
ar
X

iv
:1

70
8.

04
70

5v
1 

 [
st

at
.M

E
] 

 1
5 

A
ug

 2
01

7

Forecasting Multiple Time Series with

One-Sided Dynamic Principal Components

Daniel Peña∗

Department of Statistics and Institute of Financial Big Data

Universidad Carlos III de Madrid, Spain
and

Ezequiel Smucler
Instituto de Calculo

School of Exact and Natural Sciences
Universidad de Buenos Aires - CONICET, Argentina

and

Victor J. Yohai
Instituto de Calculo and Department of Mathematics

School of Exact and Natural Sciences
Universidad de Buenos Aires - CONICET, Argentina

Abstract
∗Daniel Peña is Professor, Department of Statistics and Institute of Financial Big Data, Universidad

Carlos III de Madrid, Calle Madrid 126, 28903 Getafe, España, (e-mail: daniel.pena@uc3m.es). Eze-
quiel Smucler is currently Postdoctoral Research Fellow, Department of Statistics, University of British
Columbia, 3182 Earth Sciences Building, 2207 Main Mall Vancouver, BC, Canada V6T 1Z4 (e-mail: es-
mucler@cs.ubc.ca). Victor J. Yohai is Professor Emeritus, Mathematics Department, Faculty of Exact
Sciences, Ciudad Universitaria, 1428 Buenos Aires, Argentina (e-mail: victoryohai@gmail.com). D.P.
has been supported by Grant ECO2015-66593-P of MINECO/FEDER/UE. E.S. was partially funded by a
CONICET Ph.D fellowship and by grant PIP 112-201101-00339 from CONICET.

1

http://arxiv.org/abs/1708.04705v1


We define one-sided dynamic principal components (ODPC) for time series as
linear combinations of the present and past values of the series that minimize the
reconstruction mean squared error. Previous definitions of dynamic principal com-
ponents depend on past and future values of the series. For this reason, they are not
appropriate for forecasting purposes. On the contrary, it is shown that the ODPC
introduced in this paper can be successfully used for forecasting high-dimensional
multiple time series. An alternating least squares algorithm to compute the pro-
posed ODPC is presented. We prove that for stationary and ergodic time series the
estimated values converge to their population analogues. We also prove that asymp-
totically, when both the number of series and the sample size go to infinity, if the
data follows a dynamic factor model, the reconstruction obtained with ODPC con-
verges, in mean squared error, to the common part of the factor model. Monte Carlo
results shows that forecasts obtained by the ODPC compare favourably with other
forecasting methods based on dynamic factor models.

Keywords: dimensionality reduction; high-dimensional time series; dynamic factor models
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1 Introduction

Forecasting a large number of cross-correlated time series is a difficult problem. Building a

multivariate VARMA model is only possible when the number of series is small compared

to the sample size. Therefore, other alternatives have been explored. Box and Tiao (1977)

introduced linear combinations of the series with maximum predictability. Litterman (1986)

proposed Bayesian VAR models with shrinking prior distributions to control the number of

parameters. Ahn and Reinsel (1988) addressed this problem by introducing reduced-rank

autoregressive models. Tiao and Tsay (1989) presented ways to simplify the construction

of VARMA models by identifying scalar components. However, the currently most popular

procedures for large data sets are based on dynamic factor models, where the relationship

between the series and the factor can be contemporaneous, or with lags. Stock and Watson

(2002) use the contemporaneous model for forecasting assuming that all the variables follow

the same dynamic factor model. Then, the forecast of a given variable can be written

as the sum of the forecast of the common component, driven by the factors, plus the

univariate forecasts of the idiosyncratic component. They used principal components of

the explanatory variables to obtain consistent estimators of the factor effects and fitted

univariate autoregressive models to forecast the idiosyncratic component. Their method

showed a good performance in simulated and real macroeconomic data. This work also

explains why univariate forecasts are improved by using as a regressor a weighted average

of all the series. This procedure, called forecast pooling (see Garcia-Ferrer et al. (1987)),

can be justified by assuming a common factor in the series, as shown by Peña and Poncela

(2004).

Forni et al. (2000) proposed a general dynamic factor model assuming lagged relation-

ships between the series and the factors. They allow for an infinite number of factor lags
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and low correlation between any two idiosyncratic components. Forni et al. (2005) pro-

posed a one-sided method of estimation of the common part of a dynamic factor model for

forecasting. The forecasts generated with this procedure have been compared tothe ones

derived by Stock and Watson (2002) and the results are mixed (see Forni et al. (2015a)).

A modified forecasting approach was proposed by Forni et al. (2015b), although again, as

shown in Forni et al. (2015b), the results are mixed.

Peña and Yohai (2016), following Brillinger’s idea of dynamic principal components,

Brillinger (1964, 1981), proposed components that provide an optimal reconstruction of

the series in finite samples, but dropping Brillingers’s assumption that the components are

linear combinations of the data. However, this approach is not expected to work well in

forecasting problems as the last values of the dynamic principal components have been

computed with smaller number of observations than the central values.

In Section 2 of this paper we define one-sided dynamic principal components (ODPC)

as linear combinations of present and previous values of the series which have optimal

reconstruction performance, that is, they minimize a mean squared error reconstruction

criterion. Following Hotelling’s original spirit of principal components, our definition is not

based on assuming any model for the vector time series. We show how to forecast future

values of the series using the proposed ODPC and a univariate forecasting method. We

present two properties of the proposed estimator. In Section 3 we prove that for stationary

and ergodic time series the estimated values converge to their population analogues. We

also prove, in Section 4, that asymptotically, when both the number of series and the sample

size goes to infinity, if the data follows a dynamic factor model, the reconstruction obtained

with ODPC converges, in mean squared error, to the common part of the factor model. In

Sections 5 and 6 we illustrate with Monte Carlo simulations and with a real data example

that our forecasting procedure compares favourably with other forecasting methods based
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on dynamic factor models. We discuss possible strategies for choosing the number of

components and lags used to define them in Section 7. Finally, some conclusions and

possible extensions are discussed in Section 8. Section 9 is a technical appendix containing

the proofs of our main theoretical results.

2 One Sided Dynamic Components and their compu-

tation

Consider the vector time series z1, . . . , zT , where zt = (zt,1, . . . , zt,m)
′. Let Z be the data

matrix of dimension T ×m where each row is z′t. Consider integer numbers k1
1, k

1
2 ≥ 0. Let

a = (a′
0, . . . , a

′
k1
1

)′, where a′
h = (ah,1, ..., ah,m), be a vector of dimension m(k1 + 1) × 1, let

α
′ = (α1, . . . , αm) and B the matrix that has coefficients bh,j and dimension (k1

2 + 1)×m.

We can define the first one-sided dynamic principal component with k1
1 lags as the vector

ft =
m∑

j=1

k1
1∑

h=0

ah,jzt−h,j t = k1
1 + 1, . . . , T, (1)

and use this component to reconstruct the series using k1
2 lags of the component as

zRt,j(a,α,B) = αj +

k1
2∑

h=0

bh,jft−h.

The values (k1
1, k

1
2) that define the first dynamic principal components will be discussed

later. Suppose now they are given. Then, the theoretical optimal values of a,α and B

can be defined as those that minimize the mean squared error in the reconstruction of the

data, that is, calling E the expectation operator, as the solutions of

(a∗,α∗,B∗) = arg min
a,α,B

1

T − (k1
1 + k2

2)

m∑

j=1

T∑

t=(k1
1
+k2

2
)+1

E
(
zt,j − zRt,j(a,α,B)

)2
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Natural estimators of (a∗,α∗,B∗) can be defined as solutions of

arg min
a,α,B

MSE(a,α,B) (2)

where

MSE(a,α,B) =
1

T − (k1
1 + k1

2)

m∑

j=1

T∑

t=(k1
1
+k1

2
)+1

(zt,j − zRt,j(a,α,B))2 (3)

Note that if (a,α,B) is a solution of (2) then (γa,α,B/γ) will be one as well. Hence, we

define the optimal â, α̂ and B̂ as any solution of

MSE(â, α̂, B̂) = min
‖a‖=1,α,B

MSE(a,α,B). (4)

Conditions to guarantee the existence of at least one solution of (4) will be given in Section

3.

Let

f̂t =
m∑

j=1

k1
1∑

h=0

âh,jzt−h,j, (5)

and ẑt,j = zRt,j(â, α̂, B̂) = α̂j +
∑k1

2

h=0 b̂h,j f̂t−h be the corresponding optimal reconstruction

of the j-th series at period t, 1 ≤ j ≤ m, (k1
1 + k1

2) + 1 ≤ t ≤ T . We define the second

one-sided dynamic principal component with (k2
1, k

2
2) lags as the first one-sided dynamic

principal component of the residuals zt,j − ẑt,j , 1 ≤ j ≤ m, (k1
1 + k1

2) + 1 ≤ t ≤ T . Higher

order principal components are defined similarly. Note that if we compute q one-sided

principal components, each with (ki
1, k

i
2) lags, 1 ≤ i ≤ q, we will only be able to reconstruct

the periods
∑q

i=1 (k
i
1 + ki

2)+1, . . . , T . The superscript i, indicating the principal component

in the vector of lags (ki
1, k

i
2) will generally be omitted when no confusion could arise.

In order to derive an algorithm to compute estimators of a,α and B, we need first to

express the objective function, MSE(a,α,B), in a more manageable form. To this end, we

will introduce further notation. Throughout this paper ‖ · ‖ will stand for the Euclidean
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norm for vectors and the spectral norm for matrices, whereas ‖ · ‖F will stand for the

Frobenius norm for matrices. A† will stand for the Moore-Penrose pseudo-inverse of a

matrix A. For h = 0, . . . , (k1 + k2), let Zh be the (T − (k1 + k2))×m data matrix

Zh =




z′h+1

z′h+2

z′T−(k1+k2)+h


 (6)

For l = k1, . . . , (k1+k2), let Zl,0 = [Zl,Zl−1, ...,Zl−k1 ] be a (T−(k1+k2))×m(k1+1) matrix.

Then, letting gl = (fl+1, ..., fT−(k1+k2)+l)
′ be a vector of dimension (T − (k1 + k2)) × 1 we

have gl = Zl,0a. Let D be the matrix of dimension (k2 + 2)×m given by D =


α

′

B


.

The reconstruction of the values of the Zk1+k2 matrix using a, α and B can be written

as a matrix Ẑk1+k2 of the same dimension, (T − (k1 + k2))×m, as

Ẑk1+k2 = Fk1,k2D

where Fk1,k2 =
[
1T−(k1+k2), g(k1+k2), g(k1+k2)−1, ..., gk1

]
is a matrix with dimensions (T −

(k1+k2))× (k2+2) and 1T−(k1+k2) is a vector of length T − (k1+k2) with all its coordinates

equal to one. Note that Fk1,k2 = Fk1,k2(a), even though this dependence will not in general

be made explicit in the notation.

Let C be the matrix with dimensions (T − (k1 + k2))(k2 + 1)×m(k1 + 1) given by

C =




Zk1+k2,0

...

Zk1,0


 . (7)

Note that

Fk1,k2 =
(
1T−(k1+k2),Zk1+k2,0a, . . . ,Zk1,0a

)
.
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Hence

vec(Fk1,k2)
′ = (1′

T−(k1+k2), (Zk1+k2,0a)
′, . . . , (Zk1,0a)

′) =


1T−(k1+k2)

Ca




′

.

and

vec(Ẑk1+k2) = vec(Fk1,k2D) = (D′ ⊗ IT−(k1+k2))vec(Fk1,k2)

= (D′ ⊗ IT−(k1+k2))


1T−(k1+k2)

Ca


 .

Then, (â, α̂, B̂) can be obtained by minimizing

‖Zk1+k2−Ẑk1+k2‖2F = ‖Zk1+k2 − Fk1,k2D‖2F = ‖vec(Zk1+k2)− vec(Ẑk1+k2)‖2,

subject to ‖â‖ = 1. Note that

‖vec(Zk1+k2)− vec(Ẑk1+k2)‖2 =
∥∥∥∥∥∥
vec(Zk1+k2)− (D′ ⊗ IT−(k1+k2))


1T−(k1+k2)

Ca



∥∥∥∥∥∥

2

=

∥∥vec(Zk1+k2)− (α⊗ IT−(k1+k2))1T−(k1+k2) − (B′ ⊗ IT−(k1+k2))Ca
∥∥2

For a fixed D, â can be computed by least squares

â =
(
(B′ ⊗ IT−(k1+k2))C

)†
(vec(Zk1+k2)− (α⊗ IT−(k1+k2))1T−(k1+k2)). (8)

and then standardized to unit norm. On the other hand, for a fixed Fk1,k2, the optimal D

can also be computed by least squares

D̂ = (Fk1,k2)
†Zk1+k2. (9)

Then, α̂ is given by the first row of D̂ and B̂ is given by the last k2 + 1 rows of D̂.
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2.1 Computing algorithm

We propose the following alternating Least Squares algorithm for computing â , D̂. Let

a(i), D(i) and f (i) be the values of a, D and f corresponding to the i-th iteration. Let

δ ∈ (0, 1), a tolerance parameter to stop the iterations. Write MSE(a,D) = MSE(a,α,B).

In order to define the algorithm it is enough to give an initial value of the component,

f = (fk1+1,..., fT )
′

, say f (0), and describe a rule to compute D(i+1), a(i+1) and f (i+1) from

f (i). This can be done as follows:

1. Given f (i) define D(i+1) by (9), where Fk1,k2 corresponds to f (i).

2. Compute a
(i+1)
∗ by (8) with D = D(i+1) and let a(i+1) = a

(i+1)
∗ /

∥∥∥a(i+1)
∗

∥∥∥ .
3. The t-th coordinate of f (i+1) is given by (1) with a = a(i+1).

The stopping rule is as follows: Stop when

MSE(a(i),D(i))−MSE(a(i+1),D(i+1))

MSE(a(i),D(i))
≤ δ

Clearly in this algorithm at each step the MSE decreases and therefore it converges to a

local minimum. To obtain a global minimum the initial value f (0) should be close enough to

the optimal one. We propose to take f (0) as the last T −k1 coordinates of the first ordinary

principal component of the data. Alternatively, the first Generalized Dynamic Principal

Component proposed by Peña and Yohai (2016) could be used.

Note that since the matrix (B′⊗IT−(k1+k2))C has dimensionsm(T−(k1+k2))×m(k2+1),

solving the associated least squares problem can be time consuming for high-dimensional

(largem) problems. The iterative nature of the algorithm we propose implies that this least

squares problem will have to be solved several times for different B matrices. However, note

that since the matrix B′ ⊗ IT−(k1+k2) is sparse, it can be stored efficiently, and multiplying

it with a vector is relatively fast. We found that for problems with a moderately large

9



m, the following modification of our algorithm works generally faster: instead of finding

the optimal a(i+1) corresponding to D(i+1), just do one iteration of coordinate descent for

a(i+1).

2.2 Forecasting

Suppose we have fitted q dynamic principal components to the data, each with (ki
1, k

i
2)

lags, i = 1, . . . , q. Let f̂ iT be the vector with the estimated values for the i-th dynamic

principal component and B̂i, α̂i be the corresponding loadings and intercepts. Suppose

we have decided upon a procedure to forecast each of these dynamic principal components

separately, and let f̂ i
T+h|T for h > 0 be the forecast of f i

T+h with information until time T.

We can obtain an h-steps ahead forecast of zT as

ẑT+h|T,j =

q∑

i=1


α̂i

j +

ki
2∑

v=0

b̂iv,j f̂
i
T+h−v|T


 j = 1, . . . , m.

3 Wald type consistency for stationary data

In this section we prove a consistency result for our procedure in the case of stationary and

ergodic vector time series. First, in Proposition 1 we show that, asymptotically and with

probability one, problem (4) is well defined. In Proposition 2 we show that the population

version of (4), obtained replacing means by expectations is well defined. Finally, in Theorem

1, we prove that the distance between any given solution of (4) and the set of solutions of

the population problem converges almost surely to zero.

We will assume that the process zt, t ≥ 1, defined in a probability space (Ω,F ,P),

is strictly stationary and ergodic. We note that if instead one assumes weak second or-

der stationarity and ergodicity, similar results can be obtained, but with convergences in
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probability instead of almost surely. Let z denote a random variable with the common

distribution of the z’ts. Given a square matrix M, let λmin(M) and λmax(M) denote the

smallest and largest (in absolute value) eigenvalues of M respectively. Moreover, Tr(M)

will denote the trace of M. We will assume that Ez = 0 and that E‖z‖2 < ∞. Let

Σ(l) = Eztz
′
t−l be the lag l autocovariance matrix of the process zt.

Note that (3) can be written as

MSE(a,α,B) =
1

T − (k1 + k2)

T∑

t=(k1+k2)+1

‖zt − ẑt‖2,

where ẑt is the vector of length m with coordinates

ẑt,j = α̂j +

k2∑

h=0

b̂h,j f̂t−h, j = 1, . . . , m.

Let x′
t = (z′t, . . . , z

′
t−k1

), so that given any a with ‖a‖ = 1, the corresponding component

at time t, ft, is given by a′xt. The lag l autocovariance matrix of xt is given by

V(l) =




Σ(l) Σ(l + 1) . . . Σ(l + k1)
...

...
...

Σ(l − k1) Σ(l − k1 + 1) . . . Σ(l)




Fix a with ‖a‖ = 1, then the covariance matrix of the vector

(1, a′xt, a
′xt−1, . . . , a

′xt−k2)

is

S(a) =




1 0 0 . . . 0

0 a′V(0)a a′V(1)a . . . a′V(k2)a
...

...
...

...

0 a′V(−k2)a a′V(−k2 + 1)a . . . a′V(0)a




.

We will need the following assumption.
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Condition 1. There exists η < 1 such that

P

(
k2∑

h=0

vh(a
′xt−h) = vk2+1

)
≤ η

for all a ∈ Rm(k1+1) with ‖a‖ = 1 and v = (v0, . . . , vk2, vk2+1) such that v 6= 0. That is, for

any a, there is no deterministic linear relation between the values ft, . . . , ft−k2.

It follows from Condition 1 that inf‖a‖=1 λmin(S(a)) > 0. Note that sup‖a‖=1 λmax(S(a)) <
∞ always holds.

Proposition 1 shows that, asymptotically and with probability one, there exists at least

one solution of (4). Write MSE(a,D) for MSE(a,α,B), where D =


α

′

B


 .

Proposition 1. Assume Condition 1 holds. Then, with probability one, there exists T0

such that for all T > T0, argmin‖a‖=1,D MSE(a,D) has at least one solution.

Let

MSE0(a,α,B) = E‖zt − zRt (a,α,B)‖2

be the population version of (3). It is easy to verify that MSE0 is continuous. Let

I =

{
(a∗,D∗) : MSE0(a

∗,D∗) = inf
‖a‖=1,D

MSE0(a,D)

}
.

Proposition 2 entails that I is non-empty.

Proposition 2. Assume Condition 1 holds. Then inf‖a‖=1MSE0(a,D) → +∞ when

‖D‖F → +∞.

Let d((a,D), I) = inf {‖a− a∗‖+ ‖D−D∗‖F : (a∗,D∗) ∈ I} .

Theorem 1. [Consistency] Assume Condition 1 holds. Let (â, α̂, B̂) be a solution of (4)

and D̂′ =
(
α̂ B̂′

)
. Then d((â, D̂), I) a.s.→ 0.
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4 Consistency in the dynamic factor model

In this section we deal with the interesting case where the series follow a stationary dynamic

factor model. In Theorem 3 we prove a consistency result for this situation: asymptotically,

when both the number of series and the sample size go to infinity, the reconstruction

obtained with ODPC converges in mean-square to the common part of the factor model.

Suppose we have observations, z1, . . . , zT , z′t = (zt,1, . . . , zt,m), of a double indexed

stochastic process {zt,j : t ∈ Z, j ∈ N}. Consider the following dynamic factor model with

one factor, say ft, and a finite dimensional factor space. That is,

zt,j =

k2∑

h=0

bh,jft−h + et,j , t = 1, . . . , T, j = 1, . . . , m,

where the et,j for j = 1, ..., m and ft are stationary processes and bh,j the factor loadings.

This can be expressed in the form of a factor model, with k2 + 1 static factors, as

zt = B′ft + et, t = 1, . . . , T,

where et = (et,1, . . . , et,m)
′, B ∈ R(k2+1)×m is the matrix with entries bh,j and ft = (ft, . . . , ft−k2)

′.

For h = 0, . . . , k2 let bh = (bh,1, . . . , bh,m)
′. The term χt = B′ft is usually called the common

part of the model. We will need the following assumptions.

Condition 2.

(a) BB′/m → Ik2+1.

(b) et and ft are second order stationary, Eet = 0m and Eft = 0. Let Σe(l) be the lag l

autocovariance matrix of et. Then λmax(Σ
e(0)) = O(1).

(c) et is uncorrelated with ft at all leads and lags.
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Condition 2(a) is a standardization assumption. It appears, for example, in Peña and Box

(1987). See also Bai and Ng (2002). Conditions 2(b) and (c) allow for weak cross-sectional

correlations in the idiosyncratic part.

The following theorem shows that the population reconstruction mean squared error

of the ODPC procedure is essentially bounded by the mean variance of the idiosyncratic

part. This can also be interpreted as a sequential limit asymptotic: first let T go to infinity

for fixed m and then let m go to infinity. See Connor and Korajczyk (1993) for another

example of sequential limit asymptotics. To keep the notation light, the theorem is stated

and proved for the case in which an intercept α is not included in the definition of the

ODPC; the adjustments to include α are straightforward.

Theorem 2. Assume Conditions 1 and 2 hold. Then as m → ∞

1

m
MSE0(a

∗,B∗) ≤ 1

m

m∑

j=1

Ee2t,j + o(1), for all (a∗,B∗) ∈ I.

The following technical conditions are needed to ensure that the decomposition zt =

χt + et is unique. See Theorem B of Forni et al. (2015b).

Condition 3.

(a) For each m, zt is a second order m-dimensional stationary process that has a spectral

density.

(b) Let Σ(0) be the covariance matrix of zt. Let λz

m,j be its j-th eigenvalue and let

λz

j = supm∈N λ
z

m,j. Then λz

k2+1 = ∞ and λz

k2+2 < ∞.

If we further assume that the idiosyncratic disturbances are cross-sectionally uncorre-

lated, we can prove that the ODPC is able to recover the common part of the dynamic

factor model asymptotically.
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Condition 4.

(a) There exists L > 0 such that Ez2t,j ≤ L for all j.

(b) Σe(0) is a diagonal matrix.

Theorem 3. Assume Conditions 1, 2, 3 and 4 hold. Then as m → ∞
1

m
E‖B′ft − ẑt‖2 → 0,

where ẑt = zRt (a
∗,B∗), for (a∗,B∗) ∈ I.

5 Simulation study

In this Section, we compare the procedure proposed in this paper (ODPC) with those

of Forni et al. (2005) (FHLR), Forni et al. (2015b) (FHLZ) and Stock and Watson (2002)

(SW) for forecasting multivariate time series.

We took (T,m) ∈ {50, 100, 200}×{50, 100, 200}. This Monte Carlo design includes dif-

ficult forecasting situations where the ratio T/m is smaller than one. For each combination

of T and m, we generated 500 vector time series with T +1 periods of the following models.

DFM1 The generating model is zt,j = c(sin(2πj/m)ft+cos(2πj/m)ft−1+(j/m)ft−2+ft−3)+

ut,j where the ut,j are i.i.d. standard normal random variables. The factor ft is

generated according to a moving average process ft = vt + θ1vt−1 + θ2vt−2, where the

vt are i.i.d. standard normals. θ2 is generated at random uniformly on the interval

(−0.7, 0.7). Then θ1 is generated at random uniformly on the interval (0, 1 − |θ2|).
c is chosen so that the mean empirical variance of the common part is equal to one.

This is a stationary dynamic factor model with four static factors and one dynamic

factor.
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DFM1AR This model adds idiosyncratic AR(1) structure to DFM1. For each j, ut,j follows

an unit variance AR(1), where at each replication the autoregression coefficient is

generated at random, with uniform distribution in (−0.9, 0.9).

DFM2 The model is now zt,j = c(sin(2πj/m)ft + cos(2πj/m)ft−1 + (j/m)ft−2) + ut,j where

the ut,j are i.i.d. standard normal random variables. The factor ft follows an autore-

gressive model ft = 1.4ft−1 − 0.45ft−2 + vt, where the vt are i.i.d. standard normals.

As in model DFM1, c is chosen so that the mean empirical variance of the common

part is equal to one. This is a stationary dynamic factor model with three static

factors and one dynamic factor.

DFM2AR As in model DFM1 we add idiosyncratic AR(1) structure to DFM2. Again ut,j

follows an unit variance AR(1) and at each replication the parameter is chosen from

an uniform distribution in (−0.9, 0.9).

VARMA We first generate xt = Λxt−1 + ut, where the ut are i.i.d standard multivariate

normal variables and Λ is generated at random for each replication, as a diagonal

matrix where the elements of the diagonal are independent and generated at random

with uniform distribution in (−0.9, 0.9). We then take zt = Mxt, where M is a lower

triangular matrix of dimensions m × m filled with ones. The zt follow a stationary

VARMA model. Finally, we standardize the data so that is has empirical mean

variance equal to one.

For each estimator, and each combination of T and m, using periods 1, . . . , T we com-

pute a forecast of each time series at period T + 1 and the corresponding prediction mean

squared error (PMSE). For the dynamic factor models, we only compute a forecast of the

common part, that is, we did not include any forecasting of the idiosyncratic component.

We report the average PMSE over the 500 replications.
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The MATLAB code to compute FHLR was obtained from http://morgana.unimore.it/forni_mario/matlab.htm.

The Bartlett lag-window size was taken as [
√
T + 1]. The MATLAB code to compute FHLZ

was kindly provided by the authors. We used a triangular kernel, with window size equal

to [(T + 1)2/3]. The maximum order of the singular VARs was taken to be 5, and the

order was chosen using the BIC criterion. The number of random permutations of the

series was taken to be 30. We used our own implementation of the SW procedure. For

FHLR and FHLZ, the procedures were applied to the data standardized to zero mean and

unit variance. At the end, the forecasts were transformed to the original units. The SW

forecast was obtained by projecting zT+1 on the estimated factors, as in equation 16 of

Forni et al. (2005). For ODPC, to forecast future values of the dynamic principal compo-

nents we use the auto.arima and forecast.arima functions from the forecast R package

(Hyndman and Khandakar, 2008) to automatically fit (possibly seasonal) ARIMA models

to the dynamic components and obtain their forecasts.

For the factor models we use the known number of factors and lags. For the ODPC

procedure, we take one component with k1 = k2, equal to the number of lags in the factors

in the generated model. Results for each combination of (T,m), are shown in Tables 1 and

2.

For the VARMA, model we use three different combinations of number of components

and lags. We have used one, two and five dynamic factors for ODPC, FHLR and FHLZ

and the equivalent, or larger, number of static factors for SW. Results are shown in Table

3. The second rows show, for ODPC (number of components, k1, k2), for FHLR (number

of dynamic factors, number of static factors), for FHLZ (number of dynamic factors) and

for SW (number of static factors).

Highlighted in black is the best result. An asterisk indicates that the difference with the

runner up is significant at the 95% level, taking the difference of the squared forecasting
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errors. Table 1 shows that for models DFM1 and DFM1AR, with MA factors, the method

ODPC always works better than the competitors, although the differences tend to be small.

The largest difference with respect to the runner-up in both models is around 10%. Table

2 shows that for AR factors, models DFM2 and DFM2AR, the errors of all the methods

are smaller, as expected, and ODPC performs similar to SW and slightly better than the

others. However, note that ODPC makes forecasts with only one dynamic component

whereas the SW procedure requires three or four static factors. In Table 3 again ODPC is

most often the winner, although the differences with the runner-up are not large.

In summary, the proposed procedure seems to work well, both for dynamic factor models

and for VARMA models with large common dependency.
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DFM1 DFM1AR

T m ODPC FHLR FHLZ SW ODPC FHLR FHLZ SW

50 50 1.460* 1.510 1.742 1.542 1.429 1.460 1.617 1.493

100 1.411* 1.454 1.637 1.533 1.469 1.495 1.595 1.535

200 1.436 1.446 1.643 1.527 1.413* 1.464 1.575 1.509

100 50 1.327* 1.460 1.569 1.489 1.341* 1.453 1.543 1.479

100 1.294* 1.367 1.512 1.439 1.306* 1.411 1.509 1.452

200 1.262* 1.330 1.494 1.378 1.310* 1.377 1.481 1.418

200 50 1.275* 1.373 1.484 1.413 1.271* 1.397 1.457 1.396

100 1.216* 1.313 1.403 1.365 1.283* 1.384 1.489 1.412

200 1.232* 1.302 1.448 1.360 1.240* 1.316 1.413 1.370

Table 1: Means of the 1-step ahead PMSEs of ODPC, FHLR, FHLZ and SW for models

DFM1 and DFM1AR.
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DFM2 DFM2AR

T m ODPC FHLR FHLZ SW ODPC FHLR FHLZ SW

50 50 1.268 1.286 1.712 1.243* 1.205 1.269 1.757 1.208

100 1.217 1.277 1.594 1.219 1.199 1.238 1.582 1.184*

200 1.185* 1.271 1.525 1.210 1.165 1.243 1.520 1.174

100 50 1.149 1.146 1.357 1.128* 1.132 1.147 1.375 1.123

100 1.119 1.151 1.322 1.124 1.110 1.136 1.309 1.110

200 1.103* 1.136 1.265 1.112 1.097 1.127 1.280 1.100

200 50 1.110 1.095 1.202 1.086* 1.120 1.113 1.260 1.097*

100 1.092 1.087 1.174 1.078* 1.083 1.089 1.201 1.076*

200 1.073* 1.089 1.174 1.079 1.063 1.082 1.188 1.066

Table 2: Means of the 1-step ahead PMSEs of ODPC, FHLR, FHLZ and SW for models

DFM2 and DFM2AR.
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T m ODPC FHLR FHLZ SW ODPC FHLR FHLZ SW ODPC FHLR FHLZ SW

(1, 1, 1) (1, 2) (1) (2) (2, 1, 1) (2, 6) (2) (6) (5, 1, 1) (5, 10) (5) (10)

50 50 0.997 1.024 1.042 1.042 1.010 1.017 0.978 1.052 1.020 0.995 0.972 1.029

100 1.001 0.992 1.025 1.007 1.010 1.027 0.972 1.049 1.041 1.026 0.972* 1.060

200 0.999 1.047 1.015 1.050 1.010 1.034 0.974 1.063 1.017 1.035 0.996 1.079

100 50 0.863 0.909 0.891 0.926 0.854 0.858 0.862 0.900 0.854 0.835 0.872 0.866

100 0.926* 1.000 0.976 1.021 0.918 0.986 0.933 1.013 0.920 0.956 0.959 0.991

200 0.938* 1.038 0.993 1.021 0.933 1.041 0.943 1.071 0.933* 1.031 1.006 1.044

200 50 0.856 0.898 0.905 0.906 0.844 0.840 0.833 0.880 0.836 0.811 0.860 0.851

100 0.826* 0.951 0.884 0.963 0.818 0.932 0.832 0.954 0.812* 0.912 0.887 0.921

200 0.893* 0.996 0.950 0.997 0.878 0.969 0.882 0.995 0.873* 0.973 0.919 0.976

Table 3: Means of the 1-step ahead PMSEs of ODPC, FHLR, FHLZ and SW for the VARMA model.
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6 An empirical example

In this section, we compare the forecasting performances of the procedures considered in

the previous section when applied to a panel of real macroeconomic variables. The data set,

downloaded from https://research.stlouisfed.org/econ/mccracken/fred-databases/,

consists of several key monthly macroeconomic variables for the US economy used by Stock

and Watson (2002) . A full description of the data can be found in the website. See also

McCracken and Ng (2016). The data was corrected for outliers and transformed to sta-

tionarity using the MATLAB script provided in the aforementioned website. We kept only

periods from January 1960 to February 2014 and removed series with missing data, result-

ing in a balanced panel with T = 650 observations on m = 94 series. Let Z = {zt,j} be the

resulting panel.

Following McCracken and Ng (2016) we used four series as target variables for forecast-

ing: CLAIMSx, initial jobless claims, S&P: indust, the S&P Industrial Index, M2REAL,

Real M2 Money Stock and INDPRO, Industrial Production Index, all in log levels. Let j

be the index of any of the target variables. Since the targets are transformed by taking

first differences of the logarithm, the target at time t+ h is zt+1,j + · · ·+ zt+h,j.

We considered one and two years forecast horizons, h = 12, 24, and selected the most

recent out of sample forecast period of McCracken and Ng (2016), the one going from

2008:01 to 2014:12. Thus, we fit the four procedures discussed in the previous Monte Carlo

section using sample periods 1, . . . , (T −h−t) for each t = 0, . . . , 83 to predict T −t that is,

we use a rolling seven year window, covering the recovery of the US economy. We compute

the h-steps ahead forecasts of the whole panel, and then compare the predicted values of

the target variable with the actual values. Let

Et,h = (zT−t−h+1,6 + · · ·+ zT−t,6 − (ẑT−t−h+1,6|T−h−t + · · ·+ ẑT−t,6|T−h−t))
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be the forecasting error of period T − t using information up to period T − h − t, for

t = 0, . . . , 83. We measure the performance of each procedure by

(
1

84

83∑

t=0

E2
t,h

)1/2

.

As in McCracken and Ng (2016) we compare the forecasts obtained by the different pro-

cedures using the first factor with lags. Thus, we did not try to forecast the idiosyncratic

part, as our objective is to compare the performance of the methods in forecasting the

common component in the series. We computed: ODPC with one component and up to

three lags, FHLR with one dynamic factor and up to four static factors (this amount to

assuming that the dynamic factor is loaded with up to three lags), FHLZ with one dy-

namic factor and SW with one static factor and up to three of its lags. We also computed

a one-dimensional SARIMA forecast, by automatically fitting a SARIMA model using the

auto.arima function from the forecast R package, using the default settings.

We report the root means squared forecasting errors relative to those of the one-

dimensional SARIMA forecast. Results are shown in Table 4. For a one year horizon,

h = 12, in half of the four series the best forecast is obtained with ODPC, that reduces

the univariate forecast errors by 12.1% in CLAIMSx, and by 2.9% in S&P Indust. The

largest reduction of error with respect to the univariate forecast is in M2REAL, where all

the procedures reduce the forecast error between 14,9% and 11,9% and the winner in this

case is SW. For INDPRO the maximum error reduction is 8,5% and is obtained by FHLR.

For the two year horizon, h = 24, for three of the four series, the best forecast is obtained

with ODPC, reducing the univariate forecast errors by 28.8% in CLAIMSx, 10.3% in S&P

indust and 13.2% in INDPRO. For M2REAL the best forecast is again obtained with SW,

achieving a 19.8% reduction in error with respect to the univariate method. The conclusion

is that the results of the four precedures in this data set are similar with a small advantage
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of ODPC.
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CLAIMSx S&P Indust M2REAL INDPRO

h = 12

ODPC 1 0.879 0.971 0.901 1.001

ODPC 2 0.894 0.972 0.891 1.025

ODPC 3 0.913 0.981 0.869 1.041

FHLR 1 1.003 1.019 0.881 0.944

FHLR 2 0.904 0.997 0.897 0.931

FHLR 3 0.920 1.006 0.903 0.915

FHLZ 0.994 1.003 0.868 0.960

SW 1 1.004 1.006 0.853 1.033

SW 2 1.018 1.018 0.852 1.046

SW 3 1.028 1.029 0.851 1.058

h = 24

ODPC 1 0.712 0.900 0.932 0.868

ODPC 2 0.722 0.897 0.930 0.886

ODPC 3 0.729 0.908 0.897 0.903

FHLR 1 1.006 1.003 0.848 0.933

FHLR 2 0.877 0.974 0.855 0.888

FHLR 3 0.892 0.982 0.849 0.883

FHLZ 1.002 0.994 0.855 0.938

SW 1 1.086 1.056 0.803 1.035

SW 2 1.101 1.067 0.802 1.047

SW 3 1.116 1.078 0.802 1.058

Table 4: RMSE forecasting errors for different number of lags, relative to the RMSE of the

one dimensional SARIMA forecast.
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7 Choosing the number of components and lags

In practice, the number of components and lags needs to be chosen. To simplify the

notation, assume that for each component ki
1 = ki

2, that is, the number of lags of zt used to

define the dynamic principal component and the number of lags of f̂t used to reconstruct

the original series are the same.

One possible approach is to minimize the cross-validated forecasting error in a stepwise

fashion. Choose a maximum number of lagsKmax, and, starting with one component, search

for the value k∗ among 0, . . . , Kmax that gives the minimum cross-validated forecasting

error. Then, fix the first component computed with k∗ lags and repeat the procedure

with the second component. If the optimal cross-validated forecasting error using the two

components is larger than the one using only one component, stop; otherwise add a third

component and proceed as before.

The same stepwise approach could be applied to minimize an information criterion.

This would reduce the computational burden significantly. The following BIC type criterion

could be used. Suppose we have computed q dynamic principal components, each with ki
1 =

ki
2 = ki lags. Let ŷt,j = α̂j +

∑kq

h=0 β̂h,j f̂t−h, t = 2
∑q

i=1 k
i + 1, . . . , T be the reconstruction

obtained, where yt,j = zt,j for the first component and will be equal to the residuals from

the fit with the previous components otherwise. Let rt,j = yt,j − ŷt,j be the residuals, Rq be

the corresponding matrix of residuals and Σq = (R′
qRq)/ (T − 2

∑q
i=1 k

i). Then for each q

choose the value k∗ among 0, . . . , Kmax that minimizes

BICk =

(
T − 2

q∑

i=1

ki

)
log (trace(Σq)) +m(2k + 3) log

(
T − 2

q∑

i=1

ki

)
.

The performance of these alternatives will be the subject of further research.
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8 Conclusions and possible extensions

We have presented a new procedure for the dimension reduction of multivariate time series.

The main advantages with respect to other alternatives are that: in the spirit of principal

component analysis, it is not based on assuming any particular model (parametric or not)

for the data, but rather on finding linear combinations of the observations with optimal

reconstruction properties; not being based on both lags and leads of the data, it is useful

for forecasting large sets of time series.

Moreover, the proposed procedure can be generalized in several directions. First, since

the MSE criterion used in the is paper is not robust, it can substituted for the minimization

of a robust scale. This can be achieved in a similar way as in Peña and Yohai (2016). A

simpler way to obtain robustness would be to substitute the alternating least squares regres-

sions by robust regression estimators, for example MM-estimators (Yohai, 1987). Second,

to deal with very large number of variables the estimation algorithm can be regularized.

For example, in each of the steps, the alternating least squares regressions may be replaced

by a regularized regressions, using, for example, a Lasso procedure. This method will allow

for a different number of lags in different variables. Both modifications, for robustness

and regularization, can be combined using in each step a robust lasso procedure (see for

example Smucler and Yohai (2017)). All these extensions require further research.

9 Appendix

This section includes the proofs of all the results stated in the paper.
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Lemma 1.

sup
‖a‖=1

∥∥∥∥
F′

k1,k2
Fk1,k2

T − (k1 + k2)
− S(a)

∥∥∥∥
F

a.s.→ 0.

Proof of Lemma 1. Fix a with ‖a‖ = 1. Then

F′
k1,k2

Fk1,k2

T − (k1 + k2)

=
1

T − (k1 + k2)




1′
T−(k1+k2)

a′Z′
k1+k2,0

a′Z′
k1+k2−1,0

...

a′Z′
k1,0




(
1T−(k1+k2) Zk1+k2,0a Zk1+k2−1,0a . . . Zk1,0a

)

Fix k1 ≤ i, j ≤ k1 + k2. Then

Z′
i,0Zj,0 =




Z′
i

Z′
i−1

...

Z′
i−k1




(
Zj Zj−1 . . . Zj−k1

)

=




Z′
iZj Z′

iZj−1 . . . Z′
iZj−k1

...
...

...

Z′
i−k1

Zj Z′
i−k1

Zj−1 . . . Z′
i−k1

Zj−k1


 .

Note that

Z′
iZj =

T−(k1+k2)∑

r=1

zi+rz
′
j+r.

By the Ergodic Theorem

Z′
iZj

T − (k1 + k2)

a.s.→ Σ(i− j).
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Hence

Z′
i,0Zj,0

T − (k1 + k2)

a.s.→




Σ(i− j) Σ(i− j + 1) . . . Σ(i− j + k1)
...

...
...

Σ(i− j − k1) Σ(i− j − k1 + 1) . . . Σ(i− j)


 = V(i− j).

On the other hand

1

T − (k1 + k2)
a′Z′

i,01T−(k1+k2) =
1

T − (k1 + k2)

k1∑

h=0

a′
hZ

′
i−h1T−(k1+k2)

=
1

T − (k1 + k2)

k1∑

h=0

a′
h




T−(k1+k2)∑
r=1

zi−h+r,1

...
T−(k1+k2)∑

r=1

zi−h+r,m




a.s.→ 0,

by the Ergodic Theorem and since Ezt = 0 by assumption. We have shown that

F′
k1,k2

Fk1,k2

T − (k1 + k2)

a.s.→




1 0 0 . . . 0

0 a′V(0)a a′V(1)a . . . a′V(k2)a
...

...
...

...

0 a′V(−k2)a a′V(−k2 + 1)a . . . a′V(0)a




= S(a).

To prove that the convergence holds uniformly, it suffices to show that, for k1 ≤ i, j ≤
k1 + k2,

sup
‖a‖=1

∥∥∥∥∥
1

T − (k1 + k2)

k1∑

h=0

a′
hZ

′
i−h1T−(k1+k2)

∥∥∥∥∥
a.s.→ 0 and

sup
‖a‖=1

∣∣∣∣
a′Z′

i,0Zj,0a

T − (k1 + k2)
− a′V(i− j)a

∣∣∣∣
a.s.→ 0

The first assertion follows immediately from the Ergodic Theorem. It is easy to show that

a′Z′
i,0Zj,0a

T − (k1 + k2)
=

k1∑
h=0

k1∑
r=0

a′
rZ

′
i−rZj−hah

T − (k1 + k2)
.
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Note that for any v,w ∈ Rm

v′Z′
iZjw = v′(

T−(k1+k2)∑

r=1

zi+rz
′
j+r)w.

Thus, to prove the lemma it will be enough to prove that

sup
‖v‖≤1,‖w‖≤1

∣∣∣∣∣∣∣∣∣

v′(
T−(k1+k2)∑

r=1

zi+rz
′
j+r)w

T − (k1 + k2)
− v′Σ(i− j)w

∣∣∣∣∣∣∣∣∣

a.s.→ 0.

This follows immediately from

sup
‖v‖≤1‖w‖≤1

∣∣∣∣∣∣∣∣∣

v′(
T−(k1+k2)∑

r=1

zi+rz
′
j+r)w

T − (k1 + k2)
− v′Σ(i− j)w

∣∣∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥∥∥∥

T−(k1+k2)∑
r=1

zi+rz
′
j+r

T − (k1 + k2)
−Σ(i− j)

∥∥∥∥∥∥∥∥∥

and the Ergodic Theorem.

Lemma 2.

lim inf
T

inf
‖a‖=1

λmin

(
F′

k1,k2
Fk1,k2

T − (k1 + k2)

)
≥ inf

‖a‖=1
λmin(S(a)),

with probability one.

Proof of Lemma 2. It suffices to show that

sup
‖a‖=1

∣∣∣∣λmin

(
F′

k1,k2
Fk1,k2

T − (k1 + k2)

)
− λmin(S(a))

∣∣∣∣
a.s.→ 0

and this follows from Theorem 3.3.16 of Horn and Johnson (1994) and Lemma 1.

To ease the notation, we will note

g(M) =

(
M

(
inf

‖a‖=1
λmin (S(a))

)1/2

−
(
E‖z‖2

)1/2
)2

.
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If Condition 1 holds, clearly g(M) → +∞ when M → +∞. The following Lemma is a key

result.

Lemma 3. Assume Condition 1 holds. Then if M > (E‖z‖2/ inf‖a‖=1 λmin (S(a)))1/2, with
probability 1

lim inf
T

inf
‖a‖=1,‖D‖F≥M

MSE(a,D) ≥ g(M).

Proof of Lemma 3. Note that the triangle inequality implies that

MSE(a,D)1/2 ≥ ‖Fk1,k2D‖F − ‖Z2k‖F√
T − (k1 + k2)

=

∥∥∥∥∥
Fk1,k2√

T − (k1 + k2)
D

∥∥∥∥∥
F

−
∥∥∥∥∥

Zk1+k2√
T − (k1 + k2)

∥∥∥∥∥
F

.

We will bound the right hand side of the last inequality. It follows from the Ergodic

Theorem that
∥∥∥∥∥

Zk1+k2√
T − (k1 + k2)

∥∥∥∥∥

2

F

=
1

T − (k1 + k2)

T∑

t=(k1+k2)+1

‖zt‖2 a.s.→ E‖z‖2.

On the other hand

inf
‖a‖=1,‖D‖F≥M

∥∥∥∥∥
Fk1,k2√

T − (k1 + k2)
D

∥∥∥∥∥
F

≥ M inf
‖a‖=1

inf
‖D‖F=1

∥∥∥∥∥
Fk1,k2√

T − (k1 + k2)
D

∥∥∥∥∥
F

.

Note that

inf
‖D‖F=1

∥∥∥∥∥
Fk1,k2√

T − (k1 + k2)
D

∥∥∥∥∥
F

= inf
‖D‖F=1

∥∥∥∥∥vec
(

Fk1,k2√
T − (k1 + k2)

D

)∥∥∥∥∥

= inf
‖D‖F=1

∥∥∥∥∥

(
Im ⊗ Fk1,k2√

T − (k1 + k2)

)
vec(D)

∥∥∥∥∥

= inf
‖d‖=1

∥∥∥∥∥

(
Im ⊗ Fk1,k2√

T − (k1 + k2)

)
d

∥∥∥∥∥

= λ
1/2
min

((
Im ⊗

F′
k1,k2√

T − (k1 + k2)

)(
Im ⊗ Fk1,k2√

T − (k1 + k2)

))

= λ
1/2
min

(
Im ⊗

F′
k1,k2

Fk1,k2

T − (k1 + k2)

)
= λ

1/2
min

(
F′

k1,k2
Fk1,k2

T − (k1 + k2)

)
.
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Hence, by Lemma 2

lim inf
T

inf
‖a‖=1,‖D‖F≥M

∥∥∥∥∥
Fk1,k2√

T − (k1 + k2)
D

∥∥∥∥∥
F

≥ M

(
inf

‖a‖=1
λmin (S(a))

)1/2

.

It follows that if M > (E‖z‖2/ inf‖a‖=1 λmin (S(a)))1/2

lim inf
T

inf
‖a‖=1,‖D‖F≥M

MSE(a,D) ≥ g(M).

Let PT be the empirical probability measure that places mass 1/(T − (k1 + k2)) at

y1 = (z1, . . . , z(k1+k2)+1), . . . ,yT−(k1+k2) = (zT−(k1+k2), . . . , zT ). The process (yt)t is strictly

stationary and ergodic. Let La,D(yt) = ‖zt+(k1+k2) − ẑt+(k1+k2)‖2. It follows that

MSE(a,D) =
1

T − (k1 + k2)

T∑

t=(k1+k2)+1

‖zt − ẑt‖2 = PTLa,D.

Lemma 4. For each M > 0

sup
‖a‖=1,‖D‖F≤M

|PTLa,D − PLa,D| a.s.→ 0.

Proof of Lemma 4. Let

L =
{
La,D(·) : a ∈ Rm(k1+1), ‖a‖ = 1,D ∈ R(k2+2)×m, ‖D‖F ≤ M

}
.

L is VC-major, since it is formed by polynomials of bounded degree. It has an integrable

envelope, since E‖z‖2 < +∞. Moreover, if we take L0 to be the subset of L formed

by taking only a ∈ Qm(k1+1) and D ∈ Qm×(k2+2) it follows that: L0 is countable, and

each element of L is the pointwise limit of elements of L0. Then the lemma follows from

Proposition 1 of Adams and Nobel (2010).
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Lemma 5. Assume Condition 1 holds. Let (ã, D̃) be such that ‖ã‖ = 1 and MSE(ã, D̃) ≤
MSE(ã, 0) for all T . Fix M0 such that

M0/2 > (E‖z‖2/ inf
‖a‖=1

λmin(S(a)))1/2

and g(M0/2) > sup‖a‖=1MSE0(a, 0). Then

P

(
lim sup

T
‖D̃‖F < M0

)
= 1.

Proof of Lemma 5. Let

C =

{
lim sup

T
sup

‖a‖=1,‖D‖F<M0

|PTLa,D − PLa,D| = 0

}
,

D =

{
lim inf

T
inf

‖a‖=1,‖D‖F≥M0/2
MSE(a,D) ≥ g(M0/2)

}
,

E =

{
lim sup

T
‖D̃‖F ≥ M0

}
.

Assume P(E) > 0. Then, by Lemmas 3 and 4, P(C ∩D ∩E) > 0. Assume in what follows

that we are working in the set C ∩D ∩ E. Then for sufficiently large T

PTLã,0 ≥ PTLã,D̃ ≥ inf
‖a‖=1,‖D‖F≥M0/2

PTLa,D.

It follows that

lim sup
T

PTLã,0 ≥ lim inf
T

inf
‖a‖=1,‖D‖F≥M0/2

PTLa,D ≥ g(M0/2).

It follows easily from lim sup
T

sup‖a‖=1,‖D‖F<M0
|PTLa,D − PLa,D| = 0 that

sup
‖a‖=1

MSE0(a, 0) = sup
‖a‖=1

PLa,0 ≥ lim sup
T

PTLã,0.

But by assumption

sup
‖a‖=1

MSE0(a, 0) < g(M0/2).

We have arrived at a contradiction. It must be that P(E) = 0.

33



Proof of Proposition 1. Take M > 0 such that

g(M) > 2 inf
‖a‖=1

MSE(a, 0)

and M > (E‖z‖2/ inf‖a‖=1 λmin (S(a)))1/2. Since MSE(a,D) is continuous, it attains its

minimum over the compact set {(a,D) : ‖a‖ = 1, ‖D‖F ≤ M}. Moreover

min
‖a‖=1,‖D‖≤M

MSE(a,D) ≤ inf
‖a‖=1

MSE(a, 0).

Let

A =

{
lim inf inf

‖a‖=1,‖D‖F≥M
MSE(a,D) > g(M)

}
.

By Lemma 3, P(A) = 1. Assume we are working in the event A in what follows. Then,

there exists T0 such that for T > T0, MSE(a,D) > inf‖a‖=1MSE(a, 0) for all a, D with

‖a‖ = 1, ‖D‖F ≥ M . Hence, for T > T0, min‖a‖=1,‖D‖≤M MSE(a,D) ≤ MSE(ã, D̃) for all

(ã, D̃) with ‖ã‖ = 1, from which the results follows.

Proof of Proposition 2. Fix a with ‖a‖ = 1 and D. Note that

MSE0(a,D) = E‖zt − ẑt‖2 = E‖ẑt‖2 + E‖zt‖2 − 2Ez′tẑt.

Let f ′t = f ′t(a) = (1, a′xt, a
′xt−1, . . . , a

′xt−k2). Note that ẑt = D′ft. Hence

E‖ẑt‖2 = Ef ′tDD′ft = Tr(DD′S(a)).

Since DD′ and S(a) − Ik2+2 inf‖a‖=1 λmin(S(a)) are symmetric and semi-positive definite

we have that

Tr(DD′S(a)) ≥ Tr(DD′ inf
‖a‖=1

λmin(S(a))) = ‖D‖2F inf
‖a‖=1

λmin(S(a)).

On the other hand, by the Cauchy-Schwartz inequality

E|z′tẑt| ≤ (E‖zt‖2)1/2(E‖ẑt‖2)1/2.
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Since DD′ and Ik2+2 sup‖a‖=1 λmax(S(a)) − S(a) are symmetric and semi-positive definite

we have that

Tr(DD′S(a)) ≤ Tr(DD′ sup
‖a‖=1

λmax(S(a))) = ‖D‖2F sup
‖a‖=1

λmax(S(a)).

Hence,

(E‖ẑt‖2)1/2 ≤ ‖D‖F ( sup
‖a‖=1

λmax(S(a)))1/2.

It follows that

inf
‖a‖=1

E‖zt − ẑt‖2 ≥ ‖D‖2F inf
‖a‖=1

λmin(S(a)) + E‖zt‖2 − 2(E‖zt‖2)1/2‖D‖F ( sup
‖a‖=1

λmax(S(a)))1/2,

from which the proposition follows immediately.

Proof of Theorem 1. Fix ε > 0. Let A =

{
lim sup

T
d((â, D̂), I) ≥ ε

}
. We will show that

P(A) = 0. Assume P(A) > 0. Take (a∗,D∗) ∈ I. Fix M0 large enough such that M0/2

satisfies the hypothesis of Lemma 5. Note that

inf {MSE0(a,D) : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2} > MSE0(a
∗,D∗).

Since PTLâ,D̂ ≤ PTLa∗,D∗ , and by the Ergodic Theorem

PTLa∗,D∗

a.s.→ MSE0(a
∗,D∗),

we have that, with probability one

lim sup
T

PTLâ,D̂ ≤ MSE0(a
∗,D∗).
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Let

B =

{
lim sup

T
sup

‖a‖=1,‖D‖F≤M0

|PTLa,D − PLa,D| = 0

}
,

C =

{
lim sup

T
‖D̂‖F < M0/2

}
.

D =

{
lim sup

T
PTLâ,D̂ ≤ MSE0(a

∗,D∗)

}
.

Then, by Lemmas 5 and 4, P(A ∩ B ∩ C ∩ D) > 0. Assume in what follows that we are

working in the set A ∩B ∩ C ∩D. Note that since

{(a,D) : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2} ⊆ {(a,D) : ‖a‖ = 1, ‖D‖F ≤ M0}

we have that

lim sup
T

sup {|PTLa,D − PLa,D| : |‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2} = 0,

and hence that

lim inf
T

inf {PTLa,D : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2}

≥ inf {PLa,D : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2} .

Since lim sup
T

d((â, D̂), I) ≥ ε and lim sup
T

‖D̂‖F < M0/2, there exists a subsequence of

(â, D̂), which in an abuse of notation we continue to call (â, D̂), such that d((â, D̂), I) > ε/2

and ‖D̂‖F ≤ M0 for all T . Then

MSE0(a
∗,D∗) ≥ lim inf

T
PTLâ,B̂

≥ lim inf
T

inf {PTLa,D : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2}

≥ inf {PLa,D : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2}

= inf {MSE0(a,D) : ‖a‖ = 1, ‖D‖F ≤ M0, d((a,D), I) ≥ ε/2}

> MSE0(a
∗,D∗),
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a contradiction. It must be that P(A) = 0.

Proof of Theorem 2. For all a ∈ Rm(k1+1)

f̂t(a) =




z′t . . . z′t−k1
...

...
...

z′t−k2
. . . z′t−k1−k2




a

=




f ′tB . . . f ′t−k1
B

...
...

...

f ′t−k2
B . . . f ′t−k1−k2

B




a+




e′t . . . e′t−k1
...

...
...

e′t−k2
. . . e′t−k1−k2




a

=




f ′t . . . f ′t−k1
...

...
...

f ′t−k2
. . . f ′t−k1−k2




(Ik1+1 ⊗B)a+




e′t . . . e′t−k1
...

...
...

e′t−k2
. . . e′t−k1−k2




a

= Ft(Ik1+1 ⊗B)a+ Eta.

Let ã ∈ Rm(k1+1) be defined by ã = ((1/‖b0‖)b′
0, 0m, . . . , 0m)

′. Since (a∗,B∗) ∈ I

MSE0(a
∗,B∗) ≤ MSE0(ã,B/‖b0‖)

= E ‖B′ft + et − (B′/‖b0‖)Ft(Ik1+1 ⊗B)ã− (B′/‖b0‖)Etã‖2

= E ‖B′ft −B′Ft(Ik1+1 ⊗ (B/‖b0‖))ã‖2 + E ‖et − (B′/‖b0‖)Etã‖2

+ 2E (B′ft −B′Ft(Ik1+1 ⊗ (B/‖b0‖))ã)′ (et − (B′/‖b0‖)Etã) .

By Condition 2b) and c), E (B′ft −B′Ft(Ik1+1 ⊗ (B/‖b0‖))ã)′ (et − (B′/‖b0‖)Etã) = 0.
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By Condition 2a)

E ‖B′ft −B′Ft(Ik1+1 ⊗ (B/‖b0‖))ã‖2 ≤ ‖B‖2E ‖ft − Ft(Ik1+1 ⊗ (B/‖b0‖))ã‖2

= O(m)E ‖ft − Ft(Ik1+1 ⊗ (B/‖b0‖))ã‖2 .

By Condition 2a), ‖b0‖2/m → 1. Then

(Ik1+1 ⊗ (B/‖b0‖))ã = (1, (b′
1b0)/‖b0‖2, (b′

2b0)/‖b0‖2, . . . , 0)

→ (1, 0, . . . , 0)′ ∈ R(k1+1)(k2+1)

which implies that Ft(Ik1+1 ⊗ (B/‖b0‖))ã → ft.

It follows from Condition 2b) and the Bounded Convergence Theorem that

1

m
E ‖B′ft −B′Ft(Ik1+1 ⊗ (B/‖b0‖))ã‖2 → 0.

Note that

E ‖et − (B′/‖b0‖)Etã‖2 = E ‖et‖2 + E ‖(B′/‖b0‖)Etã‖2 − 2Ee′t(B
′/‖b0‖)Etã.

Now Etã = ((e′tb0)/‖b0‖, . . . , (e′t−k2
b0)/‖b0‖)′ and hence

‖Etã‖2 =
k2∑

h=0

(e′t−hb0)
2/‖b0‖2.

It follows that E‖Etã‖2 = (k2 + 1) ((1/‖b0‖2)b′
0Σ

e(0)b0). Hence, using Condition 2a) and

c)

1

m
E‖(B′/‖b0‖)Etã‖2 ≤

‖B′‖2
m

(k2 + 1)
(
(1/‖b0‖4)b′

0Σ
e(0)b0

)
= o(1).

Finally,

1

m‖b0‖
E|e′tB′Etã| ≤

(
E‖et‖2/m

)1/2 (
E‖(B′/‖b0‖)Etã‖2/m

)1/2
= o(1).

Since E‖et‖2 =
∑m

j=1Ee
2
t,j , the Theorem is proven.
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We will need the following general results on linear predictors.

Lemma 6. Let X and Z1, . . . , Zn be zero mean random variables satisfying EZ2
i ≤ b, for

some b > 0 and i = 1, . . . , n, and EZiZj = 0 for i 6= j. Let P (X|Zi) be the best linear

predictor of X based on Zi. Then

n∑

i=1

EP (Zi|X)2 ≤ b.

Proof of Lemma 6. Let P (X|Z) be the best linear predictor ofX based on Z1, . . . Zn. Since

Z1, . . . , Zn are uncorrelated, we have

P (X|Z) =
n∑

i=1

P (X|Zi) =

n∑

i=1

EXZi

EZ2
i

Zi.

Hence

EX2 ≥ EP (X|Z)2 =
n∑

i=1

EP (X|Zi)
2 =

n∑

i=1

(EXZi)
2

EZ2
i

≥ (1/b)
n∑

i=1

(EXZi)
2

Now,

n∑

i=1

EP (Zi|X)2 =

n∑

i=1

E(
EXZi

EX2
X)2 =

n∑

i=1

(EXZi)
2

EX2
≤ b.

Lemma 7. Let Z1, . . . , Zn be zero mean random variables satisfying EZ2
i ≤ b, for some

b > 0 and i = 1, . . . , n, and EZiZj = 0 for i 6= j. Let Y1, . . . , Yk be zero mean random

variables and P (Zi|Y ) be the best linear predictor of Zi based on Y1, . . . , Yk. Then

lim inf
n→∞

1

n

n∑

i=1

(
E (Zi − P (Zi|Y ))2 − EZ2

i

)
≥ 0.
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Proof of Lemma 7. Let X1, . . . , Xk be zero mean, unit variance, uncorrelated random vari-

ables with the same linear span as Y1, . . . , Yk. Let P (Zi|X) be the best linear predictor of

Zi based on X1, . . . , Xk. Then, using Lemma 6

n∑

i=1

E (Zi − P (Zi|Y ))2 =
n∑

i=1

E (Zi − P (Zi|X))2 =
n∑

i=1

(
EZ2

i − EP (Zi|X)2
)

=

n∑

i=1

EZ2
i −

n∑

i=1

k∑

j=1

EP (Zi|Xj)
2 ≥

n∑

i=1

EZ2
i − kb.

Hence

lim inf
n→∞

1

n

n∑

i=1

(
E (Zi − P (Zi|Y ))2 − EZ2

i

)
≥ lim

n→∞
−kb

n
= 0.

Proof of Theorem 3.

1

m
MSE0(a

∗,B∗) =
1

m
E‖zt − ẑt‖2 =

1

m
E‖B′ft − ẑt + et‖2

=
1

m
E‖B′ft − ẑt‖2 +

1

m
E‖et‖2 + 2Ee′t(B

′ft − ẑt).

By Condition 2c)

Ee′t(B
′ft − ẑt) = Ee′tẑt.

By Theorem 2, it suffices to show that

1

m
Ee′tẑt → 0.

Let êt,j be the best linear predictor of et,j based on ẑt,j. Then

E (et,j − êt,j)
2 = Ee2t,j −

(Eẑt,jet,j)
2

Eẑ2t,j
.
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Note that Eẑ2t,j ≤ Ez2t,j ≤ L, since ẑt,j is obtained by projecting zt,j on the space spanned

by f̂t. Then
1

m

m∑

j=1

E (et,j − êt,j)
2 ≤ 1

m

m∑

j=1

(
Ee2t,j −

(Eẑt,jet,j)
2

L

)
.

Since by Lemma 7, lim inf(1/m)
∑m

j=1

(
E (et,j − êt,j)

2 − Ee2t,j
)
≥ 0 it must be that

(1/m)

m∑

j=1

(Eẑt,jet,j)
2 → 0,

from which the result follows by applying the Cauchy-Schwartz inequality.
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