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Abstract

In [On the free implicative semilattice extension of a Hilbert al-

gebra. Mathematical Logic Quarterly 58, 3 (2012), 188–207], Celani
and Jansana give an explicit description of the free implicative semi-
lattice extension of a Hilbert algebra. In this paper we give an alter-
native path conducing to this construction. Furthermore, following
our procedure, we show that an adjunction can be obtained between
the algebraic categories of Hilbert algebras with supremum and that
of generalized Heyting algebras. Finally, in last section we describe
a functor from the algebraic category of Hilbert algebras to that of
generalized Heyting algebras, of possible independent interest.

1 Introduction

In what follows we assume the reader is familiar with the theory of Heyting
algebras [1], which are the algebraic counterpart of Intuitionistic Proposi-
tional Logic. Hilbert algebras were introduced in the early 50’s by Henkin
for some investigations of implication in intuitionistic and other non-classical
logics ([19], pp. 16). In the 60’s, they were studied especially by Horn [15]
and Diego [11].

Let K be any variety in the language LK and L a sublanguage of LK .
We may consider the variety generated by the L -reducts of the elements
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of K; let us write M for this variety. Let us also write K and M , for the
algebraic categories whose class of objects are the members of the varieties K
and M , respectively. The correspondence assigning each member of K to its
L -reduct induces a functor U : K → M , which is usually referred to as the
forgetful functor from K toM , since part of the structure of each member in
K is forgotten. It can be seen that this functor has a left adjoint F :M → K
(see, for instance, [17, Theorem 3.8]). For any a ∈M , the element F (a) ∈ K
is usually referred to as the free K-extension of a. However, the usual general
arguments guaranteing its existence do not provide an easy description of it.

In [7] Celani and Jansana gave a concrete description of the free im-
plicative semilattice extension of a Hilbert algebra, from where an explicit
description for the left adjoint of the forgetful functor from the category of
implicative semilattices to the category of Hilbert algebras follows.

The main goal of this paper is to arrive at the explicit description of the
ajunction presented in [7] following an alternative path. We also apply these
ideas in order to provide similar constructions for the category of generalized
Heyting algebras.

The paper is organized as follows. In Section 2 we give some basic results
about Hilbert algebras. In particular, we recall the categorical equivalence
for Hilbert algebras developed by Cabrer, Celani and Montangie in [5] (see
also [8]). In Section 3 we use the equivalence for the category of Hilbert
algebras in order to build up a functor from the category of Hilbert alge-
bras to the category of implicative semilattices. We also present an explicit
description for the left adjoint to the forgetful functor from the category of
implicative semilattices to the category of Hilbert algebras. Finally we estab-
lish the connections between our results and those of [7]. In Section 4 we give
an explicit description for the left adjoint to the forgetful functor from the
category of generalized Heyting algebras (Heyting algebras) to the category
of Hilbert algebras with supremum (Hilbert algebras with supremum and a
minimum). Finally, in Section 5 we build up a functor from the category
of Hilbert algebras to the category of generalized Heyting algebras and we
comment some open problems.

2 Basic results

Recall that a Hilbert algebra (see [11]) is an algebra (H,→, 1) of type (2, 0)
which satisfies the following conditions for every a, b, c ∈ H :

a) a→ (b→ a) = 1,

b) (a→ (b→ c)) → ((a→ b) → (a→ c)) = 1,
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c) if a→ b = b→ a = 1 then a = b.

In [11] Diego proves that the class of Hilbert algebras is a variety. More-
over, this is the variety generated by the {1,→}-reduct of Heyting algebras.
In every Hilbert algebra H we have a partial order given by a ≤ b if and only
if a → b = 1, which is called natural order. Relative to the natural order on
H , 1 is the greatest element.

We write Hil for the variety of Hilbert algebras. Observe that Hil, when
equipped with homomorphisms, has the structure of a category.

Lemma 1. Let H ∈ Hil and a, b, c ∈ H. Then the following conditions are
satisfied:

a) a→ a = 1,

b) 1 → a = a,

c) a→ (b→ c) = b→ (a→ c),

d) a→ (b→ c) = (a→ b) → (a→ c),

e) if a ≤ b then c→ a ≤ c→ b and b→ c ≤ a→ c.

Some additional elemental properties of Hilbert algebras can be found in
[4, 11].

For the general development of Hilbert algebras, the notion of implicative
filter plays an important role. Let H be a Hilbert algebra. A subset F ⊆ H
is said to be a implicative filter if the following two conditions are satisfied:
1) 1 ∈ F ; 2) if a ∈ F and a→ b ∈ F then b ∈ F . If in addition F 6= H , then
we say that the implicative filter F is proper. Let f : H → G be a function
between Hilbert algebras. In [6, Theorem 3.2] it was proved that the following
two conditions are equivalent: 1) f(1) = 1 and f(a → b) ≤ f(a) → f(b) for
every a, b ∈ H ; 2) f−1(F ) is an implicative filter of H whenever F is an
implicative filter of G.

Definition 1. Let H ∈ Hil and F an implicative filter. We say that F
is irreducible if F is proper and for any implicative filters F1, F2 such that
F = F1 ∩ F2 we have that F = F1 or F = F2. We write X(H) for the set of
irreducible implicative filters of H.

Let us consider a poset 〈X,≤〉. A subset U ⊆ X is said to be an upset if
for all x, y ∈ X such that x ∈ U and x ≤ y we have y ∈ U . The notion of
downset is dually defined.

Remark 1. Every implicative filter of a Hilbert algebra is an upset.
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Let H ∈ Hil and I ⊆ H with I 6= ∅. We say that I is an order-ideal if I
is a downset and for every a, b ∈ I there is c ∈ I such that a ≤ c and b ≤ c.
Let Id(H) be the set of order-ideals of H and Fil(H) the set of implicative
filters of H . The following lemma is [6, Theorem 2.6] (it is also an immediate
consequence of the work of polarities and optimality as carried on for instance
in [12, Proposition 6.7]).

Lemma 2. Let H ∈ Hil. Let F ∈ Fil(H) and I ∈ Id(H) such that F ∩ I = ∅.
Then there exists P ∈ X(H) such that F ⊆ P and P ∩ I = ∅.

Recall that if H is a Hilbert algebra and X ⊆ H , we define the implicative
filter generated by X as the least filter of H that contains the set X , which
will be denoted by F (X). There is an explicit description for F (X) (see [3,
Lemma 2.3]):

F (X) = {x ∈ H : a1 → (a2 → · · · (an → x) . . .) = 1 for some a1, . . . , an ∈ X}.

The following known results are consequence of Lemma 2.

Corollary 3. Let H ∈ Hil, F ∈ Fil(H) and a /∈ F . Then there exists
P ∈ X(H) such that F ⊆ P and a /∈ P .

Corollary 4. Let H ∈ Hil and a, b ∈ H such that a � b. Then there exists
P ∈ X(H) such that a ∈ P and b /∈ P .

Corollary 5. Let H ∈ Hil, F ∈ Fil(H) and a, b ∈ H. Then a → b /∈ F if
and only if there exists P ∈ X(H) such that F ⊆ P , a ∈ P and b /∈ P .

If f : H → G is a function between Hilbert algebras, we define the relation
Rf ⊆ X(G)×X(H) by

(P,Q) ∈ Rf if and only if f−1(P ) ⊆ Q.

Normally duals of homomorphisms are functions (e.g. in Priestley and
Stone dualities). However, these functions can be seen as binary relations
and, accordingly, in not so well-behaved dualities the dual of a homomor-
phism tend to be a binary relation. The definition of Rf should be under-
stood in this spirit.

The following lemma was proved in [6, Theorem 3.3].

Lemma 6. Let H and G be Hilbert algebras and f : H → G a function such
that f(1) = 1 and f(a → b) ≤ f(a) → f(b) for every a, b ∈ H. Then the
following statements are equivalent:

1) f is a homomorphism.
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2) If (P,Q) ∈ Rf , then there is F ∈ X(H) such that P ⊆ F and f−1(F ) = Q.

If H is a Hilbert algebra and a ∈ H we define

ϕ(a) := {P ∈ X(H) : a ∈ P}. (1)

Let X and Y be sets and let R ⊆ X × Y be a binary relation. For every
x ∈ X we define R(x) := {y ∈ Y : (x, y) ∈ R}.

Let f : H → G an homomorphism in Hil, P ∈ X(G) and a ∈ H . In [5,
Lemma 3.3] it was proved that f(a) ∈ P if and only if for all Q ∈ X(G),
if (P,Q) ∈ Rf then a ∈ Q. The previous property can be written in the
following way:

f(a) ∈ P if and only if Rf(P ) ⊆ ϕ(a). (2)

We now recall some definitions and results from [5, 8] and fix some nota-
tion.

Let us consider a poset 〈X,≤〉. For each Y ⊆ X , the upset generated
by Y is defined by [Y ) = {x ∈ X : there is y ∈ Y such that y ≤ x}.
The downset generated by Y is dually defined. If Y = {y}, then we will
write [y) and (y] instead of [{y}) and ({y}], respectively. We also define
Y c := {x ∈ X : x /∈ Y }.

Remark 2. Let 〈X,≤〉 be a poset. Write X+ for the set of upsets of 〈X,≤〉.
Define on X+ the binary operation ⇒ by

U ⇒ V := (U ∩ V c]c. (3)

Then X+ is a complete Heyting algebra.

Let (X, τ) be a topological space. An arbitrary non-empty subset Y of
X is said to be irreducible if for any closed subsets Z and W such that
Y ⊆ Z ∪W we have that Y ⊆ Z or Y ⊆ W . We say that (X, τ) is sober
if for every irreducible closed set Y there exists a unique x ∈ X such that
Y = {x}, where {x} denotes the closure of {x}. A subset of X is saturated
if it is an intersection of open sets. The saturation of a subset Y of X is
defined as sat(Y ) :=

⋂
{U ∈ τ : Y ⊆ U}. Recall that the specialization order

of (X, τ) is defined by x � y if and only if x ∈ {y}. The relation � is reflexive
and transitive, i.e., a quasi-order. The relation � is a partial order if (X, τ)
is T0. The dual quasi-order order of � will be denoted by �d. Hence,

x �d y if and only if y ∈ {x}.

Remark 3. Let (X, τ) be a topological space which is T0, and consider the
order �d. Let x ∈ X and Y ⊆ X. Then {x} = [x) and sat(Y ) = (Y ], where
[x) is the upset generated by {x} with respect to the partial order �d and (Y ]
is the downset generated by Y with respect to the partial order �d.
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For the following definition see [8].

Definition 2. A Hilbert space, or H-space for short, is a structure (X, τ,κ)
where (X, τ) is a topological space, κ is a family of subsets of X and the
following conditions are satisfied:

(H1) κ is a base of open and compact subsets for the topology τ on X.

(H2) For every U, V ∈ κ, sat(U ∩ V c) ∈ κ.

(H3) (X, τ) is sober.

In what follows, if (X, τ,κ) is an H-space we simply write (X,κ).

Remark 4. 1. A sober topological space is T0.

2. Viewing any topological space as a poset, with the order �d, condition (H2)
of Definition 2 can be rewritten as: for every U, V ∈ κ, (U ∩ V c] ∈ κ.

Let X and Y be sets and let R ⊆ X × Y be a binary relation. If U ⊆ Y
then we define R−1(U) := {x ∈ X : R(x) ∩ U 6= ∅}. Let X, Y and Z be sets,
R ⊆ X × Y and S ⊆ Y × Z. Then the relational product (or composition)
of R and S is defined as follows:

R ◦ S := {(x, z) : there is y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}. (4)

Definition 3. Let X1 = (X1,κ1) and X2 = (X2,κ2) be two H-spaces. Let
us consider a relation R ⊆ X1 × X2. We say that R is an H-relation from
X1 into X2 if it satisfies the following properties:

(HR1) R−1(U) ∈ κ1, for every U ∈ κ2.

(HR2) R(x) is a closed subset of X2, for all x ∈ X1.

We say that R is an H-functional relation if it satisfies the following addi-
tional condition:

(HF) If (x, y) ∈ R then there is z ∈ X1 such that z ∈ {x} and R(z) = {y}.

Remark 5. Condition (HF) from Definition 3 can also be given as follows:
if (x, y) ∈ R then there exists z ∈ X1 such that x �d z and R(z) = [y).

If H is a Hilbert algebra then X(H) = (X(H),κH) is an H-space, where
κH = {ϕ(a)c : a ∈ H}. If f is a homomorphism of Hilbert algebras then
Rf is an H-functional relation. Write HS for the category whose objects are
Hilbert spaces and whose morphisms are H-functional relations, where the
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composition of two H-relations is defined as in (4). Then the assignment
H 7→ X(H) can be extended to a functor X : Hil → HS.

Let (X,κ) be an H-space. Define D(X) = {U ⊆ X : U c ∈ κ}. Then
D(X) ⊆ X+. It follows from Definition 2 and Remark 4 that D(X) is
closed under the operation ⇒ given in (3) of Remark 2. Since X+ is a
Heyting algebra then D(X) = (D(X),⇒, X) is a Hilbert algebra. If R is
an H-functional relation from (X1,κ1) into (X2,κ2), then the map hR from
from D(X2) into D(X1) given by hR(U) = {x ∈ X1 : R(x) ⊆ U} is a
homomorphism of Hilbert algebras. Then the assignment X 7→ D(X) can
be extended to a functor D : HS → Hil.

If H ∈ Hil, the map ϕ : H → D(X(H)) defined as in (1) is an isomor-
phism in Hil. If (X,κ) is an H-space, then the map ǫX : X → X(D(X))
given by ǫX(x) = {U ∈ D(X) : x ∈ U} is an order-isomorphism and a
homeomorphism between the topological spaces X and X(D(X))([5, Theo-
rem 2.2]). If there is not ambiguity we will write ǫ in place of ǫX . Moreover,
the relation ǫ∗ ⊆ X ×X(D(X)) given by (x, P ) ∈ ǫ∗ if and only if ǫ(x) ⊆ P
is an H-functional relation which is an isomorphism in HS.

The following theorem can be found in [8] (see also [5]).

Theorem 7. The contravariant functors X and D define a dual equivalence
between Hil and HS with natural equivalences ǫ∗ and ϕ.

3 An adjunction between Hil and IS

In this section we build up a functor from the algebraic category of Hilbert
algebras to the algebraic category of implicative semilattices. This provides
an explicit construction for the left adjoint for the forgetful functor from
the category of implicative semilattices to that of Hilbert algebras. Finally
we establish the link between our result and the results studied in [7] (in
particular, with item (1) of [7, Proposition 7.9]).

We start with some preliminary definitions and results.

Let 〈H,≤〉 be a poset. If any two elements a, b ∈ H have a greatest
lower bound a ∧ b, then the algebra (H,∧) is called meet semilattice. The
algebra (H,∧) is said to be bounded if it has a greatest element, which will
be denoted by 1; in this case we write (H,∧, 1). Throughout this paper we
just write semilattice in place of meet semilattice.

Definition 4. An implicative semilattice is an algebra (H,∧,→) of type
(2, 2) such that (H,∧) is a meet-semilattice and for every a, b, c ∈ H, a∧b ≤ c
if and only if a ≤ b→ c.
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In the literature implicative semilattices are known also as Brouwerian
semilattices. Every implicative semilattice has a greatest element, denoted
by 1. In this paper we take this element in the language of the algebras. It
is part of the folklore the fact that the variety of implicative semilattices is
the variety generated by the {1,∧,→}-reduct of Heyting algebras. For more
details about implicative semilattices see [10, 18].

We write IS for the category whose objects are implicative semilattices
and whose morphisms are functions f : H → G such that f(1) = 1 and
f(a ∧ b) = f(a) ∧ f(b) for every a, b ∈ H .

3.1 From IS to Hil

Let f : H → G be a morphism in Hil. It follows from Theorem 7 that the
following diagram commutes:

H
ϕ

//

f

��

D(X(H))

D(X(f))
��

G
ϕ

// D(X(G)).

Let g = D(X(f)). The elements of D(X(H)) take the form ϕ(a) for
a ∈ H . Thus, the commutativity of the previous diagram is equivalent to
the following equality, for every a ∈ H :

ϕ(f(a)) = g(ϕ(a)). (5)

Also note that it follows from (2) of Section 2 that

g(ϕ(a)) = {P ∈ X(G) : Rf (P ) ⊆ ϕ(a)}.

For every H ∈ Hil we have that ϕ[H ] = D(X(H)) ⊆ X(H)+.

Lemma 8. The homomorphism of Hilbert algebras g can be extended to a
homomorphism of implicative semilattices ĝ : X(H)+ → X(G)+.

Proof. Let ĝ : X(H)+ → X(G)+ be given by

ĝ(U) = {P ∈ X(G) : Rf (P ) ⊆ U}.

In order to show the good definition of ĝ, let U ∈ X(H)+ and P,Q ∈ X(G)
such that P ⊆ Q and P ∈ ĝ(U), i.e., Rf (P ) ⊆ U . Let Z ∈ Rf (Q), so
f−1(Q) ⊆ Z. Since f−1(P ) ⊆ f−1(Q) then f−1(P ) ⊆ Z, so Z ∈ Rf (P ) ⊆ U .
Thus, Z ∈ U . Hence, Rf(Q) ⊆ U , i.e., Q ∈ ĝ(U). In consequence, ĝ is a well
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defined map. It is immediate that ĝ(X(H)) = X(G) and ĝ(U ∩ V ) = ĝ(U)∩
ĝ(V ) for every U, V ∈ X(H)+. In particular, ĝ(U ⇒ V ) ⊆ ĝ(U) ⇒ ĝ(V ) for
every U, V ∈ X(H)+.

Let U, V ∈ X(H)+. In order to prove that ĝ(U) ⇒ ĝ(V ) ⊆ ĝ(U ⇒ V ),
suppose that P /∈ ĝ(U ⇒ V ), i.e., Rf(P ) 6⊆ U ⇒ V . Then there exists
Q ∈ X(H) such that f−1(P ) ⊆ Q and Q /∈ U ⇒ V . Hence, there exists
Z ∈ X(H) such that Q ⊆ Z and Z ∈ U ∩ V c. Since f−1(P ) ⊆ Q then it
follows from Lemma 6 that there exists W ∈ X(G) such that P ⊆ W and
f−1(W ) = Z. Thus, Rf (W ) ⊆ U . In order to show it, let T ∈ Rf(W ). Hence,
Z ⊆ T . Since Z ∈ U and U ∈ X(H)+ then T ∈ U . So, we have proved
that Rf (W ) ⊆ U . Besides Rf (W ) 6⊆ V because Z ∈ Rf (W ) and Z /∈ V .
Summarizing, P ⊆ W , Rf (W ) ⊆ U and Rf (W ) 6⊆ V , so P /∈ ĝ(U) ⇒ ĝ(V ).
Therefore, ĝ(U ⇒ V ) = ĝ(U) ⇒ ĝ(V ).

Remark 6. In general, the map ĝ of Lemma 8 is not necessarily a Heyting
homomorphism. In order to prove it, consider the following two posets:

H 1

x

��������
y

❃❃❃❃❃❃❃❃

1

c

a

��������
b

❃❃❃❃❃❃❃❃

G

Endow these posets with the Hilbert algebra structures induced by the or-
der; i.e., the implication is given by x → y = 1 if x ≤ y and x → y = y if
x � y. Define f : H → G by f(x) = a, f(y) = b and f(1) = 1. Straightfor-

ward computations show that f ∈ Hil and that f̂ does not preserve joins.

It is worth mentioning that ϕ[H ] = D(X(H)) ⊆ X(H)+, as defined before
Lemma 8, is the logic-based canonical extension of the Hilbert algebra H , as
defined in [12]. This fact follows from [14, Corollary 6.26].

If S is a subset of an implicative semilattice, we write 〈S〉IS for the im-
plicative semilattice generated by S. Let H ∈ Hil. Since ϕ[H ] is a subset of
the implicative semilattice X(H)+ then we define the following implicative
semilattice of X(H)+:

H IS := 〈ϕ[H ]〉IS.

Let H ∈ Hil. It is interesting to note that the immersion of H into X(H)+

induced by ϕ does not necessarily preserve existing infima; however, it does
preserve existing suprema. See for instance [9, Theorem 3.2]. Since X(H)+
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is the logic-based canonical extension of H as defined in [12], then the fact
that ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b) whenever a ∨ b exists can be also deduced from
[13, Proposition 6.10].

The following remark is a well known fact from universal algebra [2].

Remark 7. Let A and B be algebras of the same type andX ⊆ A with X 6= ∅.
Let f : A → B be a homomorphism. Write SgA(X) for the subalgebra of A
generated by X and SgB(f(X)) for the subalgebra of B generated by f(X).
We have that f(SgA(X)) = SgB(f(X)).

Lemma 9. The homomorphism of implicative semilattices ĝ defined in Lemma
8 satisfies ĝ(H IS) ⊆ GIS.

Proof. It follows from Lemma 8, Remark 7 and the equality g(ϕ(a)) =
ϕ(f(a)) given in (5).

Let f : H → G be a morphism in Hil. It follows from lemmas 8 and 9
that the map f IS : H IS → GIS given by

f IS(U) = {P ∈ X(G) : Rf (P ) ⊆ U}

is a morphism in IS. Let Id be an identity morphism in Hil. It is immediate
that IdIS is an identity in IS. Let f : H → G and g : G → K be mor-
phisms in Hil. It follows from [5, Theorem 3.3] that Rg◦f = Rg ◦Rf . Hence,
straightforward computations based in the above mentioned equality shows
that

(g ◦ f)IS = gIS ◦ f IS.

Therefore we obtain the following proposition.

Proposition 1. The assignments H 7→ H IS and f 7→ f IS define a functor
( )IS : Hil → IS.

In what follows, we write U for the forgetful functor from IS to Hil.

3.2 Adjunction

Now we prove that the functor ( )IS : Hil → IS is left adjoint of U.
Recall that if H ∈ IS, a subset F ⊆ H is said to be a filter if it satisfies

the following conditions:

1) 1 ∈ F ,

2) a ∧ b ∈ F whenever a, b ∈ F ,

10



3) F is an upset.

We can also define the concept of implicative (and irreducible) filter for the
case of implicative semilattices. It is part of the folklore that if H ∈ IS then
the set of implicative filters of H is equal to the set of filters of H . If H ∈ IS

we also write X(H) for the set of irreducible filters of H .

Remark 8. Let H ∈ IS. We write H IS in place of (U(H))IS. For every
a ∈ H we also write ϕ(a) for the set {P ∈ X(H) : a ∈ P}.

Let H ∈ Hil. Consider the injective morphism of Hilbert algebras ψ :
H → U(H IS) given by ψ(a) = ϕ(a).

Proposition 2. Let G ∈ IS and f : H → U(G) ∈ Hil. Then, there exists a
unique morphism h : H IS → G such that f = U(h) ◦ ψ.

Proof. The map f IS : H IS → GIS is a morphism in IS. Since G ∈ IS then for
every a, b ∈ G we have that ϕ(a∧ b) = ϕ(a) ∩ ϕ(b), so a reflection’s moment
shows that the map ϕ : G → GIS is an isomorphism in IS. Hence, the map
h : H IS → G given by h = ϕ−1 ◦ f IS is also a morphism in IS. Finally, it
follows from (5) that f = U(h) ◦ ψ.

Let IHil be the identity functor in Hil. It follows from (5) that Ψ : IHil →
U◦( )IS is a natural transformation. Here, the family of morphism associated
to the natural transformation is given by the morphisms ψ.

In other words, to say that Ψ : IHil → U◦ ( )IS is a natural transformation
is equivalent to say that if f : H → G is a morphism in Hil then the following
diagram commutes:

H
f

//

ψ
��

G

ψ
��

U(H IS)
U(f IS)

// U(GIS).

Therefore we get the following result.

Theorem 10. The functor ( )IS : Hil → IS is left adjoint to U.

3.3 Connections with the literature

In what follows we connect our results with those of [7]. We also make a
brief remark about ϕH : H → X(H)+, viewed as the logic-based canonical
extension of the Hilbert algebra H , as presented in [12].
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Fix H ∈ Hil. A pair (G, e) where G is an implicative semilattice and e is
an injective morphism from H to U(G) is said to be an implicative semilattice
envelope of H if for every y ∈ G there exists a finite subset X ⊆ H such that
y =

∧
e(X). Define the following set:

S(H) = {U : U = ϕ(a1) ∩ · · · ∩ ϕ(an) for some a1, . . . , an ∈ H}.

Then, ϕ[H ] ⊆ S(H) ⊆ X(H)+. Moreover, S(H) ∈ IS by considering the
implication ⇒ given by (3). The pair (S(H), η) is an implicative semilattice
envelope of H , where η : H → U(S(H)) is given by η(a) = ϕ(a) [7, Lemma
6.4]. It follows from results of [7] that (S(H), η) is a solution (G, e) of the
following universal problem: For every G′ ∈ IS and every e′ : H → U(G′) ∈
Hil, there is a unique g : G→ G′ ∈ IS such that e′ = U(g) ◦ e.

It follows from [7, Proposition 6.9] that if h : H → K ∈ Hil then there is
a unique h : S(H) → S(K) such that η ◦ h = h ◦ η.

The following theorem summarize some properties from [7], which it was
proved in an alternative way in the present paper (Theorem 10).

Theorem 11. There exists a functor S : Hil → IS that maps every H ∈ Hil

to S(H) ∈ IS, and every h : H → G ∈ Hil to h : S(H) → S(G) ∈ IS. The
functor S is left adjoint to U.

Let H ∈ Hil. Since S(H) ∈ IS, it follows from the definition of H IS that
H IS is in fact equal to S(H), i.e.,

H IS = S(H). (6)

In [12], the logic-based canonical extension of an algebra in certain classes
of algebras of interest for abstract algebraic logic is presented. In particular,
it is proved there that when this notion of canonicity is considered, the variety
of Hilbert algebras is canonical. It can be seen that the logic-based canonical
extension of a Hilbert algebra, as performed in [12, Section 5.1] is indeed
given by the embedding ϕH : H → X(H)+.

4 Relation between Hil∨ (Hil0
∨) and gH (Hey)

In this section we provided a construction for the left adjoint of the forgetful
functor from the algebraic category of generalized Heyting algebras (Heyt-
ing algebras) to the algebraic category of Hilbert algebras with supremum
(Hilbert algebras with supremum and a minimum).

Definition 5. An algebra (H,∨,→, 1) of type (2, 2, 0) is a Hilbert algebra
with supremum if the following conditions are satisfied:

12



1. (H,→, 1) is a Hilbert algebra.

2. (H,∨, 1) is a join semilattice with greatest element 1.

3. For every a, b ∈ H, a→ b = 1 if and only if a ∨ b = b.

We denote by Hil∨ to the category whose objects are Hilbert algebras
with supremum and whose morphisms are the homomorphisms f : H → G
in Hil such that f(a ∨ b) = f(a) ∨ f(b) for every a, b ∈ H . For more details
about Hilbert algebras with supremum see [8].

Definition 6. A generalized Heyting algebra (gH-algebra for short) is a
lattice such that for every a, b ∈ H there exists the maximum of the set
{c ∈ H : a ∧ c ≤ b}, denoted by a→ b.

It is known that gH-algebras have a largest element, which will be denoted
by 1. We consider gH-algebras as algebras (H,∧,∨,→, 1) of type (2, 2, 2, 0),
and Heyting algebras as algebras (H,∧,∨,→, 0, 1) of type (2, 2, 2, 0, 0). We
write gH for the category of gH-algebras and Hey for the category of Heyting
algebras. For more about these classes of algebras see [1, 16].

Let H ∈ Hil∨ and F an implicative filter of H . We say that F is prime if
it is proper and for any a, b ∈ H such that a ∨ b ∈ F we have that a ∈ F or
b ∈ F . It is part of the folklore that the set of prime filters of H is equal to
the set of irreducible implicative filters of H .

Lemma 12. Let f : H → G be a morphism in Hil∨. Then for every P ∈
X(G) it holds that f−1(P ) ∈ X(H) or f−1(P ) = H.

Proof. It follows from [8, Lemma 5.10].

In [8, Lemma 5.10] it was also proved that if f : H → G be a morphism
in Hil∨ then for every P ∈ X(G) such that Rf (P ) 6= ∅ it holds that if U, V are
closed sets ofX(H) such that Rf (P ) ⊆ U∪V then Rf(P ) ⊆ U or Rf(P ) ⊆ V .
In the following lemma we generalize the above mentioned property.

Lemma 13. Let f : H → G be a morphism in Hil∨, P ∈ X(G) and U, V ∈
X(H)+. If Rf (P ) ⊆ U ∪ V then Rf(P ) ⊆ U or Rf(P ) ⊆ V .

Proof. Assume thatRf (P ) ⊆ U∪V . It follows from Lemma 12 that f−1(P ) ∈
X(H) or f−1(P ) = H . Suppose that f−1(P ) = H , i.e., Rf (P ) = ∅. Then
Rf (P ) ⊆ U or Rf (P ) ⊆ V . Hence, we can assume that f−1(P ) ∈ X(H), i.e.,
f−1(P ) ∈ Rf (P ). Since Rf(P ) ⊆ U ∪ V then f−1(P ) ∈ U or f−1(P ) ∈ V .
Consider that f−1(P ) ∈ U and let Q ∈ Rf (P ). Thus, f−1(P ) ⊆ Q. Since
f−1(P ) ∈ U and U ∈ X(H)+ then Q ∈ U . Hence, Rf(P ) ⊆ U . The same
argument proves that if f−1(P ) ∈ V then Rf (P ) ⊆ V .
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If S is a subset of a gH-algebra, we write 〈S〉gH for the gH-algebra gen-
erated by S. Let H ∈ Hil. Since ϕ[H ] is a subset of the gH-algebra X(H)+

then we define the following gH-algebra of X(H)+:

HgH := 〈ϕ[H ]〉gH.

Let f : H → G be a morphism in Hil∨ and ĝ : X(H)+ → X(G)+ the
function considered in Lemma 8. It follows from Lemma 13 that if U, V ∈
X(H)+ then

ĝ(U ∪ V ) = ĝ(U) ∪ ĝ(V ).

Hence, by Lemma 8 we have that ĝ : X(H)+ → X(G)+ is a morphism in gH.
By the same argument of Lemma 9 we have that ĝ(HgH) ⊆ GgH, so ĝ can be
restricted to a morphism f gH : HgH → GgH in gH.

The following result is similar to that given in Proposition 1.

Proposition 3. The assignments H 7→ HgH and f 7→ f gH define a functor
( )gH : Hil∨ → gH.

Write also U for the forgetful functor from gH to Hil∨. As in the case of
Theorem 10, we can show the following result.

Theorem 14. The functor ( )gH : Hil∨ → gH is left adjoint to U.

In the following proposition we give an easy description for HgH when H
is a finite algebra.

Proposition 4. Let H ∈ Hil∨ be a finite algebra. Then HgH = X(H)+.

Proof. By definition we have that HgH ⊆ X(H)+. In order to prove the
converse inclusion, let U ∈ X(H)+. Since H is finite then ∅ ∈ HgH, so we
can assume that U 6= ∅. Since U is finite there exist P1, . . . , Pn ∈ X(H) such
that U = {P1, . . . , Pn}. Hence, U =

⋃n

i=1[Pi). Note that if P ∈ X(H) then
[P ) =

⋂
a∈P ϕ(a) (it is a finite union) and ϕ(1) = X(H). Thus, U =

⋂m

i=1 Ui,
where for every i = 1, . . . , m the set Ui takes the form ϕ(a1i) ∩ · · · ∩ ϕ(ami).
Then U ∈ HgH. Therefore, HgH = X(H)+.

For H ∈ Hil∨ we can give the following description of HgH, where we see
HgH as an implicative semilattice.

Proposition 5. Let H ∈ Hil∨. Then S(H) = HgH.

Proof. By (6) of the end of Section 3 we only need to prove that if U, V ∈
S(H) then U ∪V ∈ S(H). Let U, V ∈ S(H). Then there exist a1, . . . , an ∈ H
and b1, . . . , bm ∈ H such that U = ϕ(a1) ∩ · · · ∩ ϕ(an) and V = ϕ(b1) ∩ · · · ∩
ϕ(bm). Since ϕ(1) = X(H) we can assume that n = m. Hence, U ∪ V =⋂n
i,j=1(ϕ(ai) ∪ ϕ(bj)) =

⋂n
i,j=1 ϕ(ai ∨ bj). Therefore, U ∪ V ∈ S(H).

14



Let Hil0
∨ be the category whose objects are algebras (H,∨,→, 0, 1) of

type (2, 2, 0, 0) such that (H,∨,→, 1) ∈ Hil∨ and 0 satisfies that 0 ≤ x
for every x ∈ H . The morphisms are the homomorphisms f of Hil∨ such
that f(0) = 0. Also write U for the forgetful functor from Hey to Hil∨. If
H ∈ Hey we define HHey as the Heyting subalgebra of X(H)+ generated by
ϕ[H ], and if f : H → G is a morphism in Hey we can define a morphism
fHey : HHey → GHey in Hey similarly to the case of gH-algebras. We also
write U for the forgetful functor from Hey to Hil0

∨

Corollary 15. The functor ( )Hey : Hil0
∨ → Hey is left adjoint to U.

5 Final remarks

In this final section we define a functor from Hil to gH. As usual, we start
with some definitions and preliminary results.

The proof of the following lemma is similar to the proof of [6, Theorem
3.3].

Lemma 16. Let f : H → G ∈ Hil, I ∈ Fil(G) and J ∈ X(H) be such that
f−1(I) ⊆ J . Then there exists K ∈ X(H) such that I ⊆ K and f−1(K) = J .

Proof. Since J ∈ X(H) we have that

(f(Jc)] = {b ∈ G : b ≤ f(a) for some a ∈ Jc}

is an order ideal of G (see [6, Theorem 2.3]). Let us see that

(f(Jc)] ∩ F (I ∪ f(J)) = ∅.

Suppose that (f(Jc)] ∩ F (I ∪ f(J)) 6= ∅. Then, there are x ∈ H , j /∈ J ,
j1, . . . , jm ∈ J and i1, . . . , in ∈ I such that x ≤ f(j) and

i1 → (i2 → · · · (in → (f(j1) → (f(j2) → · · · (f(jm) → x) . . .) = 1.

Note that elements can be always ordered in this way, since in any Hilbert
algebra the identity a→ (b→ c) = b→ (a→ c) holds. Since 1, i1, . . . , in are
in I, f(j1) → (f(j2) → · · · (f(jm) → x) . . .) ∈ I. Since x ≤ f(j) then

f(j1) → (f(j2) → · · · (f(jm) → x) . . .) ≤

f(j1) → (f(j2) → · · · (f(jm) → f(j)) . . .) = f(j1 → (j2 → · · · (jm → j) . . .)).

Since I is an upset then f(j1 → (j2 → · · · (jm → j) . . .)) ∈ I, what implies
that j1 → (j2 → · · · (jm → j) . . .) ∈ f−1(I) ⊆ J . Hence, j ∈ J , which is a
contradiction. In consequence, (f(Jc)] ∩ F (I ∪ f(J)) = ∅.

By Lemma 2, there exists K ∈ X(G) such that F (I ∪ f(J)) ⊆ K and
(f(Jc)] ∩K = ∅. Thus, I ⊆ K and f−1(K) = J .
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Let H ∈ Hil. We define the following set:

X∨(H) = {F ∈ Fil(H) : F =
⋂

X0, for some finite X0 ⊆ X(H)}. (7)

It is known that if F is a proper implicative filter of H then F is the
intersection of all irreducible filters of H such that contain F (it is an imme-
diate consequence of Corollary 3). In particular, note that if H is finite then
F ∈ X∨(H) if and only if F is a proper implicative filter of H .

Corollary 17. Let f : H → G ∈ Hil, I ∈ X∨(H) and J ∈ X∨(G) be
such that f−1(I) ⊆ J . Then there exists K ∈ X∨(H) such that I ⊆ K and
f−1(K) = J .

Proof. Let I ∈ X∨(H) and J ∈ X∨(G) be such that f−1(I) ⊆ J . Then there
exist Q1, . . . , Qn ∈ X(G) such that J = Q1∩· · ·∩Qn, so f

−1(I) ⊆ Qi for every
i = 1, . . . , n. By Lemma 16 we have that there exist K1, . . . , Kn ∈ X(H) such
that I ⊆ Ki and f

−1(Ki) = Qi for every i = 1, . . . , n. Let K = K1∩· · ·∩Kn.
Thus, K ∈ X∨(H), I ⊆ K and f−1(K) = J .

Let H ∈ Hil. We define the function Φ : H → (X∨(H))+ by

Φ(a) = {F ∈ X∨(H) : a ∈ F}.

Lemma 18. Let H ∈ Hil. The function Φ defined above is an injective
morphism in Hil. Moreover, if H† is the gH-algebra of (X∨(H))+ generated
by Φ(H) then Φ can be also considered as a map from H to H†.

Proof. It is immediate that if a ∈ H then Φ(a) is an upset of X∨(H) and
that Φ(1) = X∨(H). The equality Φ(a → b) = Φ(a) ⇒ Φ(b) follows from
Corollary 3. Finally, Corollary 4 implies the injectivity of Φ.

Let f : H → G ∈ Hil. We define R∨
f ⊆ X∨(G)×X∨(H) by

(I, J) ∈ R∨
f if and only if f−1(I) ⊆ J.

Lemma 19. Let f : H → G ∈ Hil. Then the following holds:

a) For every a ∈ H, Φ(f(a)) = {F ∈ X∨(G) : R∨
f (F ) ⊆ Φ(a)}.

b) The function g : (X∨(H))+ → (X∨(G))+ given by

g(U) = {F ∈ X∨(G) : R∨
f (F ) ⊆ U}

is a morphism in gH.
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c) For every a ∈ H, g(Φ(a)) = Φ(f(a)). In particular, f(H†) ⊆ G† and the
function f † : H† → G† given by f †(U) = g(U) is a morphism in gH.

Proof. First we will prove a). Let a ∈ H . It is immediate that Φ(f(a)) ⊆
{F ∈ X∨(G) : R∨

f (F ) ⊆ Φ(a)}. Conversely, let F ∈ X∨(G) such that
R∨
f (F ) ⊆ Φ(a). Suppose that F /∈ Φ(f(a)), i.e., a /∈ f−1(F ). Since f−1(F )

is an implicative filter of H then it follows from Corollary 5 that there exists
P ∈ X(H) such that f−1(F ) ⊆ P and a /∈ P . Then, P ∈ R∨

f (F ) ⊆ Φ(a).
Hence, we deduce that a ∈ P , which is a contradiction. Thus, we have proved
that {F ∈ X∨(G) : R∨

f (F ) ⊆ Φ(a)} ⊆ Φ(f(a)).
Now we will prove b). Let U, V ∈ (X∨(H))+. It is immediate that

g(U ∩V ) = g(U)∩g(V ) and g(X∨(H)) = X∨(G). The equality g(U ⇒ V ) =
g(U) ⇒ g(V ) can be proved as Lemma 8 but using Corollary 17.

Finally we will prove that g(U ∪ V ) = g(U) ∪ g(V ) for every U, V ∈
(X∨(H))+. It is enough to prove that if F ∈ X∨(G) and R∨

f (F ) ⊆ U∪V then
R∨
f (F ) ⊆ U or R∨

f (F ) ⊆ V . Let R∨
f (F ) ⊆ U ∪ V . Suppose that R∨

f (F ) 6⊆ U
and R∨

f (F ) 6⊆ V . Then there exist J,K ∈ X∨(H) such that f−1(F ) ⊆ J ,
f−1(F ) ⊆ K, J /∈ U and K /∈ V . In particular, f−1(F ) ⊆ J ∩ K. Since
J ∩K ∈ X∨(H) then J ∩K ∈ R∨

f (F ) ⊆ U ∪ V , so J ∩K ∈ U or J ∩K ∈ V .
Since J ∩K ⊆ J , J ∩K ⊆ K and U, V ∈ (X∨(H))+ then J ∈ U or K ∈ V ,
which is a contradiction.

The item c) follow from items a) and b).

The following result follows from Lemma 18.

Proposition 6. The assignments H 7→ H† and f 7→ f † define a functor
( )† : Hil → gH.

A straightforward computation shows that if H is a finite Hilbert algebra
then

H† = (X∨(H))+.

We conclude this paper stating the following open problem. Is it possible
to adapt the constructions of this paper in order to get an explicit description
of the (generalized) Heyting algebra freely generated by a Hilbert algebra?
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