive notebooks. The Semantic Web: ESWC 2018

Satellite Events (pp. 126-130). Springer, Cham. (Corresponds to Chapter 5)

• Samuel, S., & König-Ries, B. (2018). ProvBook: Provenance-based semantic

enrichment of interactive notebooks for reproducibility. Proceedings of the

ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks

co-located with 17th International Semantic Web Conference (ISWC) 2018

(Corresponds to Chapter 5)

• Samuel, S., Groeneveld, K., Taubert, F., Walther, D., Kache, T., Langen-

stck, T., Knig-Ries, B., Bücker, H.M. & Biskup, C. (2018), The Story of an

Experiment: A Provenance-based Semantic Approach towards Research Re-

producibility. In Proceedings of the 11th International Conference Semantic

Web Applications and Tools for Life Sciences, SWAT4LS 2018 (Corresponds

to Chapter 4, 5, 6, and 7)



Chapter 2

Problem Statement

The main goal of this research study is to support understandability, reproducibil-

ity, and reuse of scientific experiments by supporting the researchers to represent,

manage and visualize the complete path taken by scientists in performing the ex-

periment. In order to achieve this goal, we focus our research on three key areas:

The first area of research is the Preservation of scientific experimental data

(RA1). Experimental data preservation relates to the documentation of the meta-

data of an experiment and the data along with its steps and execution environment.

Reproducibility of the experimental results is challenging if the path taken to obtain

the result is not captured and represented. The various research practices followed

in science by different researchers need to be analyzed to understand how this fun-

damental step of experiment preservation can ensure reproducibility.

The second area of research is the Support of computational reproducibility

(RA2). Computational tools are widely used by the researchers in their daily work.

A considerable amount of data is generated in different executions of computational

experiments. The current problem is the lack of tracking of computational steps

taken in an experiment as well as its computational execution environment.

The third area of research is how the first and second areas of research can be

used to capture, represent, manage and visualize the complete path taken

by a scientist in performing an experiment (RA3). The interlinking of the non-

computational steps and data with the computational steps and data is a powerful

method to achieve reproducibility of experiments which is missing in the current

scientific practices and tools that aid reproducibility (see Chapter 3 for a detailed

discussion).

In the context of these three research areas, we identify open research problems in

Section 2.2 based on the use case scenario presented in Section 2.1. To address the

research problems, we define the main hypothesis of our work in Section 2.3. We

also discuss our goals and the requirements of the proposed solution in Section 2.4

and 2.5 respectively. The research methodology adopted for this study is presented

in Section 2.6.

29
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Figure 2.1: Use case scenario - The experiment lifecycle of Ana

2.1 Use Case Scenario

Here we present a use case scenario showing the experimental workflow of the sci-

entists we interviewed (see Section 1.1). Ana is a biologist who has a keen interest

in doing research in biomedical science. Her research is to understand the function

of the membrane receptors and she uses confocal Patch Clamp Fluorometry (cPCF)

technique [Biskup et al., 2007] in her daily work. Figure 2.1 shows the experiment

lifecycle performed by Ana. Before performing her experiment, she prepares all

the experiment materials required in her study. She performs several steps like the

preparation of samples and solutions, transfection of cells, etc. In order to do so,

she refers to different publications and standard operating procedures at each step

of her experiment. Several devices are used during the experiment like a microscope

to capture images of the receptor cell, an electrophysiological device to generate cur-

rent, etc. Each device has its own specifications. In addition to that, she configures

the instruments in such a way that she could capture the image with full clarity

and resolution. She needs to document the additional settings of devices configured

by her besides their specifications. The execution environment of the experiment

like the room temperature, humidity is also important in her case. She wants to

record all the things that she has performed during the experiment including the

execution environment. While she waits for the preparation step to be finished,

she documents all the steps she has performed and will be going to perform in her

study. Currently, she writes the important parameters used in her experiment in

her laboratory notebook. Since she is part of many bigger research collaborative



31 Chapter 2. Problem Statement

projects, she needs to share her experiment results in a way that other scientists can

understand and reproduce.

The next step of her experiment is the analysis of the images captured by her using

computational tools. The analysis is performed using a proprietary software. She

writes some scripts for the further analysis of her results. She repeats the execution

of scripts by experimenting with different parameters. During this experimentation,

she may get negative results. However, she wants to compare these different trials

of her experiment and see what resulted in the negative result. This could be useful

for other scientists in her team. She then stores the raw data and the analyzed data

in her external hard drive.

Before presenting her results to the other team in her collaborative project, she wants

to get it reviewed by her supervisor. In order to understand, how the results were

achieved, her supervisor asks for the experimental details of her study. She shows

her supervisor the laboratory notebook. But she is not able to show the complete

path taken by her in the experiment at one place. She needs to collect all the data

and the methods she used in her experiment. Currently, her data is scattered over

different devices. Some of the experimental metadata is in her laboratory notebook.

The settings of the devices are stored as a proprietary file format in the software of

the microscope. Some of the analyses are done using another proprietary software.

The captured images are stored in her external hard disk. The scripts she used are

saved in her institute computer. The trials where she got negative results are lost

because she did not store all the changes that she made during the different trials

of script execution with different parameters. She finds it difficult to show the link

between the input data, the steps she used and the results as the data is distributed

in different places and some of the data is lost while performing several trials.

Ana later presents her results in the team meeting. After the meeting, Bob, her team

member, talks to Ana about her results. He is interested in her data and wants to

reproduce one section of her experiment so that he could use part of her results in

his own experiment. Bob goes to Ana and asks for the experiment details. He wants

to understand the complete path taken by her to understand the experiment and

get an overall view of her experiment. He also wants to change some parameters of

her experiment and see the differences that occurred in the new result. In order to

share the experimental details with Bob, she wants to direct him to one place where

he could track the experiment results instead of giving him several links to various

devices.

In order to tackle this problem, she wants to use an efficient experimental data

management software where she could save her experimental metadata along with

the other data, scripts, and results. She wants to find the connection between all

the steps and the data she used and generated in her experiment in this data man-

agement platform. The platform should also be able to extract the metadata from



32

End-to-End 
Experiment Data 

Management

Sharing

Metadata

Results

Analysis

Version-Control

Complete path

Track Results

Search

One-Place to ViewUnderstandability

Scripts

Collaboration

Figure 2.2: Requirements of an experimental data management platform

the images which are usually stored in different proprietary formats. This could ease

her work in the documentation. She also wants that the experimental data could be

written in a common format so that sharing of results becomes easier among other

scientists. Another requirement is that she could work in a collaborative environ-

ment where her supervisor and other team members could make suggestions and

proposals on her experiment results. Based on these thoughts and requirements of

how she could improve her daily research work by using an experimental data man-

agement platform, she presents what she wants in Figure 2.2. These requirements

of an experimental data management platform are also a reflection of the interviews

conducted among CRC scientists (see Section 1.1). Ana wants to have this platform

as a one-place to visualize the complete path of her experiment. This could help

her to show how the results were achieved when asked by the other scientists of her

collaborative project in the team meetings. Eventually, this would also help her in

writing a publication for sharing her results to the scientific community.

2.2 Research Problems

The reproducibility crisis [Baker, 2016] shows that scientists face problem in repro-

ducing others’ results. Section 2.1 presented an example scenario which showcased

the challenges faced by scientists in various aspects of understandability, repro-

ducibility, and reuse. In their daily research work, they use and generate a lot of

data through several manual and automatic steps. Several entities like instruments,

execution environmental attributes, procedures, protocols, and settings are also in-
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volved in these experiments. In addition to that, there are many people involved

who take several roles and responsibilities throughout these processes. There are

steps that use computational resources and others that do not. It is possible that

the non-computational steps have an effect on the results generated by the compu-

tational steps. Therefore, we see that there are several entities, people, activities,

and steps that are linked to an experiment. However, what we often see in the

publications are only the end results and some of the important methods followed

to generate them.

So to understand and reproduce others’ results, the question to ask here is whether

this data is sufficient or do scientists need additional information. If more informa-

tion is required to reproduce others’ results, it is required to know what exactly are

those additional components.

The research objectives of this thesis are to support understandability, reproducibil-

ity, and reuse of scientific experiments. To achieve these objectives, the important

thing is to understand how the results are derived. In order to do so, it is neces-

sary to track end-to-end provenance. Here the research problem is how to track the

provenance of results because there are several challenges in doing so in cases like

that mentioned in Section 2.1. We list here some of the important ones:

• Data is scattered over multiple places

• The lack of link between steps, data, people and results

• Lack of common format for sharing the results along with its provenance

• Difficulty in sharing the end-to-end provenance of results in a collaborative

environment

• Loss of the data and results from different trials performed for an experiment

To address these challenges, we require a standard data model that provides a

complete path taken for a scientific experiment including the computational and

non-computational parts of an experiment. The data model should be able to rep-

resent the link between the results, the execution environment and the processes

that generated the results of computational as well as non-computational steps of

an experiment. To represent the complete path of an experiment, we need to track

the provenance of the different executions in an experimental environment. We also

require an approach to compare the results from the original experimenter with

the results generated in a different execution environment of a computational ex-

periment. The need for a multi-user collaborative framework which provides an

integrated approach to capture, represent and visualize the provenance information

of a scientific experiment along with the non-computational and computational steps

should be addressed.
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To address these requirements, we first need to know whether the existing prove-

nance models are adequate for capturing provenance of a complete path of a scien-

tific experiment. If existing, how can the existing provenance models be extended to

capture provenance of complete execution of a scientific experiment? Based on our

understanding of the important concepts of Semantic Web (see Section 1.2) and the

advantages of using them to understand domain knowledge, we ask whether these

technologies help in the understandability and reproducibility of scientific experi-

ments.

2.3 Hypotheses

Based on the problem statement (Section 2.2), we define the main hypothesis of this

thesis as follows:

“It is possible to capture, represent, manage and visualize a complete

path taken by a scientist in an experiment including the computational

and non-computational steps to derive a path towards experimental re-

sults.”

The main hypothesis can be decomposed into several sub-hypothesis.

H1 It is possible to design a data model that represents the complete path of a

scientific experiment.

We divide the hypothesis H1 into three sub-parts.

H1.1 The data model is able to represent the relationship between the data,

the instruments used, the settings of the instruments, the execution en-

vironment, the steps and the results of a non-computational experiment

in an interoperable way.

H1.2 The data model is able to represent the relationship between the results,

the execution environment and the processes that generated the results

of a computational experiment in an interoperable way.

H1.3 The data model is able to represent the relationship between the compu-

tational and non-computational aspects of a scientific experiment.

H2 Semantic technologies are expressive enough to describe the complete path of

a scientific experiment.

H3 An algorithmic process can be developed to track the provenance of the dif-

ferent executions in a computational environment.
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H4 An algorithmic process can be developed to compare the results from the

original experimenter with the results generated in a different execution envi-

ronment of a computational experiment which will help in knowing the inter-

mediate and negative results.

H5 A provenance-based semantic and collaborative framework to capture, repre-

sent and visualize provenance information can provide better sharing, reuse,

and reproducibility of results and experimental data.

2.4 Goals

We define our goals to address the research problems. These goals will help us to

verify the hypothesis and develop the contributions of this work.

Goal1 Create a conceptual model using semantic web technologies to describe a com-

plete path of a scientific experiment.

Goal2 Design and develop a framework to keep track of the provenance of the com-

putational experiment and its executions.

Goal3 Design and create a provenance-based semantic framework to populate this

model, collecting information about the experimental data and results along

with the settings and execution environment and visualize them.

2.5 Requirements

To achieve the goals of our research work (Section 2.4), we identify the functional

and non-functional requirements of the proposed system.

R1 The system should be able to capture provenance of scientific experiments.

Capturing provenance of scientific experiments is one of the basic as well as

the challenging feature of such a system. The systems which provide auto-

matic capture of provenance are ideal for the scientists but are difficult to

develop because they should cover different user environments and also pro-

duce lot of information which is either overwhelming or does not make sense

to the user [Miao and Deshpande, 2018]. User involvement is necessary to

capture meaningful provenance data. There are also certain procedures like

the non-computational steps of an experiment which require the involvement

of users. The system should be able to capture both the computational and

non-computational steps and data of a scientific experiment.

R2 The system should be able to semantically represent provenance of scientific

experiments.
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The system should support to semantically represent scientific experiments

along with their provenance and link them to open databases. The scien-

tific experiments along with the computational and non-computational steps

should be semantically linked to provide a complete path towards their results.

R3 The system should be able to store provenance of scientific experiments.

The systems should be able to store the captured provenance of scientific

experiments with both the computational and non-computational steps and

data of a scientific experiment.

R4 The system should be able to query provenance of scientific experiments.

The systems should provide the facility to query the captured and stored

provenance of scientific experiments with both the computational and non-

computational steps and data of a scientific experiment.

R5 The system should be able to compare provenance of scientific experiments.

Comparing the difference between different executions of a scientific exper-

iment should be supported by the system. This helps the user to see the

evolution of the experimental results.

R6 The system should be able to visualize provenance of scientific experiments.

Visualization of the complete path of a scientific experiment with both the

computational and non-computational steps and data is the key requirement

of the system. This is important because the scientists would not be unaware

of the underlying technologies of how the data is represented.

R7 The system should be able to provide a collaborative environment for sharing

provenance of scientific experiments.

Collaboration among scientists in teams and projects is an important feature

that needs to be supported by the system.

R8 The system should be easy to use.

In addition to the functional requirements, the system should be useful and

user-friendly for scientists.

2.6 Research Methodology

The research methodology followed in this thesis is based on a standard approach

where a systematic way is used to solve a research problem [Goddard and Melville,

2004]. We started with a use case driven approach as mentioned in Section 2.1.

Understanding the current practices in science in performing and preserving experi-

mental data was the first step in this work. Several fruitful meetings and discussions



37 Chapter 2. Problem Statement

with scientists were conducted throughout the development of this thesis. A num-

ber of laboratory visits were also done to understand the experimental workflow of

the scientists from the university. These meetings, interviews and laboratory visits

pointed out the growing need of a framework for the preservation of experimental

data for reproducibility and reuse in research groups in project consortiums. The re-

cent study on the reproducibility crisis and the results from these interviews showed

us the need to address this problem at the bottom level (see Figure 1.1).

A literature survey was conducted to understand the current state of the art on the

approaches that aid reproducibility. The study showed that most of the works in

this area are based on the Scientific Workflow Management Systems [Deelman et al.,

2005] and the conservation of the scientific workflows [Liu et al., 2015]. Based on our

first step in understanding scientific practices, we recognized that there are experi-

mental workflows which do not depend or require such complex scientific workflow

management systems. Many scientific workflows are based on wet lab activities and

further computational analyses are performed using scripts or other software. To

address such kind of workflows, we identified the research problem to link all the

experimental data with its results and steps and derive a path to the results. The

state of the art approaches lack to provide a connection between the results, the

steps that generated them and the execution environment of the experiment in such

scientific workflows (see Chapter 3).

The next step was to define the hypothesis and the goals of this work. We followed

an iterative and layered approach in defining the hypothesis. The work at each layer

went through the process of understanding requirements and use cases, designing

the model, developing a prototype, testing and validating the prototype and finally

evaluating the work. Doctoral students and scientists from several domains like bi-

ology, chemistry, computer science are involved in each phase of the work at each

layer as the end-users. The methodology used at each layer is iterative, where each

layer is based on the feedback received from the domain scientists. The results of

each layer are used as an input for the work at the next layer. Figure 2.3 shows the

research phases of this work. The contributions of this research work are based on

the three goals (Goal1-Goal3).

To design a conceptual model to describe the complete path of a scientific experi-

ment, the existing provenance models were studied (see Chapter 4). The provenance

data model, PROV-O [Lebo et al., 2013] was selected because its conceptual model

closely meets our requirements, and the support to interoperably extend it fur-

ther for specific domain needs. Our conceptual model was developed by extending

PROV-O to describe scientific experiments. To describe the steps and processes in

detail, another provenance model, P-Plan [Garijo and Gil, 2012] was also selected.

We used the methodology to reuse the existing standard models and extend them

for this research work. To represent this conceptual model, we reviewed the use of
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Figure 2.3: The research phases of the thesis

semantic web technologies in describing experiments. In this phase, we designed

the REPRODUCE-ME data model and the ontology to represent them [Samuel and

König-Ries, 2017,Samuel, 2017].

To capture and store the experimental metadata and the data, we reviewed the

existing frameworks. We limited our scope of storing provenance information for

the biological domain. The extensive use of images and instruments in their ex-

perimental workflows helped us to narrow down the search to imaging-based data

management systems. Two systems were used for the review and based on our re-

quirements, OMERO [Allan et al., 2012] was selected for the underlying framework

for the development of our prototype [Samuel et al., 2017]. We designed and devel-

oped the prototype to capture the provenance of scientific experiments. The use of

semantic web technologies in describing scientific experiments is the key part of our

work. The provenance data stored in the relational database were mapped to the

ontology terms using the ontology-based data approach. At this phase, we focused

on semantically describing the non-computational part of an experiment.

The next goal is to address the support of computational reproducibility. The tools

that capture provenance of scripts were reviewed. The data model to represent the

script provenance using ontologies was missing in the current state of the art. To

describe the computational experiments, the REPRODUCE-ME ontology was ex-

tended to include this [Samuel and König-Ries, 2018a]. The extensive use and the

open availability of computational notebooks motivated us to look into this direction.

The computational notebooks provided rich features to run and share the experi-

ments and results. We analyzed the computational notebooks and their structure to
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see what provenance information is missing and how we could extend them further

to support reproducibility. The lack of tools to capture the provenance information

of the executions of the computational notebooks resulted in the development of

ProvBook [Samuel and König-Ries, 2018b]. The feature to compare the differences

between the several executions in a notebook was also added to ProvBook. This

module focused on capturing and describing the provenance of the computational

part of an experiment.

The next step was to integrate the first two modules together to get an integrated

approach to describe the complete path of an experiment. The non-computational

and computational processes of an experiment were described and linked using the

REPRODUCE-ME ontology. To help scientists get the complete picture of the ex-

periment, visualization modules were developed [Samuel et al., 2018]. A dashboard

was developed to give an overview of all the experiments that were conducted for a

project. The ProvTrack module was developed to track the provenance of individ-

ual scientific experiments. To reduce the learning curve of scientists, a visual-based

dashboard and ProvTrack are the entry points to our developed tool. Thanks to

these approaches, the underlying technologies are transparent to the scientists.
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State of the Art

The research on the reproducibility of scientific results is a matter of attention in ev-

ery field of science. The scientific practices followed vary across disciplines, research

institutes, and teams. This results in distinct challenges with regard to supporting

reproducibility. Therefore, it is vital to understand the underlying common research

problems faced by scientists keeping their scientific field in mind.

There are several works which help in supporting reproducibility of results. In this

chapter, we first closely look at how reproducibility is defined and the factors that

are required to support it in the current state of the art. We then review the com-

putational tools that are developed towards this purpose. This is followed by a

discussion on how the experimental data is captured and represented effectively for

the understandability. We survey the current state of the art and analyze how we

could extend the existing works to bridge the gap that exists in this area.

A scientific experiment is represented as a dataflow composed of a sequence of com-

putational steps where the output data of a step is used as input of another or the

following step [Freire and Chirigati, 2018]. The definition of a reproducible com-

putational experiment is given in Chapter 1 (see Definition 1.2.1) [Chirigati and

Freire, 2017]. However, this definition of reproducibility focuses only on computa-

tional experiments. The steps of a scientific experiment can either be computational

or non-computational. Computational steps are the ones which use computing tools

to perform an activity. These tools include computers, software, scripts, etc. We

consider non-computational steps as steps which do not involve computational re-

sources. This includes activities in laboratory like preparation of samples and so-

lutions, setting up the execution environment of the experiment, etc. Reproducing

a computational step is different from a non-computational step. A computational

step can be reproduced if the script or the software along with the data are provided.

However, there are exceptions to that. For example, the computer programs that

work with random numbers present a different challenge in the context of repro-

ducibility. On the other hand, reproducing a non-computational step is dependent

on several factors including the experimenter, the execution environment, the ex-

40
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Figure 3.1: Overview of the literature survey for this research work

periment materials (e.g. animal cells or tissues), the origin of the materials (e.g.

distributor of the reagents), the availability of instruments, human and machine

error, etc. To reproduce a non-computational step, it is required that the step is

described in detail. Kaiser [Kaiser, 2015] presents that there is a need to report

every detail of the experiment including the lot number of reagents and the datasets

in order to repeat an experiment. Therefore, it is important that the experiment is

described in a way that helps other scientists to understand it. In order to do so, it

is required to model, capture and manage the provenance of a scientific experiment

in an interoperable way for the scientific community, which is still a challenge. It

is essential to know what constitutes a scientific experiment and which provenance

information is essential to describe this path towards the derivation of its results.

Therefore, we analyze and discuss the current state of the art which covers both the

computational and non-computational aspects of reproducibility of scientific exper-

iments. Hence we categorize our literature survey into three parts:

1. Work on computational aspects of reproducibility

2. Work on non-computational aspects of reproducibility

3. Work on both computational and non-computational aspects of reproducibility

Figure 3.1 shows an overview of the literature review carried out for this research

work in these categories. The literature survey first explores the computational as-

pect of reproducibility in Section 3.1. It analyses the current tools developed to

support computational reproducibility. These tools are analyzed based on their ap-

plications of use. The three different applications that we review here are: Scientific
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Workflows (Section 3.1.2.1), Scripts (Section 3.1.2.2), and Computational Notebooks

(Section 3.1.2.3). The next section 3.2 reviews work on the non-computational

aspect of reproducibility. This section discusses how the semantic representation

of scientific experiments as linked data help towards understandability and repro-

ducibility. It is then followed by the current state-of-the-art survey of different

provenance models (Section 3.2.1). Next section reviews work on both computa-

tional and non-computational aspects of reproducibility (Section 3.3). The current

state of the art is evaluated in light of the research problems (see Section 2.2) of our

research work.

3.1 Work on computational aspects of repro-

ducibility

In this section, we discuss the computational reproducibility and the related research

works that support it.

The definition of a reproducible computational experiment according to [Freire and

Chirigati, 2018] is stated in Section 1.2.1. To reproduce an experiment, it is essential

to capture, represent and publish its provenance information. According to the

definition 1.2.1, the provenance information required to reproduce an experiment

includes the following details:

• A description of the input and the output data (D)

• Environmental information where the experiments are run (E)

• The steps required to run an experiment (S)

According to the Reproducibility Guide provided by the rOpenSciProject, com-

putational reproducibility is achieved when detailed information about the code,

software, hardware, and the implementation attributes are provided1.

There are several efforts in formally defining reproducibility. The work [Moreau,

2011] provides reproducibility semantics for Open Provenance Model (OPM) [Moreau

et al., 2011] graphs. The author defines “a provenance graph as reproducible, if

combined with a primitive environment, it contains enough information to be

interpreted as a program (or workflow) whose execution can yield an isomorphic

provenance graph”. The reproducibility semantics provides a foundation for

provenance-based reproducibility theory.

In another work, reproducibility is defined in the context of scientific workflow

management systems [Liu et al., 2015]. According to [Bánáti et al., 2016], “if and

1http://ropensci.github.io/reproducibility-guide/sections/introduction/, Blog:

Accessed on January 29, 2019.

http://ropensci.github.io/reproducibility-guide/sections/introduction/
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only if every job of scientific workflow is reproducible, then the scientific workflow

is reproducible”.

In our work, we understand different experimental workflows to determine the

provenance information that is required to reproduce an experiment and provide a

formal definition of reproducibility based on that.

Full reproducibility of scientific experiments is a desirable thing but it is hard and

difficult to attain. There are different levels of reproducibility that each research

work tries to achieve. Freire et al. [Freire et al., 2012] present three criteria to

characterize experiments based on the levels of reproducibility:

• Depth refers to how much information about an experiment is made avail-

able. In the current publishing environment, figures and results are included in

scientific papers. But nowadays authors are also asked for the data that were

used in the experiments. The higher the depth, the better is the possibility to

attain reproducibility.

• Portability refers to whether the results can be reproduced

– in the original environment

– in a similar environment (i.e., similar operating systems but different

hardware)

– in a different environment (i.e., different operating systems and hardware)

• Coverage refers to how much of the experiments can be reproduced. For

example.

– partially reproduced experiments

– fully reproduced experiments

Some experiments cannot be fully reproduced because of several reasons like

complexity, availability of hardware or the execution environment.

These three different criteria are independent of each other. Experiments with

high coverage and depth may still not be portable. Even if the experiment has

higher coverage, the lower depth can affect its reproducibility. We consider these

three factors while developing the tools in our work. We also consider the factor

of usability so that the user is not overwhelmed by the depth of the provenance

information.

3.1.1 Provenance in Computational Experiments

Provenance can be collected at different levels from fine to coarse. The more granular

the provenance information is, the more information is available for debugging and
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analysis. The amount of provenance information collected at each level depends on

the user requirements to answer their queries. However, the size of the provenance

information can grow more than the actual data [Chapman et al., 2008]. There are

several developments in the past years to capture, model and manage provenance in

applications. According to [Freire et al., 2008], a provenance management solution

consists of three main components:

• Provenance Capture

• Provenance Model

• Provenance Management and Query

Provenance Capture

The provenance capture mechanisms collect information related to a computational

task including the input data, steps, execution information, and user-defined anno-

tations. According to [Freire et al., 2008], provenance capture mechanisms fall into

three main categories: Workflow, Operating System and Process. Workflow-based

provenance capture mechanisms collect provenance from scientific workflows in sci-

entific workflow management systems [Sarikhani and Wendelborn, 2018]. Process-

based provenance capture mechanisms require each process in a computational task

to document itself. While OS-based mechanisms capture provenance at the operat-

ing system level [Frew et al., 2008,Guo and Seltzer, 2012,Muniswamy-Reddy et al.,

2006]. Data and data-process dependencies are captured at the kernel level using

the filesystem or user levels using the system call tracer. Capturing provenance at

the operating system level is out of the scope of this thesis.

Provenance Model

Provenance Models support prospective and retrospective provenance (Section 1.2).

Provenance Models differ across domain and user requirements. There are some

models which try to capture the general concepts while some other target on specific

use cases. For example, Vistrails [Scheidegger et al., 2008] was developed to sup-

port the visualization of exploratory computational tasks and captures the workflow

evolution. Taverna [Oinn et al., 2004] was developed to support the bioinformatics

workflow and thus supports ontologies from this domain. Galaxy [Goecks et al.,

2010] also focuses on bioinformatics workflows.

Provenance Management and Query

A wide range of technologies ranging from the XML files to Semantic Web technolo-

gies is used to store the provenance data. Storing provenance in a filesystem gives

the advantage that no other additional infrastructure is required in particular to

store provenance information. Relational database is another way of storing prove-

nance providing centralized and efficient storage. Semantic Web languages such as

RDF and OWL are used to model provenance graphs thus enabling to query the
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Figure 3.2: The taxonomy of computational tools.

provenance information using SPARQL.

Even though the relation between provenance and reproducibility was introduced in

2008 [Davidson and Freire, 2008], the role of provenance to support reproducibility

is considered as a challenge [Missier, 2016]. The author mentions that the practical

solutions where provenance is used to support reproducibility are not simply avail-

able. The author references that explaining the differences of the results from two

different executions of a process using the provenance traces [Missier et al., 2016]

addresses one aspect of this challenge. However, much work needs to be done to

support the part of provenance in research reproducibility.

3.1.2 Reproducibility Tools

We review the tools which capture the provenance to support reproducibility based

on the area of the usage:

• Scientific Workflows

• Scripts

• Computational Notebooks

Scientists use these computational tools depending on the area of their research.

Each of them is widely used to perform computational experiments. Hence, it is

important that the reproducibility of the results generated from these processes is

ensured. Figure 3.2 shows the taxonomy of computational tools and the features

used for this review. The tools that support computational reproducibility will

be further analyzed and evaluated based on the functional requirements defined in

Section 2.5.



46

3.1.2.1 Workflow Provenance

Scientific Workflow is a complex set of data processes and computations with de-

pendencies between them [Liu et al., 2015]. These are similar to business workflows

but have several challenges which are not present in the context of business work-

flows [Altintas et al., 2004]. Scientific workflows are more data-oriented and process-

ing is done on large and heterogeneous computationally-intensive data. They are

usually represented as a directed acyclic graph (DAG) where the nodes represent the

tasks and the edges represent the dependencies between the tasks. These workflows

range from a short series of tasks to long parallel tasks. They can either be simple

or complex depending on the requirements of the experiments.

Scientific Workflow Management Systems (SWfMS) [Liu et al., 2015] are classical

systems which help scientists to construct the scientific workflows. They help users

to formally express a calculation using multi-step computational tasks [Deelman

et al., 2005]. These systems guide the user to model, define, create, execute and

manage the execution of scientific workflows. They help to run and manage data-

intensive and complex analyses. Their aim is to enable automation, reproducibility,

and sharing of experimental results. SWfMS can be useful for scientists in many

ways. These include:

• An environment to design, execute and re-run their analysis

• To track the results of their scientific workflow using provenance methods

• Share the workflows with other scientists to enable reusability

There are several SWfMS developed for different use cases and domains [Altintas

et al., 2004,Oinn et al., 2004,Goecks et al., 2010,Scheidegger et al., 2008,Deelman

et al., 2005]. There are also well-developed systems to capture provenance, which

we discuss below. We will also see how they try to support reproducibility of results

in computational science.

Kepler

Kepler is a Java-based SWfMS to create and execute models for different scientific

domains [Altintas et al., 2004]. It offers a GUI for workflow design using directors

and actors as its main components. The provenance module is developed to capture

and query workflow execution history. The provenance information is stored in a

relational database and can be queried using a Java API. The provenance includes

the data about actors, directors, parameters and the input/output ports in each

workflow. The Kepler workflows are saved and shared by exporting them into a

Kepler Archive format (KAR). This file can be shared with other scientists through

email or websites.
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Taverna

Taverna is an open-source SWfMS used in multiple areas like bioinformatics,

chemistry, astronomy [Oinn et al., 2004]. It provides a GUI for designing workflows

and also provides a command line execution of workflows. However, it does not

capture the provenance of the evolution history of the workflow definition. It

instead assumes that scientists can use existing systems for versioning like Git

or sharing in websites like myExperiment2. The provenance of workflow runs is

captured and stored in an internal database. The Taverna-PROV plugin allows the

user to export the provenance of workflow runs in PROV-O RDF.

Galaxy

Galaxy is an open web-based SWfMS for genomic research [Goecks et al., 2010].

It provides a GUI to design workflows and share the workflow information like

workflow description, input data, and provenance in a public website. It follows a

directed cyclic graph approach allowing loops. Galaxy represents the workflow in

JSON format. It provides Histories which track every change made to a workflow

file.

Vistrails

Vistrails [Scheidegger et al., 2008] is another open-source SWfMS which focuses

more on data exploration and visualization. It allows combining specialized

libraries, resources and web services. It also provides a provenance capture and

management infrastructure to track the steps and the derivation of data products.

It tracks the evolution of workflows by maintaining provenance record for each

workflow instance and different workflow versions.

These workflow management systems capture the provenance of workflow exe-

cutions. Hence, they focus on the computational steps of an experiment and do

not link to the experimental metadata. Comparison of the differences between

two scientific workflows to understand the divergence of final results is currently

not addressed. This is because this is a subgraph isomorphism problem which is

NP-hard [Davidson et al., 2007].

Despite the availability of tools discussed above, there are currently many challenges

in the context of reproducibility of scientific workflows in the workflow management

systems [Cohen-Boulakia et al., 2017, Zhao et al., 2012]. The study [Zhao et al.,

2012] shows that there is a workflow decay where nearly 80% of workflows failed to

reproduce or re-run. The main reasons behind this problem as stated in the paper

are improper documentation and the lack of example data. The paper [Cohen-

Boulakia et al., 2017] analyzes the different workflow management systems and

presents some limitations in the context of reproducibility as described below:

• Currently there are no interactive systems for the visualization and query of

a large amount of provenance information.

2https://www.myexperiment.org

https://www.myexperiment.org
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• Lack of interoperability between scientific workflows.

• There are larger workflow execution graphs than the workflow specifications.

• There are no approaches for the automatic annotation of tools and workflows

using the terms in ontologies.

• Workflows are not citable in a manner that they can be referenced when they

are reused.

The lack of interoperability between SWfMs and the steep learning curve required

by the scientists are the concerns currently faced by the research community.

3.1.2.2 Script Provenance

Scripting has become a potential skill not only for computer programmers but also

for scientists from different domains. Researchers globally use scripts for analysis,

computation, visualization of results, etc. Scripts are easy to share with others

and comparatively easy to reproduce if the data used by them are also provided.

Therefore, the demand for writing scripts and sharing the results with the scientific

community has increased tremendously. The complexity of the scripts and a large

amount of data generated from them has increased the importance of tracking the

derivation of results. Therefore, a number of tools have been developed to capture

the provenance of results generated from scripts.

Provenance data can be collected from the execution of scripts at different levels of

granularity. There are several tools which capture this provenance information at

different levels of granularity. The tool presented by Frew et al. [Frew et al., 2008]

captures provenance at the operating system level which tracks process and system

calls while Tariq et al. [Tariq et al., 2012] describe a method to collect intraprocess

provenance automatically. Several version management tools like Git allow develop-

ers to track the provenance of files by providing mechanisms to look at the history

of versions and the ability to revert to previous versions.

There are several tools which collect provenance information from scripts at function

or system level. The Sumatra [Davison, 2012] tool collects input, output, module and

data dependencies from Python scripts with the version-control system. It also pro-

vides a Web-based interface to view, annotate and search provenance records. The

noWorkflow tool [Murta et al., 2014] captures provenance at the function level from

the scripts written in Python. It allows users to analyze the captured provenance

using graph, query, and diff based analysis methods. The query-based analysis is

possible by exporting the provenance data through Prolog. YesWorkflow [McPhillips

et al., 2015] is another tool which collects provenance from scripts and provides many

benefits of SWfMS by revealing the computational models and dataflows which are

not explicit in scripts. This is possible by annotating the scripts with YesWorkflow
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annotations which are extracted, analyzed and presented as graphical rendering. It

is a programming language-independent user-oriented tool which reveals workflow

structure and dependencies from scripts based on user annotations.

The noWorkflow tool uses techniques like an abstract syntax tree, reflection, and

profiling to collect different types of provenance. The paper [Murta et al., 2014] ad-

dresses the challenges of representing the environment information and determining

the level of granularity of provenance information. The provenance of each execu-

tion of a script which is called trial is collected and stored so that it can be used

later for other purposes by the users. They define three types of provenance:

• Definition Provenance: collects the code’s structure which includes function

definition, arguments, and function calls.

• Deployment Provenance: collects the execution environment of a script which

includes information about the environment, operating system, and the mod-

ules used.

• Execution Provenance: collects information of what happened when the script

was executed.

The noWorkflow captures the definition, deployment and execution provenance. The

definition provenance is captured using the abstract syntax tree (AST) to identify

the source code of each function definition. This information is associated with each

execution of the script. The global variables, parameters of each function call are

also captured by analyzing each function.

The deployment provenance is captured using the library provided by Python to cap-

ture about the execution environment. It captures information from the os library

to capture operating system information, socket for the hostname, platform for the

machine architecture and the programming language environment. The noWorkflow

tool uses the Python profiling API to capture the execution provenance including

all the function activations of the script.

All the provenance information is stored in the SQLite database in the .noworkflow

directory where the script is executed. The .noworkflow directory can be shared

among scientists for the exchange of provenance information.

The tool provides three ways for the visualization of provenance information of the

script execution. The graph-based visualization provides the summarization of the

execution of script including the function activations. Figure 3.3 shows the graphical

representation of a script execution using noWorkflow. The diff-based visualization

provides the user the facility to compare between two different trials. It provides in-

formation on the module dependencies, environment variables, and temporal-spatial

attributes. The last visualization way is providing the user to query the provenance

data in Prolog.
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Figure 3.3: The graphical representation of a script execution using noWorkflow.

The noWorkflow tool is non-intrusive in the way that it does not require user inter-

vention to collect provenance information. It provides the user with a fine level of

granularity of provenance information thus resulting in a large amount of data. It

results in cumbersome and overwhelming data. This tool can be used only for cap-

turing provenance information from Python scripts. YesWorkflow is complementary

to noWorkflow, which is language-independent and works based on user annota-

tions [McPhillips et al., 2015]. It makes use of the benefits of scientific workflow

management systems by providing the graphical visualization of provenance infor-

mation in a workflow-like view. The user-annotation is done using the keywords

provided by YesWorkflow. The tool provides the keywords which are based on the

components of SWfMS like port, channel, workflows.

A program block of a script represents a block of code that receives input and pro-

duces output. The start and end of a program block are annotated using @begin

and @end keywords. The ports of a scientific workflow are described using @in

and @out keywords. A channel is described as an edge between the @in and @out

ports of a scientific workflow. The extracted workflow graph from the user-based

annotations is produced in GraphViz-DOT form. YesWorkflow provides a module

to generate RDF representations of the YesWorkflow annotations. Figure 3.4 shows

the graphical representation of a script using YesWorkflow3.

The YesWorkflow captures only the prospective provenance and requires the user

to change the script with YesWorkflow annotations. They cannot be executed by

scientists. However, this could be helpful for large complex scripts to get an overall

view of the script. Carvalho et al. [Carvalho et al., 2016] present a methodology to

convert scripts into workflow research objects with the help of tools like YesWork-

flow, Research Objects, and PROV. It is a four-step of methodology for converting

scripts into reproducible Workflow Research Objects. A general abstract workflow

is created from the script using the YesWorkflow user annotations. The abstract

3http://try.yesworkflow.org/

http://try.yesworkflow.org/
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Figure 3.4: The graphical representation of a script using YesWorkflow

workflow is a graphical representation of the script and is platform independent.

This workflow is converted into a platform-specific executable workflow in their

next step. The curators who are familiar with workflow and script programming

are required at this stage to convert each program block in the abstract workflow to

its implementation. For each program block in the abstract workflow, its associated

code is copied to generate the executable workflow. The curator needs to be aware

of the workflow format of the SWfMS to generate the executable workflow. The

scientists then execute this new workflow and capture the provenance traces using

the SWfMS. The results of the workflow are manually checked with the scripts’ re-

sults and if there is a mismatch, the scientists identify the problem and re-design

the workflow elements. The proposed methodology is complex for the domain sci-

entists and requires extensive knowledge of the workflow and script programming.

It also requires extensive involvement of scientists and curators in every step of the

conversion.

3.1.2.3 Computational Notebook Provenance

Computational Notebooks have gained widespread adoption in recent years. These

notebooks allow the data analysts to write, run and visualize the results in a single

document, thus making it suitable for sharing their scientific results. The Jupyter

Notebook [Kluyver et al., 2016], which was formerly known as IPython notebook,

is an open-source web application which provides an interactive environment to

perform data exploration, visualization, and other computational tasks. It enables

the user to create documents with an interactive output. It currently supports

over 100 programming languages4 with millions of users around the world. These

notebooks contain blocks of text and code which are organized as cells. The

code cells contain code snippets which can be modified and executed individually

and the output is displayed directly below the cell. The markdown cells contain

4https://jupyter4edu.github.io/jupyter-edu-book/ Blog: Accessed on April 11, 2019

https://jupyter4edu.github.io/jupyter-edu-book/
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documentation of the computational processes. The cells are arranged linearly but

can be moved or executed in any order. The notebook currently can be shared in

different formats including HTML, PDF, and LaTeX.

In a recent study by Rule et al. [Rule et al., 2018], over 1 million publicly available

notebooks on GitHub were analyzed and 15 data scientists were interviewed from

different disciplines. The study was done to understand how the users actually use

them and how the notebooks address the challenge of tracking and sharing the data

analysis. One of the results of their study shows the need for tracking provenance.

Users can over-write and re-run the cells in any order which leads to the loss of

previous results. Tracking which computations and analysis have been attempted

is not done automatically in these notebooks.

Tracking the provenance of results is required in such computational notebooks [Pi-

mentel et al., 2019]. It is largely required in the trial and error experiments where

it is essential to understand how exactly a final result has been achieved. It is also

necessary to keep track of the experiments that have been attempted because that

may benefit other scientists, even if the results are not as expected.

There are a few research works which have attempted in tracking provenance

from computational notebooks. Pimentel et al. [Pimentel et al., 2015] present a

mechanism to capture and analyze provenance of python scripts inside IPython-

Notebooks by integrating with noWorkflow [Pimentel et al., 2017]. All the features

provided by noWorkflow are therefore available in IPython notebooks. One of the

limitations in this approach is that it requires the user to change the script to

view the visualization. This approach allows the script to be run from IPython

notebooks capturing provenance of scripts and not the provenance of notebooks.

To use noworkflow in IPython notebooks, cell magic (Specific commands provided

by IPython kernel5) is used “%%now run”. However, this approach is limited to

Python scripts.

PROV-O-Matic6 is another provenance-tracking extension for older versions of

IPython Notebooks which saves the provenance traces to Linked Data file using

PROV-O. Another recent approach is to convert notebooks into workflows where

notebook developers need to follow a set of guidelines in writing code [Carvalho

et al., 2017]. These approaches have the limitation that they require changes

to scripts by the user and are limited to Python scripts. In our approach, the

provenance tracking is integrated within a notebook so there is no need to change

the scripts and learn a new tool. It is also easy to share the notebook along with the

provenance traces of execution described as Linked Data. No work has been done

to our knowledge to track the provenance of results generated from the execution

of these notebooks. Hence, we will later describe how we provide an easy-to-use

5https://ipython.org/
6https://github.com/Data2Semantics/prov-o-matic, Accessed on January 29, 2019.

https://ipython.org/
https://github.com/Data2Semantics/prov-o-matic
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platform to capture and manage the provenance of computational notebook execu-

tions. We also provide an approach to make available this provenance information

in an interoperable way.

3.1.3 Discussion

We discussed the computational aspect of reproducibility of scientific experiments.

Table 3.2 provides an overview of the tools which support computational repro-

ducibility. To achieve computational reproducibility, the provenance of the data,

steps and execution environment are essential. Recent tools and approaches to

achieve reproducibility for different kinds of workflows have been presented. SWfMS

are mature systems to design and execute scientific workflows. Some of these sys-

tems attempt to capture workflow provenance. However, there are some limitations

in these systems in the context of reproducibility. Workflow decay is one of them,

where the workflows created are difficult for others to understand or re-run in a

different environment. Improper documentation, lack of example data and execu-

tion environment results in workflow decay. The lack of interactive systems for the

visualization and querying of a large amount of provenance information is one of

the challenges working with these systems. Every SWfMS stores its workflows and

other information in its own proprietary format which results in a lack of interoper-

ability between scientific workflows. The Common Workflow Language is going in

this direction to achieve interoperability [Amstutz et al., 2016], however, it is an on-

going work. Another area of computational reproducibility that was discussed is the

scripts. Several recent tools have been introduced which capture the provenance of

scripts. Some of the tools capture only the prospective provenance while others only

the retrospective provenance. The noWorkflow tool captures, stores and provides

a visualization and query technique for provenance management. The provenance

information captured by the tool is fine-grained which results in an overload of

provenance information. Additionally, this work is limited to only Python scripts.

YesWorkflow tool provides the benefit of SWfMS and helps the user in providing

an overview of complex scripts. However, the user has to learn YesWorkflow key-

words for annotations to visualize the overview of the script. It does not provide the

retrospective provenance. Another limitation of these provenance capturing tools

from scripts is that they do not provide a semantic description of the provenance

information. The provenance model of the scripts along with its execution is miss-

ing in these tools. In addition to this, there are some issues working in script-based

environments. The lack of documentation of computational experiments along with

their results and the ability to reuse parts of code present some hindrances towards

reproducibility. The support of reproducible science using computational notebooks

has resulted in their widespread usage. In spite of that, the provenance manage-

ment in these computational notebooks is not fully supported. There are only a few
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tools which attempt to capture provenance of Jupyter notebooks. There is a great

demand for using Jupyter notebooks irrespective of the applications used, unlike the

SWfMS which are tightly coupled to certain scientific experiment types. There is

no tool which captures provenance of the Jupyter notebook execution and provides

the difference between the several executions of a notebook. It is also important to

have a tool which is easy-to-use for every different group of users. We aim to bridge

this gap by developing a tool to capture the provenance of computational notebooks

and providing semantic integration of Jupyter Notebooks as well as scripts.

3.2 Work on non-computational aspects of repro-

ducibility

To reproduce a scientific experiment, it is important that the provenance of the

computational and non-computational steps are captured and described in detail.

Non-computational steps do not use computing tools or resources. Hence, the prove-

nance of such steps is mostly neither machine-controlled nor automatic. Human in-

volvement is required to capture the provenance of non-computational steps. Hence,

it is important that the provenance of these steps are clearly described. However,

the recent surveys related to reproducibility has shown that the poor description

of results and findability of methods and code cause irreproducible research [Baker,

2016].

Non-computational part of an experiment provides information on data, steps, ex-

ecution environment, methods, and protocols. This provenance data can be repre-

sented and stored in many ways. Several approaches have been introduced to model

and represent provenance to date. The approaches use a wide variety of data models

ranging from Semantic Web languages (e.g. RDF, OWL) and XML stored as files

to tuples in relational database model [Davidson and Freire, 2008]. The results of

non-computational steps which can either be empirical or observational should also

be expressed in an understandable way not only to humans but also for machines.

To support interoperability and make the data machine-understandable as guided

by the FAIR principles, we focus on the provenance models which rely on using

shared vocabularies or ontologies.

Semantic web technologies play an important role in making this data not only

machine-readable but also interoperable. The Semantic Web is an ideal environ-

ment to create knowledge bases that help interlinking scientific research data across

the web. The Semantic Web languages help the scientists to capture and store the

experimental metadata and interlink with other data on the web. Ontologies are

a way to describe concepts and relationships and provide good contextual infor-

mation [Simmhan et al., 2005]. An ontology is a formal, explicit specification of a

shared conceptualization [Studer et al., 1998]. The benefits of using an ontology to



55 Chapter 3. State of the Art

represent information as stated in [Noy et al., 2001] are: 1) Sharing a common un-

derstanding of the structure of information between people and software agents. 2)

Supporting the reuse of domain knowledge. 3) In making the domain assumptions

elicit. 4) To help separate domain knowledge from the operational knowledge. 5)

For the analysis of domain knowledge. In this section, we would look at the current

provenance models and how they are used in describing scientific experiments thus

supporting their understandability. We first review the provenance models and the

ontologies in the context of our work.

3.2.1 Provenance Models

Several models have been introduced to represent provenance in different domains,

ranging from digital humanities to biomedicine [Küster et al., 2011,Compton et al.,

2012, Sahoo et al., 2019]. To have a common provenance standard, the provenance

research community came forward to understand the capabilities and representation

of provenance in different systems. The First Provenance Challenge [Moreau et al.,

2008] was conducted to understand the similarities and differences of provenance

representation in different communities. The participating teams were asked to sim-

ulate and run a well-defined Functional Magnetic Resonance Imaging Workflow. The

task of this challenge was to export provenance information about the past execution

of the workflow and implement and execute a set of identified queries. One of the

lessons learnt from the First Provenance Challenge was that the community is miss-

ing a consistent and coherent terminology for provenance-related concepts. Since

the provenance queries were considered ambiguous, a Second Provenance Challenge

was conducted to address the issues from the first provenance challenge. Based on

the inputs from the First and Second Provenance challenges, a consensual agree-

ment was reached on the core representation of provenance information, the Open

Provenance Model (OPM) [Moreau et al., 2011]. This model which was revised by a

broader provenance research community was used as the model for the Third Prove-

nance Challenge [Simmhan et al., 2011].

The OPM model was adopted by a wider part of the community after the Third

Provenance Challenge. It was put forward as a data model to interchange prove-

nance information. The W3C Provenance Incubator Group7 was formed in 2010

with the mission to understand the requirement of provenance in different scien-

tific domains and develop a roadmap to standardize the provenance model. This

was followed by the Provenance Working Group which contributed with a family of

PROV documents, a set of W3C recommendations. PROV provides a set of 8 rec-

ommendations for the interoperable interchange of provenance information among

heterogenous applications [Groth and Moreau, 2013]. The key requirements, the

7https://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_

Wiki, Accessed on March 17, 2019.

https://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_Wiki
https://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_Wiki
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principles, and the decisions that influenced the design of the PROV are discussed

in [Moreau et al., 2015]. Several approaches for describing provenance semantics are

discussed in the paper on the foundations of provenance on the web [Moreau, 2010].

Several ontologies were proposed before the W3C standardization effort as well. The

SWAN biomedical discourse ontology [Ciccarese et al., 2008] was developed to pro-

vide the knowledge schema focusing on the authorship and attribution of personal

and community organization in the area of biomedicine. It was one of the foun-

dation models for the design of PROV along with other ontologies [Moreau et al.,

2015]. The Provenir ontology [Sahoo, 2010] was developed independently of OPM

and designed to model domain-specific requirements. It is an upper-level ontol-

ogy consisting of three main classes: data, process, agents which are similar to the

classes in PROV (Entity, Activity, Agent). However, some of these ontologies are

superseded by the W3C standard, PROV [Ali and Moreau, 2013].

After the introduction of OPM and PROV, several provenance models were devel-

oped mostly focusing on scientific workflows. P-Plan [Garijo and Gil, 2012] is an

ontology which extends PROV to represent the abstract scientific workflows as plans.

It extends the Plan in PROV to track the provenance traces of plans and their past

executions. It is a general purpose vocabulary to capture the main dataflow con-

structs and link them to the execution of a workflow. Even though it is developed to

model the executions of scientific workflows, the general terms introduced in it make

it possible to use in other contexts as well. This work meets our requirements and

can be extended to represent scientific experiments and their executions. The other

benefits of using this work are that it uses the W3C standard PROV and provides

the ability to extend it further. OPMW [Garijo and Gil, 2011] is another ontology

which is used to represent simple workflows with fine granularity. It extends P-Plan,

PROV, and OPM. It captures the prospective and retrospective provenance of sci-

entific workflows by linking the template, instance, and execution of the workflow.

However, the paper [Missier et al., 2013] indicates that OMPW has resulted in over-

loading of OPM terms without introducing any additional vocabulary. They propose

to use D-PROV, which is an ontology to capture the provenance traces of scientific

workflow execution. This is developed in the context of DataONE [Michener et al.,

2011] (Data Observation Network for Earth and hence the ‘D’ in D-PROV) to help

scientists from DataOne to store workflow provenance traces along with the data

products. It extends PROV to capture retrospective and prospective provenance

of both channel and port-based scientific workflows. It also represents complex sci-

entific workflows which include loops and optional branches. ProvONE is another

ontology which is based on DataONE. It is designed to support a number of broadly

used SWfMS [Cao et al., 2014]. It aims to capture the most relevant information

from the computational processes in scientific workflows and provides the ability to
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extend to include specificities of particular SWfMS8.

In spite of many provenance models for representing scientific workflows, the study

[Zhao et al., 2012] showed that there is a workflow decay based on the analysis in

which nearly 80% of 92 workflows from Taverna and myExperiment9 were failed to

be executed. In order to prevent workflow decay, the approach of Research Objects

along with the checklists to support workflow preservation was introduced [Belhaj-

jame et al., 2015].

The Workflow-centric Research Objects consists of four ontologies to support aggre-

gation of resources and domain-specific workflow requirements [Belhajjame et al.,

2015]. The Research Object ontology (ro) is used for the description of the aggre-

gation of resources. The Workflow Description Ontology (wfdesc) is used for the

description of workflow specifications. The workflow provenance ontology (wfprov)

is used for the description of the provenance traces for the execution of scientific

workflows. The evolution of workflows is described using the Research Object Evo-

lution ontology (roevo). These focus on descriptions of nested subworkflows as well.

Even though these ontologies are used to represent scientific workflows in SWfMS,

this is one of the closest work to ours. The complete path for a scientific workflow

could be described using Research Objects since they represent the resources, the

prospective and retrospective provenance and the evolution of workflows. Inspired

by this work, we apply the idea in the context of scientific experiments.

Currently, the descriptions of workflows are described in different languages by dif-

ferent workflow systems. There are several models to represent scientific workflow

executions but at the moment there is a lack of a standard vocabulary. There are at

present hundreds of different SWfMS with more or less no interoperability between

them. There are several efforts to represent workflows in a unified language. In order

to avoid the lack of a standard workflow language, a project has started to overcome

this barrier and it is under development. The project introduces Common Workflow

Language (CWL)10 which is a specification to describe tools and workflows to aid

portability between environments [Khan et al., 2019].

From the literature survey, it is seen that most of the provenance models are de-

veloped to describe scientific workflows. The ontologies like D-PROV, ProvONE,

OPMW, DataOne Ontologies are developed with the focus on modeling scientific

workflows in the SWfMS. Even though our work is not directly using SWfMS, it is

important to review the provenance models and how they have evolved over time

to meet the requirements of systems and applications. In our approach, we focus

on vocabulary which provides general provenance terms which could be used and

applied to conceptualize the scientific experiments. PROV-O is a recommendation

provided by the W3C group. It provides general concepts which can be used to

8http://purl.org/provone
9https://www.myexperiment.org

10https://www.commonwl.org/

http://purl.org/provone
https://www.myexperiment.org
https://www.commonwl.org/
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represent and exchange provenance information in different systems and contexts.

The authors of the PROV-O encourage users to extend it based on the needs of

the domain. Many ontologies like D-PROV, ProvONE, DataOne, P-Plan are ex-

tended from PROV. Therefore, PROV-O is suited to conceptualize any system with

provenance information. Even though the P-Plan ontology is developed to model

the steps and the variables of the scientific workflows, it provides general concepts

which can be used to model the steps of an experiment.

Apart from the general purpose vocabularies to model provenance, there are many

ontologies which are developed to capture the requirements of individual domains.

In our work, we require to model scientific experiments which consist of both compu-

tational and non-computational processes. In order to do so, we model experiments

which uses light microscopy imaging techniques. Hence, we review the ontologies

based on three applications:

1 Ontologies for modeling experiments

2 Ontologies for modeling light microscopy imaging experiments

3 Ontologies for modeling computational experiments

Ontologies for modeling experiments

In this section, we review the solutions and vocabularies which model experiments

in general. Several models have been introduced to model the experimental meta-

data in different domains. The Minimum Information for Biological and Biomedical

Investigation (MIBBI) [Taylor et al., 2008] is one such effort to ensure sufficient

information is provided when reporting experimental data. It provides a set of min-

imum information checklist for the data providers to include in their experimental

data in different domains. The set of such checklists are available in the MIBBI

portal. The goal of this project is to promote transparency, accessibility and quality

assessment of data. However, the minimum information checklists are developed

independently within particular domains. This results in the redundancy of data

across checklists and gets difficult to track the evolution of such checklists. This

presents a difficulty for both the developers and the users of the checklists11.

Another approach for describing experimental metadata is provided by ISAtools.

The Investigation, Study Assay (ISA) is a framework for describing metadata of life

sciences and biomedical experiments [Taylor et al., 2010]. It provides an abstract

model which consists of three core entities to capture the experimental metadata.

• Investigation

It describes the context of the project including title, description of the inves-

tigation and the people and publications associated with the investigation. It

provides a link to the related Study of an Investigation.

11https://www.force11.org/node/4660, Accessed on March 17, 2019.

https://www.force11.org/node/4660
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• Study

It describes a unit of research about the metadata of the resources.

• Assay

It describes the analytical measurements and technologies used in a study.

The abstract ISA model was originally implemented as a tabular format (ISA-

Tab). Currently, it is available in two format specification: ISA-TAB and ISA-

JSON. A conversion tool has been developed to transform the ISA-Tab format into

RDF [González-Beltrán et al., 2014]. However, this is a software component which

converts the existing ISA-Tab datasets to RDF.

BioSchemas [Gray et al., 2017] is a recent collaborative effort with the aim of making

life science datasets findable using Schema.org12 markups. It extends Schema.org

to include domain-specific types like event and protein. The people in life sciences

are encouraged to use markups provided by Bioschemas to include structured in-

formation on their websites. It is an ongoing development and currently provides

properties only for few types.

To model scientific experiments, [Soldatova and King, 2006] presents the EXPO on-

tology that describes knowledge about experiment design, methodology, and results.

The EXPO is extended from the upper ontology SUMO (Suggested Upper Merged

Ontology) [Niles and Pease, 2001], which is proposed by the Standard Upper Ontol-

ogy Working Group IEEE. This ontology is used to describe scientific experiments

in general and is not tied to a specific domain. It provides more than 300 classes to

describe goals, hypotheses, and results of an experiment. This work focuses more on

the design aspects of an experiment and does not capture the execution environment

and the execution provenance of an experiment.

The Ontology for Biomedical Investigations [Brinkman et al., 2010] is another on-

tology developed as a community effort to describe biomedical and clinical inves-

tigations. It is used to describe the experimental metadata in biomedical research

and has been widely adopted in the biomedical domain to describe all aspects of

an investigation including planning, execution, and reporting. It also reuses ontolo-

gies such as GO [Ashburner et al., 2000], Chemical Entities of Biological Interest

(ChEBI) [Degtyarenko et al., 2007] and Phenotype Attribute, and Trait Ontology

(PATO). Even though we do not directly use this ontology, it is used to annotate

documents by scientists in our platform for capturing experimental metadata.

Several approaches have emerged to describe the experimental protocols in life-

sciences13 [Giraldo et al., 2014]. SMART Protocols (SP) is an ontology-based ap-

proach to represent experimental protocols [Giraldo et al., 2014]. The elements of

SP are extracted from the analysis of 175 protocols. It extends P-Plan to repre-

sent the executable aspects of the protocol and other ontologies like EXPO, OBI

12https://schema.org/
13http://autoprotocol.org/, https://www.protocols.io/

https://schema.org/
http://autoprotocol.org/
https://www.protocols.io/
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for the biomedical domain knowledge. This ontology is composed of two modules:

SP-document and SP-workflow. SP-document models experiments protocols as a

document while SP-workflow models the protocols as a workflow. The focus of this

ontology is only on the semantic representation of experiment protocols.

Ontologies such as EXPO, OBI, SWAN/SIOC provide vocabularies that allow the

description of experiments and the resources that are used within them. However,

they do not use the standard PROV model which prevents the interoperability of

the collected data.

Another approach towards representing provenance information is using Nanopub-

lication [Groth et al., 2010]. They are the smallest unit to publish information

including the assertion, provenance, and publication information. An assertion is

used to describe the relationship between two concepts and provenance provides the

context of the assertation. The publication information gives the authoring and

attribution data of the assertion and provenance as a whole.

Ontologies for modeling light microscopy imaging

One of our research areas is to capture the execution environment of an experiment

in the context of light microscopy imaging. To describe the imaging experiments, it

is important to describe how images are obtained and which instruments are used

for their acquisition. Therefore, we review the works which focus on ontologies to

describe light microscopy imaging experiments. A closely related work [Kume et al.,

2016] presents the development of an Ontology for an Integrated Image Analysis

Platform to enable Global Sharing of Microscopy Imaging Data. The authors aim

to build an ontology to describe imaging metadata for the optical and electron mi-

croscopy images. They construct a Resource Description Framework (RDF) schema

from the Open Microscopy Environment (OME) [Allan et al., 2012] data model.

Even though there is a small overlap of their work with ours on imaging metadata,

the use of PROV to represent the imaging metadata in our work provides additional

benefit. Jupp et al. [Jupp et al., 2016] present the Cellular Microscopy Phenotype

Ontology (CMPO) which is a species-neutral ontology for describing phenotypic ob-

servations relating to a whole cell, cellular components, cellular processes, and cell

populations. This work focuses more on cell-level properties.

Ontologies for modeling computational experiments

We review the ontologies which model computational experiments in particular

script and computational notebook execution. Function Ontology [Meester et al.,

2016] is one approach which is developed to semantically declare and describe func-

tions. The ontology provides concepts for Function, Problem, Algorithm, Parameter,

Output, and Execution. However, it does not capture the dependencies between exe-

cution, modules, and files. Software Ontology (SWO) [Malone et al., 2014] provides a

description of the software in general. It models the data, the version and the license

used by the software. The work [Pérez and Pérez-Hernández, 2015] describes the
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infrastructure-approach of an experiment by introducing WICUS ontology but limits

to describe only the computation resources like software configuration. Currently,

there is no approach to model the computational notebooks and the provenance of

their executions.

3.3 Work on both computational and non-

computational aspects of reproducibility

Scientific data management plays a key role in knowledge discovery, data integra-

tion, and reuse. The prerequisite for good data management is provided by the FAIR

principles [Wilkinson et al., 2016]. Humans are capable of understanding semantics

which makes it easier for us to identify and interpret data. But it is difficult for us

to act at a high speed on complex and large datasets. While machines are capable

of handling data at a larger and faster scale, they are not able to understand the

semantics of the data. Therefore, the guideline for FAIRness is proposed for both

machines as well as humans. One of the principles of FAIR is to make the data inter-

operable by making it machine-readable. The data objects are interoperable “only

if the data is machine-actionable, utilizes shared vocabularies or ontologies and the

data within the object should be syntactically parseable and semantically machine-

accessible” [Wilkinson et al., 2016]. One of the benefits of machine-readable data is

tracking of provenance records.

Digital preservation helps in ensuring long-term data access in the present era of

ever-changing technologies and research. Preservation of digital objects is studied

for long in the digital preservation community. Some works give more importance to

software and business process conservation [Mayer et al., 2012], while other works fo-

cus on scientific workflow preservation [Belhajjame et al., 2015]. There are also works

which provide the infrastructure to support the execution of workflows. The pack-

aging tools like Reprozip [Chirigati et al., 2013] and Docker [Boettiger, 2015] help

user to create packages that include all dependencies to reproduce a computational

experiment or a workflow. The tool Reprozip records workflow of command-line

executions and creates packages which can be used to rerun and verify the results.

However, Reprozip does not capture the evolution of workflows and uses proprietary

language for workflow descriptions.

We focus our approach more towards the data management solutions for scientific

data including images. The paper [Eliceiri et al., 2012] provides a list of biological

imaging software tools. It presents two open-source image database. We reviewed

these two imaging database management platforms: BisQue [Kvilekval et al., 2010]

and OMERO [Allan et al., 2012]. The Bio-Image Semantic Query User Environment

(BisQue) is an open source, server-based software system that can store, display and

analyze images. The stored images can be accessed through a web interface or by us-
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ing API. It is being developed and maintained by a small team at UCSB. They have

two releases per year schedule. The platform uses the Bio-formats14, OpenSlide15,

and ImarisConvert16 to support over 240 file formats.

OMERO [Allan et al., 2012] is another open source data management platform for

imaging metadata primarily for experimental biology. The OMERO software plat-

form is developed by the Open Microscopy Environment (OME) which is a collabo-

rative consortium responsible for producing open specifications and tools to enable

open-access of image data. Its plugin architecture provides a rich set of features

including analyzing and modifying images. It supports over 140 image file formats

using BIO-Formats [Linkert et al., 2010]. OMERO has a very active development

community ensuring a continued effort to improve the system, with everybody being

able to contribute. It has also a well-documented API to write own tools and the

ability to extend the web interface with plugins. It also profits from a faster release

cycle. OMEROs ICE (ZeroCs Internet Communications Engine17)-based framework

is demonstrated to be scalable to very large multi-terabyte datasets across applica-

tions. The performance and the scalability while handling large heterogeneous data

are important criteria in biological applications.

RIKEN [Kobayashi et al., 2018] is a meta-database platform for life-sciences. It

provides datasets of genomes and phenomes of different species as well as sequence

and image data. It also provides a SPARQL endpoint, a web interface for data input

and an RDF converter tool.

A general approach to document experimental metadata is provided by the CEDAR

workbench [Gonçalves et al., 2017]. It is a metadata repository with a web-based tool

which helps users to create metadata templates and fill in the metadata using those

templates. The metadata is available in JSON, JSON-LD and RDF formats. The

main features of the CEDAR workbench include the Template Designer, BioPortal

Lookup Service, Intelligent Authoring and Collaboration. The BioPortal Lookup

Service Module in CEDAR helps the user to annotate the template using the on-

tology terms. The Intelligent Authoring module helps to decrease the metadata

authoring time by recommending values based on the context-sensitive suggestions.

It also provides REST API to export the metadata and the templates to other sys-

tems. This work is developed parallel to this thesis. One part of our work is to

provide a metadata editor which overlaps with this work. The ability to query and

visualize the end-to-end provenance of scientific experiments is missing.

The myExperiment [Goble et al., 2010] is a social networking environment for sharing

bioinformatics workflows. Since its release from 2007, it has around 3900 workflows

mainly Taverna. The workflows and the supporting files can be bundled together as

14https://www.openmicroscopy.org/bio-formats/
15https://openslide.org/
16http://www.bitplane.com/
17http://www.zeroc.com

https://www.openmicroscopy.org/bio-formats/
https://openslide.org/
http://www.bitplane.com/
http://www.zeroc.com
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Solution Category Purpose

OPM [Moreau et al., 2011] Provenance Model Model Scientific Workflows

PROV-O [Lebo et al., 2013] Provenance Model General-Purpose ontology to model Entities, Activities and Agents

P-Plan [Garijo and Gil, 2012] Provenance Model Model Scientific Workflows with plans and their execution

Provenir [Sahoo, 2010] Provenance Model Model Scientific Workflows

OPMW [Garijo and Gil, 2011] Provenance Model Model Scientific Workflows

D-PROV [Missier et al., 2013] Provenance Model Model Scientific Workflows

Research Objects [Belhajjame et al., 2015] Provenance Model Model Scientific Workflows with the aggregation of resources

EXPO [Soldatova and King, 2006] Provenance Model Model Scientific Experiments

OMERO [Allan et al., 2012] Experimental Data Preservation Image Database

BisQue [Kvilekval et al., 2010] Experimental Data Preservation Image Database

Table 3.1: Overview of the solutions for describing scientific experiments

packs so that other users can download it together. It also provides collaborative

support allowing users to create and join groups. However, the difficulty in reusing

of other scientist’s workflow has been a major concern [Zhao et al., 2012] of this

environment.

3.4 Discussion

In Section 3.2, the need for describing scientific experiments with Semantic Web

technologies has been discussed. Table 3.1 provides an overview of the solutions in

the context of the non-computational aspect of reproducibility. Several provenance

models described using ontologies have been presented to suit for different domains

of applications. After many discussions and provenance challenges, a standard is

developed to capture the provenance information irrespective of the domain. Paral-

lel to the development of this Open Provenance Model, several other ontologies like

Provenir were also developed with the same aim. The W3C Provenance Working

Group developed a family of documents, PROV, which became the standard model

for provenance information. Since it is an upper-level ontology, it is essential to cap-

ture the provenance information in detail based on the application of use. Several

approaches have been introduced to describe provenance information of scientific

workflows. The workflow-centric Research Objects have been widely used to sup-

port the aggregation of resources. Ontologies like ProvONE, D-PROV are used to

represent the computational processes of scientific workflows. There are only a few

models which capture the execution environment of workflows. The WICUS ontol-

ogy has targeted for the conservation of scientific workflows. However, there are few

ontologies which capture the provenance information of scientific experiments like

EXPO, SWAN. These have the limitation that they do not extend the PROV model

hence resulting in the lack of interoperability.

Several approaches for provenance management of scientific experiments have also

been discussed. One of our requirements is the data management of microscopy

images. OMERO and BisQue are the two closest approaches which meet our re-
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quirements. We reviewed other solutions in the context of scientific data man-

agement. These solutions either focus on providing data management support of

non-computational processes or management support of scientific workflows. But

these solutions do not directly provide the features to support our goals. There

exists a gap in them as they do not provide the feature to fully capture, represent

and visualize the complete path of a scientific experiment. Hence, it is important

that they are extended to support our goals and at the same time reuse their rich

features.

3.5 Summary

In this chapter, we have discussed the most relevant approaches on computational

reproducibility and provenance models. We have explained the general concepts

which are used throughout this thesis. We then categorized existing research work

into three: (1) Computational aspect (2) Non-computational aspect and (3) Both

computational and non-computational aspect of reproducibility. We have analyzed

the current state of the art in these areas and discussed the limitations of the ap-

proaches. Table 3.2 shows the overview of the tools used in the literature survey

evaluated against the requirements R1-R6.

In Section 3.1, we discussed the approaches which support and enable computational

reproducibility. We have analyzed the approaches based on the applications of us-

age. SWfMS play a major role in the creation and execution of scientific workflows.

They help to automate the data processing steps and can repeat steps with new

data. These systems are developed either for a general or specific purpose. Some

of the systems provide provenance capture and management infrastructure [Schei-

degger et al., 2008,Goecks et al., 2010]. While some systems [Oinn et al., 2004] use

external tools like Git, myExperiment for tracking provenance. However, there are

a couple of limitations of these systems in general. The paper [Spjuth et al., 2015]

presents the experiences with workflows in bioinformatics. The standardization of

sharing data with other applications and more effort because of the complexity of the

systems are some of the challenges faced by scientists using these systems. Another

challenge is the workflow decay [Zhao et al., 2012] where the existing workflows are

difficult to reuse because of insufficient documentation and examples. The scientific

workflows are helpful in automating complex tasks but they do not provide facility

to include documentation of experiments.

Scripts are widely adopted by scientists because of their simplicity and the power to

perform an analysis. The difficulty to understand and reuse others’ code are also con-

sidered as challenges of scripting in the context of reproducibility. Therefore several

approaches are developed recently to address this issue. Jupyter notebooks [Kluyver

et al., 2016], YesWorkflow [McPhillips et al., 2015], and noWorkflow [Murta et al.,
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2014] are some of the approaches to aid understandability and reproducibility of

scripts. Using YesWorkflow, the user can capture the prospective provenance using

user-provided tags. However, it does not capture the retrospective provenance. The

noWorkflow tool is language-dependent and provides very fine-detailed provenance

which can be cumbersome for users. Computational notebooks provide the benefit

of reuse and sharing of scripts along with the results and documentation. These

notebooks are gaining wide-spread adoption among scientists from every domain.

Even though it is a powerful tool aiding reproducibility, it lacks provenance traces

of their execution. Computational reproducibility supported by these notebooks

combined with the facility of tracking provenance can help to increase the under-

standability and simplify reuse of experiments. In our approach, we bridge this gap

by including provenance management feature in computational notebooks.

In Section 3.2, we discussed the non-computational aspect of reproducibility giv-

ing importance to the preservation of experimental data using semantic web tech-

nologies. The provenance model developed by a W3C working group is a starting

point to develop domain-specific models. Even though there are many other on-

tologies developed in parallel to PROV-O which serves the same purpose, PROV-O

is widely used since it is a W3C recommendation and supports interoperability.

We have also discussed some ontologies developed to model scientific experiments.

EXPO [Soldatova and King, 2006] is developed to model how experiments are de-

signed. OBI [Brinkman et al., 2010] provides classes for the annotation of biomedical

investigations. Other approaches like SMART Protocols, Bioschemas, SWAN ad-

dress a particular requirement (for example, experiment protocol, event, etc.). Some

of these models also do not use PROV-O which is the foundation of our work. The

prospective and retrospective provenance of experiments could not be modeled using

these ontologies which we see as a limitation.

To describe a complete path of an experiment, it is essential that the computa-

tional and non-computational steps are expressed in a standard way. From the

literature survey, we could see that the interlink between the computational and

non-computational processes of an experiment is missing. There were very few ap-

proaches which focused both the computational and non-computational aspects of a

scientific experiment for reproducibility. Some ontologies were developed to capture

the execution infrastructure of experiments in the context of SWfMS [Pérez and

Pérez-Hernández, 2015]. There were no approaches which semantically described

the retrospective provenance of a script execution. One of our main aims is to fill

the gap and devise a mechanism to establish a connection between computational

and non-computational steps to better understand and reproduce a scientific ex-

periment. The concept of scientific workflows to capture provenance of each step

with input and parameters is applied in our research by semantically modeling the

experiments. Section 3.1 presents several approaches to semantically represent sci-
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entific experiments. The approaches proposed are very diverse. However, they do

not capture the complete execution path of a scientific experiment. There are sev-

eral approaches which semantically model the workflow execution. But there are

no approaches that provide a semantic model of a computational model of script

execution. We also reviewed the provenance management systems for scientific data

including images. OMERO provides rich features for imaging datasets and captures

the image metadata. Another approach uses a semantic-based technique for cap-

turing metadata of experiments which is developed in parallel with this thesis. It

provides a metadata editor with templates which uses intelligent authoring with the

help of ontologies [Gonçalves et al., 2017]. However, it lacks several other features

required for end-to-end provenance management of scientific experiments.

There is a lack of tools which interlink the data, the steps and the results from both

the computational and non-computational processes of a scientific experiment. The

hypothesis of our work shows the need for end-to-end provenance management of

experiments. From the literature survey, it is seen that such an approach is missing.

In the following chapters, we present our approach to support reproducibility and

understandability of scientific experiments.



Chapter 4

The REPRODUCE-ME Data

Model and Ontology

A provenance data model is important to represent provenance information of any

data object so that the data can be exchanged interoperably between systems and

applications [Moreau et al., 2011]. It is also essential that the model integrates

domain semantics by including domain-specific knowledge to meet requirements of

users and applications in building a provenance infrastructure [Sahoo et al., 2008].

Considering these two pieces of information, we envision to develop a data model

which provides provenance of scientific experiments along with domain semantics.

Towards this goal, we present a conceptual data model using semantic web technolo-

gies to represent a complete path of a scientific experiment including the computa-

tional and non-computational steps to track the provenance of results (Section 2.3).

To do so, it is necessary to figure out which elements are essential to represent the

end-to-end provenance of scientific experiments and categorize them based on the

importance for their reproducibility. For that, we first define what reproducibility

means in our context. Based on this, we present the REPRODUCE-ME Data Model

(REPRODUCE-ME DM) to represent the complete path of a scientific experiment

which takes into account its computational and non-computational aspects. The

literature survey (Chapter 3) pointed out the need for extending the existing prove-

nance models to represent and capture this end-to-end provenance. So our model

extends the existing models and standards to make our work reusable and interop-

erable.

This chapter first presents our definitions of several important terms used in this

research work (Section 4.1). We understand the requirements for the reproducibility

of experiments from the scientists’ perspective in the form of competency questions

in Section 4.2. This is followed by studying the current provenance models which in-

spired our work (Section 4.3). In Section 4.4, we introduce the REPRODUCE-ME

Data Model. We present our model represented using semantic web technologies

and the development phases of the REPRODUCE-ME ontology in Section 4.5. We

68
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conclude with the summary of this chapter in Section 4.6. Parts of the results of

this chapter have been published in [Samuel and König-Ries, 2017].

4.1 Definitions

In Chapter 3, we reviewed the current state-of-the-art definitions of reproducibility

(Section 3.1). Inspired by the definitions [Freire and Chirigati, 2018, Taylor and

Kuyatt, 1994], we precisely define the following terms which we will use throughout

this thesis in the context of our research work.

Definition 4.1.1. Scientific Experiment: A scientific experiment E is a set of

computational steps CS and non-computational steps NCS performed in an order

O at a time T by agents A using data D, standardized procedures SP, and settings

S in an execution environment EE generating results R to achieve goals G by

validating or refuting the hypothesis H.

Definition 4.1.2. Computational Step: A computational step CS is a step

performed using computational agents or resources like computer, software, script,

etc.

Definition 4.1.3. Non-computational Step: A non-computational step NCS is

a step performed without using any computational agents or resources.

Definition 4.1.4. Reproducibility: A scientific experiment E composed of com-

putational steps CS and non-computational steps NCS performed in an order O

at a point in time T by agents A in an execution environment EE with data D and

settings S is said to be reproducible if the experiment can be performed to get the

same or similar (close-by) results by making variations in the original experiment

E. The variations can be done in one or more of the following variables:

• Computational steps CS

• Non-Computational steps NCS

• Data D

• Settings S

• Execution environment EE

• Agents A

• Order of execution O

• Time T
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Definition 4.1.5. Repeatability: A scientific experiment E composed of compu-

tational steps CS and non-computational steps NCS performed in an order O at

a point in time T by agents A in an execution environment EE with data D and

settings S is said to be repeatable if the experiment can be performed with the same

conditions of the original experiment E to get the exact results. The conditions

which must remain same are:

• Computational steps CS

• Non-Computational steps NCS

• Data D

• Settings S

• Execution environment EE

• Agents A

• Order of execution O

Definition 4.1.6. Reuse: A scientific experiment E is said to be reused if the

experiment along with the data D and results R are used by a possibly different

experimenter A′ in a possibly different execution environment EE′ but with a same

or different goal G′.

Definition 4.1.7. Understandability: A scientific experiment E is said to be

understandable when enough information is presented to comprehend the data D

and results R of the experiment by a possibly different agent A′.

A scientific experiment, for example, which involves understanding the functions

of membrane receptors, consists of several computational and non-computational

steps. These steps can either be manual or automatic. Some steps use computing

resources and others do not. Wet lab activities, field work, manual surveys, inter-

views, are some examples of non-computational steps. The wet lab activities would

include preparation of specimens, solutions, setting up devices, etc. These steps

follow a method, procedure or protocol (Different terms are used in different fields).

The computational steps include the analysis of images using software, scripts, or

computational notebooks, generating graphs for data exploration, etc. Another im-

portant thing is the order of execution. The order of performing the steps can affect

the final result. For example, the cells in a computational notebook can be executed

in any order which affects the final result. In order to reproduce the experiment, it

is important that the computational and non-computational steps are reproducible.

Table 4.1 and 4.2 show the different cases of reproducibility and repeatability based
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Variable Initial Experiment Reproducible Experiment

T T1 T2 T3 T4 T5

Goal G G G G G G′

Data D D′ D′ D D D

Code C C′ C C′ C C

Agent A A′ A A A′ A

Execution Environment EE EE′ EE EE′ EE EE

Settings S S′ S S S S

Computational Step CS CS′ CS CS′ CS CS

Non-Computational Step NCS NCS′ NCS NCS′ NCS NCS

Order of Execution O O′ O O O′ O

Table 4.1: Reproducibility Matrix: Different cases of Reproducibility. The symbol ′

denotes change in the variable.

Variable Initial Experiment Repeatable Experiment

T T1 T2 T3 T4 T5

Goal G G G G G G

Data D D D D D D

Code C C C C C C

Agent A A A A A A

Execution Environment EE EE EE EE EE EE

Settings S S S S S S

Computational Step CS CS CS CS CS CS

Non-Computational Step NCS NCS NCS NCS NCS NCS

Order of Execution O O O O O O

Table 4.2: Repeatability Matrix: Different cases of Repeatability. The symbol ′

denotes change in the variable.

on the elements of a scientific experiment respectively. Each variable is represented

using a symbol. The variables in the initial experiment remain the same. In Ta-

ble 4.1, when the initial experiment is reproduced, there are several permutations

where the variables could be changed. We show only some of the permutations of

the reproducible experiment when changing the time T variable (T1, T2, T3, T4, T5).

For example, at time T1, the goal of the reproducible experiment remains the same,

while changes are made in the other variables. Whereas at time T5, the goal of the

reproducible experiment is different, while the data, steps and other variable remain

the same. Table 4.2 presents the repeatability matrix where we show the state of

variables when changing the time T variable (T1, T2, T3, T4, T5). In the case of
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repeatability, none of the variables change. This is done to get the exact results of

the initial experiment. The aim of repeating an experiment is to verify the results of

the original experiment. While, in the case of reproducibility, the aim of reproduc-

ing an experiment is to see whether the results are consistent with the results from

the original experiment. As shown in Table 4.1, the agents can reproduce their own

experiment or others’ experiment.

4.2 Competency Questions

We have clearly defined and distinguished the terms “Reproducibility” and “Re-

peatability” in the previous section 4.1. In this section, we figure out the prove-

nance information required for the reproducibility of a scientific experiment. We

first understand the components required to describe a scientific experiment from

the perspective of researchers. To do so, we conducted several oral interviews with

scientists from different disciplines. As mentioned in Section 1.1, the requirements

are driven from the scientists from Collaborative Research Center (CRC) Recep-

torLight1 where scientists work together to develop high-performance microscopy

techniques. The different scientific practices followed in their experiments and their

requirements of reproducibility and data management were gathered from interviews

with the scientists in the CRC. In addition to that, a workshop to foster reproducible

science2 was conducted where scientists from Biology, Chemistry, Biodiversity, Ecol-

ogy, and Computer Science participated. We collected the important things which

they consider are required for reproducibility of scientific experiments in the form of

competency questions. The competency questions from these oral interviews which

were collected were from scientists from various projects performing different kinds

of experiments. The relevance of these questions is further supported by their large

overlap with competence questions obtained in other contexts, e.g. the provenance

challenge [Moreau et al., 2008]. We selected the ones which were commonly told

by scientists from these collected questions. We then generalized these questions to

reflect what kind of provenance information of scientific experiments are required

by the scientists. Here we present the most common competency questions of which

answers are required to describe a scientific experiment [Samuel et al., 2018].

CQ1 What are the input and output variables of an experiment?

CQ2 Which are the methods and standard operating procedures used?

CQ3 Which are the files and materials that were used in a particular step?

1http://www.receptorlight.uni-jena.de/
2http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/

http://www.receptorlight.uni-jena.de/
http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/
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CQ4 Which are the steps involved in an experiment which used a particular mate-

rial?

CQ5 Which are the instruments that are associated with an experiment and their

settings when the output was generated?

CQ6 Which are the agents directly or indirectly responsible for an experiment?

CQ7 Who created this experiment and when? Who modified it and when?

CQ8 Which are the publications or external resources that were referenced in each

step of an experiment?

CQ9 What is the complete path taken by a scientist for an experiment?

CQ10 List all the experiments which use growth protocol (EFO 0003789) and studies

on “Homo sapiens” and resulted in phenotype “shorter prophase” which passed

the quality control.

Question CQ10 is an example query specific to life science experiments. In ad-

dition to the main competency questions CQ1-CQ9, specific questions related to

each experiment are also asked by the scientists. For example, (1) What are the

input variables of type Solution which were used in the bath solution preparation

step of the experiments performed by an agent from a particular research group.

(2) What are the output variables generated in the first execution of cell 4 of a

particular Jupyter Notebook used as a Standard Operating Procedure in a par-

ticular experiment which used ‘light sheet fluoroscence microscopy’ method. The

complete list of the competency questions is presented in Appendix B. To answer

these type of questions, it is important to first model the provenance required to de-

scribe and reproduce the scientific experiments according to each discipline. Based

on the competency questions, we studied the current provenance models (see Sec-

tion 4.3) to understand whether they provide the elements required for describing

the provenance of scientific experiments focusing on life-sciences.

4.3 Current Provenance Models

We already discussed briefly the provenance models in Chapter 3. In this section,

we will see how some of these models have inspired our work and are being used

in our ontology based on the competency questions described in Section 4.2. We

will identify the aspects which are covered by these models and investigate how we

use them and which extensions are required for describing provenance information

based on our requirements.

Ram et al. present one such model which is called W7 model to represent the
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semantics of data provenance [Ram and Liu, 2006]. They identify the concepts to

define the provenance in the context of events and actions. The W7 model presents

seven different components of provenance and how they are related to each other.

Definition 4.3.1. Provenance is defined as a n-tuple P = (WHAT, WHEN,

WHERE, HOW, WHO, WHICH, WHY, OCCURS AT, HAPPENS IN,

LEADS TO, BRINGS ABOUT, IS USED IN, IS BECAUSE OF)

where P is the provenance; WHAT denotes the sequence of events that affect the

data object; WHEN, the set of times of the event; WHERE, the set of locations of

the event; HOW, the set of actions that lead to the events; WHO, the set of agents

involved in the events; WHICH, the set of devices and WHY, the set of reasons for

the event. OCCURS AT is a collection of pairs (e, t) where e belongs to WHAT

and t belongs to WHEN. HAPPENS IN represents a collection of pairs (e, l) where

l represents a location. LEADS TO is a collection of pairs (e, h) where h denotes

an action that leads to an event e. BRINGS ABOUT is a collection of pairs (e,

a1, a2,..an) where a1, a2,..an are agents who cooperate to bring about an event e.

IS USED I is a collection of pairs (e, d1, d2,..dn) where d1, d2,..dn denotes devices.

IS BECAUSE OF is a collection of pairs (e, y1, y2,..yn) where y1, y2,..yn denotes

the reasons [Ram and Liu, 2006].

Another provenance model which also inspired our work is the PRIMAD [Freire

et al., 2016] model. It describes a list of variables that could be changed or remain

the same when trying to reproduce a study. They are as follows:

• P - Platform/Execution Environment/Context

• R - Research Objectives/Goals

• I - Implementation/Source Code/ Code

• M - Methods/Algorithms

• A - Actors/Persons

• D - Data (input data and parameter values)

The authors provide how a change in each variable of the PRIMAD model results

in various types of reproducibility and the gain delivered to a computational exper-

iment. For example, if only the Data (Parameters) are changed and rest is kept the

same, then the reproducibility study tests the robustness of an experiment. If only

the platform is changed and keeping the rest same, then the reproducibility study

tests the portability of an experiment. When none of the variables in the PRIMAD

data model are changed with the aim to verify whether the results are consistent,

then the experiment is said to be repeated.

Another standard data model, PROV-DM, was introduced after the First, Second
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and Third Provenance Challenges by the W3C working group [Belhajjame et al.,

2013]. The PROV-DM is a generic data model to describe and interchange prove-

nance between systems. It has a modular design with six components:

• Entities and Activities

• Derivation of Entities

• Agents and Reponsibilities

• Bundles

• Properties that link entities

• Collections

The PROV-O Ontology [Lebo et al., 2013] is the encoding of PROV-DM in OWL2

Web Ontology Language. It consists of a set of classes, properties and restrictions to

implement provenance in different domains. The provenance information generated

in different systems and contexts can be represented, exchanged and integrated

using PROV-O. It is a generic vocabulary which can be directly used in different

applications or can be extended further to meet the specific domain use cases. The

authors encourage to extend this ontology to model provenance in fine or coarse

granularity depending on the requirements of the users and applications. The terms

in the ontology are grouped into three:

• Starting Point provide the basic elements of the PROV-O.

• Expanded consists of additional terms which are used to relate terms in the

Starting Point.

• Qualified classes and properties provide additional attributes about the binary

relations in the Starting Point and Expanded properties.

From this model, we have selected the terms which will be used in the development

of the REPRODUCE-ME ontology (see Section 4.5) which are as follows:

• prov:Entity is a conceptual, physical or digital thing which can be either real

or imaginary.

• prov:Activity is an event that happened over a period of time which resulted

in processing, transformation or generation of entities.

• prov:Agent is something which is responsible for an activity. It has three

subclasses:

– prov:Person represents people.
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– prov:Organization represents a social institution.

– prov:SoftwareAgent represents software.

• prov:Location represents a geographical place like Germany or a non-

geographical place like a file.

• prov:Plan represents a set of actions.

• prov:Collection represents a collection of entities and provides a general struc-

ture to them.

• prov:PrimarySource represents the source which was generated without previ-

ous knowledge.

• prov:Role represents the function of an agent or an entity with respect to an

activity.

From this model, we have selected the properties which will be used in the develop-

ment of the REPRODUCE-ME ontology (see Section 4.5) which are as follows:

• prov:startedAtTime describes the time at which an activity started.

• prov:endedAtTime describes the time at which an activity ended.

• prov:generatedAtTime represents the time at which an entity is generated.

• prov:invalidatedAtTime represents the time at which an entity is invalidated

or expired.

• prov:wasInfluencedBy relates an activity that influenced an entity.

– prov:actedOnBehalfOf describes how an agent is responsible for an activ-

ity under the authority of another agent.

– prov:hadMember represents the components of a Collection.

– prov:used describes the usage of an entity by an activity.

– prov:wasAssociatedWith describes how an activity is related to an agent.

– prov:wasGeneratedBy relates a generation of a new entity by an activity.

– prov:wasAttributedTo describes how an entity is attributed to an agent.

– prov:wasDerivedFrom describes the derivation of a new entity from an

existing one.

∗ prov:hadPrimarySource represents the relationship between the de-

rived entity out of the primary entity.

∗ prov:wasRevisionOf represents the derived entity which is a revised

version of the original entity.
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– prov:wasInformedBy represents the communication between two activi-

ties and how an entity generated by an activity is exchanged to other

activity.

– prov:wasInvalidatedBy represents the activity that invalidated the exis-

tence of an entity.

– prov:wasStartedBy represents the agent who started an activity.

– prov:wasEndedBy represents the agent who ended an activity.

• prov:specializationOf describes the relationship of two entities where one entity

is a specialization of another.

• prov:value represents the value of an entity.

• prov:invalidated represents the activity that invalidated an entity.

• prov:influenced represents the ability of an activity, agent or an entity to make

an influence on the characteristics of another.

• prov:atLocation relates an entity with its location.

• prov:generated relates an activity that generated an entity.

P-Plan [Garijo and Gil, 2012] is another model developed to describe the scientific

workflows and their executions. The abstract scientific workflow is described as a

plan which can be linked to the past executions. PROV provides Plan to describe

the descriptions of scientific workflows, programs, and script. Since it is very broad

and could not be able to describe further how the plans can be described and link

to the past execution, P-Plan introduces the notion of Steps and Variable.

From this model, we have selected the class and property terms which will be used

in the development of the REPRODUCE-ME ontology (see Section 4.5) which are

as follows:

• p-plan:Plan is a subclass of prov:Plan. It consists of smaller steps which use

and generate variables.

• p-plan:Step describes a planned execution activity.

• p-plan:Variable describes the input or output of the planned Activity.

• p-plan:correspondsToStep describes how an Activity is linked to its planned

step.

• p-plan:correspondsToVariable describes how an entity which is associated with

a planned activity is linked to a variable.
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Figure 4.1: Overview of the REPRODUCE-ME data model to represent a scientific

experiment

• p-plan:hasInputVar links the input variable to its planned step.

• p-plan:hasOutputVar links the output variable to its planned step.

• p-plan:isInputVarOf is the inverse relationship of p-plan:hasInputVar which

links an input variable to its step.

• p-plan:isOutputVarOf is the inverse relationship of p-plan:hasOutputVar

which links an output variable to its step.

• p-plan:isPrecededBy links a step to its preceding step.

• p-plan:isStepOfPlan links a step to its plan.

• p-plan:isSubPlanOfPlan links a plan to its bigger plan.

• p-plan:isVariableOfPlan links a variable to its plan.

4.4 The REPRODUCE-ME Data Model

Based on the problem statement (Chapter 2), we developed the REPRODUCE-

ME (Reproduce Microscopy Experiments) data model [Samuel and König-Ries,

2017, Samuel, 2017]. It is a conceptual data model that forms a basis for the

REPRODUCE-ME ontology. It is a generic data model for the representation of

scientific experiments with their provenance information. The aim of this model is

to capture the general elements of scientific experiments for their understandability

and reproducibility. Figure 4.1 shows the overall view of the REPRODUCE-ME

DM to represent a scientific experiment.
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Figure 4.2: The expanded view of the REPRODUCE-ME data model used to rep-

resent a scientific experiment

An Experiment is considered as the central point of the REPRODUCE-ME data

model. The model consists of eight components: Data, Agent, Activity, Plan, Step,

Setting, Instrument, Material.

Definition 4.4.1. Experiment is defined as a n-tuple E = (Data, Agent, Activity,

Plan, Step, Setting, Instrument, Material)

where E is the Experiment; Data denotes the set of data used and generated in

E ; Agent, the set of all people or organizations involved in E ; Activity, the set of

all activities occurred in E ; Plan, the set of all plans involved in E ; Step, the set

of steps performed in E ; Setting, the set of all settings; Instrument, the set of all

devices used in E and Material, the set of all physical and digital materials used in

E. The formal definition of each of these elements is given in the following sections.

Figure 4.2 shows a part of the expanded view of REPRODUCE-ME data model for

a scientific experiment.

Data

Definition 4.4.2. Data represents a set of data items used and generated in a

scientific experiment E.

This is a fundamental part of a scientific experiment. The data in the PRI-

MAD model is a generic term which describes any data used in a study. The
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REPRODUCE-ME data model further classifies the data. It is important to know

which categories of data are important for reproducibility or repeatability. The data

that is required to be shared to reproduce an experiment depends on each experi-

ment. However, it is possible that there can be data which could belong to multiple

subclasses. For example, a Publication from which a method or an algorithm is

followed can either be an Input Data or it could be annotated as a Final Result of

an experiment. Here, we categorize the data as follows:

• Metadata: Metadata is the data about data. It includes the Temporal and

Spatial information, Settings and Configurations.

• Annotations: Annotations are notes that are added to the data in a text or

multimedia files.

• Input Data: It is the data that is used as input to an experiment.

• Result: It is the data that is generated from an experiment. It could be further

classified as follows:

– Final Result: It is the final result that is generated in an experiment

which is eventually used in a publication.

– Intermediate Result: These results are obtained during the intermediate

steps of an experiment.

– Positive Result: These results which are annotated as positive are the

results that confirm the hypothesis of an experiment.

– Negative Result: These results are annotated as negative. This could

be because of several reasons. The results which confute the hypothesis,

the changes in experimental design or execution environment can cause

negative results. However, the negative results can be important for other

scientists because it would help them for better designing experiments.

• Parameters: These values are factors which define an operation or a system

which is kept constant for a particular execution of an experiment or a calcu-

lation and varied over other executions.

• Raw Data: The data which has not been processed.

• Processed Data: The data which is processed after the generation of data.

• Measurements: The characteristic of an entity which is described as a numer-

ical value which is used as a measure to compare with other entities.

• Publication: It is the textual description of an experiment including the re-

search questions, hypothesis, methods, results, etc.
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• Modified Version: It describes the version information of an entity which tells

if there is any difference from its earlier form.

• License Document: It is the document which provides official permission to

use or own an entity.

• Rights and Permissions Document: The document which tells whether other

scientists are allowed to use or modify the data.

The Data can be seen as a subtype of Entity defined in the PROV data model.

Agent

Definition 4.4.3. Agent represent a group of people/organizations associated with

one or many roles in a scientific experiment E.

Each agent is responsible for one or more roles in the activities and entities

associated with an experiment. Some actors and their roles are extremely important

for the understandability and reproducibility of a scientific experiment while others

are less important or not applicable at all. For example, to know the name of a

distributor of a sample/device is important in a biological study while it is less

important or not applicable for a computer scientist. We present here the list of

agents3 who are directly or indirectly involved in a scientific experiment that were

considered important based on our requirements:

• Experimenter: The person who performs an experiment.

• Manufacturer: The person who is responsible for the generation of an entity.

• Copyright holder: The person who holds the copyright or the permission of

an entity or an activity.

• Distributor: The person who is responsible for the distribution of an entity or

an experimental material.

• Author: The person who is the author of a publication.

• Principal Investigator: The person who supervises an experiment or a study.

• Contact Person: The person who acts as a corresponding person of a study to

the scientific community.

• Owner: The person who owns an entity.

• Organization: A group of people.

3https://schema.org

https://schema.org
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– Research Project: A group of people who are working together as a team

in a project.

– Research Group: A group of people who are working together as a team

in a project.

– Funding Agency: An organization responsible for granting funds for con-

ducting a research project.

Activity

Definition 4.4.4. Activity represents a set of actions where each action has a start-

ing and ending time which involves the usage or generation of entities in a scientific

experiment E.

Activity is mapped to the Activity in PROV-DM model and extended with Pro-

cess in PRIMAD model. It is a series of actions taken to achieve a task. The

activities of scientific experiments are heavily dependent on their type and domain.

Each trial of an experiment is considered as an activity. The executions of an exper-

iment are important to understand how the final results are derived and generated.

The paper [Ferro and Silvello, 2017] describes the system runs as the most impor-

tant concern for reproducibility with regard to an Information Retrieval System.

The output of the runs or the executions help other researchers to compare their

new ideas with previous results of executions. The hidden parameters and settings

in each execution can make a difference even if an experiment is performed with the

same dataset and the same platform. Here we consider the attributes of activities

of an experiment which are important.

• Execution Order: The order of execution is very important. For example, in

a Jupyter Notebook, the cells can be executed in any order. The order of the

execution will actually affect the result.

• Difference of executions: The difference in the source and the output of an

execution of an experiment.

• Prospective Provenance: The provenance information of an activity that spec-

ifies its plan.

• Retrospective Provenance: The provenance information of what happened

when an activity is performed.

• Causal Effects: The causal effects of an activity denotes the effects on an

outcome because of another activity.

• Preconditions: The conditions that must be fulfilled before performing an

activity.



83 Chapter 4. The REPRODUCE-ME Data Model and Ontology

• Cell Execution: The execution of a cell of a computational notebook is an

example of an activity.

• Trial: The various tries of an activity. For example, several executions of

script.

Plan

Definition 4.4.5. Plan represents a collection of steps and actions to achieve a

goal.

The Plan is mapped to the Plan in the PROV-DM and P-Plan model. Here, we

categorize the Plan as follows:

• Experiment: A scientific procedure with a coordinated set of steps and actions

with the goal to test a hypothesis.

• Protocol: A specification with a set of instructions guiding how an activity is

performed.

• Standard Operating Procedure: A set of step-by-step instructions to carry out

a complex routine compiled and approved by an organization to use in specific

environments.

• Method: A systematic procedure to accomplish a task.

• Algorithm: A set of rules or steps to be followed in a problem-solving opera-

tion.

• Study: A process to examine and analyze a data object to answer questions

and discover new facts about it.

• Script: A computer program written to perform a task in a scripting language.

• Notebook: A computational notebook consists of a set of steps to perform

computation and visualize the results inline.

Step

Definition 4.4.6. Step represents a collection of actions that represents the plan

for an activity.

A Step represents a planned execution activity. The Step is mapped to the Step

in the P-Plan model. Here, we categorize the Step as follows:

• Computational Step: The step or the process which uses computational re-

sources involved in an experiment.



84

• Non-computational Step: The step or the process which does not depend on

computational resources.

• Intermediate Step: The step which is performed during an experiment.

• Final Step: The step that is performed at the end of an experiment.

Setting

Definition 4.4.7. Setting represents a set of configurations and parameters involved

in an experiment.

Here, we categorize the Settings as follows:

• Execution Environment: The execution environment of an experiment.

• Context: The background setting of an experiment.

• Instrument Settings: The settings and configuration of the devices that are

used in an experiment.

• Computational Tools: The tools that use computer-based systems for compu-

tation.

• Packages: A collection of programs and resources which are packaged together.

• Libraries: A collection of resources used for the development of software.

• Software: The computer program which performs a particular task or tasks.

Instrument

Definition 4.4.8. Instrument represents a set of devices used in an experiment.

We model the scientific experiments by applying to high-end light imaging mi-

croscopy experiments. Hence, to include domain semantics, we add the terms which

are related to microscopy. However, this element can further be extended based on

the requirement of an experiment. Here, we categorize the Instruments as follows:

• Microscope: An instrument to observe and capture images.

• Detector: They are detectors which collect the photons emitted by the ob-

served object which transforms the light signal into an electrical signal.

• LightSource: The source of light for a microscope.

• FilterSet: The set of filters which are either excitation or emission filters.
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• Objective: The optical elements which are closest to the observed object which

gathers light from the object and focuses the light to produce real images.

• Dichroic: A Dichroic Filter is an optical filter to selectively pass light of a

small range of colors while passing other colors.

• Laser: The source for the laser light beam to focus light on the observed object.

Material

Definition 4.4.9. Material represents a set of physical or digital entities used in

an experiment.

We model the scientific experiments in life sciences. Hence, we provide some of

the materials related to life sciences which are added in the data model.

• Chemical: A pure substance with constant chemical composition and proper-

ties used in an experiment.

• Solution: A homogeneous mixture of substances. For example, a chemical

solution used in an experiment.

• Specimen: Specimen is a part of a thing used in an Experiment or a study to

determine the character of the whole thing.

• Plasmid: A small circular DNA strand usually found in the cytoplasm.

4.5 The REPRODUCE-ME Ontology for the

Representation of Scientific Experiments

Based on the REPRODUCE-ME data model, we develop the ontology and extend

with the components of a life science imaging experiment. The REPRODUCE-ME

ontology [Samuel and König-Ries, 2017] was initially developed to represent the sci-

entific experiments taking the real case scenario from life sciences. It is undergoing

continuous development to model the scientific experiments in general irrespective

of their domain. We first describe the methodological process that we followed in

the development of the REPRODUCE-ME ontology. The development process is

based on a collaborative approach [Holsapple and Joshi, 2002] using the guidelines

for the ontology development [Noy et al., 2001].

The collaborative approach to ontology design proposes four phases in ontology en-

gineering. In the Preparation phase, we define the design criteria, determine the

boundary conditions and decide the evaluation standards. In the second phase, An-

choring, an initial ontology is produced to get the focus of the collaborators. We
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identified the collaborators and the critiques and comments are added to the ontol-

ogy in the Interactive Improvement phase. The ontology is iteratively revised until

a consensus is reached. In the last Application phase, the ontology is demonstrated

and used within application. We now explain each phase in the development of the

REPRODUCE-ME ontology.

• Preparation

Based on the methodology that was described by [Holsapple and Joshi,

2002,Noy et al., 2001,Grüninger and Fox, 1995], we identified the requirements

of the REPRODUCE-ME ontology. The domain of the ontology was first nar-

rowed to the scientific experiments in the microscopy field. The major purpose

of developing the ontology is to semantically represent the complete path of

a scientific experiment including the computational and non-computational

steps along with its execution environment. The scope of the ontology is to

use it in the scientific data management platforms as well as the scripting tools

that are used to perform computational experiments. We defined the imple-

mentation language required for the ontology to be OWL 2 since it is the most

used language for developing ontologies. The REPRODUCE-ME ontology is

available online along with the documentation4.

We identified the end-users of the ontology to be the domain scientists from

life sciences who want to preserve and describe their experimental data in a

structured format. The aim of the ontology is to represent the experimental

data in an interoperable way that it can be used for understandability and re-

producibility of results. The ontology could provide a meaningful link between

the data, intermediate and final results, methods and execution environment

which will help the scientists to follow the path used in the experiment.

Based on the competency questions described in Section 4.2, we extracted a

list of terms from the competency questions to represent the concepts and

properties of the ontology. Based on these activities, we created an Ontology

Requirement Specification Document (ORSD) which specifies the requirements

that the ontology should fulfill [Suárez-Figueroa et al., 2009]. The ORSD is

presented in Appendix B.

• Conceptualization

In this phase, we work on the conceptualization of the scientific experi-

ments. We identify the general concepts based on the list of competency

questions. The general terms like Experiment, Method, Step, Result are ex-

tracted. Based on the extracted terms, we analyzed the existing ontologies

to model the provenance of scientific experiments. The W3C recommenda-

tion, PROV-O, provides a generic model to capture provenance of different

4https://w3id.org/reproduceme/

https://w3id.org/reproduceme/
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systems. PROV-O provides the means to extend it based on the domain.

Based on the competency questions, it can answer, we selected PROV-O as

the upper-level ontology. In order to represent further the steps and the input

and output of each step, we analyzed further and found P-Plan to suit our

requirements. P-Plan also uses PROV-O as its upper ontology. The develop-

ment of REPRODUCE-ME ontology was not done from scratch, but rather

by reusing existing vocabularies.

A top-down approach is followed in the development of the ontology. The

general concepts were taken from the existing vocabularies like PROV-O and

P-Plan. PROV-O is a generic vocabulary while P-Plan is designed for rep-

resenting scientific workflows. To represent scientific experiments, we added

concepts which address models of experiments. Then the specialized classes

were added to the most generic classes. Several properties were identified and

categorized as object and data properties.

• Implementation

The ontology is developed using the ontology tool editor, Protege5. The OWL

2 language is used for the development and RDF/XML is used for the serial-

ization of the ontology. The naming convention used in the ontology is similar

to the ones that are reused. PROV-O and P-Plan follow the CamelCase con-

vention which is also followed in the REPRODUCE-ME ontology. The prefix

used to denote the ontology is “repr”. The namespace of the ontology is

“https://w3id.org/reproduceme#”.

• Annotation

Several annotations have been added to the ontology to capture the prove-

nance of the ontology. It includes the creator, when it was created and modified

etc. It is important to track the different versions of the ontology.

• Documentation and Publication

The ontology is documented using the WIDOCO tool [Garijo, 2017]. Using

this tool, a set of HTML pages with diagrams and human-readable descrip-

tions of the ontology terms are created. The ontology is documented and

published online. The published ontology uses persistent URLs so that the

ontology terms could be dereferenceable. The ontology can be downloaded in

RDF/XML, TTL or N3 serializations. The ontology is publicly available6.

• Validation

The REPRODUCE-ME Ontology is validated using the OOPS tool7. It

5https://protege.stanford.edu/
6https://w3id.org/reproduceme
7http://oops.linkeddata.es

https://protege.stanford.edu/
https://w3id.org/reproduceme
http://oops.linkeddata.es
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Figure 4.3: A scientific experiment depicted using the REPRODUCE-ME ontol-

ogy [Samuel et al., 2018]

helped in detecting common pitfalls during its development. The pitfalls were

corrected as and when they were found. The ontology is evaluated using it in

application [Noy et al., 2001] which is mentioned in Chapter 7.

• Versioning

To maintain the changes in the ontology, versioning of the ontology is main-

tained.

4.5.1 The REPRODUCE-ME Ontology

To describe the complete path of a scientific experiment, we encode the

REPRODUCE-ME data model in OWL2 Web Ontology Language. The ra-

tionale behind doing so is to share a common understanding of the scientific

experiment along with the domain knowledge among people and machines. Fig-

ure 4.3 shows an excerpt of the REPRODUCE-ME ontology terms depicting the

lifecycle of a scientific experiment. Figure 4.4 shows an excerpt of REPRODUCE-

ME ontology in Protege. The ontology is developed to represent the complete path

of an experiment. The data elements that we identified in the REPRODUCE-ME

data model are the base terms added in the ontology. To add these terms in the

ontology, we first decide which class these concepts belong to in the upper ontologies

PROV-O and P-Plan. In the development of our ontology, we add classes for every

concept and reuse the properties from the upper ontologies PROV-O and P-Plan

to describe the relationships between the added concepts.

CQ1 What are the input and output variables of an experiment?

The concept Experiment is added to represent the class of scientific experi-
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Figure 4.4: The REPRODUCE-ME ontology in Protege
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ments conducted to test a hypothesis or perform a discovery. The Experiment

is modeled as a Plan which consists of several steps and sub plans. The steps

are related to the experiment using the object property p-plan:isStepOfPlan

and the sub plan with the object property p-plan:isSubPlanOfPlan. The

steps of an Experiment contains both input and output which are mod-

elled as p-plan:Variable. The input and output variables are related to an

experiment through steps using the properties p-plan:isInputVarOf and

p-plan:isOutputVarOf. Each data element defined in Data (Section 4.4)

is added as p-plan:Variable. Each step can either be computational or

non-computational. Based on the domain, the input and output of scientific

experiments can be added as variables. For example, Image is an output

variable of the Image Acquisition step which is a major step in a life science

experiment involving microscopy (see Figure 4.3). The Protocol is a sub plan

of Experiment and it has many steps like HighContentScreening. In this way,

we could describe the steps and plans and their input and output variables.

CQ2 Which are the methods and standard operating procedures used?

The concept Method, Standard Operating Procedure and Protocol are added

to model the methods, standard operating procedures and protocols. These

concepts are modeled as Plan. In addition to that, each element defined in Plan

(Section 4.4) is also added as p-plan:Plan. These concepts are linked to the

experiment using the property p-plan:isSubPlanofPlan. The object property

usedMethod is used to show the relationship between a step of an experiment

and the method.

CQ3 Which are the files and materials that were used in a particular step?

The concepts ExperimentalMaterial and File are added to model the gen-

eral set of all experiment materials and files respectively. They are added

as subclasses of a prov:Entity and p-plan:Variable. Since they are added as a

p-plan:Variable, they can be linked to the steps of an Experiment. If the Exper-

imentalMaterial is an input to a step, it is linked to the step using the object

property p-plan:hasInputVar or the inverse property p-plan:isInputVarOf.

CQ4 Which are the steps involved in an experiment which used a particular

material?

The object property p-plan:correspondsToVariable relates an experiment

to a variable. The variable is related to a step using object properties

p-plan:isInputVarOf and p-plan:isOutputVarOf. Here we address the

step which used a particular material, hence, we use the object property

p-plan:isInputVarOf.

CQ5 Which are the instruments that are associated with an experiment and
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their settings when the output was generated?

The instruments play an important role in the reproducibility of scientific ex-

periments and it is important to describe them. We add Instrument as a

prov:Entity to represent the set of all instruments or devices used in an exper-

iment. The Settings are added as another class to represent the configurations

in general. Each Instrument consists of several sub-parts which is represented

using the object property hasPart and inverse property isPartOf. Each in-

strument as well the part of the instruments have settings which are described

using the object property hasSetting.

CQ6 Which are the agents directly or indirectly responsible for an experi-

ment?

We reuse the concepts of PROV-O to represent the agents responsible for an

experiment. We add additional agents specialized for scientific experiments as

mentioned in Section 4.4. We add terms like Author, ContactPerson, Distrib-

utor, Experimenter, Original Creator, Owner, Principal Investigator, Research

Group, Research Project, Funding Agency, Distributor, Manufacturer to rep-

resent the agents who are directly or indirectly responsible for an experiment.

We use the data property ORCID8 to identify the agents of an experiment.

CQ7 Who created this experiment and when? Who modified it and when?

The temporal and spatial properties are important factors to know the

provenance of scientific experiments. We reuse the object and data prop-

erties of PROV-O to answer these questions. We use the object property

prov:wasAttributedTo to relate the experiment with the responsible agents.

The properties prov:generatedAtTime and modifiedAtTime are used to

describe the creation and modification time respectively.

CQ8 Which are the publications or external resources that were referenced in

each step of an experiment?

Each step of an experiment has input or output variables. We add the con-

cept Publication to the ontology. The publication used or generated in an

experiment is described using the object properties p-plan:isInputVarOf and

p-plan:isOutputVarOf. We use the properties doi9, pubmedid10, and pmcid11

to identify the publications.

CQ9 What is the complete path taken by a scientist for an experiment?

We defined what is a scientific experiment and what are the essential elements

needed to describe its provenance for reproducibility. To describe a complete

8https://orcid.org/
9https://www.doi.org/

10https://www.ncbi.nlm.nih.gov/pubmed/
11https://www.ncbi.nlm.nih.gov/pmc/

https://orcid.org/
https://www.doi.org/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/
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path of a scientific experiment, we need to describe the computational and

non-computational steps and plans used in an experiment, the people who

are involved in an experiment and their roles, the input and output data, the

instruments used and their settings, the execution environment, the spatial

and temporal properties of an experiment. To describe each item, we add

the corresponding concepts to the ontology. We use the object property p-

plan:isPrecededBy to represent the order of the steps performed to describe the

complete path. In Chapter 5, we present the elements added in the ontology

to describe the computational steps and plan. We also show how we interlink

the computational steps to the main experiment.

4.6 Summary

This chapter presented precise definitions of reproducibility and repeatability of

scientific experiments. Through oral interviews with scientists from different dis-

ciplines, we figured out the important provenance information required for repro-

ducibility of scientific experiments in the form of competency questions. Based

on that, we revisited the provenance models which inspired our work to see which

aspects are already covered and what needs to be extended. This led to the de-

velopment of the REPRODUCE-ME Data Model, which is one of the important

contributions that we presented in this chapter. It is a conceptual data model to

represent scientific experiments along with its provenance information developed

taking into account also our requirements. We defined each variable of the data

model in detail. We followed the methodology by [Holsapple and Joshi, 2002, Noy

et al., 2001] in the development of the REPRODUCE-ME ontology. We maximized

the reuse of existing standards. We focused on ten competency questions which in-

clude more general questions like CQ1-CQ9 and more complex queries like CQ10.

We provided details on how the terms in the REPRODUCE-ME ontology are used

to answer these questions. We evaluate our work in detail in the upcoming chap-

ters 6 and 7 by using it in applications mentioned by the ontology development

guidelines [Noy et al., 2001]. We answer the competency questions with the help of

SPARQL queries using the data provided by scientists working with the microscopy

imaging techniques in Section 7.5.
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Computational Reproducibility

Computer programming which was once seen as a reserved skill for computer geeks

has not only become a key prerequisite for researchers from different scientific fields

but also plays a significant role in school education [Fessakis et al., 2013]. The

use of computational tools has become vital in most of the scientific experiments

to address the complexity and automation of tasks [Moreau and Tranchevent,

2012]. Scientists use scripting to perform computational tasks like data exploration

and processing and link their input/output to their experiments. According to

our survey described in Section 7.3 (see Figure 7.24), around 85% out of 101

participants write scripts to perform data analysis. Sharing scripts which are

used for computational tasks is pretty straightforward and it is now becoming

a mandatory prerequisite for publishing results in some accepted journals (see

Chapter 1). One of the main requirements for computational reproducibility is also

sharing of scripts/code.

Apart from scripts, computational notebooks have become one of the means to

share code along with documentation [Shen, 2014]. There is a rapidly increasing

use of computational notebooks among scientists, data analysts and even among

teachers. These notebooks provide an interactive environment to write and run

the code, and view graphical results inline. They allow users to perform data

exploration, run simulations and visualize results by combining text and code

together [Samuel and König-Ries, 2018b]. Interactive notebooks are not just

used for performing computational tasks but also for documenting and sharing

their results. The primary objective of computational notebooks as described

by the Project Jupyter team [Kluyver et al., 2016] is to provide the collaborative

creation of reproducible computational narratives that can be used across a wide

range of audiences and contexts1. One of the major reasons for their widespread

adoption among scientists is because they enable computational reproducibility.

Even though these notebooks are meant for reproducible science, the provenance

1https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-

engine-of-collaborative-data-science-2b5fb94c3c58, Blog: Accessed on January 29, 2019
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support in them is limited [Rule et al., 2018,Samuel and König-Ries, 2018b]. Small

changes and errors during the data collection, processing and documenting phases

can lead to significant changes in results [Samuel et al., 2018]. Tracking which

code/function resulted in a particular output becomes cumbersome with limited

provenance support. Hence, the presence of provenance support in these notebooks

for computational reproducibility is desirable.

As discussed in Section 3.1.2, there are some tools which support computational

reproducibility by capturing provenance from scientific workflows or scripts.

However, there are only a few provenance capturing techniques for the execution of

Jupyter notebooks. One such approach is the integration of noWorkflow in IPython

notebooks [Pimentel et al., 2015]. The provenance collected from an external script

using noWorkflow can be analyzed and displayed in the notebook using the line

magic “%now run”. The visualization of the provenance information of the external

script is shown inside the IPython notebooks and thus scientists do not need to

switch the environments. Through this approach, only the provenance of external

scripts can be analyzed and visualized. But it does not solve the problem of

tracking the provenance of the execution of the code inside the Jupyter Notebook.

Another limitation of this approach is that it only works for python code in Jupyter

notebooks. Therefore, it could not cope with the vast number of programming

languages2 supported by these notebooks. The lack of semantic representation of

scripts is another research problem that needs to be addressed.

In this chapter, we envision a novel solution for supporting computational re-

producibility through Jupyter notebooks. We present ProvBook, an extension of

Jupyter notebooks to capture its provenance information [Samuel and König-Ries,

2018b, Samuel and König-Ries, 2018c]. This framework provides an easy-to-use

environment for the scientists and developers for the efficient visualization of

the provenance data. Based on the functional and non-functional requirements

described in Section 2.5, we show in Figure 5.1 the key components provided by

ProvBook to help in the end-to-end management of provenance for computational

reproducibility. We show how these components which are vital in supporting

computational reproducibility are developed and used in ProvBook.

This chapter provides the background, structure, and workflow of Computational

Notebooks in Section 5.1. We introduce ProvBook in Section 5.2. How ProvBook

provides support for the provenance capture and management in Jupyter Note-

books is described in Section 5.2.1. The semantic representation of computational

notebooks and their execution using the REPRODUCE-ME ontology is presented

in Section 5.2.2. The provenance difference of several executions of a Jupyter

Notebook is presented in Section 5.2.3. Section 5.3 presents how scripts and

their execution are described using the REPRODUCE-ME ontology. This chapter

2https://jupyter4edu.github.io/jupyter-edu-book/ Blog: Accessed on April 11, 2019

https://jupyter4edu.github.io/jupyter-edu-book/
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Computational Reproducibility
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Figure 5.1: The key components for the end-to-end provenance management pro-

vided by ProvBook for computational reproducibility

concludes with the summary (Sections 5.4). Parts of the results of this chapter

have been published in [Samuel and König-Ries, 2018a, Samuel and König-Ries,

2018b,Samuel et al., 2018].

5.1 Computational Notebooks

A computational notebook is a virtual environment for literate programming. The

term “Literate Programming” was first introduced by Donald Knuth [Knuth, 1984].

It is a programming paradigm where the source code is combined with the expla-

nation of the program logic using natural language. The computational notebooks

were first available in 1988 with the release of the proprietary software, Mathemat-

ica [Wolfram, 1988]. It was then followed by another proprietary software, Maple3,

which released its notebook-style graphical user interface in 1989. The computa-

tional notebooks have gained widespread adoption in the past decade due to the

emergence of free and open source platforms like Project Jupyter [Kluyver et al.,

2016] and RStudio [Team et al., 2015]. According to Project Jupyter, there are over

1.7 million Jupyter notebooks publicly hosted on Github and have millions of users

from several disciplines4.

5.1.1 Background and Structure of Jupyter Notebooks

A Jupyter Notebook, formerly known as IPython Notebook, is a web-based applica-

tion which provides an interactive and computational environment [Kluyver et al.,

2016]. Figure 5.2 shows a sample Jupyter Notebook. It is organized as a sequence

of ordered cells. A cell is a multiline text input field. There are three types of cell:

3https://www.maplesoft.com/products/Maple/
4https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906, Blog: Ac-

cessed on January 29, 2019

https://www.maplesoft.com/products/Maple/
https://blog.jupyter.org/jupyterlab-is-ready-for-users-5a6f039b8906
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Figure 5.2: A sample Jupyter Notebook

• Code cell

A code cell allows to edit and run code based on the kernel. The default kernel

is Python which runs Python code. The code cell can be executed using the

“Play” button in the toolbar or the “Run Cell” from the Cell menu bar in

the notebook interface. The code is sent to the associated kernel when it is

executed and the result of the output is displayed in the notebook under the

executed cell as shown in Figure 5.2.

• Markdown cell

The Notebook allows documenting the computational process in a literate

programming way, where the users can explain the code using text. This is

possible by marking up the text with the Markdown language in the cells which

are called Markdown cells. The parts of the text can be made italics, bold,

etc. using the markup language. It also provides the facility to include inline

mathematics using the Latex notation: $...$ and $$...$$ for displayed math-

ematics. The markdown text is converted into the corresponding formatted

rich text on the execution of a markdown cell.

• Raw cell

A raw cell allows writing the output directly. The raw cells are not evaluated

or formatted by the notebook.

The notebook cells can be grouped and reordered by simply clicking on the

cell and dragging them to a particular place. The cells can be executed either

linearly or in any order. The ability to execute the cells in any order distinguishes

the computational notebooks from the traditional scripting tools. The cells are
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executed one at a time. When a cell is created, the notebook assigns it an identifier

in incrementing order. The cell is re-assigned with an identifier every time the

cell is re-executed. As we see in Figure 5.2, the highlighted code cell in the third

position has an execution count of 5, while the other code cells after it (in the

order of position) have a lesser execution count. This shows that computational

notebooks can be executed in any order.

These notebooks also have rich display capabilities because the output of a code

cell can be displayed in many rich representations [Kluyver et al., 2016]. They are:

(1) HTML, (2) JSON, (3) PNG, (4) JPEG, (5) SVG, (6) LaTeX. Audio and Video

files can be also embedded and rendered in a cell.

Different computational kernels are supported by Jupyter Notebook including

Python, R, MATLAB, and Julia. The notebooks are saved with the .pynb extension

and they are internally stored in JSON format. It can be installed locally in a

user’s computer or remotely. Currently, notebooks can be exported in different

formats like HTML, LaTeX, PDF, Markdown from the command line or the user

interface. This is possible using the nbcovert5 tool provided by Jupyter Notebook.

In this way, notebooks can be shared in multiple ways. The Jupyter Notebook

Viewer (nbviewer) is used to view a notebook from a URL and rendered as a static

web page. Using nbviewer, a notebook can be viewed remotely without installing

it locally.

5.1.2 Workflow of Jupyter Notebooks

Scientists working on computational experiments divide and organize their tasks

into cells. The cells are edited multiple times until they reach their expected results.

They are executed one at a time, allowing the users to make multiple edits and

re-execute them in any order. This is unlike the traditional scripts where the entire

script is executed all at once. Users can do many modifications to the notebooks

like inserting, removing or rearranging the cells. These operations could derive new

results which could be different from that of the past executions. One of the ten sim-

ple rules for computational reproducible research as discussed in the paper [Sandve

et al., 2013] is to record all intermediate results in a standardized format. Currently,

only the output from the latest execution is stored in the notebook. The provenance

of the final and intermediate results are not supported in the Jupyter notebooks.

There is also no support to compare the intermediate results of the different execu-

tions. A recent study from 2018 [Rule et al., 2018] analyzed over 1 million publicly

available notebooks from GitHub and interviewed 15 data scientists from different

disciplines. One of the highlights based on their results is the need for tracking

provenance especially when the cells are over-written and re-run. The provenance

5https://github.com/jupyter/nbconvert

https://github.com/jupyter/nbconvert
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information is substantially helpful especially in the machine learning experiments

where it is essential to track how exactly a final result has been achieved. It is also

necessary to keep track of the experiments that have been attempted because that

may benefit other scientists, even if the results are negative or not as expected. The

need for the provenance support in these computational notebooks resulted in the

development of ProvBook.

5.2 ProvBook: Provenance of the Notebook

ProvBook6 [Samuel and König-Ries, 2018b, Samuel and König-Ries, 2018c] is de-

veloped as an extension of Jupyter Notebook which supports capture and manage-

ment of provenance information of its different executions over the course of time.

The ProvBook provides four main features supporting the end-to-end provenance

management of Jupyter Notebook for computational reproducibility as shown in

Figure 5.1. They are:

1. Provenance Capture and Management

2. Semantic Representation

3. Provenance Difference

4. Provenance Visualization

Figure 5.3 shows the architecture of ProvBook which shows how a user can use it

for computational experiments.

5.2.1 Provenance Capture and Management

One of the key challenges in developing provenance capture systems is to decide

at what level of granularity the provenance needs to be collected. The motivation

behind the development of ProvBook is to help scientists who use computational

notebooks for their data analysis and exploration. In order to help users from every

discipline irrespective of their programming skills, the design of ProvBook is kept

simple so that it could be adopted as an easy-to-use tool. The Provenance Capture

and Management modules of ProvBook are responsible to capture and store the

provenance of the execution of the cells over the course of time. Every time the

code cell is executed, the provenance of the execution is stored in the metadata of

the cell. The provenance information of the cell execution includes the start and

end time of each execution, the total time it took to run the code cell, the source

code and the output got during that particular execution.

6https://github.com/Sheeba-Samuel/ProvBook

https://github.com/Sheeba-Samuel/ProvBook
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ProvBook: Provenance of the Notebook

Figure 5.3: The architecture of ProvBook

5.2.1.1 The format of the Provenance of the Notebook

In order to understand how the provenance information is captured and stored,

we first explain the detailed structure of Jupyter Notebooks. A Jupyter Notebook

is stored as a JSON file format. Figure 5.4 shows a sample Jupyter Notebook

metadata7. It is a dictionary with the following keys:

• metadata

• nbformat

• nbformat minor

• cells

Metadata

Metadata is a dictionary that contains information about the notebook, its cells,

and outputs. The notebook metadata defines the following keys:

• kernelspec

This defines the kernel specifications of the notebook. The metadata includes

the name of the kernel as displayed in the user interface, the name, and the

display name of the language of the kernel.

• language info

This defines the name and version of the programming language of the kernel.

7https://nbformat.readthedocs.io/, Blog: Accessed on January 29, 2019

https://nbformat.readthedocs.io/
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Figure 5.4: A sample Jupyter Notebook metadata

• authors

This defines the name of the authors of the notebook.

Cells

This dictionary of keys contains the information of all cells including the source,

the type of the cell, and its metadata. The metadata structure is as follows:

1 {
2 "cell_type" : "type",

3 "metadata" : {},
4 "source" : "single string or [list, of, strings]",

5 }

Listing 5.1: Metadata structure of cells

The cell type for a code cell is “code” and markdown cell is “markdown”. The

metadata for the code cells contains the source code and the list of outputs associated

with the cell.

1 {
2 "cell_type" : "code",

3 "execution_count": 1, # integer or null

4 "metadata" : {
5 "collapsed" : True,

6 "scrolled": False,
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7 },
8 "source" : "[some multi -line code]",

9 "outputs": [{
10 # list of output dicts

11 "output_type": "stream",

12 ...

13 }],
14 }

Listing 5.2: Metadata structure for code cells

The execution count is the cell identifier which tells the count of the execution of the

cell. The “outputs” of a code cell is the list of outputs got when the cell is executed.

There are four types of output.

1. stream

1 {
2 "output_type" : "stream",

3 "name" : "stdout", # or stderr

4 "text" : "[multiline stream text]",

5 }

Listing 5.3: Metadata structure for ‘stream’ output

2. display data

1 {
2 "output_type" : "display_data",

3 "data" : {
4 "text/plain" : "[multiline text data]",

5 "image/png": "[base64 -encoded -multiline -png -data]

",

6 "application/json": {
7 # JSON data is included as-is

8 "json": "data",

9 },
10 },
11 "metadata" : {
12 "image/png": {
13 "width": 640,

14 "height": 480,
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15 },
16 },
17 }

Listing 5.4: Metadata structure for ‘display data’ output

3. execute result

1 {
2 "output_type" : "execute_result",

3 "execution_count": 42,

4 "data" : {
5 "text/plain" : "[multiline text data]",

6 "image/png": "[base64 -encoded -multiline -png -data]

",

7 "application/json": {
8 # JSON data is included as -is

9 "json": "data",

10 },
11 },
12 "metadata" : {
13 "image/png": {
14 "width": 640,

15 "height": 480,

16 },
17 },
18 }

Listing 5.5: Metadata structure for ‘execute result’ output

4. error

1 {
2 ’output_type ’: ’error ’,

3 ’ename ’ : str, # Exception name, as a string

4 ’evalue ’ : str, # Exception value, as a string

5

6 # The traceback will contain a list of frames,

7 # represented each as a string.

8 ’traceback ’ : list,

9 }



103 Chapter 5. Computational Reproducibility

Listing 5.6: Metadata structure for ‘error’ output

More metadata keys can be added at the cell level. They are:

• name: A string which describes the name of the cell

• tags: A list of strings Tags added to the cell

• collapsed: A bool value to check whether the container of the output of a cell

is collapsed or not

• scrollable: A bool value to check whether the output of a cell is scrollable or

not

• deletable: A bool value to check whether the cell is deletable or not

• format: The mime-type of a raw cell

• source hidden: A bool value to describe whether the source of the cell is shown

or hidden

• output hidden: A bool value to describe whether the output of the cell is

shown or hidden

The provenance information captured by the ProvBook is added to the content of

the Notebook in the JSON format. The Notebook allows adding custom metadata

to its content. So we add a list of dictionary of provenance metadata. The structure

of the provenance in the metadata of the notebook is as follows:

1 "metadata": {
2 "provenance": [

3 {
4 "end_time": "2019 -02 -08 T11:21:42.352Z",

5 "execution_time": "8ms",

6 "outputs": [

7 {
8 "name": "stdout",

9 "output_type": "stream",

10 "text": "(’mean of data: ’, 3.9815812547037313)\n

"

11 }
12 ],
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13 "source": "data = rnd.normal(loc=4, scale =2, size

=100)\nprint(’mean of data: ’, np.mean(data))",

14 "start_time": "2019 -02 -08 T11:21:42.344Z"

15 },
16 {
17 "end_time": "2019 -02 -08 T11:21:54.818Z",

18 "execution_time": "7ms",

19 "outputs": [

20 {
21 "name": "stdout",

22 "output_type": "stream",

23 "text": "(’mean of data: ’, 3.969583207007243)\n"

24 }
25 ],

26 "source": "data = rnd.normal(loc=4, scale =2, size

=300)\nprint(’mean of data: ’, np.mean(data))",

27 "start_time": "2019 -02 -08 T11:21:54.811Z"

28 }
29 ],

30 }

Listing 5.7: Metadata structure for provenance added by ProvBook

The metadata added to the provenance by ProvBook are:

• start time: The time at which the execution of the cell started

• end time: The time at which the execution of the cell ended

• source: The input of the cell at a particular execution

• outputs: The outputs of the cell at a particular execution

• execution time: The total time it took for the execution of a cell

The time of execution for a computational task in a Notebook is important to check

the performance of the task. Therefore, the execution time was added as part of

the provenance metadata. The start and end time also act as an indicator of the

execution order of the cells. It is important for the user to check when a particular

cell was last executed because the cells can be executed in any order as we have

seen in Section 5.1.1. The users of computational notebooks make changes to the

parameters and run a set of cells several times till they arrive at their expected result.

It is important to track the history of all the executions to see what parameters were

changed and how the results were derived. In order to do so, the input and output

of each execution of a cell are saved in the notebook’s content.
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5.2.2 Semantic Representation

Many tools have emerged to capture the prospective and retrospective provenance

of the scripts. There are represented and stored in different ways in different sys-

tems. Most of them store the provenance data in a traditional database in the

provenance capturing systems of scripts. In our work, we aim to semantically rep-

resent the provenance information of script execution. This will help to describe

the whole experiment semantically including the computational provenance as well.

The provenance information of the scripts will be combined with other experimen-

tal metadata thus providing the context of the results. Thus we aim to make the

experiments understandable along with their context. In this section, we focus on

how we convert the computational notebooks into Resource Description Framework

(RDF). While, in Section 5.3, we discuss how we convert the scripts in general into

RDF.

ProvBook provides the user the ability to convert the notebooks into RDF along with

the provenance traces and execution environment attributes. The REPRODUCE-

ME ontology is used to describe the computational tasks of the notebook. The

ontology is extended from PROV-O and P-Plan to describe the provenance infor-

mation of the notebook.

We define the competency questions required to answer the questions related to the

computational provenance.

CQ11 What is the complete path taken by a user for a computational notebook

experiment?

CQ12 What is the sequence of steps in the execution of a computational notebook?

CQ13 How many trials were performed for a particular cell in a computational note-

book?

CQ14 How long it took for a particular trial of a computational notebook?

CQ15 What was the source for a particular trial of a computational notebook?

CQ16 What was the output for a particular trial of a computational notebook?

CQ17 Who are the agents responsible for a computational notebook?

CQ18 When was a particular trial of a computational notebook last executed?

CQ19 What are the environmental attributes of a notebook execution?

The aim of this module is to semantically describe the prospective and retrospec-

tive provenance of a computational notebook. The module contains the concepts

needed to represent the different elements of a computational notebook and the



106

Notebook

CellExecution

Output
Source

p-plan:hasInputVar p-plan:hasOutputVar

Setting

Kernel
ProgrammingLanguage

Version

p-plan:correspondsToStep

p-plan:Plan

p-plan:Variable

rdf:typerdf:type

rdf:typep-plan:Step Cellrdf:type p-plan:isStepOfPlan

rdf:typerdf:type

hasProgrammingLanguagehasKernel

hasVersion

p-plan:Activityxsd:dateTime

xsd:dateTime

xsd:string

prov:used

prov:generated

prov:Entity

executionTime

prov:endedAtTime

prov:startedAtTime rdf:type

prov:Entity

prov:Agent

prov:wasAttributedTo

REPRODUCE-ME

P-Plan

PROV-O

Figure 5.5: The semantic representation of a computational notebook [Samuel and

König-Ries, 2018b]

properties to relate the several trials of the notebook. We use RDF to represent the

computational notebooks as we have discussed the benefits of using semantic web

technologies to represent provenance information in Chapter 4. Figure 5.5 shows the

semantic representation of a computational notebook. We define how the notebook

is semantically described.

• Notebook

The computational notebook is represented as a Notebook which is a sub-

class of p-plan:Plan. The Settings describes the execution environment of the

Notebook. The Settings are Kernel, ProgrammingLanguage, Version.

• Cell

The cell of a notebook is represented as Cell which is a p-plan:Step. The Cell is

a step of Notebook and the relationship is described using p-plan:isStepOfPlan.

• Source

The input of each cell is described as Source which is related to Cell using

the object property p-plan:hasInputVar. The Source is a p-plan:Variable. The

value of the Source variable is represented using rdf:value.

• Output

The output of each cell is described as Output which is related to Cell using

the object property p-plan:hasOutputVar. The Output is a p-plan:Variable.

The value of the Output variable is represented using rdf:value.
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Figure 5.6: A Notebook which can be downloaded in RDF

• CellExecution

Each execution of a cell is described as CellExecution which is a p-plan:Activity.

The input of each Execution is an prov:Entity which is related using the prop-

erty prov:used. The output of each Execution is an prov:Entity which is related

using the property prov:generated. The data properties prov:startedAtTime,

prov:endedAtTime and repr:executionTime are used to represent the starting

time, ending time and the total time taken for the cell execution respectively.

Figure 5.6 shows a notebook which can be downloaded in RDF using ProvBook.

The RDF can be downloaded as a turtle file either from the user interface of the

notebook or using the command line. Figure 5.7 shows a part of Jupyter Notebook

in RDF represented using REPRODUCE-ME ontology. It allows the user to share a

notebook along with its provenance in RDF and also convert it back to a notebook.

ProvBook also provides a reproducibility service where the provenance graph is con-

verted back to a computational notebook along with its provenance. The provenance

graph of the notebook can be converted back to a notebook using the command line.

We answer the competency questions (CQ11-CQ19) using SPARQL in Chapter 7.

5.2.3 Provenance Difference

Reproducibility is the ability of a third party to reproduce the results generated

from the description of its input and steps with the aim to confirm the original ex-

perimenter’s results. Therefore, it is important to get the provenance information to

reproduce the original experimenter’s results. The provenance information includes

the data and the steps along with the original results. In this module of ProvBook,
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Figure 5.7: Provenance of Jupyter Notebook and its executions represented in RDF

we focus on helping the scientists to compare the results of different executions of a

Jupyter Notebook.

We consider two use cases for the development of this module. They are:

Figure 5.8: A Notebook code cell with the extension to compare its different execu-

tions.

• Repeatability

Ana performs some data computational tasks using Jupyter notebook. She has

a presentation and wants to show her results to her team members. Before

her presentation, she wants to confirm her result by repeating her experiment.
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Figure 5.9: The difference between the input and output of two different execution

of a code cell

She runs all the cells in the Jupyter notebook in the same laptop to confirm

her results (see Repeatability Definition 4.1.5).

• Reproducibility

Ana presents her result in her team meeting. She shares her Jupyter notebook

to the team members. Alice, her team member, runs Ana’s Jupyter Note-

book in her own laptop which has a different operating system and memory

specifications. She wants to compare the result she got from her execution

of the notebook with Ana’s result. She uses ProvBook to compare the two

results from two different executions. Alice also makes some changes in the

parameters and run the Jupyter Notebook in a non-linear order. She gets a

different result and she wants to see what was the divergence that resulted in

a different output (see Reproducibility Definition 4.1.4).

In the first use case, the computational experiment is repeated in the same environ-

ment by the same experimenter. While in the latter, the experiment is reproduced

in a different environment by a different experimenter. In either case, the difference

between the executions help the users either to (1) repeat and confirm/refute their

results or (2) reproduce and confirm/refute others results.

ProvBook tries to address both the issues by providing a provenance difference

module to compare the different executions of a notebook. Figure 5.8 shows a note-

book code cell with the extension to compare its different executions. The start time

of different executions collected in Section 5.2.1 is used to differentiate between two

executions. The user is provided with a dropdown to select two executions based on

the starting time of the executions. When the user selects the two executions, the

difference in the input and the output of these executions are shown side by side.
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Figure 5.10: The diff of two notebooks using traditional diff tool

The users can select the original experimenter’s execution with their own execution

of the Jupyter Notebook as well.

Figure 5.9 shows the differences between the input and output of two different ex-

ecution of a code cell. If there are differences in the input or output, the difference

is highlighted for the user to distinguish the change. As seen in Figure 5.9, there

is a difference in the source in Line 1 in the two executions which is highlighted

and has resulted in different outputs. The provenance difference module uses the

nbdime8 library from the Project Jupyter. The nbdime tools provide the ability

to compare notebooks and also a three-way merge of notebooks with auto-conflict

resolution. ProvBook extends the nbdime library and calls the API from the nbdime

to see the difference between the provenance of two executions of a notebook code

cell. Jupyter Notebooks are stored in a JSON file format which makes easy parsing

because of its structure. Figure 5.10 shows the diff of the Jupyter Notebooks using

traditional line-based tools. Since these tools do not handle the logical structure of

the notebooks, nbdime is developed taking into account the structure of the note-

book. It provides diffing of notebooks based on the content. It uses existing tools

for the input and output and renders image-diffs properly. The current algorithm

used by nbdime for the diffing is the Longest Common Subsequence [Hirschberg,

1977]. There is an ongoing work9 to replace the brute force O(N2) LCS algorithm

with the Myers LCS based diff algorithm [Myers, 1986].

5.2.4 Provenance Visualization

Figure 5.11 shows a Jupyter Notebook code cell with the provenance data of its

executions. The visualization of the provenance information is displayed below the

input of every cell. A slider is provided in the provenance area where the user can

drag to view the history of the executions of the cell. The user can track the history

8https://github.com/jupyter/nbdime
9https://readthedocs.org/projects/nbdime/downloads/pdf/latest/

https://github.com/jupyter/nbdime
https://readthedocs.org/projects/nbdime/downloads/pdf/latest/
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Figure 5.11: A Jupyter Notebook code cell with the provenance data of its executions

and compare the current results with several previous results and see the difference

that occurred. The user can view the provenance information of a selected or all

cells by clicking on the respective buttons in the toolbar. ProvBook also provides the

user the options to clear the provenance information of a selected cell or all cells if

needed. It tries to address the problem of having larger provenance information than

the original notebook data. Storing the historical data in the notebook itself helps

in easy portability. ProvBook adds a provenance menu in the Jupyter Notebook

interface as shown in Figure 5.12. A user can toggle the provenance display for a

selected cell from Cell→ Provenance→ Toggle visibility (selected). A user can clear

the provenance data from the metadata of the notebook from Cell → Provenance

→ Clear (all).

5.3 Semantic Representation of Scripts

Scripts are widely used in computational experiments. They have become a vi-

tal part of the research lifecycle of experiments for scientists for automation, mea-

surement, and analysis of data. The basic programming course provided by many

universities helps the researchers to learn scripting languages. The ability to do

complex tasks through minimal steps using scripts provide an added value in their

research work. Scripts can be executed in several trials with different parameters

for the analysis of data with less effort. However, the provenance information of the

several executions of script are lost when they are re-executed. The importance for

provenance management of Jupyter Notebooks presented in Section 5.2.1 applies for

the execution of scripts as well. To represent complete path of a scientific experi-

ment, it is important that we link the retrospective provenance with the prospective
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Figure 5.12: The provenance menu added in the Jupyter Notebook interface

provenance. In this section, we present our work on semantic representation of script

provenance. One of our aims to do so is to link the non-computational data with

the computational results to get a complete path of a scientific experiment. Repro-

ducibility of these scripts is thus an important step towards reproducibility of the

experiments as a whole.

To semantically represent the script provenance, we first need to understand the

important components required for computational reproducibility of scripts. Here,

we do not focus on one particular scripting language instead focus on the general

structure of scripts. We present the components that we consider are important to

know while reproducing others’ script. They are as follows:

SC1 Script

This is the program or code that is used in a scientific experiment. It denotes

the prospective provenance specifying the functions that need to be executed.

SC2 Function

It is a programming language code snippet in a script which describes a proce-

dure or a routine. It takes zero or more input and returns zero or more output

to perform some tasks.

SC3 Module

It is a part of a computer program or software which provides declarations

and functions. Programs can contain one or more independently developed

modules. Most of the scripts start with importing modules. ModuleNotFound

is a very common error during the script execution.
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SC4 Module Version

The version of modules is a very important part of script execution. The

version can affect the intermediate and final results of a script.

SC5 Argument

This is the parameter taken as an input, or declared/used in a script. This

is an important provenance information since the output value can depend on

it.

SC6 Input

It is the variable used as an input to a script or a function.

SC7 Output

It is the variable generated as an output of a script or a function.

SC8 Programming Language

It is the programming language in which a script is written.

SC9 Programming Language Version

It is the version of the programming language in which a script is written.

SC10 Operating System

It is the operating system where the script is run.

SC11 Operating System Version

It is the version of the operating system where the script is run.

SC12 Author

It denotes the person who is the author of the script.

SC13 Function Activation

It denotes when a function is activated or run.

SC14 Trial

It denotes a run or execution of a script.

SC15 Start Time

It denotes the time when the script is started to execute.

SC16 Finish Time

It denotes the time when the script finishes its execution.

SC17 Experimenter

It denotes the person who is executing the script.

SC18 Location

It denotes the location where the script is executed.



114

SC19 Accessed File

It denotes the files that are accessed during the script execution.

SC20 Order of execution

It denotes how the functions are executed inside a script.

SC21 Experiment

It denotes the scientific experiment in which the script was used to perform

data computation to produce result.

We have presented the components of a script that are required for computational

reproducibility. We use each of them to semantically describe the provenance of

the complete execution of a script in a structured form using linked data without

worrying about any underlying technologies or programming languages. We use

the REPRODUCE-ME ontology extended from PROV-O and P-Plan to to describe

the steps and sequence of steps in the execution of a script. Before extending

the ontology to describe script provenance, we define the competency questions as

follows:

CQ20 What is the sequence of steps in the execution of a script with input parameters

and intermediate results in each step required to generate the final output?

CQ21 Which are the steps that invoke a particular module?

CQ22 Which are the environmental attributes in the execution of a script?

CQ23 List the user, the operating system, programming language version, the work-

ing directory associated with the execution of a script.

CQ24 What is the complete derivation of a script output?

To answer these questions, it is required to know which input data was responsi-

ble for the output, the steps involved in generating them, the functions, the input

parameters involved, the dependencies to other modules, time taken for the exe-

cution of each function, the side effects, etc. Table 5.1 describe how each compo-

nent (SC1-SC21) is modelled in the REPRODUCE-ME ontology. Each ontology

term is categorized into prospective and retrospective provenance (see Section 1.2).

Prospective provenance of a script denotes the specification and the steps required

to follow to generate the results. While, retrospective provenance of a script denotes

what actually happend when the script was executed. The prospective provenance

in the context of script execution includes script, function, module, programming

language in which the script is written, author, and experiment. The version of

the module, programming language, and operating system belongs to retrospective

provenance since they can change in each execution of the script. This is the same
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Component Ontology term Provenance Remarks

SC1 repr:Script Prospective Subclass of p-plan:Plan

SC2 repr:Function Prospective Subclass of p-plan:Plan

SC3 repr:Module Prospective Subclass of p-plan:Plan

SC4 repr:Version Retrospective Subclass of repr:Setting

SC5 repr:Argument Retrospective Subclass of p-plan:Variable

SC6 repr:Input Retrospective Subclass of p-plan:Variable

SC7 repr:Output Retrospective Subclass of p-plan:Variable

SC8 repr:ProgrammingLanguage Prospective Subclass of repr:Setting

SC9 repr:Version Retrospective Subclass of repr:Setting

SC10 repr:OperatingSystem Retrospective Subclass of repr:Setting

SC11 repr:Version Retrospective Subclass of repr:Setting

SC12 repr:Author Prospective Subclass of prov:Person

SC13 repr:FunctionActivation Retrospective Subclass of p-plan:Step

SC14 repr:Trial Retrospective Subclass of prov:Activity

SC15 prov:startedAtTime Retrospective Data property

SC16 prov:endedAtTime Retrospective Data property

SC17 repr:Experimenter Retrospective Subclass of prov:Person

SC18 prov:Location Retrospective Using prov:atLocation

SC19 repr:File Retrospective Subclass of p-plan:Variable

SC20 p-plan:isPrecededBy Retrospective Object property

SC21 repr:Experiment Prospective Subclass of p-plan:Plan

Table 5.1: Overview of the ontology terms to model script provenance
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case with the input, output, argument, function activation, start and end time, file,

and order of execution. Figure 5.13 shows the modelling of script provenance using

REPRODUCE-ME Ontology.

We describe how adding these important concepts in REPRODUCE-ME ontology

repr:FunctionActivation
        (p-plan:Step)

   repr:Trial
(prov:Activity)

repr:Argument
(p-plan:Variable)

 repr:Script
(p-plan:Plan)

p-plan:isStepOfPlan

p-plan:isPrecededBy

p-plan:hasInputVar p-plan:isOutputVarOf

p-plan:correspondsToStep

prov:used

repr:Experimenter
    (prov:Agent) prov:wasStartedBy

   repr:OperatingSystem        
 (repr:EnvironmentAttribute)
            (prov:Entity)

prov:startedAtTime
prov:endedAtTime
prov:AtLocationrepr:name

repr:version

p-plan:isVariableOfPlan

 repr:Module
 (p-plan:Plan)

prov:used repr:correspondsToActivity

Figure 5.13: The REPRODUCE-ME Ontology depicting the script execution

help in addressing each competency questions.

CQ20 What is the sequence of steps in the execution of a script?

The concept Trial is added to model the execution of a script. Each Trial of

a script results in several activation of functions. So the concept Function-

Activation is modelled as a p-plan:Step. Each FunctionActivation is linked to

the Trial with the object property p-plan:correspondsToStep. The order of

the script execution is modeled using the object property p-plan:isPrecededBy

where every FunctionActivation is preceded by another FunctionActivation.

CQ21 Which are the steps that invoke a particular module?

Each FunctionActivation corresponds to a Trial. The concept Module is added

to model the module. Each Trial is linked to Module using the object property

prov:used.

CQ22 Which are the environmental attributes in the execution of a script?

Several environmental attributes affect the execution of a script. The concept

EnvironmentAttribute represents the class of the environmental attributes of

a scientific experiment. We have added the specific concepts like Program-

mingLanguage, OperatingSystem, Version to capture execution environment

provenance of scripts.

CQ23 List the user, the operating system, programming language version, the

working directory associated with the execution of a script.

The concepts Author and Experimenter are added as subclass of prov:Person

to represent the author and experimenter who executes the script respectively.
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The concepts ProgrammingLanguage, OperatingSystem, Version and Location

are used to model the programming language, operating system, the version

of programming language and operating system, and the location where the

script is executed respectively.

CQ24 What is the complete derivation of a script output?

The complete derivation of a script output consists of a path from the input

to the output. This path provides information about the script used, the

functions defined, the functions which were activated, the trial of the script,

the execution time of the trial (start and end time), the modules which were

used and their version, the programming language of the script and its version,

the operating system where the script is executed and its version, the files that

were accessed during the execution, the input argument and return value of

each function activation and the final result. Table 5.1 provides the ontology

terms that are added to represent this complete path. Figure 5.13 shows how

these terms are used to model the script execution.

5.4 Summary

This chapter presented approaches to support computational reproducibility. We

saw that the computational notebooks and scripts are widely used in computational

environments. The reasons for their wide adoption include ability to perform com-

plex tasks with minimum effort, easy to learn, use, deploy and share. We first

focused on the provenance management of computational notebooks and later on

the scripts. We presented the end-to-end provenance management for computational

reproducibility. Provenance capture, representation, storage, query, difference, and

visualization are the important modules for the end-to-end provenance management

for computational reproducibility. We showed how we developed each module for

provenance tracking for computational notebooks. We introduced ProvBook, which

is an extension of Jupyter Notebooks which captures the provenance of their exe-

cutions. The three important modules in ProvBook help to capture, represent and

compare the provenance of their executions. We also showed how we semantically

describe the computational notebooks and scripts along with their executions. We

evaluate ProvBook with respect to different scenarios and answer the competency

questions related to computational experiments in Chapter 7. The results of the

evaluation are provided in Section 7.4.



Chapter 6

CAESAR-A Collaborative

Environment for Scientific

Analysis with Reproducibility

As stated in Chapter 2, one of our goal is to design and create a provenance-based

semantic framework to collect information about the experimental data and results

along with the settings and execution environment and visualize the complete path

(Goal3). We have developed a conceptual model using semantic web technologies

to describe a complete path of a scientific experiment in Chapter 4. We used this

model to semantically represent the computational notebooks and scripts and their

execution in Chapter 5. We also showed how ProvBook captures the provenance

of computational experiments using Jupyter notebooks. In this chapter, we aim to

integrate the contributions from Chapter 4 and 5 to provide a framework for the sci-

entists to capture, represent, store, query, compare and visualize the complete path

of a scientific experiment consisting of both computational and non-computational

steps.

To describe the complete path of a scientific experiment, we need end-to-end prove-

nance management support in scientific data management platforms. Provenance

capture, representation, storage, difference, and visualization are the core units of

end-to-end provenance management systems (see Figure 5.1). Each unit plays a

major role here thus supporting understandability, reproducibility, and reuse. How-

ever, the lack of end-to-end provenance management support in such platforms is

currently challenging (Chapter 3).

The rapid increase in the volume, variety, and complexity of research data in recent

years brings several challenges in their management. The decision on which data to

keep and at what granularity are some of them. It is also often difficult to follow

a relation between the results in a publication and the steps that generated them.

Not only the results and the steps but also all the data elements that are essential

for reproducing results (see Section 4.1) are required to follow this link. It helps in

118
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building up the trust and confidence in results. It is also important that the datasets

along with the metadata are collected and organized in a structured way from the

beginning of the experiments. Therefore, we need to start addressing this issue at

the stage when the data is created (see Figure 1.1). Thus, scientific research data

management needs to start at the bottom level of the research lifecycle to play a

key role in this context.

To support our main hypothesis that it is possible to capture, represent, manage

and visualize a complete path taken by a scientist in an experiment including the

computational and non-computational steps to derive a path towards experimental

results (Section 2.3), we aim to help the scientists at the grass root level not only

to describe (see Chapter 4) but also manage their experimental data in a reusable

and interoperable way. In addition to that, we intend to provide a collaborative

environment where scientists can view, share and reuse each others’ experimental

data. Visualization of big data provenance for understanding the derivation path

of the results is another requirement in this context. It helps the newcomers in

a research team to understand and visualize the experiments conducted by their

team members with minimal effort. Therefore, we aim to provide a platform which

captures and manages the scientific experiments along with the input, output and

execution environment and link with other datasets on the web using the Semantic

Web technologies. This platform provides a better understanding of these experi-

ments with the help of visualization techniques and ontologies.

With the requirements defined in Section 2.5, we present CAESAR (CollAborative

Environment for Scientific Analysis with Reproducibility). It provides a collabora-

tive environment for authoring of scientific experimental metadata. It provides all

the core units required for the end-to-end provenance management. The complete

path of an experiment including its computational and non-computational parts is

provided with the provenance representation and visualization. We also explain how

we address each scenario faced by Ana that we presented in our use case in Sec-

tion 2.1 using CAESAR. The code of CAESAR is available online1.

In this chapter, we introduce CAESAR in Section 6.1 and its underlying architecture

in Section 6.1.2. The following sections discuss in detail each module of CAESAR

for the end-to-end provenance management of scientific experiment as shown in the

Figure 5.1. Section 6.2 presents the features of the provenance capture module.

Section 6.3 presents the provenance data management module. How the provenance

is represented in CAESAR is described in Section 6.4. The visualization modules

of CAESAR are discussed in Section 6.7. The implementation details are explained

in Section 6.8. This chapter concludes with the summary (Section 6.9). Parts of

the results of this chapter have been published in [Samuel et al., 2017,Samuel et al.,

2018].

1https://github.com/CaesarReceptorLight

https://github.com/CaesarReceptorLight
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6.1 CAESAR: An Introduction

To support reproducibility and reuse of scientific experiments, we narrowed our

scope of research data management to life sciences. While the research data comes

from multiple contexts in life sciences, we focus on the field of light microscopy

imaging. This is due to the fact that research in life sciences is mostly based on

imaging datasets. These imaging datasets capture the spectral characteristics of

the signals generated from the samples to measure and understand the functions

of the cells and tissues of organisms and plants. These datasets generated from

different imaging methods often have proprietary file formats and can be viewed

with only particular hardware and software. The lack of a standardized file format

for the imaging datasets is a fundamental problem in this area [Allan et al., 2012].

Explosive growth in the number of biological images and their sheer size also make

their management and querying challenging.

To overcome these challenges, the Open Microscopy Environment was started as

an international effort of universities and industries to build open source tools and

standards for microscopy imaging data. We conducted a literature survey to find

a suitable open source imaging data management. The survey focused on two

platforms: BisQue [Kvilekval et al., 2010] and OMERO [Allan et al., 2012].

The Bio-Image Semantic Query User Environment (BisQue) is an open-source

server-based software system that can store, display and analyze images. The

stored images can be accessed through a web interface or by using an API. It

is being developed and maintained by a small team at UCSB. They have two

releases per year scheduled. The platform uses the Bio-formats2, OpenSlide3, and

ImarisConvert4 to support over 240 file formats.

OMERO [Allan et al., 2012] is another open source data management platform

for imaging metadata primarily for experimental biology. The OMERO software

platform is developed by the Open Microscopy Environment (OME) which is a

collaborative consortium responsible for producing open specifications and tools

to enable open-access of image data. Its plugin architecture provides a rich set of

features including analyzing and modifying images. It supports over 140 image

file formats using BIO-Formats [Linkert et al., 2010]. OMERO has a very active

development community ensuring a continued effort to improve the system, with

everybody being able to contribute. It has also a well-documented API to write

own tools and the ability to extend the web interface with plugins. It also profits

from a faster release cycle.

To support reusability of software, we decided to select a suitable data management

2https://www.openmicroscopy.org/bio-formats/
3https://openslide.org/
4http://www.bitplane.com/

https://www.openmicroscopy.org/bio-formats/
https://openslide.org/
http://www.bitplane.com/
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from these two tools. Both the software provide more or less the same features for

the image data management. But neither of these tools provided the management

of the provenance of experimental data including the computational processes.

We selected OMERO based on the possibility of its rich and extensible features.

However, the lack of semantic representation of experiments with the integration

of data and results from different steps and sources led to the development of

CAESAR.

CAESAR is developed for the data management of experimental datasets and

its provenance [Samuel et al., 2017] as part of the CRC ReceptorLight5. It is a

software platform which is extended from OMERO. Together with the rich features

provided by OMERO and our extensions6, the CAESAR provides a platform to

support understandability and reproducibility of experiments. It provides an added

value with the semantic integration by providing the linking of the datasets with

the experiments along with the execution environment. It gives the scientists the

features to describe, preserve and visualize their experimental data along with the

images [Samuel et al., 2018].

6.1.1 OMERO: Architecture

To understand CAESAR, it is important to understand the architecture and the

features provided by the underlying software, OMERO. Figure 6.1 shows the archi-

tecture of OMERO. It is composed of a server and clients which are written in Java,

Python, and C++ [Allan et al., 2012]. It is a collection of databases, middleware,

and clients for the management and processing of images. The main component

is the OMERO.server which is responsible for connecting the databases that store

different data types. It provides access to the storage data to the client applica-

tion using a single API. It consists of several databases to store heterogeneous data

types. The data including thumbnails, images, binary data and the data used for

annotation are stored in a flat file store provided by the “Binary Repository”. It also

stores the scripts and other files attached along with the images. Text indexing in

OMERO is provided by Lucene7 and the indices are stored in “Search Index”. The

relational database is provided by PostgreSQL. The metadata associated with the

images and the annotations are stored in the relational database. The HDF5-based

tabular data provided by OMERO.tables store all the table-based data. The images

are stored as binary pixel file in its file repository. The proprietary file format of the

5http://www.receptorlight.uni-jena.de/
6Daniel Walther, Frank Taubert and Sheeba Samuel contributed to the implementation. Role

of Daniel Walther is in the extension of OMERO.server to include new services, Frank Taubert

in the development of the desktop client, and Sheeba Samuel in the development of the webclient

plugins and the semantic integration.
7http://lucene.apache.org/

http://www.receptorlight.uni-jena.de/
http://lucene.apache.org/
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Figure 6.1: The architecture of OMERO [Allan et al., 2012]

images is converted to a key-value pair in a table. These are added as an annotation

to the image in OMERO.

The “Rendering Engine” component in the middleware is responsible for reading the

image data and renders it based on the particular client application. Search Queries

are performed by Lucene based on the search indices stored in the “Search Index”.

Scripting service provided by OMERO.scripts is used for processing images using

scripts. Hibernate provides the relational mapping between the relational database

and the OMERO.server. The Zero’s Internet Communications Engine (ICE) pro-

vides the communication to different clients using the single OMERO API. This

API provides access to the data from the Binary Repository, relational databases,

and HDF5 files.

OMERO provides a Python-based web client which is one of the important user

interfaces. Using the webclient, users can visualize, analyze, annotate and share the

images. But the webclient does not provide the feature to upload images which is

considered as a major drawback. The uploading of images is possible only through

the OMERO.insight which is a Java-based client. OMERO.importer which is written

in Java reads and extracts the image acquisition data with the help of BIO-Formats.

BIO-Formats [Linkert et al., 2010] is an image translation library which reads and

converts the proprietary microscopy data to an open standard model so that they

can be used by other tools.

The OME provides OME data model which describes the elements responsible for

the image acquisition process in a microscope. The OMERO is based on the OME

data model and BIO-Formats which helps to manage the heterogeneous image data.

The desktop client and a webclient help the users to manage their data. Image
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data are uploaded to OMERO using the desktop client and mapped to the OME

data model. OMERO provides the visualization of images. The imported images

can be further analyzed to derive a new set of images. These images can be stored

along with the original image. It provides a feature called “StructuredAnnotations”

where files like measurements can be added and stored in the file repository. The

annotations can be linked with the ontologies. The original and the derived datasets

can be accessed using the OMERO API.

6.1.2 CAESAR: Architecture

The architecture of CAESAR is built on top of OMERO and BIO-Formats. The

plugin architecture provided by OMERO allows a modular design to add new ap-

plications. The aim of CAESAR is to provide the data management of scientific

experimental data and its provenance to support reproducibility and reuse. To pro-

vide the complete path of a scientific experiment, it is necessary that CAESAR

provides the facility to capture, represent, store, query, compare and visualize the

provenance information of experiments. Figure 6.2 shows the architecture of CAE-

SAR. Hence, the architecture of CAESAR focuses on the following modules:

M1 Provenance Capture: This module is the primary component for capturing

provenance of experiments. This module is implemented in the webclient as a

separate plugin. The experimental metadata is captured using the Metadata

Editor while the provenance of computational experiments is captured using

ProvBook in a multi-user environment provided by JupyterHub connected to

CAESAR (Section 6.2).
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M2 Provenance Storage: This module is responsible for the storage of the prove-

nance of experiments. In addition to the storage provided by OMERO, the

RDF data provided by the mapping of the REPRODUCE-ME ontology and

the relational databases are queried using the rdf4j SPARQL Endpoint8 (Sec-

tion 6.3).

M3 Provenance Representation: This module provides the semantic description

of experiments. The link between the experimental metadata, data, steps,

settings and the results is semantically described using the REPRODUCE-

ME ontology. The ontology-based data access is used to represent the mapping

between the underlying OMERO and ReceptorLight database (Section 6.4).

M4 Provenance Visualization: This module provides the visualization of the com-

plete path of scientific experiments. The Project Dashboard provides a com-

plete overview of the experiments performed in a research project. Whereas

the ProvTrack provides an interactive provenance graph to track the prove-

nance of each scientific experiment (Section 6.7).

Each module is discussed in detail in the following Sections 6.2-6.7. The chapter is

concluded with a summary (Section 6.9).

6.2 CAESAR: Provenance Capture

The first and the foremost important step towards reproducibility is the capturing of

provenance. Lack of documentation and digitalization of experimental data, lack of

data integration from different devices, and publicly available data hinder research

reproducibility. In order to avoid the above-mentioned problems, we provide a way

for scientists to capture provenance of experimental data. Often, it is difficult for

scientists to learn an entirely new system. The Provenance Capture module pro-

vides a metadata editor with a very rich set of features to describe the experimental

metadata with the ease of writing in their lab notebook.

The Provenance Capture Module is the primary module of CAESAR to capture

the experimental metadata. The main component of this module is a metadata

editor which is a form-based provenance capture system. The editor helps the scien-

tist to document their experimental metadata and interlink with other experiment

databases. The requirements to design the provenance capture module were col-

lected from the scientists from the CRC ReceptorLight project. The administrators

of each research project are responsible for creating the template of the form. This

is to ensure that the scientists in a research project capture the metadata of ex-

periments in a uniform manner. The general template consists of an “Experiment”

8http://rdf4j.org/

http://rdf4j.org/
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form which documents the information about an experiment. It includes the tem-

poral and spatial properties as well as the research context of the experiment. The

materials and other resources used in an experiment are added as new templates to

be included in CAESAR. The template is then added as a service and a database

table in CAESAR.

To add new metadata support, OMERO.server is extended to include new services.

The REPRODUCE-ME data model is used to describe scientific experiments and

their provenance. Every time new data types are added in CAESAR, it is difficult

to update the whole application by hand. To ease this, new data types are added

to the OME Acquisition XML file. The code generators are constructed which

reads the OME-XML file. These are converted into scripts which creates the Re-

ceptorLight database and links to the OMERO relational database. The code that

is generated through this process is compiled which is later used by the webclient

to capture experimental metadata. These new data types are also added to ICE

(see Section 6.1.1) so that the new data types are available as API to be used by

remote clients. This approach helps to update and maintain new data types which is

commonly agreed by members in a research project. Also, it helps the development

process to avoid being error-prone.

The webclient and desktop provided in CAESAR are developed to include the new

data types. The desktop client was developed to deploy the new system on work-

stations where an Internet connection is not available. This is required due to

the security reasons in some of the microscopes in the laboratory. So, when a re-

searcher is conducting an experiment, he or she can input all the data in the desktop

client [Samuel et al., 2017], thus minimizing the loss of data naturally occurring when

recording these things from memory. The user can then upload the images, files,

and measurements obtained from the devices during the experiment which is later

uploaded to the server when an Internet connection is available. The provenance

capture module in the desktop and webclient is similar as well as their user interfaces

to maintain consistency across clients.

Using the metadata editor, the scientists can easily record all the data of the non-

computational steps performed in their experiments. In addition to the experiment,

the plugin allows documenting the protocols, the materials and the steps that were

used. Figure 6.3 shows the Experiment Metadata Editor. We discuss in detail the

additional features provided by the Experiment plugin in CAESAR.

1 User and group management for the experimental data

The user and group management is important if a data management system

has to be used by many people and communities. OMERO offers a detailed

way to manage users in groups and provides roles for these users. A group is

a collection of users which enables sharing of data between them. The roles

and permissions are assigned to the users belonging to a group to restrict the
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Figure 6.3: The Metadata Editor in CAESAR

modification of data.

The user and group management provided by OMERO is also adopted in

CAESAR. A user may belong to one or many groups. The data is shared

between the users in the same group in the same CAESAR server. The data

can be made available to members of other groups based on the permission

level of the group. The data imported by the user belongs to the group where

the user has documented the data. The data can also be moved to other

groups. There are three roles a user can be assigned:

• Administrator

A server can have multiple administrators. The administrators control

all the settings of the groups.

• Group Owner

Each group can have multiple owners. The group owner has more rights

than a group member within a group. The group owner has also the right

to add other members to the group.

• Group Member

A group member is a standard user in the group.

In addition to the roles, there are also various permission levels in the system.

• Private

This is the most restrictive permission level. A private group owner can

view the members of the group. The owner can also view and control the

data of the members within a group. Whereas a private group member
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can view and control only his/her own data. This permission level has

the least collaboration level with other groups in the system.

• Read-only

This is an intermediate permission level which allows viewing the mem-

bers and read their data. The group owners can read and perform some

annotations on the data of members from other groups in addition to

their own group. While the group members can view the members from

other groups and read their data, they don’t have permission to annotate

the datasets.

• Read-annotate

This permission level provides a more collaborative option. The group

owners and group members can view the members of the other groups as

well as read and annotate their data.

• Read-write

This permission level allows all group members to read and write data

just like their own group.

CAESAR also uses the same role and permission levels to control the access

and modification of experimental data. In a private group, a Principal Inves-

tigator (PI) can act as a group owner and students as group members. The

students can store their experimental data and PIs can access students’ data

and decide which data can be used to share with other collaborative groups.

In a Read-only group, a scientist can move data to a read-only group so that

the data can be viewed by other group members. The group owner can then

annotate their data or add Regions of Interests to their images. This group

can serve as a public repository where the original data for the publications

are stored.

A Read-annotate group can serve as a collaborative team of groups who work

together with the data for a publication or research. A Read-write group works

in a very collaborative way where every group members are trusted and given

equal rights to view and access the data.

It is possible for the group owners and administrators of the server to change

the permission level of a group. But only the administrator can promote a

group to Read-Write group. Also, it is not possible to degrade a groups’ level

to private if the data contain annotations made by other users. Users can

perform the following actions based on the permission level in their group:

• Create Project and Datasets

• Upload Images and data

• Delete Data
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• Move data between groups, projects, and datasets

• Run Scripts

• Use Regions of Interest (ROIs) (add, import, edit, delete, save and ana-

lyze them)

• Annotate, rate and tag images, add attachments and comments

• View and edit experimental data

• Reference experimental materials in other experiments

This user and group management opens the doors for collaboration among

teams in research groups and institutes before the publication of the data

online. This addresses one of the issue faced by Ana in the use case in Sec-

tion 2.1. In this way, Ana could share her experimental data along with her

team members and her supervisor. To share data with her collaborating team

in another location, she could give the other team permission to view and use

the data.

2 Link experiments with materials and resources

A scientific experiment consists of computational and non-computational steps

and processes. The non-computational processes in life sciences use several ex-

periment materials and samples. In addition to that, it consists of input files,

measurement files, and images. Each step of an experiment uses different ma-

terials and standard operating procedures. It is essential to interlink these

dependencies of these materials with an experiment. To do so, the plugin pro-

vides the user with a facility to link the materials to the steps of an experiment.

The input field in these forms is provided with an additional field so that the

user can choose the resources from other tables in the database. Also, the user

can attach files, scripts or other resources to any steps of an experiment form.

These resources can either be an input to a step or intermediate result of a

step. The users can also add the publications that were used as a reference for

the experiment. The files that are attached to these forms are stored in the

Managed Repository of that particular user.

3 Reuse of experiment materials and Standard Operating Procedures

Reuse is an important factor when working in a collaborative research team.

In a group, it is important to reuse things than doing it from scratch. Reuse

in CAESAR is achieved by sharing the descriptions of the experiments, stan-

dard operating procedures, and materials with the team members within the

research group. This avoids the need for documenting it multiple times. It is

possible by referencing these descriptions in their own experiment. The plugin

provides a database of experiment materials like Plasmid, Protein, Vector, etc.
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The users in a research team can view the list of all the databases used by the

other team members in their research group. The materials used in the group

are visible to all the members of the group. Therefore, the scientist can use

the description of materials and standard operating procedures used in his/her

experiment.

4 Version history of experimental data

Version management plays an important role in data provenance. Keeping

the version history of the changes in the description of experiments helps in

data provenance. In a collaborative environment, it is necessary to know the

modifications made by the members of the system. Also, it is important to

track the history of the outcome of an experiment. CAESAR provides version

management of the experimental metadata. It stores any changes made in the

documentation of an experiment. It also provides a facility for the user to

view the version history of an experiment and compare two different versions

of an experiment description.

5 File management

The input data, measurement data or other resources which are attached as

files to the experiment are stored in the Managed Repository of the server.

The file management system in CAESAR store these files and index them to

the experiment. The user can also organize the files in a hierarchical structure

based on their experiments and measurements.

6 Standard Operating Procedures

Each experiment has multiple non-computational and computational steps. A

Standard Operating Procedure (SOP) in life-sciences provides a set of step-by-

step instructions to carry out a complex routine. CAESAR provides a database

of Standard Operating Procedures. The users can store in this database the

protocols, procedures, scripts or Jupyter Notebooks based on their experi-

ments. Later, these procedures can be linked to the step in an experiment

where they were used. Users can reuse the SOPs created by other members

as well. This database of SOPs can also contain scripts that were used to

analyze data or images. Jupyter Notebooks can also be added which contains

either the documentation of each step of the procedure or code for analysis.

Some cells in the Jupyter Notebook just document the process but others may

contain executable code which can be either code in R, Matlab or Python or

Unix shell commands. Jupyter Notebooks helps to address various users irre-

spective of the programming languages they use. As the data and images are

contained in the system itself, it is easy to include the scripts that analyze the

data stored in the platform. The JupyterHub is installed along with ProvBook
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in CAESAR. This help users to execute the steps again to check whether the

output is similar to the output from the previous users.

7 Provenance collection of executable steps

The granularity of provenance collection is important to scientists. Sometimes,

it is essential to know the fine details of the experiment workflow. Scripts are

also part of some experiments. We collect the provenance information of the

output generated by the Python scripts using noWorkflow tool. There are

some sample scripts provided by OMERO to perform some operations in the

images. The provenance of the execution of these scripts is captured and

stored.

8 Annotate experiment with ontologies

In addition to REPRODUCE-ME Ontology, the user can also annotate the

experimental data with terms from other ontologies like GO [Ashburner et al.,

2000], CMPO [Jupp et al., 2016], etc.

9 User proposals on experiment descriptions

Based on the permission level of experimental data, if a user does not have

the right to modify other member’s data, then that user can propose changes

to the experiment. This is done using the Proposal Feature provided by the

prototype. The PIs from the current group or other groups can provide sugges-

tions and modify the experimental data. The owner of the experiment receive

those suggestions as proposals. The user has two options: First, to accept the

proposal and add it to the current experimental data. Second, to reject the

proposal and delete the proposal.

10 Metadata editor additional features

To fasten the process of documentation of experimental data, we also provide

autocompletion of data. In chemical databases, if the user provides the CAS

number of the chemical, then the molecular weight, mass, structural formulas

are fetched from the CAS registry and populated in the Chemical database.

Similarly, for other materials like Protein, Plasmid, and Vector, the prototype

provides additional data from the external servers. The DOI/PubMedId of the

publications provided by the user helps to autofill the data about the authors

and other publication details. In order to document descriptions with special

characters, we provide a virtual keyboard for every input field. This helps the

user to enter chemical formulas and symbols.
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Figure 6.4: CAESAR Schema

6.3 CAESAR: Provenance Data Management

In this section, we discuss how the provenance information is stored in order to effi-

ciently query this data from different sources. To understand the data management

of provenance information, we discuss the database schema of CAESAR in general.

The database used by CAESAR is PostgreSQL because of its underlying OMERO

database. Figure 6.4 shows some aspects of the OMERO and ReceptorLight Schema

which constitutes CAESAR. The important classes for the data management of im-

ages include Project, Dataset, Folder, Plate, Screen, Experiment, Experimenter, Ex-

perimenterGroup, Instrument, Image, StructuredAnnotations, and ROI. A Project

is a group of Datasets. A Dataset is a collection of images which are generated for

an experiment. A Dataset can belong to one or more Projects and a Project may

contain one or more datasets. An Image is the actual image with its metadata. A

Dataset can have more than one Images and an Image can belong to one or more

Datasets.

An Instrument describes the device which is used to capture the Image. The In-

strument model consists of Microscope, LightSource, Detector, Objective and Fil-

ters components. Each component of Instrument consists of elements which de-

scribes its ManufacturerSpec and Settings. The Experimenter describes the person

who is performing the imaging experiment. The StructuredAnnotations consists of

unordered collection of annotations that are attached to the objects like Project,

Dataset or Image. The different types of StructuredAnnotations include XMLAnno-

tation, FileAnnotation, ListAnnotation, LongAnnotation, DoubleAnnotation, Com-

mentAnnotation, BooleanAnnotation, TimestampAnnotation, TagAnnotation, Ter-
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mAnnotation and MapAnnotation.

The Experiment class provided by OMERO database describes the type of experi-

ment and the optional description field contain free text to further provide informa-

tion about the experiment. But this will not suffice our requirements for capturing

provenance information. Because of this limitation, we provide a separate data

model to capture provenance information of the experiments.

The ReceptorLight database model consists of several important classes. Based on

the data model discussed in Chapter 4, the schema is designed. The Experiment

links all the provenance information together. The Experiment consists of tempo-

ral and spatial information. It describes the research group and the project. It

connects all the images together which were captured during an experiment. An

Experiment belongs to only one Dataset and has a one-to-one relationship. It links

the several steps that were conducted in the experiment with its description. The

data model also consists of several classes which are the materials used in the exper-

iment. The model consists of Plasmid, Protein, Vector, ChemicalSubstance, DNA,

RNA, Amplifications, FluorescentProtein, Oligonucleotide and RestrictionEnzyme.

Each model provides a rich set of features which describes the various steps used in

the preparation of these materials and how they are used in an experiment. The

model also consists of StandardOperatingProcedure which describes the procedures

and the protocols used in an Experiment. So in total, the OMERO database consists

of 145 tables and the ReceptorLight Database consists of 35 tables.

6.4 CAESAR: Provenance Representation

To connect all the information used in an experiment and link this data with other

datasets on the web, it is essential to express and integrate the heterogeneous data

using semantic web technologies. To make use of semantic web technologies, the

experimental data need to be machine-understandable. However, the experimen-

tal data and the image metadata are stored in relational databases in CAESAR.

To semantically represent this data and at the same time avoid replication of data

which is already stored in the relational database and the file repository, we use the

ontology-based data access approach. The overall goal of this approach in CAESAR

is to provide several high-quality services to the domain scientists without worrying

about the underlying technologies.

In this section, we discuss how we create a graph of the provenance of the experi-

ments on the domain of light microscopy imaging. In Chapter 4, we discussed the

REPRODUCE-ME data model and the ontology generated from it. We use the

REPRODUCE-ME ontology for the creation of this provenance graph.

Ontology-based data access (OBDA) is an approach developed in the mid-2000s to

access the various data sources using ontologies [Poggi et al., 2008]. The ontologies
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are used to represent the domain knowledge at an abstract level. In the OBDA ap-

proach, the details of the structure of the underlying data sources are isolated from

the users using the high-level global schema provided by ontologies [Rodriguez-Muro

et al., 2013]. Through this approach, the user is able to access the data source using

the ontologies with the classes and properties. The relationship between the data

and the terms in the ontologies are expressed using mappings. Thus the end-users

do not need to know the technical details in the underlying relational databases

including tables names, joins, etc. The data source is independent of the conceptual

layer defined by the ontology. The user makes the queries based on the vocabulary

using the classes and properties provided by the ontology. The queries made us-

ing the vocabulary are translated to SQL which queries the data in the database

with the help of the mappings. The translation and the mappings are done using

an ontology-based data access system. This approach helps to efficiently access a

large amount of data from different sources and avoid replication of data which is

already available in relational databases. Several applications that use OBDA have

been widely used in different systems involving large data sources [Kharlamov et al.,

2017,Brüggemann et al., 2016].

We use the ontology-based data access approach to access the various databases in

CAESAR. The ontology-based data access system used in CAESAR is Ontop [Cal-

vanese et al., 2017]. Figure 6.5 shows the OBDA in CAESAR. We explain each

component in detail in the OBDA approach in CAESAR.

1 Data Sources

Currently, the ontology-based data approach map data from the OMERO and

the ReceptorLight databases.
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2 Ontologies

Ontologies are used to model the conceptual view of the world. In our case,

the REPRODUCE-ME ontology is used to model scientific experiments. It

provides the vocabulary of classes and properties to describe the complete

path of a scientific experiment. The ontology also consists of classes and

properties from OME data model9 to describe the elements responsible for the

image acquisition process in a microscope.

3 Federation

We use federation for the OMERO and ReceptorLight databases provided by

the rdf4j SPARQL Endpoint.

4 Mappings

Mappings are the key features of the OBDA approach. It shows the rela-

tionship between the ontology terms and the relational schema. The rela-

tional data in the OMERO and the ReceptorLight database is mapped to the

REPRODUCE-ME ontology using the OBDA approach using Ontop. Declar-

ative mappings are used in Ontop to encode the relational data to the ontolog-

ical terms. Ontop provides two ways to specify mappings: 1) W3C standard

R2RML mapping language [Das et al., 2012]. 2) Ontop’s native mapping lan-

guage. We use Ontop’s native mapping language which is easy to learn and

use. Ontop also provides the user the facility to convert the mappings into

R2RML mappings and vice-versa. The native mapping language provided by

Ontop consists of a source and a target. The source is an SQL query which

retrieves data from the database. The target defines RDF triples with the

values provided by the source. The mappings were written using the Protege

plugin provided by Ontop which is based on OWL API. Using the graphical

interface provided by the plugin, it is able to create and edit mappings and

execute SPARQL queries. The plugin which bootstraps the ontology and the

mappings from the database plays a key role in developing the mappings.

We show some mappings where we integrate experiment with the settings of

the instruments used in them using the REPRODUCE-ME ontology. List-

ing 6.1 shows a part of the mapping for the Experiment with its research

context.

9http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-

06/ome_xsd.html

http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html
http://www.openmicroscopy.org/Schemas/Documentation/Generated/OME-2016-06/ome_xsd.html
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1 target

2 :Experiment_{uid} a :Experiment;

3 prov:startedAtTime {date }^^ xsd:dateTime;

4 prov:generatedAtTime {creationdatetime }^^ xsd:dateTime;

5 :name {name} ; :id {uid}^^ xsd:integer;

6 :status {status }^^ xsd:integer; :description {description };

7 prov:wasDerivedFrom :Experiment_{originalobjectid };

8 prov:wasAttributedTo :Researchgroup_Experiment_{uid}, :

ContactPerson_Experiment_{uid}, :Project_Experiment_{uid

}, :ExperimenterGroup_{ownergroupid };

9 :hasDataset :dataset_{datasetid }; rdfs:label "Experiment

"^^ xsd:string .

10 source

11 select * from experimenttable

Listing 6.1: Mapping for Experiment

Listing 6.2 shows a part of the mapping for the Dataset and the images that

it contains.

1 target

2 :dataset_{parent} prov:hadMember :image_{child} .

3 source

4 SELECT * FROM "datasetimagelink"

Listing 6.2: Mapping for Dataset and Image

Listing 6.3 shows a part of the mapping for the Experiment and the corre-

sponding images.

1 target

2 :experiment_{experiment_id} p-plan:correspondsToVariable :

image_{image_id} .

3 source

4 SELECT "image "."id" AS image_id , "experiment "."id" AS

experiment_id FROM "image", "experiment" WHERE "image "."

experiment" = "experiment "."id"

Listing 6.3: Mapping for Experiment and the corresponding images

Listing 6.4 shows a part of the mapping how the instruments are related to

images.

1 target

2 :instrument_{instrument_id} p-plan:correspondsToVariable :

image_{image_id} .

3 source

4 SELECT "image "."id" AS image_id , "instrument "."id" AS

instrument_id FROM "image", "instrument" WHERE "image "."

instrument" = "instrument "."id"

Listing 6.4: Mapping for Instrument and Image
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Listing 6.5 shows a part of the mapping for the Microscope used in the gener-

ation of images.

1 target

2 :microscope_{id} a :Microscope ;

3 :id {id}^^ xsd:integer ;

4 :hasSetting :lotnumber_microscope_{id} , :

model_microscope_{id} , :serialnumber_microscope_{id};

5 prov:wasAttributedTo :manufacturer_microscope_{id} ;

6 :version {version }^^ xsd:integer ; rdfs:label "Microscope

"^^ xsd:string .

7 source

8 SELECT * FROM "microscope"

Listing 6.5: Mapping for Microscope

Listing 6.6 shows a part of the mapping for the Instruments and their compo-

nents.

1 target

2 :microscope_{microscope_id} :isPartOf :instrument_{

instrument_id} .

3 source

4 SELECT "instrument "."id" AS instrument_id , "microscope "."id"

AS microscope_id FROM "instrument", "microscope" WHERE "

instrument "." microscope" = "microscope "."id"

Listing 6.6: Mapping for Microscope and Instrument

Listing 6.7 shows a part of the mapping for the different types of microscope.

1 target

2 :microscopetype_{microscopetype_id} prov:specializationOf :

microscope_{microscope_id} .

3 source

4 SELECT "microscope "."id" AS microscope_id , "microscopetype

"."id" AS microscopetype_id FROM "microscope", "

microscopetype" WHERE "microscope "." type" = "

microscopetype "."id"

Listing 6.7: Mapping for Microscope Types

Listing 6.8 shows a part of the mapping for the Objective, an Instrument

component.
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1 target

2 :objective_{id} a :Objective ; :id {id}^^ xsd:integer ;

3 :hasSetting :calibratedmagnification_objective_{id} , :

iris_objective_{id} , :lensna_objective_{id} , :

lotnumber_objective_{id} , :manufacturer_objective_{id} ,

:model_objective_{id} , :nominalmagnification_objective_

{id} , :serialnumber_objective_{id} , :

workingdistance_objective_{id} ; :version {version }^^

xsd:integer ; rdfs:label "Objective "^^ xsd:string .

4 source

5 SELECT * FROM "objective"

Listing 6.8: Mapping for Objective

Listing 6.9 shows a part of the mapping for the Image with the Objective that

is associated with it.

1 target

2 :image_{image_id} :hasSetting :objectivesettings_{

objectivesettings_id} .

3 source

4 SELECT "image "."id" AS image_id , "objectivesettings "."id" AS

objectivesettings_id FROM "image", "objectivesettings"

WHERE "image "." objectivesettings" = "objectivesettings "."

id"

Listing 6.9: Mapping for Objective and Image

Listing 6.10 shows a part of the mapping for the Objective and its settings.

1 target

2 :objective_{objective_id} :hasSetting :objectivesettings_{

objectivesettings_id} .

3 source

4 SELECT "objectivesettings "."id" AS objectivesettings_id , "

objective "."id" AS objective_id FROM "objectivesettings",

"objective" WHERE "objectivesettings "." objective" = "

objective "."id"

Listing 6.10: Mapping for Objective and its settings

The mapping in Listing 6.1 shows how an experiment and its attributes are

mapped to the ontology. Each experiment has one dataset which contains

images (see Listing 6.2). The mapping in Listing 6.4 presents the relation-

ship between the instrument and the image asscoiated with it. The following

mappings shows the different parts of an instrument and their types and the

settings. There are around 800 mappings to create the virtual RDF graph.

All the mappings are publicly available10.

10https://sheeba-samuel.github.io/REPRODUCE-ME/resources.html

https://sheeba-samuel.github.io/REPRODUCE-ME/resources.html
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5 Query answering in OBDA

A virtual RDF graph is created in OBDA using the ontology with the mappings

[Calvanese et al., 2017]. This graph is queried using SPARQL, which is the

standard query language in the semantic web community. The RDF graphs

generated in this way can either be materialized or kept as it is as virtual.

When the RDF graphs are materialized, RDF triples are generated which can

be directly used in the RDF triplestores. The RDF graph can be kept virtual

and queried when needed. We used the latter approach where the RDF graphs

are kept virtual and queried only during query execution. The queries are

executed in the visualization module mentioned in Section 6.7. The virtual

approach helps to avoid the materialization cost and provides the benefits of

the matured relational database systems.

Advantages The advantages of using this approach in CAESAR are:

• A virtual approach to have a view-based query answering without moving the

data from the databases to the views or data warehouse [Kharlamov et al.,

2017].

• Easy to learn to use the mapping language.

Limitations

One of the challenges that we faced is the assumption that the user can formulate

queries over ontologies [Kharlamov et al., 2017]. To overcome this challenge, we

provide visualization features so that users can visualize the experiment. The two

visualization modules try to answer the competency questions mentioned in Chap-

ter 4. There are also limitations in the Ontop system due to unsupported functions

and data types11.

6.5 CAESAR: Computational Reproducibility

To support computational reproducibility and capture the complete path of a sci-

entific experiment, we integrate ProvBook [Samuel and König-Ries, 2018b] with

CAESAR. To use ProvBook in CAESAR, we also installed and integrated Jupyter-

Hub12. This helps to create a collaborative research environment for computational

reproducibility. It provides a group of users access to computational notebooks

without the need for additional installation and maintenance tasks. They provide

a multi-user version of notebooks for the scientists using CAESAR. The notebooks

are stored in the file repository of CAESAR. The scientists can create new compu-

tational notebooks, run and share them [Samuel and König-Ries, 2018a].

11https://github.com/ontop/ontop/wiki/ObdalibIssues
12https://jupyter.org/hub

https://github.com/ontop/ontop/wiki/ObdalibIssues
https://jupyter.org/hub
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Scientists can directly work with the images and other datasets linked to an exper-

iment in CAESAR using Jupyter Notebooks. They can access the images stored

along with the experiments using the API and perform processing or analysis on

them. The processed images and datasets can be uploaded and linked to the orig-

inal experiments to CAESAR using the APIs. The provenance of the execution

of the notebooks is captured using ProvBook. The provenance difference feature

provided by the ProvBook helps the users of CAESAR to compare the difference

between two executions of the notebook (see Section 5.2.3).

CAESAR also provides the feature to link these Jupyter Notebooks to the step

of an experiment that used them using the metadata editor (see Section 6.2). In

this way, the experiment dataset in CAESAR contain both the non-computational

and computational steps. The provenance of the notebook represented in RDF us-

ing ProvBook is linked to the experimental provenance graph. The Notebook is

linked to the experiment in RDF using the object property p-plan:isSubPlanOfPlan.

Hence, we create a knowledge graph of the provenance of experiments with their

computational and non-computational steps.

CAESAR also fetches the metadata from the notebooks using the JupyterHub REST

API. The fetched metadata includes the details of the notebook including the ses-

sions and the users [Samuel and König-Ries, 2018a]. The experimental data provided

by scientists through the metadata editor, the metadata extracted from the images,

and the details of the computational steps collected together are integrated, linked

and represented using the REPRODUCE-ME ontology. All this provenance data

together form the basis for the complete path of a scientific experiment.

6.6 CAESAR: Provenance Query and Difference

We showed how we captured, represented and stored provenance of experiments in

CAESAR. An end-to-end provenance management solution should provide possibil-

ities to query this data. In CAESAR, the data is stored in relational databases. It

provides a way to query this information in SQL. However, querying data through

heterogeneous data sources and linking resources from web is better possible through

the usage of semantic web technologies. So we used the ontology-based data ap-

proach to represent this information in a machine-understandable format. The

virtual graph created through this approach can be queried using SPARQL. For

advanced users, the system provides a SPARQL editor to query the semantic data

from the rdf4j-workbench. The users can write their own SPARQL queries to get

the answer for the competency questions like CQ10. We provide some example

SPARQL templates to help users to formulate queries. The SPARQL queries for

the competency questions are provided in Section 7.5. In addition to that, there

are APIs in CAESAR which can be used to get information on the experiments,
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materials and other datasets. These APIs can be directly used in scripts or Jupyter

Notebooks to access the data and images. CAESAR provides the feature to com-

pare different executions of computational steps using ProvBook. In a collaborative

environment provided by CAESAR, it is important to know who created, modified,

or executed the notebooks. Therefore, the changes made by different users need to

be tracked and compared. Hence, ProvBook provides additional benefit in such sce-

narios. In addition to that, we also provide a basic comparison of different versions

of experiment descriptions in CAESAR. This comparison shows the version history

of the creation and modification of the data by different users in a group.

6.7 CAESAR: Provenance Visualization

A large amount of complex and heterogeneous data are generated in many life-

science experiments. We have shown how we capture the experimental data and

interlink with the concepts in the web using linked data in the previous sections.

The captured experimental data needs to be visualized in a way that will help sci-

entist for a better understanding of experimental processes and the dependencies.

Data visualization is an important step in the provenance lifecycle. It is an effec-

tive and efficient medium of visual communication for any type of users. It helps

them to understand the data and the factors that led to the final result. Scientific

workflow management systems provide visualization of only the intermediate and

final results along with the computational steps. But to get the complete picture of

an experiment, the experimental metadata, the processes and the configurations of

both the computational and non-computational steps are desirable. This is missing

in such systems. It is important that the scientists visualize the data and the results

along with its provenance information.

Scientific workflow management systems provide the traditional node-link visual-

ization of workflows. Vistrails [Callahan et al., 2006] provides users the ability to

compare different versions of workflows and their results. The InProv [Borkin et al.,

2013] tool visualizes provenance of filesystem using radial layout. However, the focus

of visualization is on the relationship between files and processes and the interactions

between them. The visual encoding provided by the radial layouts requires right

grouping method to effectively visualize the provenance data. However, to visualize

the path, the traditional node-link diagram is more effective.

Provenance Map Orbiter [Macko and Seltzer, 2011] is another visualization tool

which provides an exploration of large provenance graphs using graph summariza-

tions and semantic zoom. Semantic zoom allows the user to drill down each node

by zooming into them. This helps the user to visualize larger provenance graphs.

Graph summarization uses summarization algorithm by creating summary nodes by

combining objects of similar types. But in the cases where provenance graph does
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not contain enough semantic information to generate summarization will result in a

large number of summary nodes thus resulting in large provenance graphs.

PROV-O-Viz [Hoekstra and Groth, 2015] is a web-based provenance visualization

tool which is compatible with the PROV model. This tool uses Sankey Diagrams

to visualize provenance traces focusing on activities. It visualizes the important

activities and the data flow within a selected activity. The provenance graph is

visualized by pasting the PROV-O text or connecting to a SPARQL endpoint. In

our approach, we focus not only on the activity nodes but also on the other nodes

from PROV-O and P-Plan.

The paper [Kunde et al., 2008] presents the abstract types of user requirements for

a provenance visualization component. They are Process, Results, Relationships,

Timeline, Participation, Compare, and Interpretation. Data visualization can be

categorized in two ways: Exploration and explanation [Steele and Iliinsky, 2011].

Exploratory data visualizations are required in situations when scientists have a

large amount of data and unaware of what data is in it. The datasets are visual-

ized to tell the story the data has to offer. These visualizations are used in the data

analysis phase. Explanatory data visualizations are used when the scientists already

know about the data and need to tell its story to other scientists. This visualization

is used in the presentation phase. There is another category which combines these

two visualizations together: Hybrid. This visualization presents the data with the

aim to allow exploration from the reader’s part.

Our goal of the research is to provide data visualization which helps in the story-

telling of an experiment. In this section, we present our visualization modules which

are helpful for the data analysis phase and data presentation phase. Using Explana-

tory data visualization, we aim to selectively provide information so that the reader

will able to understand it and receive the message. We follow the methodology

proposed by [Steele and Iliinsky, 2011, Lee et al., 2006] in designing a visualization

component. The first step in designing a visualization component is to understand

the goal. We present our two goals in designing the visualization component in

CAESAR:

• Provide users with a complete picture of an experiment

• Provide users the ability to track the provenance of an experiment

The next step of data visualization component design is to understand the dimen-

sions of data that need to be communicated to the user. In order to do that, we

frame questions that the visualization component needs to address. These questions

are based on the competency questions mentioned in Section 4.2.

• Which are the entities that need to be communicated for the visualization of

the complete path of a scientific experiment?



142

• What are the key relationships that are relevant to track the provenance?

• What is the complete picture of a scientific experiment?

• Which are the values and properties that are needed to track the provenance

path?

Lee et al. [Lee et al., 2006] presents a list of tasks for the design of graph visualiza-

tion systems which includes Topology-based tasks, Attributes-based tasks, Browsing

tasks, Overview Tasks, and High-level tasks. Stitz et al. [Stitz et al., 2016] refined

Lee’s et al. tasks to support data visualization provenance graph in the Refinery

platform. Based on these works, we define the features that we aim to address in

designing the data visualization component in CAESAR.

1. Complete overview

2. User interaction

3. Interoperable

4. Interlinking of data

5. Comparison of experimental data and executions

6. Nested Hierarchy

7. View the node-link details

The experimental data captured and managed in CAESAR needs to be efficiently vi-

sualized for the scientists. We explained how we capture and represent the complete

path of a scientific experiment consisting of computational and non-computational

steps in Section 6.5. This module provides the users with an overview of an experi-

ment by visualizing the complete path of an experiment. The module provides two

components for viewing and accessing the provenance data:

• Dashboard

• ProvTrack

6.7.1 Dashboard

The Dashboard aggregates all the data related to an experiment at a single place to

view. CAESAR offers a dashboard at the project and experiment level. The Project

Dashboard is activated when a project is selected by the user while the experiment

dashboard is activated when a dataset is selected. Each dataset has at most one

experiment.

The Project Dashboard aggregates the provenance data from all the experiments
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Figure 6.6: The Project Dashboard in CAESAR for the complete overview of ex-

periments conducted in a project

in a project. Figure 6.6 shows a part of the project dashboard. The dashboard

consists of several panels. Each panel serves a purpose giving a detailed view of

an experiment. The data inside a panel is represented in a tabular manner. The

panels are arranged in a way that it tells the story of an experiment [Samuel et al.,

2018]. The following components form a story: plot, characters, background context,

settings, events, conflicts, climax, and the final message. To understand the climax

and message of the story, it is important to know the characters, the background

context and the flow of the story. Similarly, to understand a scientific experimental

result, it is important to know the agents, execution environment, and the workflow.

The CAESAR provides a dashboard that tells the story of an experiment. Each

component of an experiment is defined as a panel. The panels are:

• The Plot

This panel displays the plot of an experiment which includes Research Project,

Research Group of the user the experiment belongs to and the date of execution

of the experiment.

• The Characters

The table includes all the agents that are involved in an experiment directly

or indirectly. The table displays the name of the person, the name of the

associated experiment, the step at which the agent was responsible and the

role of the person in the experiment. The experimenter, principal investigator

are some of the people who are directly involved in an experiment. While,

the agents are responsible for the manufacturing of the materials used in the
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experiment, the distributor of the sample is indirectly responsible for an ex-

periment.

• Materials

This panel shows all the materials that are used in an experiment. This table

shows at which step of an experiment the materials were referenced. The

properties of the materials are also available in the table.

• External Resources

This panel shows the external resources that were referenced during the ex-

periment lifecycle. The External Resources include the publications, files or

other external annotations used in the experiment.

• Files

This panel shows the files that were referenced during the experiment. It also

includes the detail about the step at which these files were used.

• Jupyter Notebooks

Experiments contain computational processes. These processes are executed

either using scripts or computational notebooks. It shows the computational

notebooks that are used in the experiment and the step at which they were

used.

• Steps/Activities

This provides a list of all steps and activities that are associated with an

experiment.

• Devices

The table shows all the devices used in the experiment along with their set-

tings. This information is extracted from the images and the experimental

data.

• Settings

The table shows the settings of the devices used in the experiment. It in-

cludes the settings that were made during the experiment. These settings are

extracted from the images and experimental data.

• Results

This panel shows the results of a scientific experiment. It includes the final

and intermediate results.

Each panel provides the answer to the competency questions CQ1-CQ9 using

SPARQL queries mentioned in Section 7.5. These panels also provide the user

with the ability to search and filter the data based on keywords inside a table.
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Provenance GraphInfoBox

Search

Figure 6.7: ProvTrack: Tracking Provenance of Scientific Experiments

6.7.2 ProvTrack: Tracking the provenance of Scientific Ex-

periments

Provenance data of scientific experiments can be complex and overwhelming. Rep-

resenting such provenance data in tabular format may not be sufficient for the un-

derstanding of scientific experiments. To show the complete path of a scientific

experiment, the graph representation with node and links is very helpful. In the

dashboard, we provide an overview of all the experiments belonging to a project. In

order to track the provenance of each scientific experiment, we present ProvTrack.

ProvTrack is a visualization module to track the provenance of scientific experi-

ments. Figure 6.7 shows the visualization of an experiment using ProvTrack. It

provides users a visual and interactive way to track the provenance of results. It

provides a node-link representation of provenance of experiments. Hence, it is possi-

ble for the user to backtrack the results. Also, it is possible to drill-down each node

to get more information. The module is developed independently and integrated

into CAESAR.

The interface provides the user with the options to select an experiment whose prove-

nance needs to be tracked. When the user selects an experiment, the provenance

graph is displayed. The user interface consists of three components. They are:

• Right panel

The right panel provides an interactive provenance graph of an experiment.

It consists of nodes and edges. Each node is colored based on its type. The

type can be prov:Entity, prov:Agent, prov:Activity, p-plan:Step, p-plan:Plan

and p-plan:Variable. The provenance graph is developed based on the

REPRODUCE-ME data model. The Expand All button next to the help
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menu provides the facility to expand the provenance graph by opening up all

the nodes. The Collapse All button collapses the provenance graph to just

one node: Experiment. When a user hovers on an edge, it shows the property

relationship between the two connecting nodes. The top left button in the

right panel provides a help menu to highlight what each color means in the

graph. Whenever a node is selected, the path from that node to the first

node, which is Experiment, is highlighted. This helps the user to see where

the node is in the provenance graph. Simultaneously, the path is also shown

on top of the left panel.

• Left panel

The Left panel provides additional information of the selected node in the

right panel. It consists of Infobox of the selected experiment. Whenever a

node is clicked, the information of the node is shown as a key-value pair. The

key is either the object property or data property of the REPRODUCE-ME

ontology which is associated with the selected node. The user can also click

on each link to know what each property means. On top of the left panel, the

path of the selected node is also shown. The path shows where the selected

node is in the provenance graph. For example, when the Experiment node

is selected, the Infobox provides the information on the agents, spatial and

temporal properties, etc.

• Search

The Search panel provides a dropdown to search for nodes and edges. Users

can search for any entities in the graph defined by the REPRODUCE-ME data

model. This is very helpful when the provenance graph is large.

The provenance graph shown by ProvTrack is based on the data model represented

by REPRODUCE-ME ontology (Section 4.5). The SPARQL endpoint is queried to

get the complete path of an experiment. To increase performance, several SPARQL

queries are made and the results are combined together.

6.8 Implementation and Development

The system follows a Model-View-Controller architecture pattern for the develop-

ment of CAESAR. The webclient is written in Python. Each module in the webclient

uses Django-Python framework for its implementation. The Dashboard is imple-

mented using ReactJs. The new services extended by OMERO.server is written in

Java. The ProvTrack uses D3 JavaScript13 library for the rendering of provenance

graph.

13https://d3js.org/

https://d3js.org/
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6.9 Summary

This chapter presented the integration of all our research work together through

CAESAR. CAESAR uses a provenance-based semantic approach for the under-

standability, reproducibility, and reuse of scientific experiments. It is developed

on top of OMERO, which is an image-based data management platform. We dis-

cussed the architecture of OMERO and how it is extended to provide provenance

management of experiments. The architecture of CAESAR consists of modules to

capture, represent, store, query, compare and visualize the provenance of scientific

experiments. Each module is important and plays a vital role in end-to-end prove-

nance management of experiments. The modules are dependent on each other. The

provenance capture of non-computational steps of scientific experiments is done us-

ing the Metadata editor provided in CAESAR. The provenance of computational

steps of scientific experiments is captured using ProvBook integrated into CAESAR.

The captured provenance is represented using the REPRODUCE-ME ontology using

the ontology-based data access approach. Finally, the complete path of a scientific

experiment is visualized using ProvTrack. It provides a graph-based representation

with nodes representing each entity in the experiment and edges representing each

property linking two entities. The dashboard, on the other hand, provides a com-

plete overview of the experiments performed together for a project. The evaluation

of CAESAR is presented in Chapter 7 and the results are provided in Section 7.5.



Chapter 7

Evaluation

In the previous chapters, we presented our three main contributions of this research

work. In this chapter, we evaluate our work by using them in real-world scenar-

ios. The evaluation of our work is done to validate the hypothesis 2.3 defined in

Chapter 2.

7.1 Overview of the Evaluation

We evaluate different aspects of our research work based on our main hypothesis

that it is possible to capture, represent, manage and visualize a complete path taken

by a scientist in an experiment including the computational and non-computational

steps to derive a path towards experimental results. We first focus on evaluating

the hypothesis H1 and H2. We have shown in Chapter 4 how we have developed

a data model using Semantic Web technologies to describe the complete path of

a scientific experiment. We first evaluate our data model with the help of scien-

tists from different disciplines. Section 7.2 presents the insights from the user-based

interviews on the scientific data management for reproducibility. In Section 7.3,

we present results from a user-survey conducted to understand experiments and

research practices for reproducibility. These user-based surveys are conducted to

evaluate whether the terms added in the REPRODUCE-ME ontology are required

to describe the provenance of a scientific experiment. In the following Section 7.4,

we evaluate the hypothesis H3 and H4 by performing data and user-based evaluation

of ProvBook in different scenarios. In Section 7.5, we evaluate CAESAR based on

the hypothesis H5. We use real-life experiments provided by scientists for answer-

ing the competency questions CQ1-CQ24. We evaluate the system based on the

users’ perspective and provide the results of the user study that we conducted in

Section 7.5.2 to check whether the requirements R1-R7 are satisfied. We conclude

the chapter with the summary of the evaluation results in Section 7.6.

148
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7.2 User-based Interviews

It is important to comprehend the current research practices and the essential com-

ponents required to understand and reproduce a scientific experiment. To evaluate

our data model, we interviewed scientists from different domains to understand the

prevailing research practices. Open oral interviews were conducted among scien-

tists from fields like Biology, Chemistry, Biodiversity, and Ecology. A workshop on

“Fostering reproducible science − What data management tools can do and should

do for you” was conducted in conjunction with BEXIS2 UserDevConf1 Conference.

Around 40 researchers from the projects iDiv2, Aquadiva3, ReceptorLight4, BEXIS25

and other scientists from Jena University participated in the workshop. This work-

shop was jointly organized by the data management teams of the BEXIS 2, iDiv,

AquaDiva and ReceptorLight projects. The participants included PostDocs, PhD

Students, Data Managers, and Research Staff. The aim of this workshop was to

understand the current practices and the challenges the researchers are facing with

regard to the reproducibility of scientific results. The participants were asked to

answer the following questions:

1. How do you document your research process?

2. How do you ensure, you (and others) are able to find your data again in 5

years?

3. What do you do to make your data reusable for others?

4. How do you ensure that your research findings are reproducible by others?

5. What tools are you using to address the questions above?

6. What tools would help you to improve the preparation and management of

your research data?

We present key points expressed by 10 researchers, who actively participated in the

discussions, from their own experiences of their daily research work. The detailed

points by these researchers are presented in Appendix A. These interviews and

discussions helped us in the development and evaluation of the REPRODUCE-ME

data model and CAESAR. The important points expressed by the researchers are

summarized below:

1http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/
2https://www.idiv.de/
3http://www.aquadiva.uni-jena.de/
4http://www.receptorlight.uni-jena.de/
5http://bexis2.uni-jena.de/

http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/
https://www.idiv.de/
http://www.aquadiva.uni-jena.de/
http://www.receptorlight.uni-jena.de/
http://bexis2.uni-jena.de/
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1. Collaboration with researchers distributed geographically in bigger project

consortiums throughout the research lifecycle from data creation to the pub-

lication of results is needed.

2. Version-controlled and citable results along with the experimental data and

metadata are required.

3. Linking the experimental data, steps, and results are important for repro-

ducibility.

4. Awareness of data management process is required.

5. There is a lack of resources for the proper management of data with concerns

regarding space-constraints of public repositories.

6. Scripts are vital for data analysis. It is important to document what scripts

are doing to understand the results.

7. Documentation of individual trials helps in understanding which possibilities

did not work out.

7.3 Survey on Understanding Experiments and

Research Practices for Reproducibility

A user-based evaluation was conducted using an online survey. The goal of this

survey is two-fold. The general goal of this survey is to understand experiments

and research practices for reproducibility in different domains. In addition to that,

through this survey, we also evaluate whether the terms added in the REPRODUCE-

ME Data Model are required for understanding and reproducing experiments.

7.3.1 Materials and Methods

We developed an online survey consisting of 26 questions grouped in 6 sections. The

purpose of this study is to gain a better understanding of what is needed to achieve

reproducibility of experiments in science. The six sections are (1) Privacy policy,

(2) Research context of the participant, (3) Reproducibility, (4) Measures to ensure

reproducibility, (5) Important factors to understand a scientific experiment to en-

able reproducibility and (6) Experiment Workflow/Research Practices. The survey

questionnaire is available in Appendix C. The survey was completely anonymous.

The average time taken by a participant to complete the survey was around 10

minutes. The survey was implemented using Limesurvey6. For compliance reasons,

6https://www.limesurvey.org/

https://www.limesurvey.org/
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we provided a privacy policy form to get consent of the participants before col-

lecting any kind of personal information according to the General Data Protection

Regulation (GDPR)7 (in German: Datenschutz-Grundverordnung, DSGVO). None

of the questions in the survey was mandatory apart from the privacy policy form.

We provided ‘Other’ option with a facility to provide additional comments for a

majority of the questions. We also provided ‘Not applicable’ option to some of the

questions wherever applicable. The definitions of terms like ‘Reproducibility’, ‘Re-

producibility Crisis’, ‘Metadata’, etc. were either provided on top of the sections or

external links were given to their definitions. The survey was first validated by a

group of four researchers from Computer Science and Biology before distributing to

the participants.

Survey Method

The survey was made available online on 24th January 2019. The survey link was

distributed to the scientists in the ReceptorLight project who are currently the direct

users of the REPRODUCE-ME Data Model. It was also distributed to several de-

partments in the University of Jena, Germany through internal mailing lists. Apart

from the ReceptorLight project, it was also distributed among the members of the

iDiv, BEXIS and AquaDiva projects. The members of the Michael Stifel Center

Jena8 which is a center to promote interdisciplinary research for Data-driven and

Simulation Science also participated in this survey. It was also advertised using

Twitter through the Fusion9 group account10. It was also distributed through inter-

nal and public mailing lists including RDA-de(Research Data Alliance-Germany)11

and JISCMail12.

7.3.2 Survey Results

A total of 101 out of 150 respondents were considered eligible for the analysis of

the results. The basic eligibility criteria include that the participants have read and

agreed to the privacy policy. The participants who only filled their research context

and skipped the rest were also excluded from the analysis. In the following sections,

we present the analysis of each question from the survey. The survey results along

with the raw data and graphs are available online [Samuel and König-Ries, 2019].

We present the discussion on the survey results in Section 7.3.3.

7https://dsgvo-gesetz.de/
8https://www.mscj.uni-jena.de/
9http://fusion.cs.uni-jena.de/

10https://twitter.com/fusionUniJena/status/1090544753635147776
11https://www.rda-deutschland.de/
12https://www.jiscmail.ac.uk/

https://dsgvo-gesetz.de/
https://www.mscj.uni-jena.de/
http://fusion.cs.uni-jena.de/
https://twitter.com/fusionUniJena/status/1090544753635147776
https://www.rda-deutschland.de/
https://www.jiscmail.ac.uk/
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Figure 7.1: Current position of the survey participants

7.3.2.1 Research Background of the Participants

Figure 7.1 shows the current position held by the participants of the survey. Out

of 101 respondents, 27% of them were PhD students, 18% of postdoctoral fellows,

5% of Bachelor or Master students and 7% of Research Associates. Around 17% of

the participants were either a Professor (13%) or Junior Research Leader/Professor

(4%). The participants who selected “Other” include 6 librarians (6%), 3 software

engineers (3%), 1 publisher and 7 other data officers.

The primary area of study of the participants is shown in Figure 7.2. The majority

of the participants were from different fields of biology. They include molecular

biology (6%), cell biology (2%), microbiology (1%) and biology (other) (17%). So

in total, 26% of participants come from different fields of biology. Participants from

computer science (19%) and environmental sciences (13%) are other major contrib-

utors. The other participants come from fields like neuroscience (6%), chemistry

(1%), plant sciences (3%), health sciences (3%) and physics (4%). The partici-

pants who selected the ‘Other’ option are 26% and they come from various fields

like biophysics, sociology, earth science, electrophysiology, engineering, etc.

7.3.2.2 Reproducibility Crisis and its causing factors

We asked the participants whether they think there is a reproducibility crisis or not.

We had provided 3 options: Yes, No and Other with a free text field. 59% of the

participants think that there is a reproducibility crisis, while, 30% of them think

that there is no reproducibility crisis (Figure 7.3). 11% of them selected the Other

option and provided their views. 3 participants responded that there is partly crisis
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Figure 7.2: The primary area of study of the survey participants

while 3 others responded that they would not like to say the word ‘crisis’ instead

pointed out there is a room for improvement and attention is required. The other

comments include ‘Depends on the scientific field’, ‘maybe’, and ‘I don’t know’. Fig-

ure 7.4 and 7.5 show the view of the participants on reproducibility crisis analyzed

based on their current position and primary area of study respectively. 74% of the

PhD Students and 72% of PostDocs think that there is a reproducibility crisis (Fig-

ure 7.4). While, 54% of professors do not believe that there is reproducibility crisis.

68% of participants from computer science and 59% from biology (other) believe

in the existence of this crisis (Figure 7.5). 65% of the participants coming from

Molecular Biology, Cell Biology, Microbiology or Biology (other) think that there

is a reproducibility crisis. The participants who either selected ‘Yes’ or ‘Other’ to

this question were directed to the next question about the factors that lead to poor

reproducibility from their own experiences. We provided 12 multiple-choice options

including ‘Other’ with a free text field. As seen in Figure 7.6, 30% of the total

participants (101) who do not think there is a reproducibility crisis belong to the

N/A (Not Applicable) category. The majority of the respondents consider that there

is lack of data that is publicly available for use (79%), lack of sufficient metadata

regarding the experiment (75%) and lack of complete information in the Meth-

ods/Standard Operating Procedures/Protocols (73%) as shown in Figure 7.7. The

other reasons based on the majority votes include lack of time to follow reproducible

research practices (62%), pressure to publish (61%), lack of knowledge or training

on reproducible research practices (59%), lack of the information related to the

settings used in original experiment (52%), poor experimental design (37%), data

privacy (e.g. data sharing with third parties) (34%), Difficulty in understanding
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Figure 7.3: Do you think there is a reproducibility crisis in your field of research?

Figure 7.4: The view of participants on Reproducibility Crisis based on their position

laboratory notebook records (20%) and lack of resources like equipments/devices

in workplace (17%).

7.3.2.3 Measures to ensure reproducibility

In the next section of the survey, we asked the participants about the measures

taken in their field of research to ensure reproducibility. The first question was

“How easy would it be for you to find all the experimental data related to your own

project in order to reproduce the results at a later point in time (e.g. 6 months

after the original experiment)?”. We used 6-point scale for the answer options from

Very Easy to Very Difficult. The subquestions included Input Data, Metadata about
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Figure 7.5: The view of participants on Reproducibility Crisis based on their area

of study

Figure 7.6: The factors leading to poor reproducibility from the experience of par-

ticipants

the methods, Metadata about the steps, Metadata about the experimental setup and

Results. 79% of Results and 71% of Input Data are either easy or very easy to

find (Figure 7.8). But when it comes to the Metadata about the steps (47%) and

Metadata about the experimental setup (47%), it gets less easy. The findability of

Metadata about the Steps (36%), setup (38%), and methods (32%) shifts to neither

easy nor difficult. According to the analysis, it is seen that the results and input data
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Figure 7.7: The factors leading to poor reproducibility from the experience of 71

participants who fully responded to this question.

are comparatively easier to find than the steps, methods and the setup metadata.

However, this trend changes when asked about a newcomer in their workplace to

Figure 7.8: How easy would it be for you to find all the experimental data related

to your own project in order to reproduce the results at a later point in time (e.g.

6 months after the original experiment)?

find the same experimental data of the participants without any/limited instructions

from them (Figure 7.9). The percentage of easily finding the results and input data

for a newcomer drops drastically from 79% and 71% to 48% and 43% respectively.
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The most difficult metadata to find is about the steps (48%) and environment setup

(48%). The difficulty to find the input data, methods, and results is 35%, 35%

and 24% respectively.

In the next question, they were asked whether they have ever been unable to

Figure 7.9: How easy would it be for a newcomer in your workplace to find all the

experimental data related to your project/experiment without any/limited instruc-

tions from you?

reproduce published results of others. 54% of them were unable to reproduce others

published results, while 36% of them said ‘No’ as seen in Figure 7.10. 10% of them

have never tried to reproduce others published results.

The next question was “Has anybody contacted you that they have a problem in

Figure 7.10: Have you ever been unable to reproduce published results of others?
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reproducing your published results?”. Even though we see through this survey that

there exist issues regarding reproducibility, 95% of the participants have never been

contacted and only 5% of them have been contacted concerning issues in reproducing

their published results (Figure 7.11).

In the next question, “Do you repeat your experiments to verify the results?”, 53%

Figure 7.11: Has anybody contacted you that they have a problem in reproducing

your published results?

of the respondents repeat their experiments, 12% sometimes and 35% of them do

not repeat their experiments to verify their results.

Figure 7.12: Do you repeat your experiments to verify the results?

7.3.2.4 Opinion on sharing experimental metadata

In this section of the survey, we asked about the factors that are important for

them to understand a scientific experiment in their field of research to enable repro-
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ducibility. Here, we see what people think is important for the understandability

and reproducibility of scientific experiments and see whether representing them in

the REPRODUCE-ME data model is valid or not.

In the first question, we asked their opinion on sharing experimental data including

Raw Data, Processed Data, Negative Results, Measurements, Scripts/Code/Pro-

gram, Image Annotations, and Text Annotations. Surprisingly, 80% of the par-

ticipants shared their view that the negative results are either very important or

absolutely essential while sharing data. As in the case for others, the participants

consider sharing scripts (78%), processed data (73%), measurements (71%), raw

data (58%), image annotations (60%) and text annotations (55%) either very im-

portant or absolutely essential.

84% of the participants consider that sharing the metadata about the experiment

Figure 7.13: What is your opinion on sharing experimental data?

materials is either very important or absolutely essential while 81% of them con-

sider the same way for the instruments used in an experiment.

Participants consider that instrument settings (80%), experiment environment con-

ditions (76%) and publications used (68%) are either very important or absolutely

essential. Participants consider that it is very important or absolutely essential to

share the names (70%), contacts (65%) and role (54%) of the agents who are di-

rectly involved in a scientific experiment. The participants also consider that the

names (20%), contacts (18%) and role (15%) of the agents who are indirectly in-

volved (like Manufacturer, Distributor) in a scientific experiment are very important

or absolutely essential (see Figure 7.16). 50% of the participants consider date as

either very important or absolutely essential while 47% of them consider the same

way for time. 66% of the participants consider duration as either very important or
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Figure 7.14: What is your opinion on sharing metadata regarding experimental

requirements?

Figure 7.15: What is your opinion on sharing metadata regarding settings?

absolutely essential while 46% of them consider the same way for location. Partic-

ipants consider that software parameters (80%), software version (77%), software

license (37%) and scripts/code/program used (79%) are either very important or

absolutely essential. Participants also consider that Laboratory Protocols (73%),

Methods (93%), Activities/Steps (81%), Order of Activities/Steps (77%), Vali-

dation Methods (81%) and Quality Control Methods used (73%) are either very

important or absolutely essential. 86% of the participants consider that final results
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Figure 7.16: What is your opinion on knowing the names and contacts of people/or-

ganizations who are involved directly (eg. Experimenter, Supervisor) or indirectly

(eg. Manufacturer, Distributor) in your experiment and their roles?

Figure 7.17: What is your opinion on sharing metadata regarding time, duration,

and the location of experiments?

of each trial of an experiment are either very important or absolutely essential while

41% of them think the same way for intermediate results. We had asked what else

should be shared when publishing experimental results for which we got 12 responses

which is provided in Appendix C.1.
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Figure 7.18: What is your opinion on sharing metadata regarding software used?

Figure 7.19: What is your opinion on sharing metadata regarding all the steps and

plans?

7.3.2.5 Experiment Workflow/Research Practices

In this section, we asked about their experiment workflow and research practices. In

the first question, we asked what kind of data they work primarily with. Figure 7.21

shows the distribution of the data they work with. Majority of them work with

measurements (27%). The others work with images (20%), tabular data (20%),

graphs (20%), and 8% of them work with multimedia files. The participants who

selected the ‘Other’ option work with text, code, molecular and geo-data. We next
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Figure 7.20: What is your opinion on sharing the intermediate and final results of

each trial of your experiments?

Figure 7.21: What kind of data do you work primarily with?

asked about the storage place for their experimental data files and metadata like

descriptions of experiment, methods, samples used, etc. 30% of them store their

experimental data files in the local server provided at their workplace. 25% store

them in their personal devices and 21% of them specifically store in removable

storage devices like hard drive, USB, etc. Only 13% of them use version-controlled

repositories like Github, GitLab, Figshare. Only 8% of them use data management

platforms.

When asked about the experiment metadata storage, 58% of them use handwritten

notebooks as the primary source and 26% as a secondary source. 51% of them use
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electronic notebooks as a primary source and 29% as secondary source. 54% of

them use data management platforms as either a primary or secondary source.

To know the importance of scripts in the daily research work of researchers, we

Figure 7.22: Where do you store your experimental data files?

Figure 7.23: Where do you save your experimental metadata like descriptions of

experiment, methods, samples used?

asked whether they write programs at any stage in their experimental workflow.

61% of the participants use scripts or program to perform data analysis. While

the other half either use them sometimes (24%) or do not use at all (15%). So in

total, 85% of participants have used scripts in their experimental workflow. These

participants come from not only computer science but also from different other
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Figure 7.24: Do you write scripts or program to perform data analysis at any stage

in your experimental workflow?

scientific fields. In our next questions, we asked the participants about the FAIR

principles [Wilkinson et al., 2016]. 62% of the participants have heard about the

FAIR principles and 30% of them haven’t heard about it. 8% of them have heard

the term but do not know exactly what that means. It was interesting to see that

Figure 7.25: Have you heard about the FAIR (Findable, Accessible, Interoperable,

Reusable) principles?

the research of the participants are either always or often findable (72%), accessible

(69%), interoperable (61%) and reusable (72%). We also provided at the end

of the survey a free text field to provide comments regarding what they think is

important to enable understandability and reproducibility of scientific experiments

in their field of research. We got 7 responses which is provided in Appendix C.1.
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Figure 7.26: Does your research follow the FAIR (Findable, Accessible, Interopera-

ble, Reusable) principles?

7.3.3 Discussion

Analyzing the results from this survey shows that more than half (59%) of the par-

ticipants think that there is a reproducibility crisis. The PhD students and PostDocs

who work daily with the data consider it to be an issue. Even though few of the

participants said that the ‘crisis’ is a bad word to say, they agreed that there is a

room for improvement and much attention is required to support reproducibility.

Lack of sufficient metadata regarding the experiment, lack of data that is publicly

available for use and lack of complete information in Method/Standard Operating

Procedure/Protocol are considered the important factors that lead to poor repro-

ducibility according to the experience of participants in their research field. Finding

metadata about the methods, steps and the experimental setup is considered difficult

for both the participants at a later point of time as well as the newcomers in their

workplace. Hence, we could see the connection between the lack of complete infor-

mation in Method/Standard Operating Procedure/Protocol and their findability is

considered to be a major factor leading to poor reproducibility. It is also seen from

the results that 54% of the participants had trouble reproducing other’s published

results. And at the same time, only 5% of the respondents were contacted about

a problem in reproducing their published results. We observe that either people

are reluctant to contact the authors or they do not want to take the effort/time to

reproduce other’s results. It is also seen that 36% of the participants never tried to

reproduce other’s published results. Time is considered an issue here since 62% of

the participants think there is lack of time to follow reproducible research practices.
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The training on reproducible research practices needs to be provided to scientists.

Since the same number of people who think that there is reproducibility crisis also

mentioned that there is a lack of training on reproducible research practices (59%).

Another interesting thing to notice that 53% of the respondents repeat their own

experiments to verify the results while 12% do not. Therefore, repeatability is im-

portant to verify results even if it is at a later point in time. Hence, the data and

the steps are important to be documented for both the experimenter as well as the

newcomer. With regard to sharing experimental data and metadata, participants

are keen to have negative results being shared. Experimental metadata including

experiment environment conditions, instruments, and their settings, and experiment

materials are also considered important besides results and needs to be shared to

ensure reproducibility. We also see that 58% of the participants use handwritten

Laboratory notebooks as their primary source and only 28% of them use Data man-

agement platforms as a primary source. In the current era which is driven by data

science, there are more than half of the participants who use the traditional way of

documenting experimental metadata. Even though this approach works for people,

but it creates difficulty for digital preservation and reproducibility of experiments

by the newcomers in the group as pointed earlier. Hence, we require awareness on

provenance management of experiments as well. This helps in addressing the issues

of the reproducibility crisis. 85% of the participants use scripts to perform data

analysis in their experimental workflow. It indicates the importance of scripts in

daily research work of researchers irrespective of their scientific disciplines. Hence,

linking script provenance to experimental metadata is required for end-to-end man-

agement for reproducibility.

The FAIR principles which came into existence in 2016 is creating an impact on data

sharing. We see that 62% of the participants have heard about the FAIR princi-

ples. But 38% of them haven’t heard or do not know exactly what the term means.

Another interesting thing to notice is that more than half of the participants have

tried to make their research work findable, accessible, interoperable and reusable.

However, making research data interoperable by the participants was considered

most difficult to follow among the FAIR principles.

Through this survey, we evaluated different aspects of our research work. In order

to support end-to-end provenance management, our hypothesis H1 was to design a

data model that represents a complete path of scientific experiments. We evaluated

the elements that are required for reproducibility in order to represent this complete

path in the data model (see Hypothesis H1.1 andH1.2). In Section 7.3.2.4, we eval-

uated the elements the scientists consider important in sharing experimental data.

The elements that we provided in the survey are coming from the REPRODUCE-ME

Data Model (see Section 4.4). The important elements of the REPRODUCE-ME

Data Model are Experiment, Data, Agent, Activity, Plan, Step, Setting, Instrument,
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and Material. The results show that each of these elements is considered important

or absolutely essential by more than 75% of the participants. Another thing that is

worth mentioning here is that participants considered making their research data in-

teroperable difficult to follow among the FAIR principles. Hence, we can see that the

REPRODUCE-ME Ontology addresses the important elements for the end-to-end

provenance management of scientific data and also for their interoperability. From

the survey results, it is also seen that the findability, accessibility, and reusability

of data are difficult not only for their own but also for the newcomers in the team.

This gets more difficult for the metadata about the methods, steps, and experiment

setup. Hence, these results clearly point out that the FAIR principles need to be fol-

lowed from the bottom level of the research lifecycle (see Figure 1.1). The scientific

data management platforms like CAESAR help to address this issue by providing

a provenance-based semantic and collaborative approach for the management of

experimental data.

7.4 Computational Reproducibility

In this section, we evaluate how ProvBook supports computational reproducibil-

ity using Jupyter Notebooks. We use data and user-based evaluation to validate

our hypothesis H3-H4. We did user-based evaluation in conjunction with a mas-

ter student (Bastian Bunzeck) as part of Semantic Web Technologies Course13 at

University of Jena, Germany. This evaluation was done with Jupyter notebooks

which are publicly available. It focused on how ProvBook performs with different

aspects of usability, performance, and scalability in addition to reproducibility. We

did a study to see how the provenance capture, visualization and difference provided

by ProvBook help in different use case scenarios to support computational repro-

ducibility. Random Jupyter notebooks were collected from github and evaluated

with ProvBook. Here we show the evaluation with one such Jupyter Notebook. The

evaluation was done based on the following factors and scenarios:

1. A notebook executed by two different users.

2. A notebook executed by two different users in different environments.

3. The input, output, execution time and the order in two different executions of

a notebook.

4. Provenance difference of the results of a notebook.

5. Performance of ProvBook with respect to time.

6. Performance of ProvBook with respect to space.

13https://caj.informatik.uni-jena.de/caj/course/details/id/-310264951709084758

https://caj.informatik.uni-jena.de/caj/course/details/id/-310264951709084758
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Notebook Name User Environment

eigenfaces Original Author Scikit-learn 0.16

eigenfaces User 1 Ubuntu 18.10, Scikit-learn 0.20.0, Python 3

eigenfaces User 1 Fedora, Scikit-learn 0.20.0, Python 3

eigenfaces User 2 Ubuntu 18.04, Scikit-learn 0.20.3, Python 2

eigenfaces User 2 Ubuntu 18.04, Scikit-learn 0.20.3, Python 3

Table 7.1: The statistics of the Jupyter Notebook executions

7. Complete path taken by a computational experiment with the sequence of

steps in the execution of a notebook with input parameters and intermediate

results in each step required to generate the final output.

8. The environmental attributes in the execution of a notebook.

We use an example Jupyter Notebook which uses face recognition example apply-

ing eigenface algorithm and SVM using scikit-learn [Pedregosa et al., 2011]. The

initial code is adapted from scikit-learn14. We use Original Author to refer to the

author who is the first author of the notebook and User 1 and User 2 to the authors

who used the original notebook to reproduce results. The notebook was first saved

without any outputs. Later the notebook was executed by two different users. The

notebook was run in three different environments. Table 7.1 provides the statis-

tics of the Jupyter Notebook executions. The first run of the eigenfaces Jupyter

Notebook gave ModuleNotFoundError for User 1. Several runs were attempted to

solve the issue. However, for User 2, only the first run gave ModuleNotFoundError

error. This was resolved by installing the scikit-learn module. But for User 1 in-

stalling the module still did not solve the issue. The problem occurred because of

the version change of the scikit-learn module. The original Jupyter Notebook used

0.16 version of scikit-learn. While User 1 used 0.20.0 version, User 2 used 0.20.3.

The classes and functions from the cross validation, grid search, and learning curve

modules were placed into a new model selection module starting from Scikit-learn

0.18. Several other changes were made in the script which used these functions.

User 1 made the necessary changes to work for the new versions of the scikit-learn

module, hence, User 2 did not have to change scripts. Using ProvBook, Users 1 and

2 could track the changes and compare the original script with the new one which

worked on both the user’s systems. Figures 7.27 and 7.28 show the differences of

the several runs to reproduce the results of eigenfaces Jupyter notebook.

Figures 7.29, 7.30 and 7.31 show the different execution times for the fourth cell

in the notebook in different environments. The fourth cell consists of a function

fetch lfw people which downloads a set of preprocessed images if they are not al-

14https://scikit-learn.org/0.16/_downloads/face_recognition.py

https://scikit-learn.org/0.16/_downloads/face_recognition.py
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Figure 7.27: Comparison of the first cell from the original author with the first

execution by User 1

Figure 7.28: Comparison of the first cell from the original author after making

changes in the fifth execution by User 1
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Figure 7.29: Execution time for the fourth cell in the third run by User 1 in first

environment

Figure 7.30: Execution time for the fourth cell in the fourth run by User 1 in second

environment

ready present in the disk. It downloads data from Labeled Faces in the World

(LFW)15 which contains the training data for face recognition study. We could see

that in Figure 7.29, it took around 41.3ms in the first environment for the complete

execution of the cell while in Figure 7.31, it increased to 3min 55s in the third envi-

ronment. The different execution environments clearly play a role in computational

experiments which is clearly shown with the help of ProvBook. Figure 7.32 shows

the difference in the intermediate result (the quantative evaluation of the model

quality on the test data) in two different executions by two different users in two

different environments. There is no change in the input of the cell in both execu-

tions, however, the change in the previous cell affected the results. Figure 7.33 shows

the difference in the input in the two different executions of the cells which caused

the change in the results. The provenance capture and difference in ProvBook

can handle different types of output including images. Figure 7.34 shows such case

displaying the difference of a cell execution in the images. This evaluation was done

with several output types mentioned in Section 5.1.

15http://vis-www.cs.umass.edu/lfw/

http://vis-www.cs.umass.edu/lfw/
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Figure 7.31: Execution time for the fourth cell in the fifth run by User 2 in third

environment

Figure 7.32: The difference in the output without any change in the input of the

cell

Figure 7.33: The difference in the input with modification in the input of the cell
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Figure 7.34: The difference in the results which are images

Figure 7.35: Complete path taken by a user for a computational notebook experi-

ment

We also evaluated the performance of ProvBook with respect to space and time.

Regarding time, the difference in the execution time of each cell with and without

ProvBook was negligible. Regarding space, the size of the Jupyter Notebook with

provenance information of several executions was more than the original notebook.

As stated in [Chapman et al., 2008], the size of the provenance information can grow

more than the actual data.

In the next scenario, we evaluated the semantic representation of the provenance

of computational notebooks and scripts. Listings 7.1 shows the SPARQL query of

the complete path taken by a computational experiment with input parameters and

intermediate results in each step required to generate the final output. Figure 7.35

shows the result from this query for the competency question CQ11. It also shows

the sequence of steps in the execution of the notebook. SPARQL Query 7.2 is respon-

sible for querying the environmental attributes of notebooks in different execution

environments. The results of this query is shown in Table 7.2 for the competency

question CQ19.

1 SELECT DISTINCT * WHERE

2 {
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notebook ProgrammingLanguage version Kernel

eigenfaces python 2.7.15rc1 python3

eigenfaces python 3.6.8 python3

Table 7.2: The environmental attributes of a notebook’s execution

3 ?step p-plan:isStepOfPlan ?notebook .

4 ?notebook a repr:Notebook .

5 ?execution p-plan:correspondsToStep ?step ;

6 repr:executionTime ?executionTime .

7 ?step p-plan:hasInputVar ?inputVar ;

8 p-plan:hasOutputVar ?outputVar ;

9 p-plan:isPrecededBy ?previousStep .

10 }

Listing 7.1: Complete path for a computational notebook experiment

1 SELECT DISTINCT * WHERE

2 {

3 ?notebook a :Notebook ;

4 :hasProgrammingLanguage ?ProgrammingLanguage ;

5 :hasProgrammingLanguageVersion ?version ;

6 :hasKernelName ?Kernel .

7 }

Listing 7.2: Execution environment attributes of computational experiment

To evaluate the semantic representation of scripts using the REPRODUCE-ME

ontology, we collected the provenance data of the execution of scripts using the

noWorkflow [Murta et al., 2014]. The noWorkflow tool captures provenance of a

script by running the command “now run <script>”. The provenance data is stored

in SQLite relational database in the same directory where the script is executed. The

noWorkflow captures information of each run of a script, the function definitions,

start and finish time of each trial and activation of the function. The provenance

data captured from the execution of a script using noWorkflow tool are populated in

the database tables and mapped to the ontology. Listing 7.3 represents the mapping

for a trial, FunctionActivation and the sequence of p-plan:Step in a trial of a script.

1 mappingId Trial

2 target :trial/{id} a :Trial ; prov:value {id} ; prov:startedAtTime

{start} ; prov:endedAtTime {finish} .

3 source select id , start , finish from trial

4

5 mappingId Function Activation

6 target :activation /{ trial_id }/{id} a :FunctionActivation; :name {

name}; prov:startedAtTime {start} ; prov:endedAtTime {finish} .

7 source select trial_id , id , name , start , finish from

function_activation

8
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9 mappingId Step preceded by another Step

10 target :activation /{ trial_id }/{id} p-plan:isPrecededBy

11 :activation /{ trial_id }/{ caller_id} .

12 source select trial_id , id , caller_id from function_activation

Listing 7.3: Mappings for script execution

We evaluate our approach by using REPRODUCE-ME ontology to answer the com-

petency questions defined in Section 5.3. Here we present two example SPARQL

queries related to the provenance information of script execution.

The SPARQL Query for competency question CQ24 is listed in Listing 7.4.

1 SELECT DISTINCT ?function_2_name ?function_1_name ?output_val WHERE

{

2 ?function_1 a :FunctionActivation ; :name ?function_1_name ;

prov:startedAtTime ?started_at ; :correspondsToActivity ?trial

.

3 ?function_2 a :FunctionActivation ; :name ?function_2_name .

4 ?function_1 p-plan:isPrecededBy ?function_2 .

5 ?output p-plan:isOutputVarOf ?function_1 ; prov:value ?output_val

.

6 ?trial a :Trial ; prov:used ?script ; prov:value ?trial_id FILTER

(? trial_id ="2"^^ xsd:integer) .

7 ?script :name ?script_name .

8 }

9 ORDER by ?started_at

Listing 7.4: The complete derivation of a script output

The SPARQL Query for competency question CQ23 is listed in Listing 7.5.

1 SELECT DISTINCT * WHERE {

2 ?os a :OperatingSystem ; :name ?os_name ; :version ?os_version .

3 ?trial a :Trial ; prov:used ?os ;

4 prov:atLocation ?execution_directory ;

5 prov:wasStartedBy ?experimenter .

6 ?experimenter a :Experimenter ; :name ?experimenter_name .

7 ?trial prov:used ?pl .

8 ?pl a :ProgrammingLanguage ;

9 :name ?programming_language ;

10 :version ?programming_language_version .

11 }

Listing 7.5: List the environment attributes of the execution of a script

Table 7.3 shows the results from the execution of a script “factorial.py” which calcu-

lates the factorial of a number for the SPARQL Query 7.4. The script “factorial.py”

is executed twice with the same input 5 and same environment attributes like op-

erating system, programming language version, processor etc. We see that the two

trials of a script under the same execution environment and same input parameters

in each step follows the same path to generate the same final output which is 120.

The environmental settings are also required for the reproducibility of experimental
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function 2 name function 1 name output val

factorial.py main None

main factorial 120

factorial factorial 24

factorial factorial 6

factorial factorial 2

factorial factorial 1

main print message None

Table 7.3: Result for SPARQL Query 7.4

data. Here we do not take the randomness factor of input parameters into consid-

eration. Also, we do not consider line by line execution of script rather focus on

functions as steps.

7.4.1 Discussion

This section focused on the evaluation of our work in supporting computational

reproducibility. Here, we targeted only computational experiments using compu-

tational notebooks and scripts. The results of the data and user-based evaluation

clearly shows how ProvBook helps in supporting computational reproducibility. We

see that how each item added in the provenance information in Jupyter Notebooks

helps to track the changes in the results even in different execution environments.

The input, output, starting and ending time, and the execution time for each trial

from each experimenter helps in tracking the provenance of the computational ex-

periments. The Jupyter Notebooks shared along with the provenance information of

their executions helps to compare the original intermediate and final results with the

results from the new trials executed in the same or different environment. We see

that it not only helps in reproducibility (Definition 4.1.4) but also with repeatability

(Definition 4.1.5). This helps in tracking the intermediate and negative results and

the input and the output from different trials are not lost. The execution environ-

mental attributes of the computational experiments along with their results help to

understand their complete path. This solves two of the problems faced by Ana de-

scribed in our use-case in Section 2.1. Hence, it validates the hypothesis H3 and H4.

The results also show that ProvBook can store provenance of different types of out-

put of each cell. We also see that we could describe the relationship between the

results, the execution environment and the executions that generated the results of

a computational experiment in an interoperable way using the REPRODUCE-ME

ontology. Hence, it validates the hypothesis H1.2 and H2.
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7.5 CAESAR

We evaluate our research work with real-life scientific experiments. Application-

based evaluation is one of the approaches to evaluating ontologies [Brank et al.,

2005] which will be used in our case. In application-based evaluation, the ontol-

ogy under evaluation is used in an application/system to produce good results on

a given task. We plug our ontology into CAESAR to describe the provenance of

scientific experiments. Users are also involved in the evaluation as well as being the

consumers of our system. The evaluation was done on a server hosted at the Uni-

versity Hospital Jena. The server is installed with CentOS Linux 7 and has x86-64

architecture (Intel Corporation Xeon E7 v3/Xeon E5 v3/Core i7). The storage of

the system is divided into two components: 150 TB archive with large access time

and 100TB for faster access time. It has 16 GB RAM. CAESAR is installed in the

system with OMERO, JupyterHub, and ProvBook.

We evaluated the REPRODUCE-ME ontology and CAESAR in the context of sci-

entific experiments related to high-end light microscopy. Scientists from B1 and A4

projects of ReceptorLight used and evaluated the system. Experiments using confo-

cal patch-clamp fluorometry (cPCF), Förster Resonance Energy Transfer (FRET),

PhotoActivated Localization Microscopy (PALM) and direct Stochastic Optical Re-

construction Microscopy (dSTORM) were documented by the scientists as part of

their daily work. Total of 44 experiments in 23 projects were recorded (Accessed on

April 21, 2019). 373 microscopy images generated from different instruments with

various settings were uploaded to the system. The images amount to 15.4 GB of

storage. The datasets were uploaded and documented by the scientists using either

the desktop client or webclient of CAESAR. The scientific experiments along with

the steps, experiment materials, settings, and standard operating procedures were

described using the REPRODUCE-ME ontology using Ontology-based data access

(OBDA). Table 7.4 shows the statistics of the datasets in CAESAR used for evalua-

tion. In addition to these, we also used another dataset for evaluation which is from

the Image Data Repository (IDR) with around 35 imaging experiments16 [Williams

et al., 2017]. This was done to ensure that the REPRODUCE-ME ontology can be

used to describe other types of experiments as well. The metadata from each imaging

experiment from IDR was extracted and described in RDF using the REPRODUCE-

ME ontology. We created a knowledge base of different types of experiments from

these two sources.

We first evaluate the REPRODUCE-ME ontology using competency questions.

Later, we show how we plugged the ontology in CAESAR by using these competency

questions for the visualization of the complete path of a scientific experiment.

We use the concept of Competency Questions to validate our hypothesis. Compe-

16https://github.com/IDR/idr-metadata, Accessed on August 21, 2018

https://github.com/IDR/idr-metadata
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Item Count

Experiment 44

Project 23

Dataset 60

Image 373

Plasmid 7

Protein 5

Vector 3

Chemical 10

Standard Operating Procedure 5

RNA 1

DNA 1

Fluorescent Protein 1

Oligonucleotide 6

Restriction Enzyme 3

Solution 10

Table 7.4: The statistics of the datasets uploaded and documented in CAESAR

tency questions are the basis for the development of an ontology in determining

its scope. The ontology should be able to answer the competency questions over a

knowledge base [Noy et al., 2001]. Based on this, we provided a list of competency

questions in Section 4.2. To see if the ontology can answer the questions, we gen-

erated SPARQL queries for each of the competency questions and executed them

on our knowledge base which consists of linked data in CAESAR. The competency

questions were translated into SPARQL queries by computer scientists. The domain

experts evaluated the correctness of the answers for these competency questions. The

competency questions, the RDF data used for the evaluation, the SPARQL queries,

and their results are publicly available [Samuel, 2019].

We present the competency questions with the corresponding SPARQL queries and

part of the results obtained on running them against the knowledge base. The result

of each query is a long list of values, hence, we show only the first few rows from

them.

SQ1: What are the input and output variables of an experiment?

This query is responsible for getting both the input and output data of an

experiment. Here an experiment is considered as a plan which consists of sev-

eral steps. The experiment can also have sub plans (e.g. Jupyter Notebook).

Each step has input and output variables. If we want to get the values for a

particular experiment or a particular step, we can use the FILTER keyword

in the SPARQL query. Figure 7.36 presents the results of this query showing
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the experiment, the steps, the input and output of each step.

1 SELECT DISTINCT * WHERE

2 {

3 ?experiment a repr:Experiment .

4 ?experimentStep p-plan:isStepOfPlan ?experiment .

5 {

6 ?experimentInput p-plan:isInputVarOf ?experimentStep ;

7 rdf:type ?experimentInputType .

8 OPTIONAL {

9 ?experimentInput repr:name ?experimentInputName

10 }

11 }

12 UNION {

13 ?experimentOutput p-plan:isOutputVarOf ?experimentStep ;

14 rdf:type ?experimentOutputType .

15 OPTIONAL {

16 ?experimentOutput repr:name ?experimentOutputName }

17 }

18 }

Listing 7.6: SPARQL Query 1

Figure 7.36: A part of SPARQL Query 1 Results

As we could see in the Figure 7.36, each experimentInput and experimentOut-

put creates separate rows in the results. The query can be split to get either

only the input or the output from each step of an experiment. This query can

also be used with FILTER keyword to extract particular inputs or outputs

of a particular type. It also shows how multiple inputs and outputs are con-

nected to a particular step of an experiment. Various variations of this query

were used to evaluate the data. For example, (1) List the inputs of type Solu-

tion which were used in the bath solution preparation step of the experiments

performed by an agent from a particular research group. (2) List the output
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generated in the first execution of cell 4 of a particular Jupyter Notebook

used as a Standard Operating Procedure in a particular experiment which

used ‘light sheet fluorescence microscopy’ method. The SPARQL queries were

written for such complex queries and manually compared with the real answers

provided by scientists. In the evaluation, the SPARQL queries were answered

correctly.

SQ2: Which are the methods and standard operating procedures used?

This query is responsible for getting the methods and the protocols used in an

experiment. Figure 7.37 shows the results of this query using the experiments

from the IDR repository. As we could see in the results, that some of the

experimentMethod is linked to external sources like FBBI17. Various complex

queries were written taking this as the base query. For example, List all the

measurement protocols used in the generation of a particular Image.

1 SELECT DISTINCT * WHERE

2 {

3 ?experiment a repr:Experiment .

4 ?experimentStep p-plan:isStepOfPlan ?experiment ;

5 repr:usedMethod ?experimentMethod .

6 }

Listing 7.7: SPARQL Query 2

Figure 7.37: A part of SPARQL Query 2 Results

SQ3: Which are the files and materials that were used in a particular

step?

This query is responsible for getting the files and materials used in an exper-

iment. Table 7.5 shows the results of this query using the experiments from

the ReceptorLight project. It shows the materials and files used in each step

of an experiment.

17http://www.ontobee.org/ontology/FBBI

http://www.ontobee.org/ontology/FBBI
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1 SELECT DISTINCT * WHERE {

2 ?experiment a :Experiment ; :name ?Experiment .

3 {

4 ?experiment p-plan:correspondsToVariable ?material .

5 ?material a :ExperimentMaterial ;

6 :name ?ExperimentMaterial ;

7 p-plan:isInputVarOf ?experimentStep ;

8 rdfs:label ?MaterialType .

9 ?experimentStep rdfs:label ?ExperimentStep

10 }

11 UNION

12 {

13 ?plan p-plan:isSubPlanOfPlan ?experiment ; :name ?Plan .

14 ?file a :File ; p-plan:isVariableOfPlan ?plan ; :name ?File

15 }

16 }

Listing 7.8: SPARQL Query 3

Experiment ExperimentMaterial MaterialType ExperimentStep Plan File

Interaction EGFP-RAD51 and mCherry-RAD52 Calcium phosphate precipitation transfection method Calcium phosphate precipitation method for cell transfection.pdf

EGFP-RAD51 Time-lapse with Bleomycin 2’-Desoxythimidine Chemical Preparation

EGFP-RAD51 Time-lapse with Bleomycin Calcium phosphate precipitation transfection method Calcium phosphate precipitation method for cell transfection.pdf

Staining cellular compartments Calcium phosphate precipitation transfection method Calcium phosphate precipitation method for cell transfection.pdf

TK EGFP-RAD51 - CMV Cherry-RAD54 pTK-EGFP-RAD51 Plasmid Preparation

TK EGFP-RAD51 - CMV Cherry-RAD54 Bleomycin sulfate Chemical Incubation

TK EGFP-RAD51 - CMV Cherry-RAD54 Calcium phosphate precipitation transfection method Calcium phosphate precipitation method for cell transfection.pdf

Colocalization of EGFP-RAD51 and Cherry-RAD54 pEGFP-RAD51 Plasmid Preparation

Colocalization of EGFP-RAD51 and Cherry-RAD54 pEGFP-RAD51 Plasmid Description

Colocalization of EGFP-RAD51 and Cherry-RAD54 pCherry-RAD54 Plasmid Preparation

Colocalization of EGFP-RAD51 and Cherry-RAD54 pCherry-RAD54 Plasmid Transfection

Colocalization of EGFP-RAD51 and Cherry-RAD54 2’-Desoxythimidine Chemical Preparation

Colocalization of EGFP-RAD51 and Cherry-RAD54 Control of Cell Cycle Distrubution PI staining FACS Florian.docx

EGFP-RAD52 / mCherry-RAD54 pCherry-RAD54 Plasmid Preparation

EGFP-RAD52 / mCherry-RAD54 pCherry-RAD54 Plasmid Transfection

EGFP-RAD52 / mCherry-RAD54 2’-Desoxythimidine Chemical Preparation

EGFP-RAD52 / mCherry-RAD54 Bleomycin sulfate Chemical Incubation

EGFP-RAD52 / mCherry-RAD54 Calcium phosphate precipitation transfection method Calcium phosphate precipitation method for cell transfection.pdf

Table 7.5: A part of SPARQL Query 3 Results

Various variations of this query were used to evaluate the data. For example,

List all the research projects which used both ‘pCherry-RAD54’ material of

type ‘Plasmid’ and ‘2’-Desoxythimidine’ material of type ‘Chemical’ and used

a particular Jupyter Notebook ‘Mean overlay analysis.ipynb’.

SQ4: Which are the steps involved in an experiment which used a partic-

ular material?

This query is responsible for selectively querying for the steps which used the

Plasmid ‘pCherry-RAD54’. Table 7.6 shows the results of this query.

1 SELECT DISTINCT * WHERE {

2 ?experiment a :Experiment ; :name ?Experiment ;

3 p-plan:correspondsToVariable ?material .

4 ?material a :ExperimentMaterial ;

5 :name ?ExperimentMaterial ;

6 p-plan:isInputVarOf ?experimentStep ;

7 rdfs:label ?MaterialType FILTER (? ExperimentMaterial=‘

pCherry-RAD54 ’) .

8 ?experimentStep rdfs:label ?ExperimentStep

9 }

Listing 7.9: SPARQL Query 4
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Experiment ExperimentStep ExperimentMaterial MaterialType

Colocalization of EGFP-RAD51 and Cherry-RAD54 Preparation pCherry-RAD54 Plasmid

Colocalization of EGFP-RAD51 and Cherry-RAD54 Transfection pCherry-RAD54 Plasmid

EGFP-RAD52 / mCherry-RAD54 Preparation pCherry-RAD54 Plasmid

EGFP-RAD52 / mCherry-RAD54 Transfection pCherry-RAD54 Plasmid

Table 7.6: A part of SPARQL Query 4 Results

As we could see from Table 7.6, the Plasmid ‘pCherry-RAD54’ is used in 2

experiments in two different steps.

SQ5: Which are the instruments that are associated with an experiment

and their settings when the output was generated?

This query is particularly responsible for the instruments which have been

used in an experiment and their settings. Table 7.7 shows the first few results

from this query with the experiment, the images and the instruments that

generated them.

1 SELECT DISTINCT * WHERE

2 {

3 ?experiment :hasDataset ?dataset ;

4 :name ‘EGFP-RAD51 Time-lapse with Bleomycin ’ .

5 ?dataset prov:hadMember ?image ; :name ?Dataset .

6 ?image a :Image ; :name ?Image .

7 ?instrument p-plan:correspondsToVariable ?image ;

8 repr:hasPart ?instrument_part .

9 ?instrument_part repr:hasSetting ?setting ;

10 rdf:type ?PartType .

11 OPTIONAL { ?setting prov:value ?SettingValue } .

12 OPTIONAL { ?instrument_type prov:specializationOf

13 ?instrument_part ;

14 prov:value ?InstrumentType } .

15 }

Listing 7.10: SPARQL Query 5

Dataset Image instrument instrument part PartType setting

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:manufacturer objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:calibratedmagnification objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:workingdistance objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:iris objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:immersion 7

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:model objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:serialnumber objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:objectivesettings 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:nominalmagnification objective 1

EGFP-RAD51/mCherry-RAD54 time lapse 20180817 RAD51-EGFP BLM 4h 10min.lif repr:instrument 1 repr:objective 1 Objective repr:lotnumber objective 1

Table 7.7: A part of SPARQL Query 5 Results

Each experiment has several images as output. Each image is generated

by an instrument. The instrument has several parts. Each part has

several settings. In the Table 7.7, we could see the settings from the

Objective of the Microscope which generated the image ‘20180817 RAD51-

EGFP BLM 4h 10min.lif’. Many instruments and their parts are associated
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with a particular image. The settings need to be queried seperately to get all

the configurations made in each of the instruments’ parts.

SQ6: Which are the agents directly or indirectly responsible for an exper-

iment?

This query is responsible for getting all the agents and their role in an exper-

iment. Figure 7.38 shows the result from this query.

1 SELECT DISTINCT ?experiment ?agent ?agentName ?role ?material

WHERE

2 {

3 ?experiment a repr:Experiment .

4 ?step p-plan:isStepOfPlan ?experiment .

5 {

6 ?experiment prov:wasAttributedTo ?agent.

7 OPTIONAL { ?agent foaf:givenName ?agentName }

8 ?agent repr:hasRole ?role .

9 }

10 UNION

11 {

12 ?material p-plan:isInputVarOf ?step .

13 ?material prov:wasAttributedTo ?agent .

14 OPTIONAL {

15 ?agent repr:name ?agentName ; repr:hasRole ?role .

16 }

17 }

18 UNION

19 {

20 ?material p-plan:isOutputVarOf ?step .

21 ?material prov:wasAttributedTo ?agent .

22 OPTIONAL {

23 ?agent repr:name ?agentName ; repr:hasRole ?role .

24 }

25 }

26 }

Listing 7.11: SPARQL Query 6

From the results, we see that the agents who are directly responsible (Experi-

menter, Principal Investigator) for an experiment are added by the scientists.

In addition to that, the agents who are indirectly responsible for an experi-

ment like the Manufacturer, Distributor, Data Publisher are also considered

important by scientists and linked to an experiment. The survey results also

showed that it is important to share the name, contacts, and roles of the agents

directly or indirectly involved in an experiment (see Figure 7.16).

SQ7: Who created this experiment and when? When was the experiment

started?

This query is responsible for getting all the agents and temporal aspects of an

experiment. Table 7.8 shows the result from this query.



184

Figure 7.38: A part of SPARQL Query 6 Results

1 SELECT DISTINCT * WHERE

2 {

3 ?experiment a repr:Experiment ;

4 repr:name ?Experiment ;

5 prov:wasAttributedTo ?Agent .

6 OPTIONAL {

7 ?experiment prov:startedAtTime ?startedAtTime ;

8 prov:generatedAtTime ?generatedAtTime

9 }

10 }

Listing 7.12: SPARQL Query 7

Experiment Agent startedAtTime generatedAtTime

EGFP-RAD51/mCherry-RAD54 repr:Researchgroup Experiment 2 2018-09-30T10:11:00 2019-03-01T21:07:07+01:00

EGFP-RAD51/mCherry-RAD54 repr:ContactPerson Experiment 2 2018-09-30T10:11:00 2019-03-01T21:07:07+01:00

EGFP-RAD51/mCherry-RAD54 repr:Project Experiment 2 2018-09-30T10:11:00 2019-03-01T21:07:07+01:00

EGFP-RAD51/mCherry-RAD54 repr:ExperimenterGroup 53 2018-09-30T10:11:00 2019-03-01T21:07:07+01:00

Table 7.8: A part of SPARQL Query 7 Results

SQ8: Which are the publications or external resources that were refer-

enced?

This query is responsible for the publications that resulted for an experiment

or external resources that were referenced. Figure 7.39 shows the result from

this query.

1 SELECT DISTINCT * WHERE

2 {

3 ?experiment a repr:Experiment .

4 ?step p-plan:isStepOfPlan ?experiment .

5 ?publication p-plan:isOutputVarOf ?step ;

6 rdf:type repr:Publication ;
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7 repr:doi ?publicationDOI .

8 OPTIONAL { ?publication repr:pmcid ?pmcid } .

9 OPTIONAL { ?publication repr:pubmedid ?PubMed }

10 OPTIONAL { ?publication prov:wasAttributedTo ?author }

11 }

Listing 7.13: SPARQL Query 8

Figure 7.39: A part of SPARQL Query 8 Results

SQ9: What is the complete path taken by a scientist for an experiment?

This query is responsible for getting the complete path for an experiment.

1 SELECT DISTINCT * WHERE

2 {

3 ?experiment a repr:Experiment ;

4 prov:wasAttributedTo ?agent ; repr:hasDataset ?dataset ;

5 prov:generatedAtTime ?generatedAtTime .

6 ?agent repr:hasRole ?role .

7 ?dataset prov:hadMember ?image .

8 ?instrument p-plan:correspondsToVariable ?image ;

9 repr:hasPart ?instrument_part .

10 ?instrument_part repr:hasSetting ?setting .

11 ?plan p-plan:isSubPlanOfPlan ?experiment .

12 ?variable p-plan:isVariableOfPlan ?plan .

13 ?step p-plan:isStepOfPlan ?experiment .

14 OPTIONAL { ?step p-plan:isPrecededBy ?previousStep } .

15 {

16 ?Input p-plan:isInputVarOf ?step ; rdf:type ?InputType .

17 OPTIONAL { ?Input repr:name ?InputName } .

18 }

19 UNION {

20 ?Output p-plan:isOutputVarOf ?step ;

21 rdf:type ?OutputType .

22 OPTIONAL { ?Output repr:name ?OutputName } .

23 OPTIONAL { ?Output repr:isAvailableAt ?outputUrl } .
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24 OPTIONAL { ?Output repr:reference ?OutputReference .

25 ?OutputReference rdf:value ?OutputReferenceValue

26 }

27 }

28 }

Listing 7.14: SPARQL Query 9

Figure 7.40: A part of SPARQL Query 9 Results

The important elements required for the reproducibility of a scientific experi-

ment are used to describe its complete path. Here, we queried the experiment

with its associated agents and their role, the plans and steps involved, the

input and output of each step, the order of steps, and the instruments and

their setting. This query can be further expanded by querying for additional

information like the materials, publications, external resources, methods, etc.

used in each step of an experiment. Figure 7.40 shows the part of the result

for a particular experiment called ‘Focused mitotic chromsome condensaton

screen using HeLa cells’. The results show that this query helps in getting

all the important elements required for reproducibility. We also see that all

these elements now are linked together to describe the complete path. The

experiment is linked to the computational and non-computational steps. It

is possible to query for all the elements mentioned in the REPRODUCE-ME

Data Model (see Section 4.4).

We also observed that for certain experiments which did not provide the com-

plete data for some elements, the query returned null. So the query needs to

be tweaked to include the OPTIONAL keyword to get the results from the

query. Another thing that we notice during the evaluation is that the results

are spread across several rows in the table. In the Dashboard, when we show

these results, the filter option provided in the table helps the user to search
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for particular columns.

SQ10: List all the experiments which use growth protocol (EFO 0003789)

and studies on “Homo sapiens” and resulted in phenotype “shorter

prophase” which passed the quality control.

This query is responsible for selectively querying for complex questions ac-

cording to the requirements of a scientist. Figure 7.41 shows the result of this

query.

1 SELECT DISTINCT ?experiment ?image ?image_url WHERE

2 {

3 ?experiment a repr:Experiment .

4 ?step p-plan:isStepOfPlan ?experiment .

5 ?image p-plan:isOutputVarOf ?step ;

6 a repr:Image .

7 ?screen p-plan:isOutputVarOf ?step ;

8 a repr:Screen ;

9 p-plan:isVariableOfPlan ?protocol .

10 ?protocol a repr:Protocol ;

11 repr:type ?type FILTER (?type=" EFO_0003789 ") .

12 ?image repr:reference ?organism .

13 ?organism a repr:Organism ;

14 rdf:value ?organismvalue Filter (? organismvalue ="Homo

sapiens ") .

15 ?image repr:reference ?phenotype .

16 ?phenotype a repr:Phenotype ;

17 rdf:value ?value Filter (?value =" shorter prophase ") .

18 ?image repr:reference ?QualityControl .

19 ?QualityControl a repr:QualityControl ;

20 rdf:value ?QualityControlValue FILTER (? QualityControlValue

="pass") .

21 ?image repr:isAvailableAt ?image_url

22 }

Listing 7.15: SPARQL Query 10

7.5.1 Discussion

In this evaluation, we focused on answering the competency questions which were de-

fined for the development of the REPRODUCE-ME ontology. The ontology was also

evaluated by using it in CAESAR to describe the experiments related to microscopy.

The competency questions were translated to SPARQL queries by computer scien-

tists. This is because scientists from life sciences are not aware of writing SPARQL

queries. However, to overcome this limitation, we provide them with the visualiza-

tion of the results from these SPARQL queries through Dashboard and ProvTrack.

The SPARQL queries of the competency questions (CQ1-CQ24) were answered by

the REPRODUCE-ME ontology. The results of SPARQL queries were manually

compared using Dashboard and ProvTrack. Their correctness was evaluated by the
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Figure 7.41: A part of SPARQL Query 10 Results

domain experts [Samuel et al., 2018]. The elements described in the REPRODUCE-

ME Data model required for reproducibility are linked together to an experiment

to describe its complete path. Each of the competency questions addressed the

different elements of the REPRODUCE-ME Data Model. We also evaluated the

ontology with different variations in the competency questions. With the help of

SPARQL queries, we saw that some experiments had missing provenance data on

time, settings, etc. We also observe that the output of the query for finding the

complete path of scientific experiment results in several rows in the table. Hence,

in some cases where the experiment has several inputs and outputs with several

executions, the response time can exceed the normal query response time and result

in server error from the SPARQL endpoint. To avoid this issue, we split the queries

and combine their results together in ProvTrack. We also group the entities, agents,

activities, steps, and plans in ProvTrack to help users visualize the complete path

of an experiment.

7.5.2 Visualization

To evaluate the main hypothesis of our work, it is important that the provenance

of scientific experiments is visualized to the scientists in an appealing manner since

everyone is not aware of writing SPARQL queries. In Section 7.5, we saw that the

competency questions are answered using the REPRODUCE-ME ontology. The

visualization modules in CAESAR provide users the way to see the results from

these competency questions. To do so, the Dashboard provides the provenance of

scientific experiments conducted in a project with tabular design, while ProvTrack

provides the visualization of the provenance graph of each scientific experiment. To

evaluate the modules, we used the experiments from our knowledge base. First, we
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conducted a performance evaluation of each of the modules. In order to increase

the performance and usability of the dashboard, we designed the dashboard with

lazy load. Each panel makes an asynchronous call to the backend and is rendered

as soon as the response is back without waiting for all the responses to arrive. In

ProvTrack, we query the provenance of each scientific experiment and combine the

results from the competency questions to visualize the complete path.

We performed a user-based evaluation of CAESAR. 7 participants were invited for

the survey, of which 6 participants responded to the questions. The participants

of this evaluation were the scientists of ReceptorLight project who use CAESAR in

their daily work. In addition to them, there were other biology students, who closely

work with microscopy images and are not part of ReceptorLight project, participated

in this evaluation. The scientists from ReceptorLight project were given training

on CAESAR and its workflow on documenting experimental data. Apart from the

internal meetings, the trainings were done throughout the years from 2016-2018

(17.06.2016, 19.07.2016, 07.06.2017, 09.04.2018 and 16.06.2018). As part of these

trainings, scientists were asked to upload their experimental data to CAESAR. Ta-

ble 7.4 shows the statistics of the experimental data that were uploaded as part of

this process. A part of this data was used for the evaluation. The purpose of this

study was to see how the users find CAESAR useful with respect to the features it

provides. The questionnaire along with the responses are available in Appendix D.1.

None of the questions in the study was mandatory. Figures 7.42, 7.43 and 7.44 show

the results from the user evaluation of CAESAR.

In the first section of the study, we asked how the features in CAESAR help in

Figure 7.42: CAESAR User Evaluation: The perceived usefulness of CAESAR

improving their daily research work. All the participants either strongly agreed or
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agreed that CAESAR enables them to organize their experimental data efficiently,

preserve data for the newcomers, search all the data, provide a collaborative envi-

ronment and link the experimental data with results as seen in Figure 7.42. 83%

of the participants either strongly agreed or agreed that it helps to visualize all the

experimental data and results effectively, while 17% of them disagreed on that.

In the next section (Figure 7.43), we asked on the perceived usefulness of CAESAR.

Figure 7.43: CAESAR User Evaluation: Experience with CAESAR

60% of the users consider CAESAR user-friendly while 40% of them had a neutral

response. 40% of the participants agreed that CAESAR is easy to learn to use and

60% had a neutral response. The response for this was mentioned that CAESAR

provides a lot of features and they found it little difficult to follow. However, all

the participants strongly agreed or agreed that CAESAR is useful for scientific data

management and provides a collaborative environment among teams.

In the last section, we evaluated each feature provided by CAESAR by focusing on

the important visualization modules. ProvTrack was strongly liked or liked by all

the participants as seen in Figure 7.44. For the Dashboard, 80% of them either

strongly liked or liked, while 20% of them had a neutral response. 60% of the users

strongly liked or liked ProvBook, while other 40% had a neutral response. The

reasons for the neutral response was because they were new to scripting.

We also asked to provide the overall feedback of CAESAR along with its positive

aspects and the things to improve. We got 3 responses to this question which are

available in Appendix D.1.
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Figure 7.44: CAESAR User Evaluation: The features of CAESAR

7.5.3 Discussion

In our user study of CAESAR, we targeted both the regular users and the users

who are new to the system. Even though we had a small group of participants,

they either agreed or liked the features provided by it. A strong agreement was

seen among the participants that it helps to preserve data for the newcomers to

understand the ongoing work in the team. The survey results in Section 7.3 had

shown that newcomers face difficulty in finding, accessing and reusing data in a

team (see Figure 7.9). Hence, we could see that CAESAR addresses this issue for

the newcomers. This understanding of the ongoing work in the team comes from the

linking of experimental data and results. This is achieved using the visualization

of the overall view of the experimental data. The results from the study show that

among the two visualization modules, ProvTrack was preferred over Dashboard by

scientists. Even though both serve different purposes (Dashboard for an overall view

of the experiments conducted in a Project and the ProvTrack for backtracking the

results of one experiment), the users preferred the provenance graph to be visualized

with detailed information on clicking. The participants did not have the knowledge

of Semantic Web technologies and were also not familiar with writing SPARQL

queries. Hence, we did not perform any user study on writing SPARQL queries

to answer competency questions. In our surveys, we did not use any technical

terms like provenance, ontology, Semantic Web, etc. This was to make sure that all

the questions can be answered by participants even without knowing the computer

science technical terms. The survey shows that the visualization of the experimental

data and results using ProvTrack supported by the REPRODUCE-ME ontology
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helps the scientists without worrying about the underlying technologies. Hence, it

validates our main hypothesis.

7.6 Summary

This chapter presented the evaluation of our research work. Table 7.9 provides

the summary of the evaluation of this thesis work. The evaluation of each module

was done by different users using real-life experiments. The first user interviews pre-

sented some important points that need to be addressed for reproducibility and data

management process. The next section presented a user-based survey on the under-

standing of experiments and research practices. The survey results showed that there

is a reproducibility crisis. Several factors that lead to poor reproducibility of results

according to users’ experience were shared. The results also showed that sharing

data and results are not just enough for reproducibility. The methods, negative and

intermediate results, steps and execution environment along with settings have also

got high priority in sharing experimental metadata. We evaluated the support of

computational reproducibility using ProvBook. It was used in different scenarios

by different users with a different set of Jupyter Notebooks. The results showed

how ProvBook helped to track the provenance of computational experiments hence

helped in supporting reproducibility. In the last section, we evaluated the modules

in CAESAR. The REPRODUCE-ME ontology was evaluated by using in CAESAR

using the data uploaded by the scientists from the CRC ReceptorLight project and

IDR repository. We showed how each competency question was answered using the

ontology. The user-based survey showed that CAESAR is useful for provenance

data management especially the visualization modules. However, the performance

time needs room for improvement. Since CAESAR provides a rich set of features,

training is required for the scientists to be familiarized with the system.
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Experiment
Hypothesis, Goal, Require-

ment
Outcome/Remarks

The REPRODUCE-ME Data Model

Survey on understanding experiments and research

practices for reproducibility
H1 & Goal1

Reproducibility Crisis exists. Each el-

ement in the REPRODUCE-ME Data

Model is important for reproducibility.

Computational Reproducibility

Computational experiments performed by different

users in different environments
H3 Goal2

Intermediate, negative, and final results

from different users are tracked by Prov-

Book.

The input, output, execution time and the order in

different executions of a computational experiment
H3 & Goal2

Supported by the provenance captured by

ProvBook

Provenance difference of the results of computational

steps
H4 & Goal2

Comparison of results with the results

from the original author is supported by

ProvBook.

Performance of ProvBook with respect to time Goal2
Difference in the execution time of cells

with and without ProvBook is negligible.

Performance of ProvBook with respect to space Goal2
Provenance data grows more than actual

data

Environmental attributes of the execution of compu-

tational experiments
H1.2 & Goal2

Supported by the provenance captured by

ProvBook

Competency Questions CQ11-CQ24 H1, H2 & Goal1
Answered using the REPRODUCE-ME

ontology

CAESAR

Competency Questions CQ1-CQ10 H1, H2 & Goal1
Answered using the REPRODUCE-ME

ontology

User Evaluation H5 & Goal3

Interactive provenance graph provided by

ProvTrack provides a complete path of an

experiment and is useful.

ProvBook R1, R2, R3, R5, R6 & R7 Supported

CAESAR R1, R2, R3, R4, R5, R6 & R7 Supported

Table 7.9: Summary of the evaluation of our research work. The table presents the

experiments which validate the hypothesis and their outcome.



Chapter 8

Conclusions and Future Work

This chapter concludes this dissertation. In Section 8.1, we provide a brief summary

of this research work. Section 8.2 brings the dissertation to a close by reviewing its

contributions and the extent to which the hypotheses and goals are achieved. In

Section 8.3, we examine the future lines of work.

8.1 Summary

The research problem that we addressed in this thesis was how to support under-

standability, reproducibility, and reuse of scientific experiments. The motivation

behind our work comes from the scientists who want to understand, reproduce and

reuse each others’ results in a collaborative research environment. As our first step,

we studied the different practices and requirements of scientists in life sciences in

the context of scientific data management for reproducibility. Every research group

had its own way of storing experimental data using different techniques and tools.

However, several challenges were faced by scientists in tracking the provenance of

results. The lack of a link between the data and results from the computational

and non-computational steps of an experiment is one of the main challenges that

concerned reproducibility of results.

We focused our research work based on three key questions: (1) How to describe and

represent the complete path of a scientific experiment? (2) How to support com-

putational reproducibility? (3) How to develop a collaborative framework which

provides access to the complete path of a scientific experiment? Three main contri-

butions emerged to answer these three questions. We also combined the first and

second contributions together in the third contribution to provide scientists a single

place to visualize the complete path of a scientific experiment.

The three main contributions are as follows: (1) We developed the REPRODUCE-

ME Data Model and ontology to describe the complete path of a scientific exper-

iment consisting of results from the computational and non-computational steps

using semantic web technologies. (2) To support computational reproducibility, we

194
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developed ProvBook to capture, manage, compare and visualize the provenance in-

formation of computational notebooks. (3) We were able to develop an end-to-end

provenance management platform, CAESAR, to help scientists working collabora-

tively.

Each contribution was used in real-world scenarios and evaluated. Based on the

evaluation results, we conclude the following: (1) Reproducibility is an important

concern in data-intensive science and needs much attention to improve the current

situation. (2) The REPRODUCE-ME data model describes the important compo-

nents required for reproducibility of scientific experiments and it can be extended

to meet the requirements for each scientific field. (3) ProvBook, an easy-to-use

tool which provides the support to capture, represent, store, compare and visualize

provenance is an example to support computational reproducibility. (4) CAESAR

which provides support for the end-to-end provenance management from the begin-

ning of an experiment to its end addresses the major concerns of the scientists in the

context of understandability, reproducibility, and reuse. The results of this thesis

with all the information of the contributions are available online1.

8.2 Contributions

In this section, we summarize our contributions with regard to the research problems,

goals, and hypothesis that we defined in Chapter 2. Table 8.1 provides the summary

of the results of this thesis work.

8.2.1 The REPRODUCE-ME Data Model and the ontology

We first investigated the different possibilities to describe the complete path of a

scientific experiment. This study led us to the benefits of Semantic Web technologies

and linked data in supporting understandability and sharing of domain knowledge.

Based on our understanding of different experimental workflows from various sci-

entists, we precisely defined reproducibility and repeatability. In the next step,

we did a literature survey on different data models which describe provenance in-

formation in general. Inspired by the W7, PRIMAD, and PROV-DM models, we

developed the REPRODUCE-ME data model. We described eight main components

required for the reproducibility of experiments: Data, Agent, Activity, Plan, Step,

Setting, Instrument, Material. We defined each component and further provided

their classifications. To encode the REPRODUCE-ME data model in OWL, we

reviewed whether the existing provenance models are adequate enough for captur-

ing provenance information of the complete path of a scientific experiment. Based

on the review, we selected the W3C recommendation PROV Ontology (PROV-O)

1https://w3id.org/reproduceme/research

https://w3id.org/reproduceme/research
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Hypothesis Goals Contribution Remarks

H1 Goal1
REPRODUCE-

ME DM

A conceptual model is developed

to describe a complete path of a

scientific experiment.

H1.1 Goal1
REPRODUCE-

ME DM

The data model is developed to

represent the relationship between

the data, the steps and the re-

sults of a non-computational ex-

periment.

H1.2 Goal1
REPRODUCE-

ME DM

The data model is developed to

represent the relationship between

the data, the steps and the results

of a computational experiment.

H1.2 Goal1
REPRODUCE-

ME DM

The data model is developed

to represent the relationship be-

tween the computational and non-

computational aspects of a scien-

tific experiment.

H2 Goal1
REPRODUCE-

ME Ontology

Semantic Web technologies are

used by extending the existing

standards to answer the defined

competency questions.

H3 Goal2 ProvBook

Computational notebooks are ex-

tended to provide provenance sup-

port for reproducibility.

H4 Goal2 ProvBook

Demonstrated the support of com-

putational reproducibility using

ProvBook in different use-case sce-

narios.

H5 Goal3 CAESAR

Demonstrated the use of the col-

laborative framework to capture,

represent and visualize a complete

path of a scientific experiment.

Table 8.1: Summary of the contributions along with hypothesis and goals
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which describes the entities, agents, and activities of an application system. We

used PROV-O as a foundation to represent provenance information of a scientific

experiment and extended it to meet the domain requirements. To provide more

details to the input and output data used and generated in each step of an ex-

periment, we used P-Plan, which is primarily used to describe abstract scientific

workflows and their executions. We developed the REPRODUCE-ME ontology by

extending PROV-O and P-Plan to describe the provenance information of scien-

tific experiments. The concepts and properties in REPRODUCE-ME were aligned

with PROV-O and P-Plan. The REPRODUCE-ME ontology not only provides the

description of non-computational steps but also the computational steps from the

execution of computational notebooks and scripts. Then, it interlinks the data,

the results, and the execution environment of these steps to describe the complete

path of an experiment. We evaluated this approach by applying it in experiments

related to high-end light microscopy. The competency questions answered by the

REPRODUCE-ME ontology addressed different aspects of provenance information

of a scientific experiment. The user-based survey also showed us that the components

defined in the REPRODUCE-ME data model are important for reproducibility of

results. This contribution helped to achieve Goal1 by validating the hypothesis H1

and H2.

8.2.2 Support of Computational Reproducibility

The importance of data science and computational research for scientists in their

daily work drew our attention to computational reproducibility. Therefore, we first

studied different computational tools in the context of scientific workflows, scripts,

and computational notebooks. We focused our research on computational notebooks

because of their wide adoption and how they help in reproducibility by sharing code

along with the results and documentation. Based on our study, we understood

that there is however limited provenance support in these notebooks. Their prove-

nance support was limited because there was no approach to track and compare the

results of the different executions. To provide provenance support, we developed

ProvBook (Provenance of the Notebook) which is an extension of Jupyter Note-

books. It captures and visualizes the provenance information of different executions

of the cells in the notebook over the course of time. It also provides the user the

facility to see the difference between the results from the original experimenter with

the current ones. This feature can also be used in tracking the intermediate and

negative results. In addition to that, ProvBook allows the user to download and

share the notebook along with its provenance in Resource Description Framework

(RDF) described using the REPRODUCE-ME ontology. This shared RDF can also

be converted back to an executable notebook. Besides computational notebooks,

we also provide a semantic representation of provenance of scripts and their execu-
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tions using the REPRODUCE-ME ontology. One of the benefits of representing the

provenance information of computational notebooks and scripts is that they can be

combined with the metadata of the experiments which used them. In this way, we

track the complete path of scientific experimental results using the REPRODUCE-

ME ontology. We used publicly available Jupyter Notebooks collected from GitHub

and evaluated ProvBook. We used them in different cases by changing variables

according to Reproducibility and Repeatability Matrix (Table 4.1 and 4.2). The

results demonstrated that ProvBook supports computational reproducibility. The

simplicity of this tool is another highlighted feature. This contribution helped to

achieve Goal2 by validating the hypothesis H3 and H4.

8.2.3 CAESAR

We introduced the notion of “end-to-end provenance management” of scientific

experiments in order to support reproducibility. This led to the develop-

ment of CAESAR (CollAborative Environment for Scientific Analysis with

Reproducibility) which provides scientific data management. We narrowed our

scope to the provenance management of experiments in life-sciences particularly

concerned with imaging datasets. Based on the literature survey on the existing

tools, we selected OMERO which provides rich features for the management of

images. We extended OMERO to provide end-to-end management of provenance of

scientific experiments. To do so, we developed modules to capture, represent, store,

and visualize provenance. The provenance capture module provides a form-based

metadata editor with rich facilities. The metadata extracted from the images is also

linked to the experimental data provided by scientists. JupyterHub and ProvBook

installed in CAESAR provide a collaborative computational environment and cap-

ture provenance of computational tasks. We use the REPRODUCE-ME ontology to

describe and integrate the provenance information collected from different sources.

The different sources include the metadata added by scientists through metadata

editor, automatic extraction of settings and execution environment collected from

images generated from different instruments, and the provenance information of

the computational steps collected using ProvBook. This information from various

sources is linked and stored using ontology-based data access. The federation store

of multiple databases in CAESAR and the mapping of the underlying databases

to the ontology provide a semantic approach to query the data using the rdf4j

SPARQL Endpoint. This complete path of scientific experiments is visualized as

linked data with the help of two different views. The Project Dashboard provides

a complete overview of all the experiments conducted for a project. Additionally,

the ProvTrack module provides an interactive graph view of a complete path of

an experiment. CAESAR is currently used by scientists in the ReceptorLight

project in their daily research work for scientific data management. We evaluated
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the complete approach of provenance-based semantic approach by answering the

competency questions using the data uploaded by scientists. The user-based

evaluation also showed that CAESAR is useful for tracking the provenance of

scientific experiments. Since most scientists do not possess the knowledge of

SPARQL, such a complete view of the provenance of scientific experiments could

not have been gained without the Dashboard and ProvTrack. This contribution

helped to achieve Goal3 by validating the main hypothesis 2.3.

8.3 Future Work

In this thesis, we followed a provenance-based semantic approach for the under-

standability, reproducibility, and reuse of scientific experiments. We provided a

provenance data model to describe the complete path of the scientific experiments

by linking their different aspects. The ideas and concepts developed in this thesis

are implemented in life-science experiments dealing with microscopy images. We

expect that this approach can be extended to different types of experiments in di-

verse scientific disciplines. In addition to that, there is much room for extending

our work. The modules developed were focused more on providing the feature. Im-

proving the system for performance is one of the future lines of work. One part of

the provenance capture module depends on the scientists to document their exper-

imental data. Even though the metadata from the images capture the execution

environment and the settings of the devices, the need for human annotations to the

experimental datasets is extremely important. Besides this limitation, the mappings

for the ontology-based data access required some manual curation. This can affect

when the database is extended for other experiment types.

Additionally, we identify some future lines of work where this research can be ex-

tended in several ways:

• Provenance data differencing of scientific experiments.

Currently, we provide a feature to compare and see the differences in the

provenance of different executions of computational steps using ProvBook.

We also provide basic provenance differencing of different versions of scientific

experiment descriptions in CAESAR. This can be extended further to com-

pare the complete path of multiple experiments. This could be implemented

in ProvTrack where a user can choose experiments to visualize the compar-

ison. The users could select two versions of an experiment or two different

similar experiments. The users would be able to compare their experiments

with other experiments from their team members in the collaborative envi-

ronment. They could also compare different cases of reproducible experiments

and see where the provenance graphs resulted in the divergence of results.
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The PDiff algorithm can be applied in this case to see the divergence in the

provenance graphs [Missier et al., 2016]. The provenance graph described us-

ing the REPRODUCE-ME ontology can be used to implement this algorithm

and provide the visualization in ProvTrack.

• Semantic Search

Currently, CAESAR provides an interface with a basic keyword search for

the provenance information of the experiment. Even though querying the

provenance information using SPARQL is possible through the SPARQL editor

interface, most of the scientists do not possess SPARQL knowledge. So the

search interface could be extended further to provide semantic search to look

for similar kind of experimental datasets. In a multi-user environment, it

would be helpful to see similar datasets and results which could lead to more

collaboration. This could be further expanded to provide recommendations

for scientists.

• Reproducibility Checker Button

Based on the understanding of current research practices and experimental

workflow followed by scientists, completely automated provenance capturing

and management solution for scientific experiments is something which is dif-

ficult to achieve in the present state. Hence, we assume that reproducibility is

not a one-button solution in the use cases that we provided in this thesis. It

requires involvement and interactions of users especially through different non-

computational steps of an experiment. Therefore, a reproducibility button to

reproduce an experiment is currently not feasible unless every step is machine-

controlled. A feasible solution is to have a reproducibility checker button for

computational experiments which could provide whether the experiment could

be reproduced using the current environment. It could provide intelligent de-

cisions whether the list of all data needed for the experiment is present and if

the result of the previous trials matched the result from the current trial.

• Extending ProvBook

Currently, ProvBook provides provenance information of different executions

of Jupyter Notebooks with several other features. Further work needs to be

done in ProvBook to see how data and code inside each cell influence the

results. In addition to that, a study needs to be conducted to analyze the

effect of the execution order of the cells to the intermediate and final results.

• Extending CAESAR

There are several possibilities to extend and improve CAESAR. The prove-

nance management system could be expanded to include more types of exper-

iments and experiment materials. Based on other ontologies, the metadata
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editor could be extended to provide intelligent authoring and auto-completion

of data. Another direction for future work is to use the existing provenance

of results in CAESAR to design new experiments. In addition to that, sev-

eral performance measures could be taken to reduce the query time for the

SPARQL queries in the project dashboard and ProvTrack. The PAV ontol-

ogy [Ciccarese et al., 2013], which also extends PROV could be used to tracking

the provenance, authoring, and versioning of scientific experiments. The Prov-

Track could be extended to visualize the evolution of experiments. CAESAR

could be extended to serve as a public data repository providing DOIs to the

experimental data along with the provenance information. This would help

the scientific community to track the complete path of the provenance of the

results described in the scientific publications.
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and Ludäscher, B. (2013). D-PROV: extending the PROV provenance model with

workflow structure. In 5th Workshop on the Theory and Practice of Provenance,

TaPP’13, Lombard, IL, USA, April 2-3, 2013.

[Missier et al., 2016] Missier, P., Woodman, S., Hiden, H., and Watson, P. (2016).

Provenance and data differencing for workflow reproducibility analysis. Concur-

rency and Computation: Practice and Experience, 28(4):995–1015.

[Moreau, 2010] Moreau, L. (2010). The foundations for provenance on the web.

Foundations and Trends in Web Science, 2(2–3):99–241.

[Moreau, 2011] Moreau, L. (2011). Provenance-based reproducibility in the seman-

tic web. Web Semantics: Science, Services and Agents on the World Wide Web,

9(2):202–221.

[Moreau et al., 2011] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth,

P., Kwasnikowska, N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y.,

Stephan, E., and den Bussche, J. V. (2011). The Open Provenance Model core

specification (v1.1). Future Generation Computer Systems, 27(6):743 – 756.

[Moreau et al., 2015] Moreau, L., Groth, P. T., Cheney, J., Lebo, T., and Miles, S.

(2015). The rationale of PROV. J. Web Semant., 35:235–257.
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Appendix A

Interviews with Scientists

These are the responses from the interviews with the scientists who attended the

workshop on “Fostering reproducible science −What data management tools can do

and should do for you” was conducted in conjunction with BEXIS2 UserDevConf1

Conference.

My work involves the usage of sampling protocols and field work where

data is collected (on paper). The collected data is transferred to Excel and

are corrected for typos, errors, etc. It is then documented with metadata

on a readme file. External hard drives are used for storing experimental

data. Analysis of data is done using scripts. After the publication of the

paper, the associated data are uploaded to public repositories. The data is

not made available until the paper is not published. During this stage, it is

difficult to get help from and collaborate with other researchers and col-

leagues distributed geographically. To facilitate reuse, well-documented

structured data sets which are quality controlled is extremely required.

-P1, Ecologist

Version-controlled repositories are used to document my code. The

code and the data used for experiments need to be version-controlled and

should also be citable. The publication should clearly provide the pointer

to the data and code that is used in the study. Space constraint is a

problem with repositories for the gigabytes of data generated from the

experiments. -P2, Computer Scientist

Traditional lab books are used to document experiments. The meth-

ods used in the experiments are based on the author’s first publication.

Further information is gathered with direct communication via e-mail

with other scientists. The experimental metadata is stored in external

hard disks for the long-term preservation of data. Multiple copies are

1http://fusion.cs.uni-jena.de/bexis2userdevconf2017/workshop/
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stored in these drives. The information related to experiments is stored

in different places/computers. Different software and devices are used in

the experimental workflow. The version and license of the software are

important to document in the experimental metadata. Since the experi-

mental metadata are stored at different places including lab books, it gets

hard to distinguish good experiments or to find a specific experiment. All

the information at one place is much needed for the reproducibility and

reusability of results. Another requirement is to crosslink the experiment

metadata with the data and results. It should be possible to follow the

crosslink to understand an experiment. In some cases, it is important

to document the individual trials which will help to understand which

possibilities did not work out. -P3, Biologist

Code and data which are required to reproduce results need to be pub-

licly available. The ability to visualize and compare results helps to un-

derstand our own and others work. -P4, Computer Scientist

There are currently two problems faced by scientists. First, there is a

lack of awareness of data management process. Second, even if there is

data management awareness, there is a lack of resources for the proper

management of data. Different data management methods and tools are

followed in different teams and institutes. Lack of documenting the data

in a structured manner causes problems in understanding experiments

when people change teams. Proper guidelines for data management for

big projects need to be maintained. -P5, Ecologist

It is important to share data within consortiums. Hence, distributed

and centralized data management within a consortium is required. The

volume of data generated by instruments is a concern, which needs to be

addressed using data sharing policy. The documentation of procedures,

devices, and steps are vital for reproducibility. -P6, Biochemist

My work involves data collection from the field, designing experiments

and analyzing the data. R Scripts are used for the analysis of collected

data. The data is stored in external hard disks. Manual documentation of

the steps is done and stored in a text file. The results are stored as Excel

tables. It is important to have the accessibility of non-published data

among the colleagues in a group. It is also important to have simple

tools for data management rather than complicated tools which require

extra learning. -P7, Ecologist

Raw data and processed data are needed to understand an experiment.

R Scripts are used for processing and simulation of statistical models.
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Documenting what the scripts are doing is necessary to understand the

results from the scripts. -P8, Mathematician

Data collection is an important part of my work which includes im-

ages of a geographical location. It is important to know the relationship

between the experimental data like images to the geographical sites where

the photo was taken. Thus a system providing a link to the data, meta-

data, and results can help in our daily work. -P9, Geologist

My work is to develop materials for chemical compounds which in-

volves measurements with spectroscopy techniques and relies on statistical

techniques. Data analysis using R and Matlab scripts is also an impor-

tant part of my work. The documentation of experiments is done in

normal lab notebooks. The need for documenting the experimental meta-

data is the first and foremost thing. In these traditional notebooks, it

is very important to write everything clearly for other new scientists in

the group to reproduce the experiment. It is also important to categorize

the data including the processed data, analyzed data, raw data, exter-

nal files, etc. A common data management repository is very important

so to categorize and store this data so that even if a scientist leaves a

group, the data is stored for future use. The comparison of data-to-data

is also important. Documenting every step is essential for reproducibil-

ity. The methods in the publication are not sufficient to fully reproduce

an experiment. -P10, Physicist
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The REPRODUCE-ME Ontology Requirements Specification Docu-

ment

1. Purpose

The purpose of this ontology is to represent the provenance of a scientific experi-

ment to enable end-to-end reproducibility.

2. Scope

The ontology has to focus on the computational and non-computational processes

of an experiment and the data used and generated in an experiment.

3. Implementation Language

The ontology will be implemented in OWL language.

4. Intended End-Users

User 1. Scientist aiming to track the provenance of scientific experiments.

User 2. Scientist aiming for end-to-end reproducibility of scientific experiments.

User 3. Scientist aiming to track the provenance of execution of scripts.

User 4. Scientist aiming to track the provenance of execution of Computational

notebooks.

User 5. Scientist aiming to describe light microscopy imaging experiments.

5. Intended Uses

Use 1. Describe the provenance of scientific experiments.

Use 2. Describe the computational experiments conducted using scripts.

Use 3. Describe the computational experiments conducted using interactive note-

books.

Use 4. Describe the steps and the execution environment of experiments.

Table B.1: The REPRODUCE-ME ORSD Slots 1-5
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Specification Document

6. Ontology Requirements

a. Non-functional Requirements

NFR 1. The ontology must be published on the Web with an open and non-

commercial license.

NFR 2. The ontology must be written in English.

NFR 3. The ontology must follow the Camel Case convention.

NFR 4. The ontology must be available via its namespace URI with human-

readable documentation and machine-readable structured data using content ne-

gotiation.

NFR 5. The ontology must reuse other ontologies if required.

b. Functional Requirements: Groups of Competency Questions

CQ1. What are the input and output variables of an experiment?

CQ2. Which are the methods and standard operating procedures used?

CQ3. Which are the files and materials that were used in a particular step?

CQ4. Which are the steps involved in an experiment which used a particular

material?

CQ5. Which are the instruments that are associated with an experiment and

their settings when the output was generated?

CQ6. Which are the agents directly or indirectly responsible for an experiment?

CQ7. Who created this experiment and when? Who modified it and when?

CQ8. Which are the publications or external resources that were referenced?

CQ9. What is the complete path taken by a scientist for an experiment?

CQ11. What is the complete path taken by a user for a computational notebook

experiment?

CQ12. What is the sequence of steps in the execution of a computational note-

book?

CQ13. How many trials were performed for a particular cell in a computational

notebook?

CQ14. How long it took for a particular trial of a computational notebook?

CQ15. What was the source for a particular trial of a computational notebook?

CQ16. What was the output for a particular trial of a computational notebook?

CQ17. Who are the agents responsible for the execution of a computational

notebook?

CQ18. When was a particular trial of a computational notebook last executed?

CQ19. What are the environmental attributes of a notebook execution?

CQ20. What is the sequence of steps in the execution of a script?

CQ21. Which are the steps that invoke a particular module?

CQ22. Which are the environmental attributes in the execution of a script?

CQ22. List the user, the operating system, the processor, programming language

version, the working directory associated with the execution of a script.

CQ24. What is the complete derivation of a script output?

Table B.2: The REPRODUCE-ME ORSD Ontology Requirements
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7. Pre-Glossary of Terms

a. Terms from Competency Questions + Frequency

Experiment 7 Step 6 Computation 8

Output 5 Input 2 Particular 8

Script 4 Notebook 8 Result 1

Setting 1 Complete 3 Execution 6

Trial 5 Sequence 2 Material 2

Agent 2 Environment 2 Instrument 1

File 1 Resource 1 Path 2

Attribute 2 Use 3 Responsible 2

Publication 1 Parameter 1 Procedure 1

Method 1 Version 1 Generate 2

b. Terms from Answers + Frequency

Experiment 15 File 10 Code 4

Image 8 Plasmid 2 Protein 3

Microscope 4 Vector 3 Person 7

Setting 8 Solution 4 Data 6

Execution 6 Software 4 Material 6

Metadata 7 Format 3 Measurement 5

Time 2 Group 3 Instrument 3

Environment 2 Sample 2 Hardware 2

Result 7 Temperature 2 Project 1

Publication 4 Document 4 Cell 1

Version 3 Processed 2 Raw 1

c. Objects

No objects were identified.

Table B.3: The REPRODUCE-ME ORSD Pre-Glossary of Terms
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Welcome to this survey.

The purpose of this study is to gain a better understanding of what is needed to
achieve reproducibility of experiments in science. The results of this study will help

us in developing tools that support reproducibility. In turn, this will (hopefully)
benefit the scientific community.

This survey should take around 10 minutes to complete.  This survey is completely
anonymous.  We provide this survey in the context of DFG CRC/TRR ReceptorLight.

If you have any questions regarding this survey, please contact Sheeba Samuel
(sheeba.samuel@uni-jena.de) or Prof. Dr. Birgitta König-Ries (birgitta.koenig-

ries@uni-jena.de).



Section A: Privacy Policy/Datenschutzerklärung

Dear scholar,

From 25th May 2018, the new General Data Protection Regulation (GDPR) (in German: Datenschutz-Grundverordnung,
DSGVO) has come into effect. For compliance reasons, we are obliged to get your consent on the privacy policy before
collecting any kind of personal information. 

The following information applies as a supplement to the general privacy policy of the Friedrich Schiller University Jena. We
request you to please kindly read both policies carefully and to agree.

Please note, as the Friedrich Schiller University Jena is headquartered in Germany, only the German version of this privacy
policy is legally binding.

Liebe Wissenschaftlerinnen und Wissenschaftler,

Am 25. Mai 2018 trat die Datenschutz-Grundverordnung (DSGVO, https://dsgvo-gesetz.de/) in Kraft. Um Ihre
personenbezogenen Daten erheben und verarbeiten zu können, benötigen wir daher aus rechtlichen Gründen zunächst Ihre
Zustimmung zur Datenverarbeitung.

Die folgende Erklärung dient als Ergänzung zur Datenschutzerklärung der Friedrich-Schiller-Universität Jena. Wir möchten Sie
bitten, beide Dokumente gründlich durchzulesen und mit Ihrer Einwilligung zu bestätigen, dass Sie der Datenverarbeitung
zustimmen.

Privacy Policy (English) Datenschutzerklärung (Deutsch) Definition We use common language instead of more formal terms
throughout this policy. To help ensure your understanding of some particular key terms, here is a table of translations: 

 

When we say…

…we mean

“Friedrich Schiller University Jena”/”we”/”us”/”our” The Friedrich Schiller University Jena that conducts this survey. “this
survey” The forms on this website that collect your answers. “personal information” Information you provide us or information
we collect from you that could be used to personally identify you. We consider at least the following to be “personal
information”: 

IP address, operating system, browser

“third party” Individuals, entities, websites, services, products, and applications that are not controlled, managed, or operated by
the Friederich Schiller University Jena Collection and Use of Information How do we collect personal information? 

In this survey, we only collect data about your research contexts such as primary research fields and your research practice. All
questions are not mandatory. You can omit questions you can not answer or you do not want to answer.

While browsing, some general information is stored in the server log files. We collect (1) the browser type and version used, (2)
the operating system used by the accessing system (3) the date and time of access to the Internet site (4) and the Internet
protocol address (IP address). 

All this information is needed to deliver correct website content and to optimize web content continuously. In the case of cyber-
attacks, log files provide necessary information for criminal prosecution.

How do we use that information? 

We use your answers to gain better understanding of what is needed to achieve reproducibility of experiments in science and to
understand the research practices followed in different science domain.

The results of this study will help us in developing tools, methods and workflows that support reproducibility. In turn, this will
benefit the scientific community.

Sharing We support the idea of generating only FAIR data. Thus, we intend to publish all answers as open data in a data
repository with a digital identifier (e.g., DOI) and descriptive metadata. That ensures long-term data curation, data citation, data
retrieval, and data reuse. We also intend to publish the results in an open access journal.  Protection How do we protect your
data? 

We take data protection seriously. The survey website is hosted on servers of the Friedrich-Schiller University, Jena in Jena,
Germany, Europe. We backup the survey regularly.

How long do we keep your data? 

As mentioned above, we would like to publish your answer as open data in a data repository for long-term data storage.

 

Your Rights 

You have the right to access your personal data and the right to let your personal data be corrected or deleted.

You may also at any time and without giving any reason revoke the consent you have given us to collect and use the data. Thus,
the legality of processing until you revoke the consent is not touched.

If you want to use your right (Art. 12 ff. DSGVO), please send an email to sheeba.samuel@uni-jena.de

In addition, you have the right to appeal at the competent supervisory authority (Art. 77 DSGVO).

 

Important Information 

Controller for the purposes of the General Data Protection Regulation (GDPR) is:

Friedrich Schiller University Jena represented by the president Prof. Dr. Walter Rosenthal Fürstengraben 1 07743 Jena

Executive Institution

Heinz-Nixdorf-Stiftungsprofessur für verteilte Informationssysteme Institut für Informatik Ernst-Abbe-Platz 2 07743 Jena

The Data Protection Officer of the controller is:

Dr. Stefanie Buchmann Friedrich Schiller University Jena +49 3641 9-31087 stefanie.buchmann@uni-jena.de

Competent Supervisory Authority:

Thüringer Landesbeauftragter für den Datenschutz und die Informationsfreiheit Häßlerstraße 8 99096 Erfurt
poststelle@datenschutz.thueringen.de

 

If we change our privacy policy, we will post the changes on this page. This policy was last modified on 2018-08-16.

Definition 

Wir verwenden in dieser Datenschutzerklärung eine einfache Sprache und versuchen, formale Terme weitestgehend zu
vermeiden. Die Schlüsselbegriffe werden von uns wie folgt verwendet:

Wenn wir sagen…

…meinen wir

„Friedrich-Schiller-Universität Jena”/“wir“/”uns”/”unser”

Die Friedrich-Schiller-Universität Jena, die diese Umfrage durchführt.

“diese Umfrage”

Die Formulare auf dieser Webseite, in denen Ihre Antworten gespeichert werden, und alle personenbezogenen Informationen,
die Sie uns bereitstellen oder die wir von Ihnen erheben.

“persönliche Daten/Informationen”

 

Folgende Informationen stellen personenbezogene Daten bzw. persönliche Informationen dar: IP-Adresse, Betriebssystem,
Browser.

“Dritte”

Einzelpersonen, Organisationen, Webseiten, Dienste, Produkte und Anwendungen, die nicht durch die Friedrich-Schiller-
Universität Jena kontrolliert, verwaltet und bearbeitet werden.

Datensammlung und Verwendung Wie erheben wir Ihre Daten? 

In dieser Umfrage sammeln wir Daten über Ihren Forschungskontext, wie zum Beispiel primäres Forschungsgebiet,
Forschungsprojekte, in die Sie involviert sind und Ihre Forschungspraxis. Ihre Angaben sind freiwillig. Fragen, die Sie nicht
beantworten können/wollen, können ausgelassen werden.

Am Ende der Umfrage werden Sie nach Ihrer E-Mail-Adresse gefragt, die Sie nur dann angeben müssen, wenn Sie an weiteren
Benutzerstudien teilnehmen möchten. Die Angabe der E-Mail-Adresse (als personenbezogenes Datum) ist ebenfalls freiwillig.
Rechtsgrundlage der Datenverarbeitung ist Art. 6 Abs. 1 lit. a) DSGVO.

Wenn die Internetseite geöffnet und angeschaut wird, werden einige Informationen automatisch in den Server Log Daten
gespeichert: Wir erheben (1) den Browser-Typ und die verwendete Version, (2) Betriebssystem des zugreifenden Systems, (3)
Datum und Zeit des Zugriffs auf die Internetseite und (4) Ihre Internet Protokoll Adresse (IP-Adresse).

Alle diese Information sind notwendig, um Ihnen korrekte Webseiteninhalte anzeigen zu können. Im Fall von Cyber-Attacken
enthalten Log Files notwendige Informationen für eine strafrechtliche Verfolgung.

Wie verwenden wir Ihre Daten? 

Wir nutzen Ihre Antworten um herauszufinden, wie die Forschungspraxis bei Wissenschaftlerinnen und Wissenschaftlern
aussieht und um unser Verständnis für daten-zentrierte Forschungsworkflows, Werkzeuge und Methoden zu verbessern.

Verteilung Wir unterstützen die Idee von FAIR ren Daten. Daher planen wir, alle Antworten anonymisiert als offene Daten in
einem Archiv zu veröffentlichen, in dem die Daten einen digitalen Identifikator (DOI) erhalten und zusätzliche, beschreibende
Informationen erstellt werden. Das stellt eine langfristige Speicherung, Zitierung, Auffindbarkeit und Wiederverwendbarkeit
sicher. Des weiteren planen wir, die Ergebnisse in einem öffentlich zugänglichen wissenschaftlichen Journal zu publizieren.
Datenschutz Wie schützen wir Ihre Daten? 

Wir nehmen den Datenschutz sehr ernst. Die Umfrage wird auf Servern der Friedrich-Schiller-Universität Jena in Jena,
Deutschland, Europa gehostet. Die Umfrage wird regelmäßig gesichert.

Wie lange speichern wir Ihre Daten? 

Wie oben schon erwähnt, wollen wir Ihre Antworten als offene Daten in einem Datenarchiv veröffentlichen, so dass eine
langfristige Datenspeicherung sichergestellt ist.

Ihre Rechte 

Sie haben das Recht, Auskunft über die von Ihnen gespeicherten personenbezogenen Daten zu erhalten sowie auf Berichtigung
oder Löschung oder auf Einschränkung der Verarbeitung Ihrer personenbezogenen Daten.

Sie können Ihre erteilte Einwilligung jederzeit und ohne Angabe von Gründen mit Wirkung für die Zukunft widerrufen.
Dadurch wird die Rechtmäßigkeit der Verarbeitung Ihrer personenbezogenen Daten bis zum Zeitpunkt des Widerrufs nicht
berührt.

Möchten Sie von Ihren Rechten gemäß Art. 12 ff. DSGVO Gebraucht machen, senden Sie Ihr Anliegen elektronisch an 
sheeba.samuel@uni-jena.de

Ihnen steht darüber hinaus ein Beschwerderecht bei der zuständigen Aufsichtsbehörde gemäß Art. 77 DSGVO zu.

Informationen zum Verantwortlichen/DSB 

Verantwortlicher im Sinne der Datenschutzgrundverordnung (DSGVO) ist:

Friedrich-Schiller-Universität Jena vertreten durch den Präsidenten Prof. Dr. Walter Rosenthal Fürstengraben 1 07743 Jena 

 

Durchführende Einrichtung: 

Heinz-Nixdorf-Professur für verteilte Informationssysteme Institut für Informatik Ernst-Abbe-Platz 2 07743 Jena

Die Datenschutzbeauftragte der FSU Jena ist:

Frau Dr. Stefanie Buchmann Friedrich-Schiller-Universität Jena +49 3641 9-31087 stefanie.buchmann@uni-jena.de

 

Zuständige Aufsichtsbehörde ist: 

Thüringer Landesbeauftragter für den Datenschutz und die Informationsfreiheit Häßlerstraße 8 99096 Erfurt

poststelle@datenschutz.thueringen.de

 

Diese Datenschutzerklärung wurde zuletzt am 22.08.2018 aktualisiert.

A1.



Section B: 

Research Context

In this section, we would like to know about your research background.

B1. What is your current position?

 
Student

PhD Student

Research Associate

PostDoc

Junior Research Group Leader/ Junior Professor

Technical Assistant

Lecturer

Data Manager

Professor

Other

Other
 



B2. What is your primary area of study?

 
Molecular Biology

Cell Biology

Microbiology

Neuroscience

Biology(other)

Chemistry

Plant Sciences

Health Sciences

Environmental Sciences

Physics

Computer Science

Other

Other
 



Section C: 

Reproducibility

Reproducibility is the ability of getting the same (or close-by) results when repeating an experiment under different conditions
of measurement (e.g. experimental setup, experimenter).

Reproducibility crisis refers to the growing belief that the results of many scientific studies are difficult or impossible to
reproduce on subsequent investigation, either by independent researchers or by the original researchers themselves.

C1. Do you think there is a reproducibility crisis in your field of
research?

 
Yes

No

Other

Other
 

C2. In your experience, what are the factors leading to poor
reproducibility?
Lack of sufficient metadata regarding the experiment (e.g. culturing conditions, environmental

conditions, software version)

Lack of data that is publicly available for use (e.g. code, methods, results)

Lack of complete information in the Methods/Standard Operating Procedures/Protocols

Poor experimental design

Lack of resources like equipments/devices in your workplace

Lack of the information related to the settings used in original experiment (eg. Experiment Setup,
Instrument Settings)

Difficulty in understanding laboratory notebook records

Pressure to publish

Lack of knowledge or training on reproducible research practices

Lack of time to follow reproducible research practices

Data privacy (e.g. Data sharing with third parties)



Other

Other
 

Section D: 

Measures to ensure reproducibility

In this section, we would like to know about the measures taken in your field of research to ensure reproducibility.

D1. How easy would it be for you to find all the experimental data related
to your own project in order to reproduce the results at a later point
in time (e.g. 6 months after the original experiment)?

Very Easy Easy

Neither
Easy nor
difficult Difficult

Very
difficult

Input Data

Metadata about the methods

Metadata about the steps

Metadata about the experimental setup

Results

D2. How easy would it be for a newcomer in your workplace to find all the
experimental data related to your project/experiment without
any/limited instructions from you?

Very Easy Easy

Neither
Easy nor
difficult Difficult

Very
difficult

Input Data

Metadata about the methods

Metadata about the steps

Metadata about the experimental setup

Results



D3. Have you ever been unable to reproduce published results of others?

 
Yes

No

Never tried to reproduce others published results

D4. Has anybody contacted you that they have a problem in reproducing
your published results?

 
Yes

No

D5. Do you repeat your experiments to verify the results?

 
Yes

No

Sometimes

Section E: 

In order to reproduce published experiment results...

In this section, we would like to know the factors that are important for you to understand a scientific experiment in your field
of research to enable reproducibility.

In order to reproduce published experiment results, what is your opinion on sharing metadata...?

E1. What is your opinion on sharing experimental data?
Not

Important
At All

Little
Importance

Average
Importance

Very
Important

Absolutely
Essential

Not
applicable

Raw Data

Processed Data

Negative Results

Measurements

Scripts/Code/Program

Image Annotations

Text Annotations



E2. What is your opinion on sharing metadata regarding experimental
requirements?

Not
Important

At All
Little

Importance
Average

Importance
Very

Important
Absolutely
Essential

Not
applicable

Experiment Materials

Instruments/Devices Used

E3. What is your opinion on sharing metadata regarding settings?
Not

Important
At All

Little
Importance

Average
Importance

Very
Important

Absolutely
Essential

Not
applicable

Instrument Settings

Experiment Environment Conditions

Publications used

E4. What is your opinion on knowing the names and contacts of
people/organizations who are involved directly (eg. Experimenter,
Supervisor) or indirectly  (eg. Manufacturer, Distributor) in your
experiment and their roles?

Not
Important

At All
Little

Importance
Average

Importance
Very

Important
Absolutely
Essential

Not
applicable

Names of people who are directly involved

Contacts of people who are directly involved

Roles of people who are directly involved

Names of people who are indirectly involved

Contacts of people who are indirectly involved

Roles of people who are indirectly involved

E5. What is your opinion on sharing metadata regarding time, duration,
and the location of experiments?

Not
Important

At All
Little

Importance
Average

Importance
Very

Important
Absolutely
Essential

Not
applicable

Date

Time

Duration

Location



E6. What is your opinion on sharing metadata regarding software used?
Not

Important
At All

Little
Importance

Average
Importance

Very
Important

Absolutely
Essential

Not
applicable

Software Parameters

Software Version

Software License

Scripts/Code/Program

E7. What is your opinion on sharing metadata regarding all the steps and
plans?

Not
Important

At All
Little

Importance
Average

Importance
Very

Important
Absolutely
Essential

Not
applicable

Laboratory Protocols

Methods

Activities/Steps

Order of Activities/Steps

Validation Methods

Quality Control Methods

E8. What is your opinion on sharing the intermediate and final results of
each trial of your experiments?

Not
Important

At All
Little

Importance
Average

Importance
Very

Important
Absolutely
Essential

Not
applicable

Final Results

Intermediate Results

E9. Please let us know what else should be shared when publishing
experimental results.
 



Section F: 

Experiment Workflow/Research Practices

In this section, we would like to know about your experiment workflow and your research practices.

F1. What kind of data do you work primarily with?
Images

Multimedia files (Video, Audio)

Measurements

Graphs

Tabular

Other

Other
 

F2. Where do you store your experimental data files?
Personal Devices (eg. Computer)

Local Server provided at your workplace

Removable Storage Device (eg. USB, Harddisk, CD Drive)

Version Controlled Repositories (eg. Github, GitLab, Figshare, Zenodo etc.)

Data Management Platforms

Other

Other
 

F3. Where do you save your experimental metadata like descriptions of
experiment, methods, samples used?

Primary
Source

Secondary
Source Other

Hand written Lab Notebooks



Primary
Source

Secondary
Source Other

Electronic Notebooks

Data Management Platforms

Other

F4. Do you write scripts or program to perform data analysis at any stage
in your experimental workflow?

 
Yes

No

Sometimes

F5. Have you heard about the FAIR (Findable, Accessible, Interoperable,
Reusable) principles?

 
Yes

No

Heard, but I don't know what exactly FAIR means

F6. Does your research follow the FAIR (Findable, Accessible,
Interoperable, Reusable) principles?

Always Often Sometimes Rarely Never

Findable

Accessible

Interoperable

Reusable

F7. Please feel free to provide comments regarding what you think is
important to enable understandability and reproducibility of
scientific experiments in your field of research.
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Chapter C. Understanding Experiments and Research Practices for

Reproducibility

C.1 Survey Response for free text field questions

Please let us know what else should be shared when publishing experi-

mental results.

1. The minimum information standards of the respective domains are a good

starting point. I am generally in favor of open notebook science which aims to

be totally open about everything as soon as the data, planning, etc is done.

2. Platforms should provide easy access.

3. Hidden parameters for data processing and reasoning for specific choices made

for methods, steps, parameters.

4. The current academic rewarding system is pushing people into coming up with

a nice story which unfortunately is encouraging people to publish their results

without properly validating, hiding their negative data, adjusting statistical

tests in a way that shows a significant difference and so on. The whole system

is broken and has to change. Pre-registration of experimental plans, openly

sharing lab notebooks, sharing all versions of the manuscripts along with re-

viewer’s comments and answers to those comments, seperately publishing un-

derlying datasets, codes and methods and therefore not forcing, polishing and

hiding data to make a nice story but being open and transparent from the

beginning and sharing all elements of research as individual items. To incen-

tivize all these, promotion and hiring criteria should not only look for high

impact journal publications but rather these type of efforts. Researchers typ-

ically spent the least effort to explain their materials and methods while that

is one of the most important elements for research reproducibility. Dedicated

methods repositories that archive not only the experimental procedures and

parameters such as protocols.io but also videos of the procedures performed

by the researchers would help enormously.

5. Metadata in a standardized format; License for data reuse

6. data owner (contact) property right

7. factors that negatively influence the outcome/working of an experiment sup-

plementary results or negative results which might not be important for the

published story may also be shared.

8. Ethics approval, the systematic review conducted before and alongside the

study, the limitations, the contact people in project with long-term access. Ev-

erything should be shared in an structured findable, accessible, inter-operable,

and reusable format (following FAIR guidelines).
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9. A permanent ID for data with correpsonding license

10. Protocols used in the study with versions/adjustments made

11. URL/DOI Links to data in curated repositories; data availability statement

12. Computational environment needs to be fully specified, including OS and any

software dependencies

Please feel free to provide comments regarding what you think is impor-

tant to enable understandability and reproducibility of scientific experi-

ments in your field of research.

1. The bottleneck for experimental scientists is that FAIR data sharing comes on

top of everything else they have to do to generate and analyze the data. They

are usually not experts in data handling/storage. The platforms we share our

data on are often made by IT experts that do not realize that ’their language’

and expertise is not immediately clear to biologists. It thus costs a lot of extra

time and energy for experimental biologists to share their data. Moreover,

there is still a feeling among my lab scientists that it is unfair that they are

forced to share data, but that the one taking the data and doing synthesis

projects (yielding high IF papers) never have to go in the lab and do the hard

work of getting the data. We discussed this very often. Getting credits for

sharing data does not sufficiently resolve this issue for them.

2. As a data manager I cannot really answer questions about the quality of my

data, as I manage data of others and don’t have own research data. I also

cannot say where that data is saved as it always depends on the customer.

3. Internationally accepted metadata schemata covering all disciplines Controlled

vocabularies covering most of the metadata fields An agreement on file formats

4. It is really important (in the case of hand-written notes) the scientists explains

all the abbreviations used in her/ his lab books. It is also very important

to keep the same structure of storing the experimental details/ steps (dates,

treatments, titles).

5. Data sharing among other lab members is important to understand the repro-

ducibility of the experiments.

6. I think it should be a criteria for research funders to allocate funding for

reproducibility of each research and make it a mandatory criteria. Follow

community/domain conventions. Eg when scripting in a particular language,

follow software engineering conventions of that particular language to package

up code.
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D.1 CAESAR (CollAborative Environment for

Scientific Analysis with Reproducibility)

User Evaluation Responses

These are the responses of the participants of this study. The number in each row

of the table denotes the number of participants who selected each category.

1. Please rate the perceived usefulness of CAESAR.

Strongly

Agree

Agree Neither

agree nor

disagree

Disagree Strongly

disagree

It enables me to organize my ex-

perimental data more efficiently

2 4 0 0 0

Preserving data in CAESAR helps

the new comers in the project to

understand the ongoing work in

the team

4 2 0 0 0

It helps me to search all the data

related to my experiments includ-

ing images, their metadata and de-

vice settings

4 2 0 0 0

It enables a collaborative environ-

ment among my team members

2 4 0 0 0

It enables me to visualize all the

experimental data and results ef-

fectively

3 2 0 1 0

It enables me to link the images to

the experimental data and results

2 4 0 0 0

2. Please rate the following questions in regard to your experience with

CAESAR.

Strongly

Agree

Agree Neither

agree nor

disagree

Disagree Strongly

disagree

CAESAR is useful for your scien-

tific data management

2 3 0 0 0

CAESAR is user-friendly 0 3 2 0 0

CAESAR provides a collaborative

environment among teams

0 5 0 0 0

It is easy to learn to use it 0 2 3 0 0
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3. What do you think about the following features in CAESAR?

Strongly

Like

Like Neither

like nor

dislike

Dislike Strongly

dislike

Project Dashboard (An one-place

overview of all the experiments for

a project)

1 3 1 0 0

ProvTrack (A visualization module

to track the experimental data in-

cluding the link between images,

experiments and metadata)

3 2 0 0 0

ProvBook (A computational Re-

producibility framework for data

analysis scripts in Jupyter Note-

book)

2 1 2 0 0

4. Please let us know the overall feedback of CAESAR along with its

positive aspects and the things to improve.

• CAESAR provides a lot of features. Therefore, it is difficult to follow

them.

• I find ProvTrack and ProvBook very useful among all the features in

CAESAR. Sharing data among team members becomes easy with it.

• CAESAR has the potential to be a valuable addition to the “Materials

& Methods” section of a scientific publication. It makes it easy to find

the resources used in an experiment by simple“clicking” via the many

connections between the elements in the database, so that it is much

clearer how a measurement was produced. This is also very useful for the

internal organization of a research group as CAESAR enables e.g. new

lab members to get a better overview over the experimental workflow.

The main issue is the stability of the connection to the server. This is

especially the case with bigger files.
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