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Abstract 

Insulin resistance induced by a high fructose diet has been associated to hypertension and 

renal damage. The aim of this work was to assess alterations in the urinary L-

dopa/dopamine ratio over three time periods in rats with insulin resistance induced by 

fructose overload and its correlation with blood pressure levels and the presence of 

microalbuminuria and reduced nephrin expression as markers of renal structural damage. 

Male Sprague-Dawley rats were randomly divided in six groups: control (C) (C4, C8 and 

C12) with tap water to drink; and fructose-overloaded (FO) rats, (FO4, FO8 and FO12), 

with a fructose solution (10% w/v) to drink; for 4, 8 and 12 weeks. A significant increase of 

the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively 

correlated to the development of hypertension and preceded in time the onset of 

microalbuminuria and reduced nephrin expression observed on week 12 of treatment. 

The alteration of this ratio was associated to an impairment of the renal dopaminergic 

system, evidenced by a reduction in renal dopamine transporters and dopamine D1 

receptor expression, leading to an over-expression and over-activation of the enzyme Na+, 

K+- ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration 

in rats with fructose overload positively correlated to the development of hypertension 

and preceded in time the onset of renal structural damage. This is the first study to 

propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that 

temporarily precedes kidney structural damage induced by fructose overload. 

 

Keywords: dopamine, fructose, hypertension, insulin resistance, Na+, K+-ATPase, microalbuminuria 
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1. Introduction 
 

Fructose is a simple and highly lipogenic sugar present in added dietary sugars, 

honey and fruit [1]. Fructose consumption has been associated to many of the 

components of metabolic syndrome such as insulin resistance, dyslipidemia, and 

hypertension [2]. In fact, a well-known experimental model of metabolic syndrome is 

based on a diet characterized by high fructose consumption [2-4].  Many mechanisms link 

insulin resistance with hypertension, including an increase in sodium reabsorption and 

stimulation of sympathetic nervous and renin-angiotensin systems [5-7]. On the other 

hand, several studies have suggested a close relationship between metabolic syndrome 

and renal damage [8,9]. In this way, insulin resistance induced by long term exposure to a 

high fructose diet is associated to renal structural damage, evidenced by kidney 

inflammation, proteinuria, glomerular hypertrophy, sclerosis and tubulointerstitial injury 

[10,11]. 

Renal dopamine, synthesized in tubular cells, acts as a local, non-neural and 

natriuretic system that regulates renal function and blood pressure levels through 

inhibition of sodium transporters at tubular level, being the most important the enzyme 

Na+, K+- ATPase [12,13]. Several studies have established a relationship between insulin 

resistance and the impairment of renal dopaminergic system (RDS) in the pathogenesis of 

hypertension. In this way, alterations in dopamine receptor D1 (D1R) were associated to 

hyperinsulinemia-induced hypertension in different animal models of obesity and 

metabolic syndrome [14,15].  It has also been demonstrated a reduction in dopamine 
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production in proximal tubular cells in rats with insulin resistance induced by fructose 

overload [16]. 

The conversion of L-Dopa to dopamine in the kidneys accounts for all the free 

dopamine found in urine [17]. Therefore, the ratio between urinary L-dopa and dopamine 

could reflect RDS functionality. Considering these facts, it can be proposed that the 

urinary L-dopa/dopamine index could be altered in pathological conditions that lead to 

renal dysfunction such as insulin resistance. To date, there is no evidence regarding the 

use of urinary L-dopa/dopamine index as an early biochemical marker of renal dysfunction 

that could precede and anticipate renal established structural damage associated to 

insulin resistance in this model of metabolic syndrome. 

The aim of the present study was to evaluate the alterations in the urinary L-

dopa/dopamine index over three time periods in rats with metabolic syndrome induced 

by fructose overload and its correlation with blood pressure levels and the presence of 

microalbuminuria and reduced expression of nephrin as indicators of renal structural 

damage. 

 

2. Materials and Methods 

2.1 Animal protocol and diet 

Male Sprague-Dawley rats weighing 180-200 g at the beginning of the study were 

used. The experiments were approved in advance by the local ethics committee on animal 

research (protocol #2100-15; 0035638/15) according to “International Ethical Guiding 

Principles for Biomedical Research on Animals” established by the CIOMS (Council for 
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International Organizations of Medical Sciences). Animals were housed in cages with a 12-

hour light/dark cycle under conditions of controlled temperature (22±2ºC) and humidity. 

Until the day of the experiment all animals were given free access to liquid and fed with 

standard chow with the following composition (w/w): 20% proteins, 3% fat, 2% fiber, 6% 

minerals and 69% starch and vitamin supplements (Commercial Rodents Purina Chow; 

Cooperación SRL, Buenos Aires, Argentina). 48 rats were randomly divided in six groups 

and studied at 4, 8 and 12 weeks of treatment: Three control (C) groups (C4, C8 and C12), 

with tap water to drink, and three experimental fructose-overloaded (FO) groups, (FO4, 

FO8 and FO12), with fructose (Parafarm, Buenos Aires, Argentina) solution (10% w/v) to 

drink (n=8 for each group).  The rats were weighed before dietary manipulation and at the 

end of each experimental period. 

2.2 Systolic blood pressure measurement  

The rats were trained to the procedure of blood pressure measurement at 10.00 

AM, twice a week, for 2 weeks, after randomization (baseline blood pressure), and prior to 

be sacrificed. Indirect systolic blood pressure (SBP) was measured by means of a 

photoelectric tail-cuff connected to an amplifier (II TC model 47; Innovators in 

Instrumentation, Landing, NJ, USA) in series with an oscilloscope (type 532, Tektronic Inc., 

Portland, OR, USA).  

2.3 Measurement of food, fluid and caloric intake 

Three days before the end of each period time, the rats were placed in metabolic 

cages for 48 hours in order to allow adaptation to the new environment. Food 

consumption and water or fructose solution intake were measured for control and FO 
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rats, respectively. Caloric intake for control rats was calculated using the formula for 

standard rat chow [food intake (g) x 3.3 kcal/g], while caloric intake for FO rats was 

calculated using the formula [food intake (g) x 3.3 kcal/g] + fructose intake (mL) x 0.4 

kcal/mL]. 

2.4 Blood samples recollection and biochemical measurements 

After 4, 8 or 12 weeks, all groups of experimental and control animals were fasted 

for 5 hours. Under anesthesia with ketamine (80 mg/kg, PRO-SER SA) and xylazine (12 

mg/kg, PRO-SER SA), blood samples were collected to measure plasma triglycerides, 

cholesterol, glucose and insulin levels. Plasma triglyceride and cholesterol levels were 

measured by means of commercial kits (TG Color GPO/PAP AA, Colestat Wiener Labs, 

Rosario, Santa Fé, Argentina) using a spectrophotometric method; plasma glucose was 

determined by a blood glucose meter (Accu-Chek, Roche Diagnostics GmbH, Mannheim, 

Germany) and insulin by ELISA (Millipore Corporation, Billerica, MA, USA). Homeostasis 

model of assessment – insulin resistance index (HOMA-IR) was calculated by using the 

following equation: HOMA = fasting glucose (mmol/L) x fasting insulin (mIU/L)/22.5, being 

2.5 points or higher, the cut-off point to define insulin resistance [18]. 

2.5 Urine samples recollection and urinary measurements 

Using the metabolic cages, 24 hour urinary samples from control and FO rats were 

collected at the end of each experimental period to determine diuresis and urinary 

excretion of L-dopa, dopamine, sodium and creatinine. To determine urinary L-dopa and 

dopamine concentration by HPLC, a fraction of urine was collected at the end of the 

experimental period into polyethylene tubes containing 100 μl of 6 N HCl.  
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2.5.1 Renal function parameters calculation 

To evaluate renal functionality, the following parameters were determined: urine 

and plasma sodium and creatinine (by standard methods using an autoanalyzer), 

glomerular filtration rate (GFR) estimated by creatinine clearance (CrCl), fractional and 

urinary sodium excretion (FENa and UNa.UV, respectively) and daily diuresis. FENa, 

UNa.UV and CrCl were calculated according to standard formula. Daily diuresis is 

expressed as mL/day/kg, CrCl as mL/min/kg, UNa.UV as mEq/day/kg and FENa as the 

percentage (%) of filtered sodium.  

2.5.2 Urinary L-dopa and dopamine assay 

A 50-μl aliquots of urine were partially purified by batch alumina extraction, 

separated by reverse-phase high-pressure liquid chromatography (RP-HPLC) using a 

4.6×250 mm Zorbax RxC18 column (DuPont Company, Delaware, USA) and quantified 

amperometrically by the current produced upon exposure of the column effluent to 

oxidizing and then reducing potentials in series using a triple-electrode system (ESA, 

Bedford, Mass., USA). Recovery through the alumina extraction step averaged 80–90%. L-

dopa and dopamine concentrations in each sample were corrected for recovery of an 

internal standard. Levels of L-dopa and dopamine were further corrected for differences 

in recovery of the internal standard in a mixture of external standards. The limit of 

detection was about 20 pg/volume assayed. 

2.6 Kidney dissection and processing  
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After urine and blood samples collection, the animals were sacrificed and both 

kidneys were dissected and then processed to perform biochemical and molecular 

analyses. 

2.6.1 Western blot analyses  

Semiquantitative Western blot analyses were carried out in renal cortex from all 

animals. Expression of L-dopa transporters (LAT-1, LAT-2), dopamine transporters (OCT-2, 

OCT-N1/2/3, OCT-N1), dopamine receptor (D1R) and nephrin was studied. The right 

kidney from all animals was removed and the renal cortex was immediately dissected and 

separated under refrigeration. Tissue samples were then homogenized on ice with a 

Tissue Tearor (Biospec Products Inc, Bartesville, Oklahoma, USA), 1:3 weight/volume, in a 

buffer mixture: 50 mmol/L Tris, 0.1 mmol/L EDTA, 0.1 mmol/L EGTA, 1% Triton-X-100, 1 

mmol/L PMSF, 1 μmol/L pepstatin, and 2 μmol/L leupeptin, 1x protease inhibitor cocktail 

(Roche Diagnostics, Buenos Aires, Argentina). Then, samples were centrifuged at 3400 g 

and 4°C during 15 minutes. Protein concentration in the Triton-soluble supernatant was 

determined by Lowry technique [19]. Samples of renal cortex, containing similar amounts 

of protein (100 μg protein/lane) were separated by electrophoresis in 10% SDS-

polyacrylamide gels (Bio-Rad Labs Inc, Hercules, California, USA) and then transferred to a 

PVDF membrane (Bio-Rad Labs Inc) and incubated with goat polyclonal anti-LAT-1 (Santa 

Cruz Biotechnology, Inc., Dallas, Texas, USA, 1:800 dilution), goat polyclonal anti-LAT-2 

(Santa Cruz Biotechnology, Inc. 1:2000 dilution), goat polyclonal anti- OCT-2 (Santa Cruz 

Biotechnology, Inc. 1:800 dilution), rabbit polyclonal anti- OCT-N1/2/3  (Santa Cruz 

Biotechnology, Inc. 1:2000 dilution), goat polyclonal anti- OCT-N1 (Santa Cruz 
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Biotechnology, Inc. 1:800 dilution), goat polyclonal anti-D1R (Santa Cruz Biotechnology, 

Inc. 1:800 dilution) or goat polyclonal anti- nephrin (Santa Cruz Biotechnology, Inc. 1:400 

dilution). A secondary immunoreaction was performed with a biotinilated donkey antigoat 

IgG or antirabbit IgG respectively (Santa Cruz Biotechnology, Inc. 1:1500 dilution), 

followed by a third step using streptavidin conjugated with horseradish peroxidase (GE 

Healthcare Life Sciences; Buenos Aires, Argentina, dilution of 1:2000). The samples were 

revealed by chemiluminescence using ECL reagent (Amersham Pharmacia Biotech, 

Piscataway, NJ, USA) for 1–5 min. The density of the respective bands was quantified by 

densitometric scanning using a Hewlett-Packard scanner and Image J analyzer software 

(RSB). To avoid inaccuracies in protein loading, GAPDH or beta-tubulin were measured as 

internal standard (Santa Cruz, anti-GAPDH rabbit polyclonal first antibody, dilution of 

1:2000; Abcam, anti-beta-tubulin rabbit polyclonal first antibody, dilution of 1:2000, 

second biotinilated anti-rabbit antibody, 1:2000 dilution; third streptavidin conjugated 

with horseradish peroxidase, 1:2000 dilution) for each blot. Protein levels were calculated 

and expressed as the ratio between the optical densities of the bands corresponding to 

LAT-1, LAT-2, OCT-2, OCT-N1/2/3, OCT-N1, D1R and nephrin and the one corresponding to 

the respective internal standard. 

2.6.2 Immunofluorescence  

Immunofluorescence detection of Na+, K+-ATPase was performed on renal cortex 

from all animals. A sagittal cut of the left kidney from all animals was performed. Then, 

the tissues were fixed in a solution of 10% paraformaldehyde (pH 7.20) and then 

embedded with a 30% sucrose solution. Tissues were freezed at -80 °C and 5-15 µm thick 
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tissue sections were cut using a cryostat. Three micron sections were made and mounted 

on slides for immunofluorescence. After washing with cold Ringer buffer, the nonspecific 

binding sites were blocked by incubating at 22°C with Ringer's buffer containing 0.5% 

gelatin for 30 minutes. They were incubated at 4°C overnight with specific purified rabbit 

anti total Na+, K+-ATPase antibody (Abcam, Cambridge, UK, 1:250 dilution). Then, they 

were washed with phosphate saline buffer (PBS) and incubated for 45 minutes at dark 

with corresponding marked secondary antibody (donkey anti-rabbit IgG FITC, Santa Cruz 

Biotechnology, Inc., 1:500 dilution in PBS). 

2.6.3 Specific Activity of Na+, K+-ATPase 

Sample tissues from renal cortex weighing 50 mg were homogenized (1:10 

weight/volume) in 25mM imidazole/1mM EDTA/0.25M sucrose solution and centrifuged 

at 4700 g at 4°C for 15 minutes. Na+, K+-ATPase activity was assayed in the supernatant 

using Fiske-Subbarrow method [20]. ATPase activity was measured by colorimetric 

determination of released orthophosphate and ouabain was used to inhibit specifically 

Na+, K+-ATPase activity [21]. Proteins were determined by the method of Lowry et al [19]. 

Results are expressed as percentage of Na+, K+-ATPase activity, considering control values 

as 100%. 

2.7 Statistical analysis 

All results are expressed as means ± SEM. Data was processed using Graph Pad 

InStat Software (San Diego, CA, USA). The Gaussian distribution was evaluated by the 

Kolmogorov Smirnov method and to compare between groups, ANOVA followed by 

Newman-Keuls test or Tukey was used as appropriate. Statistical analysis was performed 
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using Kruskal-Wallis test (Nonparametric ANOVA) and multiple comparison test of Dunn, 

for those non-Gaussian distribution parameters. p<0.05 was considered statistically 

significant. 

 

3. Results 

3.1 Physiological and metabolic parameters 

As shown in table 1, FO rats had significant higher fluid intake and lower food 

intake compared to control rats from week 4 of treatment. Caloric intake did not differ 

between control and FO rats for each experimental period. Body weight did not differ 

between control and FO animals in any experimental period. SBP significantly increased 

from week 4 of treatment in FO rats compared to control groups, reaching higher levels at 

weeks 8 and 12. Plasma triglyceride levels significantly increased since week 8 of fructose 

overload, without significant changes in total cholesterol values in any experimental 

period. Fructose overload significantly increased plasma insulin levels from week 4 of 

treatment compared to control rats, while blood glucose levels were higher, but not 

significantly different, in FO rats at 4 , 8 and 12 weeks. HOMA-IR levels significantly 

increased in FO respect to control rats and were higher than 2.5 since week 4.  

3.2 Renal function parameters 

Table 2 shows that daily diuresis significantly increased in FO animals from week 4, 

compared to control groups. Sodium urinary excretion and fractional excretion of sodium 

were significantly reduced in FO rats throughout all treatment. Furthermore, creatinine 

clearance did not change along the entire treatment in FO compared to control groups.  
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 3.3 Renal dopaminergic system 

3.3.1 L-dopa and dopamine excretion 

Urinary L-Dopa excretion significantly increased along all the treatment with 

fructose while urinary dopamine excretion simultaneously decreased, compared to 

control levels (figure 1). The urinary L-dopa/dopamine ratio significantly increased in FO 

rats from week 4, as regard to their respective controls (figure 2).  Figure 3 shows a 

positive and significant correlation between the elevation of SBP and urinary L-

dopa/dopamine ratio levels along the 12 weeks of fructose treatment. 

3.3.2 Renal expression of L-dopa and dopamine transporters and D1 receptor 

LAT-1 expression did not change in FO animals in any of the experimental periods, 

compared to control rats (figure 4a). Conversely, LAT-2 expression significantly increased 

since week 4 of treatment with fructose, suggesting a possible increase in L-dopa uptake 

process by tubular cells compared to controls (figure 4b). OCT-2 expression significantly 

diminished since week 8 in FO rats respect to controls (figure 5a). These changes were  

accompanied by a significant reduction of OCT-N1/2/3 and OCT-N1 expression since the 

same week (figures 5b and 5c). On the other hand, D1R  expression was reduced in FO rats 

since week of 4 compared to control rats (figure 5d). 

3.3.3 Na+, K+-ATPase expression and specific activity  

Specific activity levels of Na+, K+-ATPase in renal cortex were significantly increased 

from week 4 of treatment with fructose respect to control groups (figure 6). Na+, K+-

ATPase expression, determined by immunofluorescence, increased in renal cortex in FO 

rats, from the same time period (figure 7). 
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3.4 Biomarkers of renal damage 

Microalbuminuria was defined as a urinary albumin/creatinine ratio between 30-

300 mg/g. The presence of microalbuminuria was detected in week 12 of treatment with 

fructose (figure 8). A significant reduction of nephrin expression was observed at the same 

experimental period in FO rats compared to controls (figure 9). 

 

4. Discussion 

 Experimental models of metabolic syndrome, such as the model of FO in the 

diet, are characterized by hemodynamic and metabolic changes including 

hyperinsulinemia and insulin resistance, dyslipidemia and hypertension, and are useful to 

investigate the pathophysiological processes that lead to kidney damage and their clinical 

implications [5,22]. In our study, plasma insulin levels were significantly increased in FO 

rats compared to controls since week 4. Plasma glucose levels were also higher in FO 

respect to control rats, although the difference was not significant. Rats with FO showed 

significantly higher levels of HOMA index compared to control rats since week 4 of 

treatment, reaching higher values at weeks 8 and 12, indicating the development of 

insulin resistance [18]. Regarding lipid metabolism, FO rats exhibited increased plasma 

triglycerides since week 8 of treatment without changes in total cholesterol in any 

experimental period compared to control rats. It is well established that fructose leads to 

an increase in plasma triglycerides, which in turn contributes to the development of 

insulin resistance [23].  
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Body weight values did not differ between control and FO animals in any 

experimental period. The absence of body weight gain in rats with a high fructose diet has 

been reported in several studies [22,24]. At the same time, caloric intake between FO and 

control rats was not different either. This could be explained by the fact that in FO 

animals, the increase in caloric intake given by fructose intake was compensated by a 

reduction in food intake, compared to control rats.  

Concerning renal function, the 24 hour diuresis significantly increased in FO rats 

respect to controls. This increment is explained as a consequence of increased fluid intake 

in FO compared to control rats, which has been well documented [3]. One explanation 

could be the sweet taste of the solution that would enhance the palatability thereby 

increasing fluid intake [3]. On the other hand, urinary sodium excretion and urinary 

fractional excretion were significantly reduced in rats with FO since week 4 of treatment, 

indicating the existence of sodium retention. Many authors have suggested that increased 

renal sodium reabsorption induced by insulin is enhanced in insulin resistance states and 

possibly contributes in part to the development of hypertension [25]. 

In addition, RDS constitutes a local natriuretic system that regulates sodium 

excretion and blood pressure levels and several studies have established a relationship 

between insulin resistance and the RDS in the pathogenesis of hypertension [13,16]. Our 

results show an increase in the urinary L-dopa/dopamine ratio in FO rats from week 4 of 

treatment, indicating the existence of an impairment in renal dopamine synthesis in this 

model. The increase in L-dopa/dopamine ratio was due to a significant decrease in urinary 

dopamine excretion accompanied by a significant increase in urinary L-dopa excretion. L-
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dopa uptake through the apical membrane of proximal tubular cells represents the rate-

limiting step in dopamine synthesis, and it is mediated by at least, two major Na+-

independent amino-acid transporters, named LAT and bo.+ systems [26]. Alterations in L-

dopa uptake in states of insulin resistance have been described [27]. Although, we found 

no significant difference in LAT-1 expression in FO rats compared to controls in any 

experimental period, while LAT-2 expression was significantly increased in FO versus 

control rats since week 4. This increase would imply an increase in L-dopa uptake and a 

decrease in urinary L-dopa excretion. Nonetheless, the results obtained in our study are in 

accordance with previous findings that indicate a reduced L-dopa uptake in insulin 

resistance states [27,28]. One possibility that would explain high values of urinary L-dopa 

with an increased LAT-2 expression is that these transporters could show a defect in their 

activity, being unable to enter L-dopa into the tubular cells. Another possibility is that LAT-

2 increased expression could be located on intracellular stores and not necessarily 

inserted in the plasma membrane. Further experiments would be needed to confirm or 

discard any of these hypotheses. 

In order to achieve its actions, dopamine must leave the proximal tubular cells 

through the apical border to reach the tubular lumen, where it can bind and activate 

specific dopamine receptors located outside the apical border of tubular cells. Dopamine 

can be uptaken from plasma into proximal tubule by members of the SLC22A family 

(solute carrier superfamily) called organic cation transporters (OCT-1, OCT-2 and OCT-3) 

located at the basolateral membrane. Dopamine leaves the tubular cells by other 

members of SLC22A family named OCTN-1, OCTN-2 and OCTN-3, which are mainly located 
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at the apical membrane [29]. The lower urinary excretion of dopamine observed in our 

experimental model could be a consequence of an impairment in dopamine 

transportation by OCTs and OCTNs. In this sense, reduced expression of OCT-N1 from 

week 8 in FO rats compared to controls was consistent with reduced expression of total 

OCTNs from the same period. OCT-2 expression was also reduced since week 8 in FO rats, 

indicating a decrease in dopamine uptake from circulation. These results may help to 

explain the lower values of urinary dopamine excretion induced by FO and are in 

accordance with other studies in which a high fructose diet was associated with impaired 

OCTs expression and activity and renal dysfunction [30,31].  

In our study, FO rats showed higher SBP levels respect to control since week 4 of 

treatment, reaching the highest levels at weeks 8 and 12 with values close to 160 mmHg. 

Although the precise mechanism by which hypertension develops in states of insulin 

resistance is still unknown, it has been reported both in patients with essential 

hypertension and in rats with insulin resistance by FO, a reduced urinary dopamine 

excretion together with reduced endogenous content of the amine, inversely proportional 

to the levels of blood pressure [16,32]. Supporting this evidence, a progressive increase of 

the urinary L-dopa/dopamine ratio, was found from week 4 of treatment, with a positive 

significant correlation with SBP levels since the same time period.  

Dopamine exerts its actions by binding to receptors classified into D1-like (D1 and 

D5) and D2-like (D2, D3 and D4) subtypes based on their structure and pharmacological 

properties [13,26].  In conditions of normal sodium balance, more than 50% of renal 

sodium excretion is regulated by D1R [26,33].  In our experiments, D1R expression was 
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significantly reduced since week 4 of treatment in FO rats. These results are consistent 

with other studies showing alterations in D1R expression and functionality in experimental 

models of insulin resistance [14,16,34].  Na+, K+-ATPase, an enzymatic pump of basolateral 

localization in renal tubular cells, is inhibited by dopamine mainly through D1R [26]. It has 

been reported that Na+, K+-ATPase is stimulated in states of insulin resistance and chronic 

exposure of kidney cells to hyperinsulinemia, leading to increased reabsorption of sodium 

and water and therefore to hydrosaline retention [34,35].  In this way, a defective D1R in a 

context of insulin resistance could lead to stimulation and increased expression of Na+, K+-

ATPase, as it was found in FO rats since week 4 in our study.  

Several clinical studies have proposed the existence of a relationship between 

metabolic syndrome and renal disease [8].  Microalbuminuria is an early indicator of 

kidney disease and a predictor of ischemic heart disease in essential hypertension [36]. On 

the other hand, nephrin is a transmembrane protein located at the specialized podocyte 

cell–cell junction that constitutes the slit diaphragm, maintaining the integrity of the 

filtration barrier of glomerulus [37]. Several studies have demonstrated the onset of renal 

damage with microalbuminuria and nephrin expression alterations in FO rats [11,38,39].  

In our study, microalbuminuria and a significant reduction in nephrin expression were 

observed at week 12 in FO rats, evidencing the existence of structural alterations in the 

filtration barrier.  

 In conclusion, this study demonstrates that insulin resistance induced by FO is 

associated with an impairment in RDS since week 4 of treatment, given by alterations in L-

dopa and dopamine transport and dopamine actions through D1R. This impairment could 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18 
 

be proposed as one of the mechanisms leading to sodium retention and hypertension. FO 

is also associated to renal damage over time, evidenced by the presence of 

microalbuminuria and reduced nephrin expression at week 12 of treatment. Taking into 

consideration that alterations in the L-dopa/dopamine ratio were evidenced since week 4 

of FO, the urinary L-dopa/dopamine index could be proposed as a marker of renal 

dysfunction that temporarily precedes renal structural damage evidenced by 

microalbuminuria and reduced nephrin expression. A suggested mechanism is illustrated 

in figure 10. 

 This is the first study to propose the use of the urinary L-dopa/dopamine index 

as marker of renal dysfunction in a model of metabolic syndrome induced by FO. Further 

studies are needed to confirm the relevance of the index in other experimental models of 

hypertension and/or metabolic syndrome. This would set the precedent in the proposal of 

the use of this biochemical parameter in future clinical studies in order to assess its 

usefulness as a diagnostic marker, as predictor of response to treatment or to monitor 

changes in blood pressure and kidney damage. 
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Figure Legends 

 

Figure 1: Renal excretion of L-dopa and dopamine from control and fructose overloaded 

rats at weeks 4, 8 and 12 of treatment. 

 

C: control group; FO: 10% fructose overload group; *p<0.05; #p<0.01; &p<0.001; versus respective 

control. 

 

Figure 2: Urinary L-dopa/dopamine ratio from control and fructose overloaded rats at 

weeks 4, 8 and 12 of treatment.  

 

C: control group; FO: 10% fructose overload group; &p<0.001 versus respective control 

 

Figure 3: Correlation between SBP and urinary L-dopa/dopamine ratio from control and 

fructose overloaded rats at weeks 4, 8 and 12 of treatment.  

 

C: control group; FO: 10% fructose overload group; SBP: systolic blood pressure 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/26569027
https://www.ncbi.nlm.nih.gov/pubmed/26569027
https://www.ncbi.nlm.nih.gov/pubmed/26569027
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Figure 4: Renal cortex protein expression of LAT-1 (a) and LAT-2 (b) from control and 

fructose overloaded rats at weeks 4, 8 and 12 of treatment.  

 

C: control group; FO: 10% fructose overload group; AU: arbitrary units; *p<0.05 versus respective 

control. 

 

 

Figure 5: Renal cortex protein expression of OCT-2 (a), OCT-N1/2/3 (b), OCT-N1 (c) and D1-

R (d) from control and fructose overloaded rats at weeks 4, 8 and 12 of treatment.  

 

C: control group; FO: 10% fructose overload group; AU: arbitrary units; *p<0.05; #p<0.01 versus 

respective control. 

 

 

 

Figure 6: Values of specific activity of the Na+, K+-ATPase pump in renal cortex from 

control and fructose overloaded rats at weeks 4, 8 and 12 of treatment.  

 

C: control group; FO: 10% fructose overload group; S.A.: specific activity; *p<0.05; #p<0.01 versus 

respective control. 
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Figure 7: Immunofluorescence of Na+, K+-ATPase in renal cortex from control and fructose 

overloaded rats at weeks 4, 8 and 12 of treatment.  

C: control group; FO: 10% fructose overload group; a) C 4 weeks; b) FO 4 weeks; c) C 8 weeks; d) 

FO 8 weeks; e) C 12 weeks; f) FO 12 weeks.  

 

Figure 8: Urinary albumin/creatinine ratio from control and fructose overloaded rats at 

weeks 4, 8 and 12 of treatment.  

 

C: control group; FO: 10% fructose overload group; Alb: albumin; Cr: creatinine; &p<0.001 versus 

respective control. 

 

Figure 9: Nephrin expression in renal cortex from control and fructose overloaded rats at 

weeks 4, 8 and 12 of treatment. 

 

C: control group; FO: 10% fructose overload group; AU: arbitrary units; *p<0.05 versus respective 

control. 

 

Figure 10: A proposed mechanism by which insulin resistance leads to hypertension and 

renal damage.  
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List of non-standard abbreviations 

 

COMT: catechol-O-methyltransferase  

D1R: dopamine receptor D1 

FO: fructose-overloaded 

LAT: L-aminoacid transporter 

MAO: monoamine oxidase  

NHE3: sodium–hydrogen exchanger 3  

OCT/OCTN: organic cation transporter 

RDS: renal dopaminergic system 

SBP: systolic blood pressure 

w/v: weight/volume 
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Table 1: Physiological and metabolic parameters from control and fructose overloaded 

rats at weeks 4, 8 and 12 of treatment. 

 

 4 weeks 8 weeks 12 weeks 

C FO C FO C FO 

Liquid intake (mL/day) 43±3 94±9
#
 43±3 109±11

#
 41±3 95±12

#
 

Food intake (g/day) 26±1 18±1
#
 24±2 15±1

#
 30±2 22±1

#
 

Caloric intake (kCal/day) 85±5 96±7 80±6 92±7 99±6 110±9 

Body Weight (g) 305±23 325±30 410±23 416±16 417±34 437±14 

SBP (mmHg) 121±8 145±1* 130±4 161±10
$
 133±5 163±4

$
 

Colesterol (mg/dL) 50±7 61±10 43±7 37±7 63±11 83±14 

Triglycerides (mg/dL) 61±9 49±16 44±8 116±10
#
 68±30 153±12

#
 

Glycemia (mg/dL) 127±6 145±7 128±4 150±14 122±4 147±19 

Insulinaemia (ng/mL) 0.22±0.02 0.38±0.06* 0.35±0.04 0.58±0.08* 0.34±0.02 0.589±0.09* 

HOMA Index 1.52±0.01 2.99±0.02
#
 2.41±0.01 4.69±0.06

#
 2.28±0.01 4.70±0.09

#
 

 

 

C: control group; FO: 10% fructose overload group; *p<0.05; #p<0.01; $p<0.005 versus respective 

control. 
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Table 2: Renal functional parameters from control and fructose overloaded rats at weeks 

4, 8 and 12 of treatment. 

 

 4 weeks 8 weeks 12 weeks 

C FO C FO C FO 

Diuresis (mL/day/kg) 38.69±4.66 75.45±6.30* 38.12±4.41 74.35±6.97* 35.20±3.84 70.10±6.11* 

CrCl (mL/min/kg) 4.43±0.56 4.58±0.40 4.02±0.61 4.06±0.29 3.82±0.36 3.64±0.27 

FENa (%) 0.41±0.03 0.28±0.03* 0.32±0.03 0.22±0.01* 0.35±0.04 0.2±0.02
#
 

uNa.V (mEq/day/kg) 3.31±0.16 2.55±0.12* 2.49±0.20 1.73±0.12
#
 2.50±0.19 1.46±0.09

#
 

 

 

 

C: control group; FO: 10% fructose overload group; ClCr: creatinine clearance; FENa: fractional 

excretion of sodium, uNa.V: urinary sodium excretion; *p<0.05; #p<0.01; versus respective control. 
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Figure 3 
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Figure 5 

  

OCT-2
GAPDH

OCT-N1/2/3
        GAPDH

OCT-N1
GAPDH

        D1R
GAPDH

0.0

0.5

1.0

1.5

4 8 12

O
C

T-
2 

/G
AP

D
H

 
(A

U
)

Time (weeks)

C FOa)  

* * 

0

0.5

1

1.5

4 8 12

O
C

T-
N

1/
2/

3 
/ G

AP
D

H
 

(A
U

)

Time (weeks)

C FOb) 

* 
# 

0

0.5

1

1.5

4 8 12

O
C

T-
N

1 
/G

AP
D

H
 

(A
U

)

Time (weeks)

C FOc)  

* * 

0.0

0.5

1.0

1.5

4 8 12

D
1R

 /G
AP

D
H

 
(A

U
)

Time (weeks)

C FOd)  

* 
* 

* 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

35 
 

 

 

Figure 6 

 

  

0

50

100

150

200

250

300

4 8 12

N
a

+
, 

K
+
-A

T
P

a
s
e
  

S
.A

. 
 (

n
m

o
l/
m

g
/m

in
) 

Time (weeks) 

C FO

* * 

# 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

36 
 

 

Figure 7 
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Figure 9 
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