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Abstract. The aim of this paper is investigating the existence of solutions of

the non–local elliptic problem

(P s
h)

{
(−∆)su = |u|p−2u + h(x) in Ω,
u = 0 on Rn \ Ω,

where s ∈ (0, 1), n > 2s, Ω is an open bounded domain of Rn with Lipschitz

boundary ∂Ω, (−∆)s is the non–local Laplacian operator, 2 < p < 2∗s and
h ∈ L2(Ω). This problem requires the study of the eigenvalue problem related

to the fractional Laplace operator, with or without potential.

1. Introduction

In the last decade, starting with the works [9, 10, 30], PDE models involving
operators whose paradigm is the so called fractional Laplacian have been widely
studied. This kind of operators acts by a global integration with respect to a very
singular kernel and not by pointwise differentiation. Needless to say, the interest
in these operators comes from very different fields: for instance, in Probability
the fractional Laplace operators of the form (−∆)s, s ∈ (0, 1), are infinitesimal
generators of a stable Lévy process (cf., e.g., [35]); on the other hand the famous
Signorini problem gives a motivation from Mechanics and in [11, 21] one can find
further applications in Fluid Mechanics (cf. also [17] for a list of other applications).

In this work we deal with the existence of multiple solutions of inhomogeneous
superlinear boundary value problems involving the fractional Laplacian operator.
Namely, we deal with the non–local elliptic problem

(P sh)

{
(−∆)su = |u|p−2u+ h(x) in Ω,
u = 0 on Rn \ Ω,

where s ∈ (0, 1), n > 2s, Ω is an open bounded domain of Rn with Lipschitz bound-
ary ∂Ω, (−∆)s is the non–local Laplacian operator, i.e., for a suitable C(n, s) > 0
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(see for instance [17]),

(−∆)su(x) := C(n, s)

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy on Rn,

2 < p < 2∗s, with 2∗s = 2n
n−2s fractional critical exponent, and h ∈ L2(Ω). By a solu-

tion of (P sh) we mean a function in the fractional Sobolev space Hs(Ω) (cf. Section
2) which vanishes almost everywhere outside Ω and satisfies the first equation of
(P sh) in the weak sense.

If h ≡ 0, i.e. the problem is symmetric, the existence of infinitely many solutions
has been proved in [24, Theorem 1.1] by equivariant variational methods, by a proof
similar to that performed in [27, Theorem 9.38] for the local case.
We recall that the local case corresponds to s = 1 and the problem corresponding
to (P sh) is

(Ph)

{
−∆u = |u|p−2u+ h(x) in Ω,
u = 0 on ∂Ω,

therefore, due to the presence of the term h, the problem is not symmetric. Problem
(Ph) has been firstly studied using some methods devised by [2, 3, 26, 31], commonly
referred to as the “perturbation from symmetry” ones. Later on, an improvement
of these results was obtained in [34]. More recently, problem (Ph) has been studied
in [6, 13] also for non–zero boundary condition.

As far as we know, in the non–local setting the only contribution related to our
kind of problem in contained in [28] (cf. also [25, Chapter 11 - Part II]). Due to
some non trivial technical difficulties, we limit here ourselves to the case u = 0 on
∂Ω, i.e., to the case in which the non–homogeneity originates only in the equation.

More precisely we can state our main result, the non–local counterpart of [34,
Theorem 1] with u = 0 on Rn \ Ω.

Theorem 1.1. Let s ∈ (0, 1) with n > 2s and Ω be an open bounded domain of Rn
with Lipschitz boundary ∂Ω. Then, problem (P sh) has infinitely many solutions for
any h ∈ L2(Ω) provided that

2 < p <
2n− 2s

n− 2s
. (1.1)

Remark 1.2. For the sake of simplicity, in Theorem 1.1 we deal with the model
nonlinearity g(s) = |s|p−2s, nevertheless our techniques work for any continuous
g : Ω× R→ R satisfying the following widely used set of assumptions:

• there exist µ > 2 and ρ ≥ 0 such that

(x, s) ∈ Ω× R, |s| ≥ ρ⇒ 0 < µG(x, s) ≤ sg(x, s)

with G(x, s) =
∫ s

0
g(x, t) dt;

• there exist p ∈]2, 2∗s[, c > 0 such that

|g(x, s)| ≤ c(|s|p−1 + 1) for all (x, s) ∈ Ω× R;

• g(x,−s) = −g(x, s) for all (x, s) ∈ Ω× R.
Remark 1.3. Also in the local case, without additional assumptions (such as radial
symmetry, cf., e.g., [12] and [32]), it is still an open problem whether there exist
infinitely many solutions for p up to 2∗ = 2n

n−2 : in fact, the result in [34, Theorem

1] holds for p ∈
(

2, 2n−2
n−2

)
, hence in Theorem 1.1 we have a full extension of this

result to the non–local case.
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The paper is organized as follows: in Section 2 we recall some basic facts about
the fractional Laplacian and fractional Sobolev spaces. In Section 3 we obtain
bounds for eigenvalue problems with the fractional Laplacian. In Section 4 we
recall Bolle’s method. Finally, in Section 5 we prove Theorem 1.1.

2. Preliminaries about the fractional Laplacian

It is important to point out that different notions of fractional Laplacian in do-
mains Ω ⊂ Rn, with different interpretations of the Dirichlet boundary conditions,
have been defined in the literature. Let us highlight the main differences between
them.

In this paper we consider equations involving the standard fractional Laplacian
on Rn and require that the solutions vanish outside Ω. In this case the associated
Dirichlet form is

ERn(u, v) = C(n, s)

∫
Rn

∫
Rn

(u(x)− u(y)) · (v(x)− v(y))

|x− y|n+2s
dx dy. (2.1)

In probabilistic terms, the associated stochastic process is the standard symmet-
ric α-stable Lévy process (with α = 2s), killed upon living Ω. This operator has
been also used for instance in [23], even in a more general form, called there the
fractional p-Laplacian.

A second option is to consider the so called regional fractional Laplacian, which
corresponds to the Dirichlet form

EΩ(u, v) = C(n, s)

∫
Ω

∫
Ω

(u(x)− u(y)) · (v(x)− v(y))

|x− y|n+2s
dx dy.

The associated stochastic process is the censored stable process, for which jumps
outside Ω are completely forbidden (cf., e.g., [4]).

Another approach is to consider the fractional powers of the Laplacian in Ω with
Dirichlet conditions, defined from the spectral decomposition. The corresponding
operator is called the spectral fractional Laplacian and coincides with the one ob-
tained from the Caffarelli-Silvestre extension on a cylinder based in Ω (see [7]). The
associated stochastic process is the subordinate killed Brownian motion studied in
[33].

Next we recall some basic definitions. Let us take s ∈ (0, 1) and a measurable
function u : Rn → R. Recalling that the Gagliardo seminorm is defined by

[u]s,2 = (ERn(u, u))
1/2

=

(
C(n, s)

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

,

Then, the fractional Sobolev space is defined as

Hs(Rn) = {u ∈ L2(Rn) : [u]s,2 < +∞}
and it is equipped with the norm

‖u‖s,2 =
(
|u|22 + [u]2s,2

) 1
2 , (2.2)

where | · |2 denotes the norm on L2(Rn).

A fundamental tool is the following fractional Sobolev inequality (cf., e.g., [17,
Theorem 6.5]).
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Theorem 2.1 (Fractional Sobolev inequality). Let s ∈ (0, 1) be such that n > 2s.
Then there exists a positive constant K = K(n, s) such that, for any measurable
and compactly supported function f : Rn → R, it results that

‖f‖2
L2∗s (Rn)

≤ K
∫
Rn

∫
Rn

|f(x)− f(y)|2

|x− y|n+2s
dxdy.

Consequently, the space Hs(Rn) is continuously embedded in Lp(Rn) for any p ∈
[2, 2∗s].

Our problem is set in the space

Hs
0(Ω) = {u ∈ Hs(Rn) : u(x) = 0 a.e. in Rn \ Ω} (2.3)

which is a closed subspace of Hs(Rn). Since we are working in a bounded Lipschitz
domain Ω, C∞0 (Ω) is dense in Hs

0(Ω), i.e., we could alternatively define Hs
0(Ω) as

the completion of C∞0 (Ω) (cf., e.g., [8, Lemma 2.3]).

Moreover, since Ω is bounded, the following Poincaré inequality holds

‖u‖L2 ≤ C [u]s,2 for all u ∈ C∞0 (Ω)

with C = C(n, s, p,Ω) (cf. [8, Lemma 2.4]).
As a consequence we can use in Hs

0(Ω) the equivalent norm

‖ · ‖ = [ · ]s,2.

Moreover, Hs
0(Ω) then becomes a Hilbert space, with the associated inner product

given by the Dirichlet form (2.1).
We remark that the following embeddings hold:

Hs
0(Ω) ↪→ Lµ(Ω) continuously for µ ∈ [1, 2∗s]

(as a consequence of Theorem 2.1) and

Hs
0(Ω) ↪→↪→ Lµ(Ω) compactly for µ ∈ [1, 2∗s[ (2.4)

(cf. [17, Theorem 7.1]).

3. Estimates for eigenvalues of the fractional Laplacian with
weights

In this section we prove some estimates for eigenvalues of equations involving the
fractional Laplacian in domains; we need such estimates for the proof of our main
result, though we believe they have an interest of their own. Indeed, eigenvalues
of the fractional Laplacian in domains have recently received some attention in
literature. For instance, Z.Q. Chen and R. Song used in [14] probabilistic methods
to obtain two-sided estimates for the eigenvalues of the fractional Laplacian in
domains, while B. Dyda, A. Kuznetsov and M. Kwanicki explicitly computed in
[16] the eigenvalues in a ball. Moreover, we refer to [20] and references therein for
some Weyl-type laws for p-fractional eigenvalue problems.

We obtain new estimates for eigenvalues of equations involving the fractional
Laplacian with weights by adapting the technique of P. Li and S.T. Yau in [22].
Indeed the following theorem generalizes [22, Theorem 2].
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Theorem 3.1. Let s ∈ (0, 1), n > 2s, Ω be an open bounded domain of Rn with Lip-
schitz boundary ∂Ω and q(x) a positive function in Lr(Ω), with r > n

2s . Moreover,

let us denote by µk the kth eigenvalue for the problem{
(−∆)sφ(x) = µ q(x)φ(x) in Ω,
φ = 0 on Rn \ Ω.

(3.1)

Then there exists a positive constant C̄ = C̄(n, s) such that for all k ∈ N

µ
n/2s
k

∫
Ω

q
n
2s (x) dx ≥ C̄k.

Proof. The arguments in [1, Subsection 1.3], joined with the compact embeddings in
(2.4), guarantee the existence of a sequence (µk)k of eigenvalues for problem (3.1).
Let (ϕk)k be an orthogonal basis of eigenfunctions of (−∆)s in L2(Ω, q(x)dx) with
corresponding eigenvalues (µk)k. For every k ∈ N, the first equation of (3.1) in the
weak sense is

C(n, s)

∫
Rn

∫
Rn

(ϕk(x)− ϕk(y))(ψ(x)− ψ(y))

|x− y|n+2s
dx dy = µk

∫
Ω

q(x) ϕk(x) ψ(x) dx

(3.2)
for all test function ψ ∈ Hs

0(Ω). Let us consider (cf., e.g., [19, Propositions 6.4 and
6.5]) the heat kernel

H(x, y, t) =

+∞∑
i=1

e−µitϕi(x)ϕi(y),

which is positive by the maximum principle in [30, Proposition 2.17], and the func-
tion

h(t) =

+∞∑
i=1

e−2µit.

Namely, fixing (y, t) ∈ Ω× R, H(·, y, t) is a weak solution of

∂H

∂t
(x, y, t) = − (−∆)sx

q(x)
H(x, y, t),

i.e.,

C(n, s)

∫
Rn

∫
Rn

(H(x, y, t)−H(z, y, t))(ψ(x)− ψ(z))

|x− z|n+2s
dx dz

=

∫
Ω

q(x)
∂H

∂t
(x, y, t) ψ(x) dx,

for all ψ ∈ Hs
0(Ω): in fact,∫

Ω

q(x)
∂H

∂t
(x, y, t) ψ(x) dx = −

∫
Ω

q(x)

+∞∑
i=1

µi e
−µitϕi(x)ϕi(y)ψ(x) dx

= −
+∞∑
i=1

µi e
−µitϕi(y)

∫
Ω

q(x) ϕi(x)ψ(x) dx

= −C(n, s)

+∞∑
i=1

e−µitϕi(y)

∫
Rn

∫
Rn

(ϕi(x)− ϕi(z))(ψ(x)− ψ(z))

|x− z|n+2s
dx dz

= −C(n, s)

∫
Rn

∫
Rn

(H(x, y, t)−H(z, y, t))(ψ(x)− ψ(z))

|x− z|n+2s
dx dz.
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We have that∫
Rn

∫
Rn
H2(x, y, t)q(x)q(y) dxdy

∫
Ω

∫
Ω

(
+∞∑
i=1

e−µitϕi(x)ϕi(y)

)+∞∑
j=1

e−µjtϕj(x)ϕj(y)

 q(x)q(y) dx dy

=

+∞∑
i=1

+∞∑
j=1

e−µite−µjt
(∫

Ω

∫
Ω

ϕi(x)ϕi(y)ϕj(x)ϕj(y) q(x)q(y) dx dy

)

=

+∞∑
i=1

+∞∑
j=1

e−µite−µjtδij = h(t).

(3.3)

Therefore

h′(t) =

∫
Ω

∫
Ω

2H(x, y, t)
∂H

∂t
(x, y, t)q(x)q(y) dx dy

=

∫
Ω

∫
Ω

2H(x, y, t)

[
−

+∞∑
i=1

µi e
−µitϕi(x)ϕi(y)

]
q(x)q(y) dx dy

= −2

+∞∑
i=1

µi e
−µit

∫
Ω

q(x)ϕi(x)

[∫
Ω

ϕi(y)q(y)H(x, y, t) dy

]
dx.

Using ψ = H(x, ·, t) as test function in (3.2), we obtain that

h′(t) = −2C(n, s)·
+∞∑
i=1

e−µit
∫

Ω

q(x)ϕi(x)

[∫
Rn

∫
Rn

(ϕi(y)− ϕi(z))(H(x, y, t)−H(x, z, t))

|y − z|n+2s
dy dz

]
dx

= −2C(n, s)·∫
Ω

q(x)

+∞∑
i=1

e−µitϕi(x)

[∫
Rn

∫
Rn

(ϕi(y)− ϕi(z))(H(x, y, t)−H(x, z, t))

|y − z|n+2s
dy dz

]
dx

= −2C(n, s)·∫
Ω

q(x)

[∫
Rn

∫
Rn

(H(x, y, t)−H(x, z, t))(H(x, y, t)−H(x, z, t))

|y − z|n+2s
dy dz

]
dx

= −2C(n, s)

∫
Ω

q(x)

(∫
Rn

∫
Rn

|H(x, y, t)−H(x, z, t)|2

|y − z|n+2s
dy dz

)
dx.

Using the fractional Sobolev inequality in Theorem 2.1, it follows that

− h′(t) ≥ C̃(n, s)

∫
Ω

q(x)

[∫
Ω

H
2n
n−2s (x, y, t) dy

]n−2s
n

dx. (3.4)

On the other hand, by (3.3) and using the Hölder inequality we have that

h(t) =

∫
Ω

q(x)

(∫
Ω

H2(x, y, t)q(y) dy

)
dx

≤
∫

Ω

q(x)

(∫
Ω

Hαp(x, y, t) dy

)1/p(∫
Ω

Hβp′(x, y, t)qp
′
(y) dy

)1/p′

dx

(3.5)
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where
1

p
+

1

p′
= 1, α+ β = 2.

It must be αp = 2∗s and βp′ = 1. Hence,

p =
2n

n− 2s
− 1 =

n+ 2s

n− 2s
⇒ p′ =

n+ 2s

4s
.

By (3.5) it follows that

h(t) ≤
∫

Ω

q(x)

(∫
Ω

H
2n
n−2s (x, y, t) dy

)n−2s
n+2s

(∫
Ω

H(x, y, t) q
n+2s
4s (y)dy

) 4s
n+2s

dx.

By using again the Hölder inequality with exponents m = n+2s
n and m′ = n+2s

2s ,
we get that

h(t) ≤

(∫
Ω

q(x)

(∫
Ω

H
2n
n−2s (x, y, t) dy

)n−2s
n

dx

) n
n+2s (∫

Ω

q(x)Q2(x, t) dx

) 2s
n+2s

(3.6)
where

Q(x, t) =

∫
Ω

H(x, y, t)q
n+2s
4s (y) dy.

We claim that function Q satisfies the heat equation

∂Q

∂t
(x, t) = − 1

q(x)
(−∆)sxQ(x, t)

in weak sense, i.e., for any test function ψ ∈ Hs
0(Ω):∫

Ω

∂Q

∂t
(x, t)ψ(x) q(x) dx = C(n, s)

∫
Rn

∫
Rn

(Q(x)−Q(y))(ψ(x)− ψ(y))

|x− y|n+2s
dx dy

and is such that

Q(x, 0) = q
n−2s
4s (x),

since H is the fundamental solution of the heat equation. Therefore

∂Q

∂t
(x, t) =

∫
Ω

∂H

∂t
(x, y, t)q

n+2s
4s (y) dy

= −
∫

Ω

(−∆)sx
q(x)

H(x, y, t)q
n+2s
4s (y) dy = − (−∆)sx

q(x)

∫
Ω

H(x, y, t)q
n+2s
4s (y) dy

and the claim follows.
Hence, we have that

∂

∂t

∫
Ω

Q2(x, t)q(x) dx = 2

∫
Ω

Q(x, t)
∂Q

∂t
(x, t)q(x) dx

= −2C(n, s)

∫
Rn

∫
Rn

|Q(x, t)−Q(z, t)|2

|x− z|n+2s
dx dz ≤ 0.

This implies that∫
Ω

Q2(x, t)q(x) dx ≤
∫

Ω

Q2(x, 0)q(x) dx =

∫
Ω

q
n
2s (x) dx.
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Therefore by (3.6) we get that

h(t) ≤

[∫
Ω

q(x)

(∫
Ω

H
2n
n−2s (x, y, t) dy

)n−2s
n

dx

] n
n+2s [∫

Ω

q
n
2s (x) dx

] 2s
n+2s

and plainly

h
n+2s
n (t)

(∫
Ω

q
n
2s (x) dx

)−2s/n

≤
∫

Ω

q(x)

(∫
Ω

H
2n
n−2s (x, y, t) dy

)n−2s
n

dx.

By (3.4) we get that

h
n+2s
n (t)

(∫
Ω

q
n
2s (x) dx

)−2s/n

≤ − 1

C̃(n, s)
h′(t),

that is

h′(t) ≤ −C̃(n, s) h
n+2s
n (t)

(∫
Ω

q
n
2s (x) dx

)−2s/n

.

Dividing by h
n+2s
n (t) it results that

h−
n+2s
n (t)h′(t) ≤ −C̃(n, s)

(∫
Ω

q
n
2s (x) dx

)−2s/n

,

that is

n

2s

d

dt

(
h−

2s
n (t)

)
≥ C̃(n, s)

(∫
Ω

q
n
2s (x) dx

)−2s/n

.

Now h−
2s
n (t) → 0 as t → 0, since h(t) → +∞. Hence, integrating in (0, t), we

get that

n

2s
h(t)−

2s
n ≥ C̃(n, s) t

(∫
Ω

q
n
2s (x) dx

)−2s/n

.

Finally,

h(t) ≤
(

2s

n
C̃(n, s)

)− n
2s
(∫

D

q
n
2s (x) dx

)
t−n/2s.

By the definition of h,

+∞∑
i=1

e−2µit ≤
(

2s

n
C̃(n, s)

)− n
2s
(∫

D

q
n
2s (x) dx

)
t−n/2s.

Setting t = n
4µk

, we get(
2s

n
C̃(n, s)

)− n
2s
(∫

Ω

q
n
2s (x) dx

)(
n

4µk

)−n/2s
≥

+∞∑
i=1

e
−nµi2µk ≥ ke−n/2

and the proof is complete.
�

Remark 3.2. We conjecture that Theorem 3.1 holds for a larger class of non–local
operators (like those considered in [18] for p = 2): in fact, only some structural
properties are needed along the computations.
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Now, given a potential V ∈ L n
2s (Ω), let us consider the eigenvalue problem:{

(−∆)su+ V (x)u = λu in Ω,
u = 0 on Rn \ Ω

and denote by N−s((−∆)s + V ) the number of its non–positive eigenvalues and by
V−(x) := min{V (x), 0}. Then, by using Theorem 3.1, we can state the analogous
of [22, Corollary 2] for the non–local case.

Corollary 3.3. There exists a constant C = C(n, s) such that

N−s((−∆)s + V ) ≤ C|V−|
n
2s
n
2s
. (3.7)

Proof. The proof is essentially the same of [22, Corollary 2]: indeed, (i) and (ii) of
their proof work also in our case, therefore it is enough to consider only non-positive
eigenvalues and to work with a strictly negative potential, step (iii) is not neeeded
since we work on bounded domains of Rn and moreover the numberN−s((−∆)s+V )
is equal to the number of eigenvalues less than 1 for (3.1) with q(x) = −V (x) (cf.
formula (24) in [22]). Then, denoting by µk the greatest eigenvalue less than or
equal to 1, by Theorem 3.1 it follows that

|V−|
n
2s
n
2s
≥ µn/2sk |V−|

n
2s
n
2s
≥ C̄ k ≥ C̄N−s((−∆)s + V ).

�

4. Bolle’s perturbation method

In order to apply the method devised by Bolle in [5] for dealing with problems
with broken symmetry, let us recall the main theorem stated in [6] and generalized
in [15] by considering C1 instead of C2 functionals. The key point is to handle
a continuous path of functionals (Iθ)θ∈[0,1] starting at a symmetric functional I0
(which corresponds in our case to h = 0) and ending at the non-even functional I1
associated to the problem.

Let X be a Banach space equipped with the norm ‖ · ‖, (X ′, ‖ · ‖X′) its dual and
I : [0, 1] × X → R be a C1 functional; let us set Iθ = I(θ, ·) : X → R and
I ′θ(·) = ∂I

∂v (θ, ·) for all θ ∈ [0, 1].
Assume that

(A1) I satisfies a variant of the Palais-Smale condition: each sequence ((θn, vn))n
in [0, 1]×X such that

(I(θn, vn))n is bounded and lim
n→+∞

‖I ′θn(vn)‖ = 0

converges up to subsequences;
(A2) for all b > 0 there exists Cb > 0 such that, if (θ, v) ∈ [0, 1]×X, then

|Iθ(v)| ≤ b =⇒
∣∣∣∣∂I∂θ (θ, v)

∣∣∣∣ ≤ Cb (‖I ′θ(v)‖X′ + 1)(‖v‖+ 1);

(A3) there exist two continuous maps η1, η2 : [0, 1] × R → R, with η1(θ, ·) ≤
η2(θ, ·) for all θ ∈ [0, 1], which are Lipschitz continuous with respect to the
second variable and such that, if (θ, v) ∈ [0, 1]×X, then

I ′θ(v) = 0 =⇒ η1(θ, Iθ(v)) ≤ ∂I

∂θ
(θ, v) ≤ η2(θ, Iθ(v)); (4.1)
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(A4) I0 is even and for each finite dimensional subspace V of X it results

lim
v∈V

‖v‖→+∞

sup
θ∈[0,1]

Iθ(v) = −∞ .

For i ∈ {1, 2}, let ψi : [0, 1]× R→ R be the solution of the problem{
∂ψi
∂θ (θ, s) = ηi(θ, ψi(θ, s))

ψi(0, s) = s.

Note that for i ∈ {1, 2} ψi(θ, ·) is continuous, non-decreasing on R and ψ1(θ, ·) ≤
ψ2(θ, ·). Set

η̄1(s) = max
θ∈[0,1]

|η1(θ, s)|, η̄2(s) = max
θ∈[0,1]

|η2(θ, s)| .

Now let us consider a sequence (ek)k ⊂ X of linearly independent unitary vectors
and set Ek = span{e1, . . . , ek}; moreover let us define

Γ = {γ ∈ C(X,X) : γ is odd and ∃R > 0 s.t. γ(v) = v if ‖v‖ ≥ R}
and

ck = inf
γ∈Γ

sup
v∈Ek

I0(γ(v)) (4.2)

(ck ≤ ck+1 for all k ≥ 1).
In this framework, the following abstract result can be proved, cf. [5, Theorem

3] and [6, Theorem 2.2].

Theorem 4.1. Assume that the C2 path of functionals I : [0, 1]×X → R satisfies
(A1)− (A4) above. Then there exists K > 0 such that for all k ∈ N

(a) either I1 has a critical level c̃k with ψ2(1, ck) < ψ1(1, ck+1) ≤ c̃k,
(b) or ck+1 − ck ≤ K (η̄1(ck+1) + η̄2(ck) + 1).

5. Proof of Theorem 1.1

Let us consider, as in Theorem 1.1, s ∈ (0, 1), n > 2s, Ω open bounded domain
of Rn with Lipschitz boundary and h ∈ L2(Ω).

The weak solutions of (P sh) are the critical points of the functional

J1(v) =
1

2
‖v‖2 − 1

p
|v|pp −

∫
Ω

hv dx

defined on the space Hs
0(Ω) introduced in (2.3).

Thus, according to the Bolle’s perturbation method, we define the path of func-
tionals J : [0, 1]×Hs

0(Ω)→ R as follows:

J(θ, v) =
1

2
‖v‖2 − 1

p
|v|pp − θ

∫
Ω

hv dx.

For simplicity we set Jθ = J(θ, ·), hence the weak solutions of (P sh) are the critical
points of J(1, ·) = J1.

Next we check that, with this choice of the path, the assumptions in Theorem
4.1 are satisfied.

For what concerns the Palais–Smale type condition in assumption (A1), we refer
to [24, Lemmas 3.2 and 3.3]. Moreover, since for all (θ, v) ∈ [0, 1]×Hs

0(Ω) it results
∂J

∂θ
(θ, v) = −

∫
Ω

hv dx, also (A2) holds.
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We prove that J satisfies assumption (A3): in fact, the following lemma holds.

Lemma 5.1. If (θ, v) ∈ [0, 1] ×Hs
0(Ω) is such that J ′θ(v) = 0, then the inequality

(4.1) holds with η1, η2 : [0, 1]× R→ R defined as

−η1(θ, s) = η2(θ, s) = D
(
s2 + 1

) 1
2p

for a suitable constant D > 0.

Proof. If v ∈ Hs
0(Ω) is a critical point of Jθ, it results that

‖v‖2 − |v|pp − θ

∫
Ω

hv dx = 0.

Hence

Jθ(v) =

(
1

2
− 1

p

)
|v|pp +

(
1

2
− 1

)
θ

∫
Ω

hv dx,

by which it follows that, for a suitable D1 > 0,

|v|pp ≤ D1(Jθ(v) + 1). (5.1)

By (5.1) we get for some D2 > 0,∣∣∣∣∂J∂θ (θ, v)

∣∣∣∣ ≤ D2

(
J2
θ (v) + 1

) 1
2p ,

thus the lemma is proved.
�

Finally, let us remark that the functional J0 is even on Hs
0(Ω), hence by the

following lemma, also property (A4) holds.

Lemma 5.2. Let V be a finite dimensional subspace of Hs
0(Ω). Then

lim
v∈V

‖v‖→+∞

sup
θ∈[0,1]

J(θ, v) = −∞ .

Proof. For all (θ, v) ∈ [0, 1]×Hs
0(Ω) it results that

Jθ(v) ≤ 1

2
‖v‖2 − 1

p
|v|pp + |h|2|v|2,

then the thesis follows, since p > 2 and on finite dimensional spaces all norms are
equivalent. �

Now we are ready to prove our main result.

Proof of Theorem 1.1. As the path of functionals J satisfies (A1) − (A4), we
can apply Theorem 4.1. Let us denote by (λk)k the sequence of the eigenvalues
of (−∆)s on Hs

0(Ω) and by (ek)k the corresponding sequence of eigenfunctions.
According to [29, Section 3], the main features of the spectrum of the fractional
Laplace operator are very closed to that of classical one. Then, we set

E1 = Re1, Ek+1 = Ek ⊕ Rek+1 for k ≥ 1

and define a corresponding sequence of mini–max levels as

ck = inf
γ∈Γ

sup
v∈Ek

J0(γ(v))
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where Γ is as in Section 4 with X = Hs
0(Ω). Next we have to estimate the growth of

ck’s. We claim that condition (b) in Theorem 4.1 can not hold for all k large enough.
In fact, taking η1, η2 as in Lemma 5.1, condition (b) in Theorem 4.1 becomes

ck+1 − ck ≤ K
(

(ck)
1
p + (ck+1)

1
p + 1

)
, (5.2)

for a suitable K > 0; hence, if (5.2) holds for all k large enough, then by [2, Lemma
5.3] it follows that there exist L > 0 and k ∈ N such that

ck ≤ L k
p
p−1 for all k ≥ k. (5.3)

On the other hand, [34, Theorem B] implies that for all k ∈ N there exists vk ∈
Hs

0(Ω) such that

J ′0(vk) = 0 and J(vk) ≤ ck, (5.4)

with large Morse index greater or equal than k, i.e., the operator

J ′′0 (vk) = (−∆)s − (p− 1)|vk|p−2

has at least k non–positive eigenvalues. Therefore, by Corollary 3.3 with V (x) =
−(p− 1)|vk|p−2 we infer that for a suitable C ′n,s > 0

k ≤ N−(J ′′0 (vk)) ≤ C ′n,s|vk|
(p−2) n2s
(p−2) n2s

.

In particular, (5.4) implies J ′0(vk)[vk] = 0, then

‖vk‖2 = |vk|pp;

hence for a suitable C ′′n,s > 0 it follows that

ck ≥ C ′′n,sk
2sp

n(p−2) ∀k ≥ k0,

and by (5.3) this yields to a contradiction under assumption (1.1). Therefore con-
dition (a) in Theorem 4.1 holds for infinitely many k ∈ N.

�
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