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Abstract

In this paper we study some particular solutions of Douglas type equations by means of
generalized inverses and angles. We apply this result to characterize positive solutions and
some special projections which are symmetrizable for a semidefinited positive bounded linear
operator.

Introduction

Let H and K be Hilbert spaces. Generalized inverses of bounded linear operators T : H →
K can be parametrized by means of the sets QH and QK of linear projections (not necessarily
bounded) in H and K, respectively. On the other side, a projection can be studied by means of
the angle (inclination) between its nullspace and its image. This paper explores in some detail the
relationships between generalized inverses, projections and angles. Before stating the main results,
we describe some previous facts. The main tool in the paper is the use of a particular type of
solutions of operator equations like BX = C where B,C are bounded linear operators between
suitable Hilbert spaces. We refer to this sort of equations as Douglas equations, because R. G.
Douglas [8] proved the following theorem which appears once and again in the literature.

Theorem. Let B ∈ L(H,K) and C ∈ L(G,K). The following conditions are equivalent:

1. There exists D ∈ L(G,H) such that BD = C.

2. R(C) ⊆ R(B).

3. There exists a positive number λ such that CC∗ ≤ λBB∗.

If one of these conditions holds then there exists a unique solution XN(B)⊥ ∈ L(G,H) of the equation
BX = C such that R(XN(B)⊥) ⊆ N(B)⊥. This solution will be called the Douglas reduced
solution. It also satisfies ‖XN(B)⊥‖ = inf{‖D‖ : D ∈ L(G,H) BD=C}.
∗The authors were partially supported by grant PIP 5272 CONICET
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We refer the reader to the papers by Douglas [8], Fillmore and Williams [10] and Nashed [12]
for proofs and applications of the previous theorem. In [1], the orthogonal complement of N(B) is
replaced by an arbitrary closed complement M of N(B). Then there exists a unique solution XM
of BX = C such that R(XM) ⊆ M; it is called the reduced solution for M and it has some
analogous properties as those of Douglas reduced solution. In [1] we parametrize reduced solutions
by means generalized inverses under the hypothesis R(B) closed. Here, we omit this hypothesis.
This forces us to deal with unbounded generalized inverses.

The main result of the paper states that, among all solutions of the equation BX = C, reduced
solutions are those Y which can be factorized as Y = B′C for some generalized inverse of B such
that R(B′B) is closed; this set coincides with the set of those solutions Y such that R(Y ) has
positive Dixmier angle with N(B) (see definition below). These results are applied to the problem
of characterizing positive solutions of a Douglas type equations. This problem, originally studied
by Z. Sebestyén [15], has been recently solved by A. Dajić and J. J. Koliha [5] for closed range
operators. Our methods here extend the result to non closed range operators.

Finally we apply the previous results to get a partition of a certain set of projections. More
precisely, given a closed subspace, S, of a Hilbert space H and a positive semidefinite operator
A ∈ L(H) we consider the set P(A,S) = {Q ∈ L(H) : Q2 = Q, R(Q) = S, AQ = Q∗A}. This set
is an affine submanifold of L(H), which may be void. If P(A,S) is not void and we consider the
matrix representation of operators of L(H) induced by the decomposition H = S ⊕ S⊥ then the
elements of P(A,S) admit the matrix representation

Q =
(

1 y
0 0

)
,

where y ∈ L(S⊥,S) is a solution of a certain Douglas type equation. Therefore we study the
elements of P(A,S) for which the operator y is a reduced solution.

1 Preliminaries

Throughout H,K and G denote separable complex Hilbert spaces with inner product 〈 , 〉 . By
L(H,K) we denote the space of all bounded linear operators from H to K. The algebra L(H,H) is
abbreviated by L(H). By L(H)+ we denote the cone of positive (semidefinite) operators of L(H),
i.e., L(H)+ := {A ∈ L(H) : 〈Aξ, ξ〉 ≥ 0 ∀ξ ∈ H}. For every T ∈ L(H,K) its range is denoted by
R(T ), its nullspace by N(T ) and its adjoint by T ∗. In the sequel we denote by S

.
+ T the direct

sum of the subspaces S and T . In particular, if S ⊆ T ⊥ we denote S ⊕T . If S is a closed subspace
of H we denote QS := {Q ∈ L(H) : Q2 = Q and R(Q) = S} and PS the orthogonal projection
onto S. Furthermore, if T is an algebraic complement of S, i.e., S

.
+ T = H, then QT //S denotes

the unique projection with R(Q) = T and N(Q) = S. It is well known that QT //S is bounded if
and only if T is closed.

The next theorem introduces the notion of reduced solution which is the starting point of this
article. The proof is similar to Douglas original proof [1].

Theorem 1.1. Let B ∈ L(H,K) and C ∈ L(G,K) be such that the equation BX = C has a solution
and letM be a topological complement of N(B). Then there exists a unique solution XM ∈ L(G,H)
of the equation BX = C such that R(XM) ⊆ M. The operator XM will be called the reduced
solution for M of the equation BX = C.

Corollary 1.2. If XM is a reduced solution forM of the equation BX = C then N(XM) = N(C).
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Proof. Since BXM = C then N(XM) ⊆ N(C). Now, if ξ ∈ N(C) then 0 = Cξ = BXMξ. So
XMξ ∈ R(XM) ∩N(B) ⊆M∩N(B) = {0}. Therefore N(XM) = N(C).

Remark 1.3. If the equation BX = C has a solution andM is an algebraic complement of N(B)
then there exists a unique linear operator XM such that BXM = C and R(XM) ⊆ M. In this
case, as the next examples show, the boundedness of the solution XM is not guaranteed.

1. Let S be a closed subspace of H and M a non closed subspace of H such that M
.

+ S =
H. If ξ ∈ M then Pspan{ξ} is a solution of the equation PS⊥X = PS⊥Pspan{ξ} such that
R(Pspan{ξ}) ⊆M, and Pspan{ξ} is bounded.

2. Given the equation BX = B and M a non closed subspace such that M
.

+N(B) = H, then
QM//N(B) is a solution such that R(QM//N(B)) ⊆M, but, since M is not closed, QM//N(B)

is not bounded.

Our goal is to study reduced solutions. For this, the notion of generalized inverse will play a
fundamental role. Note that, given T ∈ L(H,K) and an algebraic complement of N(T ) then the
operator TM = T |M :M→ R(T ) is injective. Hence, there exists

T−1
M = (T |M)−1 : R(T )→M.

Definition 1.4. Given T ∈ L(H,K), let T ′ be a linear operator K → H whose domain D(T ′)
contains the range of T and let M be an algebraic complement of N(T ).

1. T ′ is an inner inverse of T if T ′|R(T ) = T−1
M .

2. T ′ is a generalized inverse of T if T ′ is an inner inverse of T and D(T ′) = R(T )
.

+N(T ′).

3. T ′ is the Moore-Penrose inverse of T , if T ′ is the generalized inverse of T with M =
N(T )⊥ and N(T ′) = R(T )⊥. In the sequel, the Moore-Penrose inverse of T will be denoted
by T †.

These kinds of inverses have been extensively studied. We refer the reader to [9], [13] and [14]
for the proof of the following characterizations.

Proposition 1.5. Let T ∈ L(H,K) and T ′ : D(T ′) ⊆ K → H a linear operator with R(T ) ⊆ D(T ′).

1. The next assertions are equivalent:

(a) T ′ is an inner inverse of T ;

(b) T ′T = QM//N(T ) for some algebraic complement M of N(T );

(c) TT ′ : D(T ′)→ H verifies (TT ′)2 = TT ′ and R(TT ′) = R(T );

(d) TT ′T = T .

2. The next assertions are equivalent:

(a) T ′ is a generalized inverse of T ;

(b) TT ′T = T and T ′TT ′ = T ′;

(c) T ′ is an inner inverse with R(T ′) =M.

3. The next assertions are equivalent:
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(a) T ′ is the Moore-Penrose inverse of T ;

(b) T ′ : R(T ) ⊕ R(T )⊥ → H verifies TT ′T = T , T ′TT ′ = T ′, TT ′ = P
R(T )
|D(T ′) and

T ′T = PN(T )⊥ .

The inner inverses corresponding to a topological complement of the nullspace instead of an
algebraic complement are particularlly interesting because in such case T ′T = QM//N(T ) is bounded.
Given T ∈ L(H,K), we shall denote by

I(T ) = {T ′ : T ′T = QM//N(T ) ∈ L(H)}

and by
Ig(T ) = {T ′ ∈ I(T ) : T ′ is a generalized inverse of T}.

Note that T † ∈ I(T ). Moreover, if T ′ ∈ I(T ) and C ∈ L(G,K) verifies that R(C) ⊆ R(T ) then
T ′C ∈ L(G,H). In fact, by Douglas theorem, there exists D ∈ L(G,H) such that TD = C. Now,
if T ′ ∈ I(T ) then T ′C = T ′TD = QM//N(T )D ∈ L(G,H).

Another notion which is relevant in this paper is that of angle between subspaces. Recall that
the Friedrichs angle between two closed subspaces S and T of H is the angle θ(S, T ) ∈ [0, π2 ]
whose cosine is defined by

c(S, T ) = sup{| 〈ξ, η〉 | : ξ ∈ S ∩ (S ∩ T )⊥, η ∈ T ∩ (S ∩ T )⊥ and ‖ξ‖ ≤ 1, ‖η‖ ≤ 1}.

Furthermore, the Dixmier angle between S and T is the angle θ0(S, T ) ∈ [0, π2 ] whose cosine
is defined by

c0(S, T ) = sup{| 〈ξ, η〉 | : ξ ∈ S, η ∈ T and ‖ξ‖ ≤ 1, ‖η‖ ≤ 1}.

Clearly, if S∩T = {0} then both angles coincide. We present some well known results about angles
between subspaces that we shall use frequently during these notes. See [11] and [6] for their proofs.

Proposition 1.6. Let S, T be two closed subspaces of H.

1. S + T is a closed subspace if and only if c(S, T ) < 1.

2. c(S, T ) = 0 if and only if S = S ∩ T ⊕ S ∩ T ⊥.

3. S
.

+ T is a closed subspace if and only if c0(S, T ) < 1.

2 Reduced solutions of Douglas equations

Given a solution D of the equation BX = C then, in many cases, it is useful to express D as
a product B̃C for a certain B̃. In such cases, the operator B̃ acts as a sort of inverse of B; in
fact, B̃BD = D. In the next proposition we provide equivalent conditions to the existence of such
factorization of the solution.

Proposition 2.1. Let D ∈ L(G,H) be a solution of the equation BX = C. The following conditions
are equivalent:

1. D = B̃C for some linear operator B̃ : D(B̃)→ H with R(C) ⊆ D(B̃);

2. R(D) ∩N(B) = {0};

3. N(D) = N(C).
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Proof. 1. → 2. Let ξ ∈ R(D)∩N(B). Then, ξ = Dη for some η ∈ G and so Cη = BDη = 0. Hence,
ξ = Dη = B̃Cη = 0.

2. → 3. Suppose that R(D) ∩ N(B) = {0} and let ξ ∈ N(C). Then BDξ = Cξ = 0, i.e.,
Dξ ∈ R(D)∩N(B) = {0}. So ξ ∈ N(D) and thus N(C) ⊆ N(D). It is trivial that N(D) ⊆ N(C).
Therefore, N(C) = N(D).

3. → 1. If N(C) = N(D) then the operator B̃ : R(C) → H defined by B̃(Cξ) = Dξ is well
defined. It is clear that B̃ is linear and that B̃C = D.

Corollary 2.2. Every reduced solution XM of the equation BX = C can be written as XM = B̃C,
for some linear operator B̃ with R(C) ⊆ D(B̃).

Proof. Since R(XM)∩N(B) ⊆M∩N(B) = {0} then, by Proposition 2.1, the assertion follows.

In the next result we describe the operator B̃ of Corollary 2.2. It is well known that the Douglas
reduced solution of BX = C is given by B†C (see [13]). We prove that a similar factorization holds
for reduced solutions when the Moore-Penrose inverse of B is replaced by a generalized inverse in
Ig(B). Moreover, we characterize the reduced solutions by means of angles. As a consequence, we
shall prove that reduced solutions are exactly the solutions which can be written as B̃C for some
linear operator B̃ with R(C) ⊆ D(B̃) if some additional hypotheses regarding the dimensions of
the spaces involved are included.

Theorem 2.3. Let B ∈ L(H,K) and C ∈ L(G,K) be such that R(C) ⊆ R(B). Hence, if Y ∈
L(G,H) is a solution of the equation BX = C then the following conditions are equivalent:

1. Y is a reduced solution of BX = C;

2. Y = QM//N(B)XN(B)⊥, where M is a topological complement of N(B);

3. Y = B′C, where B′ ∈ Ig(B);

4. Y = B′C, where B′ ∈ I(B);

5. c0(R(Y ), N(B)) < 1.

Proof. 1. → 2. Let Y be the reduced solution for M of the equation BX = C. Observe that
since M is a closed subspace then QM//N(B) is bounded and so QM//N(B)XN(B)⊥ ∈ L(G,H).
Furthermore, B(QM//N(B)XN(B)⊥) = BXN(B)⊥ = C and R(QM//N(B)XN(B)⊥) ⊆ M. Thus, by
the uniqueness of the reduced solution, we get Y = QM//N(B)XN(B)⊥ .

2. → 3. Observe that the operator B′ : R(B) + R(B)⊥ → H defined by B′ = QM//N(B)B
†

belongs to Ig(B). Furthermore, B′B = QM//N(B). Hence, Y = QM//N(B)XN(B)⊥ = B′BXN(B)⊥ =
B′C

3. → 4. It is trivial, because if Ig(B) ⊆ I(B).
4. → 5. Let Y = B′C for some inner B′ ∈ I(B). Then, R(Y ) = R(B′C) ⊆ R(B′B) =M for

some closed subspaceM such thatM
.

+N(B) = H. Thus, R(Y ) ⊆M and so R(Y )∩N(B) = {0}.
Moreover, since M

.
+N(B) = H is closed, we have that c0(M, N(B)) < 1. Hence, as R(Y ) ⊆M,

c0(R(Y ), N(B)) ≤ c0(M, N(B)) < 1.
5. → 1. If c0(R(Y ), N(B)) < 1 then, by Proposition 1.6, it holds that R(Y )

.
+N(B) is closed.

Hence, there existsM = (R(Y )+N(B))⊥
.

+R(Y ), which is closed since (R(Y )+N(B))⊥ ⊆ R(Y )⊥,
such that R(Y ) ⊆M and M

.
+N(B) = H. Therefore, Y is the reduced solution for M.

Corollary 2.4. Let B ∈ L(H,K), C ∈ L(G,K) and Y ∈ L(G,H) be such that BY = C. If H has
finite dimension then the following conditions are equivalent:
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1. Y is a reduced solution of the equation BX = C;

2. Y = B̃C for some linear operator B̃ with R(C) ⊆ D(B̃).

Proof. 1. → 2. It follows by Theorem 2.3.
2. → 1. If Y = B̃C for some linear operator B̃ with R(C) ⊆ D(B̃) then, by Proposition 2.1,

R(Y ) ∩N(B) = {0}. Furthermore, as R(Y )
.

+N(B) has finite dimension, then R(Y )
.

+N(B) is a
closed subspace and, by Proposition 1.6 we get that c0(R(Y ), N(B)) < 1. Therefore, by Theorem
2.3, Y is a reduced solution of the equation BX = C.

As the next example shows, Corollary 2.4 fails, in general, in the infinite dimensional case.

Example 2.5. Let D ∈ L(H) be a non closed range operator and let ξ ∈ R(D)\R(D). Define B =
Pspan{ξ}⊥ . Clearly, D is a solution of the equation BX = BD. Moreover, as N(B) = span{ξ}, then
R(D)∩N(B) = {0} and so, by Proposition 2.1, D = B̃BD for some linear operator B̃ : D(B̃)→ H
with R(D) ⊆ D(B̃). However, D is not a reduced solution of the equation BX = BD. Indeed, as
R(D) ∩N(B) = N(B) 6= {0} then c0(R(D), N(B)) = 1 and, by Theorem 2.3, D is not a reduced
solution.

Remark 2.6. By Douglas theorem, the Douglas reduced solution has minimal norm. A similar
property holds for every reduced solution. Let XM be a reduced solution for M of the equation
BX = C. If we consider the generalized inverse, B′ : R(B)

.
+ R(B)⊥ ⊆ K → M ⊆ H of B such

that B′|R(B) = B−1
M and N(B′) = R(B)⊥, then XM = B′C. Now, let A = Q∗Q+ (I −Q∗)(I −Q)

where Q = QM//N(B). Thus, A ∈ L(H)+ is invertible and the functional 〈ξ, η〉A = 〈Aξ, η〉 for every
ξ, η ∈ H defines an inner product. Hence, it can be checked that M is the orthogonal complement
of N(B) with respect to 〈 , 〉A . Thus, if we consider H with the inner product 〈 , 〉A then the
generalized inverse B′, defined above, is the Moore-Penrose inverse of B. Then, XM = B′C is the
Douglas reduced solution of the equation BX = C and so ‖|XM‖| = inf{‖|D‖| : BD = C} where
‖|D‖| = sup

06=ξ∈G

‖A1/2Dξ‖
‖ξ‖ . Note that 〈 , 〉A and 〈 , 〉 are equivalent because A is invertible.

2.1 Positive reduced solutions

This subsection is devoted to study positive reduced solutions of Douglas type equations. The
next result due to Z. Sebestyén [15] provides an equivalent condition for the existence of a positive
solution.

Theorem (Sebestyén). Consider operators B,C ∈ L(H,K) such that the equation BX = C has
a solution. Hence, the equation admits a positive solution if and only if CC∗ ≤ λBC∗ for some
constant λ ≥ 0.

Even though Sebestyén’result characterize the Douglas equations which admits a positive so-
lution, it does not provide an expression of them. A formula of positive solutions is given by A.
Dajić and J. J. Koliha in [5], but under some extra hypotheses. More precisely, they proved the
following result.

Theorem 2.7. Consider operators B,C ∈ L(H,K) such that R(B) and R(BC∗) are closed. If the
equation BX = C has a positive solution then the general positive solution is given by

X = C∗(BC∗)′C + (I −B′B)S(I −B′B)∗, S ∈ L(H)+,

where (BC∗)′ and B′ are arbitrary inner inverses of BC∗ and B, respectively. Moreover, X0 =
C∗(BC∗)′C is a particular positive solution of BX = C, independent of the choice of the inner
inverse (BC∗)′.
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Here, we shall prove that the formula given by A. Dajić and J. J. Koliha still holds if the
conditions R(B) and R(BC∗) closed are replaced by certain angle condition. In Remark 2.10, we
show that our hypotheses are weaker than Dajić and Koliha’s ones. Before that we present the
following technical lemma.

Lemma 2.8. Let B ∈ L(H,K). The general selfadjoint solution of the homogeneous equation
BX = 0 is given by Y = (I −B′B)Z(I −B′B)∗, where Z ∈ L(H) is selfadjoint and B′ ∈ I(B).

Proof. Let Y be a solution of BX = 0. Then, Y = (I −B′B)Y for every B′ ∈ I(B). If in addition
Y = Y ∗ then Y = Y (I −B′B)∗ and thus Y = (I −B′B)Y (I −B′B)∗.

Conversely, if Z ∈ L(H) is selfadjoint then Y = (I −B′B)Z(I −B′B)∗ is a selfadjoint solution
of BX = 0 for every B′ ∈ I(B).

Theorem 2.9. Consider operators B,C ∈ L(H,K) such that the equation BX = C has a positive
solution. If R(C) ⊆ R(BC∗) and c0(R(C∗), N(B)) < 1 then X0 = C∗(BC∗)†C is a positive reduced
solution of the equation BX = C. Furthermore, the general positive solution is given by

Y = C∗(BC∗)†C + (I −B′B)S(I −B′B)∗, (1)

where S ∈ L(H)+ and B′ ∈ I(B).

Proof. Note thatX0 = C∗(BC∗)†C ∈ L(H) becauseR(C) ⊆ R(BC∗). Moreover, since the equation
BX = C admits a positive solution then, by Sebestyén’result, BC∗ ∈ L(K)+ and so (BC∗)† is
positive1. Therefore X0 ∈ L(H)+. Now, BX0 = B(C∗(BC∗)†C) = P

R(BC∗)|D((BC∗)†)C = C. On

the other hand, R(X0) = R(C∗). Indeed, since BX0 = C then N(X0) ⊆ N(C) which implies that
R(C∗) ⊆ R(X0). The other inclusion follows from the definition of X0. Then c0(R(X0), N(B)) =
c0(R(C∗), N(B)) < 1 and so, by Theorem 2.3, we assert that X0 is a positive reduced solution.

The last part of the proof is devoted to obtain formula (1). Let Y be a positive solution of
BX = C. Then Y − X0 is a selfadjoint solution of BX = 0. Now, consider B̂ ∈ I(B) such that
B̂C = X0; the existence of such B̂ is guaranteed by Theorem 2.3. Therefore, by Lemma 2.8, we
have

Y −X0 = (I − B̂B)Z(I − B̂B)∗, (2)

for some Z ∈ L(H) selfadjoint. Then

(I − B̂B)Y (I − B̂B)∗ = (I − B̂B)X0(I − B̂B)∗ + (I − B̂B)Z(I − B̂B)∗

= (I − B̂B)Z(I − B̂B)∗.

Note that since Y is positive then S = (I − B̂B)Z(I − B̂B)∗ ∈ L(H)+. Now, let B′ ∈ I(B). Then
(I −B′B)(I − B̂B) = (I − B̂B) and so, from (2), we get Y = X0 + (I −B′B)S(I −B′B)∗.

Conversely, if Y = X0 + (I − B′B)S(I − B′B)∗ with S ∈ L(H)+ then Y is a positive solution
of BX = C.

Remark 2.10. Let us note that the hypotheses of Theorem 2.9 are weaker than A. Dajić and
J. J. Koliha’s hypotheses. In fact, suppose that A. Dajić and J. J. Koliha’s hypotheses hold.
Thus, since the equation BX = C admits a positive solution then CC∗ ≤ λBC∗ for some positive
constant λ. Hence, by Douglas theorem, R(C) ⊆ R((BC∗)1/2). Thus, if R(BC∗) is closed then
R(C) ⊆ R((BC∗)1/2) = R(BC∗) and so R(C) ⊆ R(BC∗) = R(CB∗) ⊆ R(C), i.e., R(C) is closed.
Furthermore, from R(C) ⊆ R(BC∗) we get that N(BC∗) ⊆ N(C∗) which implies R(C∗)∩N(B) =

1Here, the positivity of T † means
〈
T †ξ, ξ

〉
≥ 0 for every ξ ∈ D(T †).
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{0}. Finally, if X0 = C∗(BC∗)†C then R(C∗) = R(X0B
∗) ⊆ R(X0) ⊆ R(C∗), i.e., R(C∗) =

R(X0). Now, R(C∗) +N(B) = R(X0) +N(B) = B−1(R(C)) is closed and so, by Proposition 1.6,
c0(R(C∗), N(B)) < 1.

On the other hand, let C ∈ L(H)+ with non closed range and B = P
R(C)

. Hence the equation

BX = C admits a positive solution, R(C) ⊆ R(BC∗) and c0(R(C∗), N(B)) = 0 < 1, but R(BC∗) =
R(C) is not closed.

3 Reduced projections

In this section we will study some special projections Q ∈ QS which are orthogonal respect to the
semi-inner product induced by A ∈ L(H)+, namely,

〈 , 〉A : H×H → C, 〈ξ, η〉A := 〈Aξ, η〉 .

This functional is an inner product if and only if A is injective. Moreover, if A is invertible then
〈 , 〉A and 〈 , 〉 are equivalent in an obvious sense.

Given T ∈ L(H), we say that T is A-selfadjoint (or symmetrizable for A) if 〈Tξ, η〉A =
〈ξ, Tη〉A for every ξ, η ∈ H or, which is equivalent, if AT = T ∗A. Given a closed subspace S, we
denote by P(A,S) the set of A-selfadjoint projections with fixed range S:

P(A,S) = {Q ∈ QS : AQ = Q∗A}.

If P(A,S) is not empty, then the pair (A,S) is called compatible. The compatibility of a pair
(A,S) can be read in terms of range inclusions. For this, let us consider the matrix representation
of operators in L(H) induced by the decomposition H = S⊕S⊥. Thus, every Q ∈ QS is represented
by

Q =
(

1 y
0 0

)
, (3)

where y ∈ L(S⊥,S); and every A ∈ L(H)+ is represented by

A =
(

a b
b∗ c

)
, (4)

where a ∈ L(S)+ and c ∈ L(S⊥)+. Therefore, the pair (A,S) is compatible if and only if R(b) ⊆
R(a) (see [2]). Moreover, Q ∈ P(A,S) if and only if ay = b. The main goal of this section is to
characterize the elements Q ∈ P(A,S) such that

Q =
(

1 xM
0 0

)
, (5)

where xM is a reduced solution of the equation ax = b. This sort of projections will be called
reduced projections. Observe that, by Douglas theorem, if the pair (A,S) is compatible then
there always exists a reduced projection in P(A,S), namely,

PA,S =
(

1 xN(a)⊥

0 0

)
.

Different properties of the element PA,S have been studied by Corach et al. in [4] and [3]. Here,
we describe the set of reduced projections by means of the results obtained in Section 2. For this,
we start providing an equivalent condition for a projection Q ∈ QS to be A-selfadjoint.
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In what follows, given a subspace S of H we denote

S⊥A = {ξ ∈ H : 〈ξ, η〉A = 0 ∀ η ∈ S}.

The following identities hold: S⊥A = (AS)⊥ = A−1(S⊥).

Proposition 3.1. Let (A,S) be a compatible pair and Q ∈ QS . The following conditions are
equivalent:

1. Q ∈ P(A,S);

2. N(Q) = S⊥A ∩M for some topological complement,M, of S ∩N(A).

Proof. 1→ 2. Let Q ∈ P(A,S) and N = S ∩S⊥A = S ∩N(A). First, let see that S⊥A = N
.

+N(Q).
Observe that since Q ∈ QS , then N ∩ N(Q) = (S ∩ N(Q)) ∩ N(A) = {0}. Furthermore, as
Q ∈ P(A,S), then N(Q) ⊆ S⊥A and so N

.
+N(Q) ⊆ S⊥A . On the other hand, if ξ = ξ1 +ξ2 ∈ S⊥A ,

where ξ1 ∈ S and ξ2 ∈ N(Q) then ξ − ξ2 = ξ1 ∈ S⊥A ∩S = N . Therefore S⊥A = N
.

+N(Q). Now,
define M = N(Q)

.
+ (S⊥A)⊥ which is closed because N(Q) ⊆ S⊥A . We claim that M

.
+N = H.

Indeed,M+N = N(Q)
.

+(S⊥A)⊥+N = N(Q)
.

+N
.

+(S⊥A)⊥ = S⊥A
.

+(S⊥A)⊥ = H. Moreover, let
η = η1 +η2 ∈M∩N , where η1 ∈ N(Q) and η2 ∈ (S⊥A)⊥. Now, η−η1 = η2 ∈ S⊥A∩(S⊥A)⊥ = {0}.
Then η = η1 ∈ N(Q) ∩ S = {0}. Hence, M

.
+ N = H. It only remains to show that N(Q) =

S⊥A∩M. It is straightforward that N(Q) ⊆ S⊥A∩M. On the contrary, let µ = µ1+µ2 ∈ S⊥A∩M,
where µ1 ∈ N(Q) and µ2 ∈ (S⊥A)⊥. Then µ − µ1 = µ2 ∈ S⊥A ∩ (S⊥A)⊥ = {0}. Therefore
µ = µ1 ∈ N(Q) and so N(Q) = S⊥A ∩M.

2→ 1. As N(Q) ⊆ S⊥A , if ξ = ξ1 + ξ2 and η = η1 + η2, where ξ1, η1 ∈ S and ξ2, η2 ∈ N(Q) then
〈Qξ, η〉A = 〈ξ1, η1〉A = 〈ξ,Qη〉A. Therefore Q is A-selfadjoint.

Lemma 3.2. Let A ∈ L(H)+ with the matrix representation (4) and let S be a closed subspace of
H. If the pair (A,S) is compatible then N(a) = S ∩N(A).

Proof. Let ξ ∈ N(a) ⊆ S. Then, as the pair (A,S) is compatible and a is positive it holds
N(a) ⊆ N(b∗) and therefore b∗ξ = 0. Hence, Aξ = aξ + b∗ξ = 0, i.e., ξ ∈ S ∩ N(A). The other
inclusion is clear.

Lemma 3.3. Let Q1, Q2 ∈ Q. If N(Q1) ⊆ N(Q2) and R(Q1) ⊆ R(Q2) then Q1 = Q2.

Proof. The assertion is consequence of the following equivalence: (i) N(Q1) ⊆ N(Q2) ⇔ Q2Q1 =
Q2 and (ii) R(Q1) ⊆ R(Q2)⇔ Q2Q1 = Q1.

In the next theorem we characterize the reduced projections. Observe that in Proposition 3.1
we describe the nullspace of the elements of P(A,S) by means of a complement of S ∩N(A). Now,
we shall give an additional condition on such complement in order to Q ∈ P(A,S) be a reduced
projection.

Theorem 3.4. Let (A,S) be a compatible pair and Q ∈ P(A,S). Then the following conditions
are equivalent

1. Q is a reduced projection;

2. N(Q) = S⊥A ∩M, where M is a topological complement of S ∩N(A) such that c(M,S) = 0;

3. c0(R(QPS⊥),S ∩N(A)) < 1.
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Proof. Let Q =
(

1 y
0 0

)
∈ P(A,S) and, for simplicity, let N = S ∩N(A).

1. → 2. If y a reduced solution of the equation ax = b then R(y) ⊆ W for some closed subspace W
such that W

.
+N(a) = S. Define M =W + S⊥. Then, M+N =M+N(a) =W + S⊥ +N(a) =

S+S⊥ = H. Furthermore,M∩N = {0}. Indeed, if ξ = ξ1 +ξ2 ∈M∩N with ξ1 ∈ S⊥ and ξ2 ∈ W
then ξ − ξ2 = ξ1 ∈ S ∩ S⊥ = {0}. Thus, ξ1 = 0 and so ξ = ξ2 ∈ W ∩N(a) = {0}. Hence, ξ = 0 and
soM

.
+N = H. It is straightforward that S

.
+(S⊥A ∩M) = H. By Proposition 3.1 and Lemma 3.3,

in order to prove that Q = QS//S⊥A∩M we must see that N(Q) ⊆ S⊥A ∩M. Now, as Q ∈ P(A,S),
then N(Q) ⊆ S⊥A . Let us see that N(Q) ⊆ M. For this, let ξ = ξ1 + ξ2 ∈ N(Q) with ξ1 ∈ S
and ξ2 ∈ S⊥. Then Qξ = ξ1 + yξ2 = 0. Hence, ξ1 = −yξ2 ∈ W. So, ξ = ξ1 + ξ2 ∈ W + S⊥ = M
and then N(Q) ⊆ M. It only remains to show that c(M,S) = 0 or, which is equivalent, that
M = (M∩S)⊕ (M∩S⊥). Clearly, (M∩S)⊕ (M∩S⊥) ⊆M. Now, let η = η1 + η2 ∈M, where
η1 ∈ W and η2 ∈ S⊥. Then η − η1 = η2 ∈M∩ S⊥ and η − η2 = η1 ∈M∩ S.
2. → 1. It is sufficient to show that there exists a closed subspace W such that W

.
+ N(a) = S

and R(y) ⊆ W. Define W = M∩ S. Then W + N(a) ⊆ S. Now, let ξ = ξ1 + ξ2 ∈ S, where
ξ1 ∈ M and ξ2 ∈ N = N(a). Then ξ − ξ2 = ξ1 ∈ M ∩ S = W and so ξ = ξ1 + ξ2 ∈ W + N(a).
Furthermore, W ∩N(a) = W ∩N =M∩N = {0}. Thus W

.
+N(a) = S. Now, given ξ ∈ S⊥, it

holds −yξ+ξ ∈ N(Q) ⊆M. Since c(M,S) = 0 then, by Proposition 1.6,M = (M∩S)⊕(M∩S⊥)
and so −yξ + ξ = κ1 + κ2, where κ1 ∈ M∩ S and κ2 ∈ M∩ S⊥. Therefore −yξ = κ1 and ξ = κ2

and so R(y) ⊆M∩ S =W.
1 ↔ 3 It is consequence of Theorem 2.3.

Remark 3.5. If the pair (A,S) is compatible and Q ∈ P(A,S) then Q is the reduced projection
PA,S if and only if any of the following conditions hold:

i. N(Q) = S⊥A ∩ (S ∩N(A))⊥;

ii. c0(R(QPS⊥),S ∩N(A)) = 0.

The compatibility of a pair is related to the existence of solutions of certain Douglas type
equations. For example, in [3], Proposition 4.2, it is proved that the pair (A,S) is compatible
if and only if the equation A1/2PSX = P

A1/2(S)
A1/2 has a solution. As a consequence, in the

next result we show that if the pair (A,S) is compatible then the equation A1/2X = P
A1/2(S)

A1/2

has a solution. In that case, the reduced solutions are A-selfadjoint projections. Moreover, if
S ∩N(A) = {0} then PA,S is a reduced solution of such equation.

Proposition 3.6. Let A ∈ L(H)+ and (A,S) be a compatible pair. Then the following conditions
hold:

1. The equation A1/2X = P
A1/2SA

1/2 has a solution;

2. If XM is a reduced solution of the equation A1/2X = P
A1/2SA

1/2 then XM is an A-selfadjoint
projection with N(XM) = S⊥A;

3. If S ∩ N(A) = {0} then there exists a closed subspace M of H such that S ⊆ M and
M

.
+ N(A) = H. In that case, PA,S is the reduced solution for M of the equation A1/2X =

P
A1/2SA

1/2. In other words, PA,S = (A1/2)′P
A1/2SA

1/2 where (A1/2)′ is the generalized inverse
for M of A1/2.
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Proof. 1. If the pair (A,S) is compatible then the equation A1/2PSX = P
A1/2SA

1/2 has a solu-
tion (see [3], Proposition 4.2). Hence, R(P

A1/2SA
1/2) ⊆ R(A1/2PS) ⊆ R(A1/2). Thus, A1/2X =

P
A1/2SA

1/2 has a solution.
2. Let D be a reduced solution for M of the equation A1/2X = P

A1/2SA
1/2. Hence, A1/2D2 =

A1/2DD = P
A1/2SA

1/2D = P 2

A1/2S
A1/2 = P

A1/2SA
1/2. Hence both, D and D2 are reduced solution

for M of the equation A1/2X = P
A1/2SA

1/2 and so, D = D2. Furthermore, AD = A1/2P
A1/2SA

1/2

is selfadjoint. Thus, D is an A-selfadjoint projection. Finally, since N(D) = N(P
A1/2SA

1/2), it is
sufficient to show that N(P

A1/2SA
1/2) = S⊥A = (AS)⊥. Now, since for every η ∈ S and ξ ∈ H it

holds 〈ξ, Aη〉 =
〈
P
A1/2SA

1/2ξ, A1/2η
〉
, then the assertion follows.

3. LetM = S+(S
.

+N(A))⊥. Since (S
.

+N(A))⊥ ⊆ S⊥, thenM is closed. Moreover, since (A,S) is
compatible then S+N(A) is a closed subspace of H (see [2], Theorem 6.2) and soM

.
+N(A) = H.

Now, if XM denotes the reduced solution for M of the equation A1/2X = P
A1/2SA

1/2 then, by
item 2., XM is an A-selfadjoint projection. Furthermore, S ⊆ R(XM). In fact, if η ∈ S then
P
A1/2SA

1/2η = A1/2η = A1/2XMη. Thus, η − XMη ∈ M ∩ N(A1/2) = {0}. Then, η = XMη ∈
R(XM). Since S ∩N(A) = {0}, by item 2. it follows that N(XM) = N(PA,S). Therefore, XM is
an A-selfadjoint projection with R(PA,S) = S ⊆ R(M) and N(XM) = N(PA,S). So, by Lemma
3.3, XM = PA,S .
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