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Abstract: South Patagonian peat bogs are little studied sources of methane (CH4). Since CH4

fluxes can vary greatly on a small scale of meters, high-quality maps are needed to accurately
quantify CH4 fluxes from bogs. We used high-resolution color infrared (CIR) images captured by
an Unmanned Aerial System (UAS) to investigate potential uncertainties in total ecosystem CH4

fluxes introduced by the classification of the surface area. An object-based approach was used to
classify vegetation both on species and microform level. We achieved an overall Kappa Index of
Agreement (KIA) of 0.90 for the species- and 0.83 for the microform-level classification, respectively.
CH4 fluxes were determined by closed chamber measurements on four predominant microforms
of the studied bog. Both classification approaches were employed to up-scale CH4 closed chamber
measurements in a total area of around 1.8 hectares. Including proportions of the surface area where
no chamber measurements were conducted, we estimated a potential uncertainty in ecosystem CH4

fluxes introduced by the classification of the surface area. This potential uncertainty ranged from
14.2 mg¨ m´2¨ day´1 to 26.8 mg¨ m´2¨ day´1. Our results show that a simple classification with only
few classes potentially leads to pronounced bias in total ecosystem CH4 fluxes when plot-scale fluxes
are up-scaled.

Keywords: closed chamber; object-based image analysis; OBIA classification; methane; peatland;
RPAS; UAV

1. Introduction

The effects of human activities on the carbon cycle receive much attention worldwide from
both research and public perspective. Carbon cycling in peatlands is an important feature of the
global carbon cycle because these ecosystems are important carbon sinks [1,2], but are main sources
of methane (CH4) [1,3,4]. Methane fluxes typically vary temporally and on spatial scales from the
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microform to the ecosystem level [4–6]. In this context, northern peat bogs have been extensively
studied, especially those found in the boreal zone [1,2,4,5,7]. Southern peat bogs, however, are
comparatively little explored [8,9]; this is particularly true of Patagonian peat bogs [10], which have
been affected little by human activities [8,10,11]. Consequently, research in Patagonian peat bogs can
enhance our understanding of CH4 fluxes from pristine ecosystems.

Patagonian peat bogs are characterized by a small-scale spatial heterogeneity of different
microforms [12] similar to northern boreal peatlands [13]. This patterned surface is the well-studied
result of the microtopography of the bog and distinct vegetation communities characterized by different
water levels. While water table depth is one of the main controls of CH4 production, CH4 emissions
can be strongly associated with a specific vegetation type [5,7]. Consequently, the spatial pattern of
these controlling factors leads to a pronounced small-scale heterogeneity of CH4 fluxes.

One frequently applied method to quantify CH4 fluxes on a microform level (<1 m2) is the use of
closed chambers [14]. Usually representative plots within the peat bog are selected, which cover the
spatial heterogeneity of the study site. Gas exchange rates from these plots can then be extrapolated to
larger areas or the entire ecosystem. The number of microforms considered is usually limited to the
most prominent ones. This simplification may constrain the possibility for up-scaling. Therefore, the
classification of microforms is a crucial step when CH4 fluxes are up-scaled to generalize fluxes on
a larger scale, and accurate microtopography and vegetation distribution maps are needed. Compiling
detailed information on the distribution of plant species or the microtopography across a large land
area is resource intensive. Vegetation mapping on sample plots or along transects covers usually
only a fraction of the study area and is not necessarily representative for the entire wetland system.
Therefore, remote sensing is a promising option for large-scale exploration of bog ecosystems [15].

Remote sensing, especially using multi- and hyperspectral techniques and LiDAR sensors,
provides valuable information on spatial characteristics of peat bogs [16–21]. With advances in
modern sensor technology, the quality of such image data is continually improving. Nevertheless, the
spatial ground resolution (pixel size) of commonly used satellites, such as WorldView 2 (1.85 m with
8-Band multispectral sensor) often limits the identification of small-scale vegetation patterns [21–23].
Becker et al. [24] recommend a minimum ground resolution of 25 cm to identify small-scale hot-spots
of CH4 emission in peat bogs. For the detection of larger microforms (e.g., hummocks and lawns)
and a realistic estimation of ecosystem-scale carbon fluxes a minimum ground resolution of 60 cm
is needed [24]. Both resolution requirements show that even high-resolution satellite imagery is not
able to capture the small-scale heterogeneity relevant for accurate up-scaling of processes relevant
for carbon cycling. Airborne remote sensing sensors (e.g., small hyperspectral cameras) carried by
manned aircraft or helicopters are an alternative approach. Such sensors can provide the necessary
high spatial, temporal and spectral resolution image data [16,25]. However, high image acquisition
costs and the dependence on an airport infrastructure near to the study sites can be limiting factors
for investigations.

To overcome the limitations of conventional remote sensing approaches, an Unmanned Aerial
System (UAS) is a welcome alternative to survey peat bogs [26–28]. Other than the advantage of
high flexibility, data collection is quick and cost-effective and image data can be customized to the
specific requirements of the user in terms of grain size and image extent. Technical equipment is now
readily available from commercial sources. The number of studies using an UAS as a sensor platform
has thus greatly increased [29–34]. Especially for vegetation mapping and monitoring purposes,
color-infrared (CIR) image data have proven to be extremely effective as plants have the strongest
variation in reflectance in the near-infrared (NIR) region [35]. High-resolution (<2 cm) CIR imagery
paired with object-based classification techniques are considered to be a promising tool for peat bog
monitoring [26].

Taking advantage of modern UAS technology and high-resolution imagery, the present study
investigates uncertainties in the up-scaling of CH4 fluxes that are introduced by the classification
of bog vegetation. Two different object-based classification approaches were tested: (1) a detailed
classification of the distribution of characteristic bog plant species; and (2) a less detailed classification
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of dominant bog microforms. Using both approaches, we scaled microform CH4 fluxes up to examine
the effect on the total amount of the emitted CH4 on the ecosystem scale.

2. Material and Methods

2.1. Site Description

The study area is located at 54˝491S, 68˝271W in a pristine Sphagnum-dominated bog in South
Patagonia, Argentina (Figure 1) and is a part of the National Park “Tierra del Fuego” (Administración de
Parques Nacionales). The climate at the study site is oceanic with a mean annual temperature of 5 ˝C
and a mean annual precipitation of 487 mm (Servico Meterológico Nacional; for the period between
1981 and 1990). Strong winds and mild winters are typical for the region [10].
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Figure 1. (a) Location of the study area in southern South America; (b) The investigated peat bog is
located 8 km western of Ushuaia (Argentina); (c) Aerial image of the peat bog (brown color) in the
National Park “Tierra del Fuego” (54˝491S, 68˝271W). The photographed area is marked with a red square.

The surface of the studied bog was composed of a mosaic of different microforms following
the micro-relief (Figure 2). Hummock microforms occurred along a moisture gradient with driest
hummocks elevated about 50 cm above the water table. These dry Sphagnum hummocks were
dominated by the peat moss Sphagnum magellanicum and the dwarf-shrub Empetrum rubrum and
distinctly characterized by living and dead shoots of the rush Marsippospermum grandiflorum.
Intermediate hummocks less elevated above the water table compared to dry hummocks were
characterized by higher dominance of Sphagnum magellanicum and lower cover of Empetrum rubrum
and Marsippospermum grandiflorum, as well as the absence of species indicative for wet Sphagnum
lawns. These wet Sphagnum lawns with a water table close to the surface were purely dominated
by Sphagnum magellanicum. Dry to intermediate hummocks were also observed to be dominated by
Empetrum rubrum with a cover up to 100% (named Empetrum heath microform). Other frequently
occurring vascular plants such as Tetroncium magellanicum, Gaultheria antarctica, Nothofagus antarctica,
Carex magellanica, Rostkovia magellanica, Nanodea muscosa and Pernettya pumila showed distinctive
distribution patterns along the microform moisture gradient, but were usually present with low
cover [36]. Additionally, there were large areas of bog pools consisting of either open water bodies or
floating Sphagnum cuspidatum. To describe the vegetation of the dominant microforms, we visually
estimated the cover of each plant species on 1 m ˆ 1 m plots accurate to the nearest 5%. Lichens and
mosses other than Sphagnum magellanicum and Sphagnum cuspidatum were not determined to species
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level. The dominant microforms with mean cover values of characteristic plant species are given in
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Figure 2. Examples of dominant bog microforms identified by the different characteristic composition
of the objects classified on species level. I. Sphagnum lawn dominated by Sphagnum magellanicum;
II. Sphagnum hummock dominated by Sphagnum magellanicum and Empetrum rubrum and characterized
by shoots of Marsippospermum grandiflorum; III. Empetrum heath dominated by Empetrum rubrum;
IV. pools; and V. others, such as a. lichens; b. dead vegetation; and c. Sphagnum cuspidatum.

Table 1. Description of the dominant microforms by mean cover (%) of characteristic plant species.
Other frequently occurring vascular plants were present with low cover. These plant species were not
relevant for the classification procedure and thus not listed in the table.

Species Microform

Sphagnum
Lawn

Sphagnum
Hummock

Empetrum
Heath

Intermediate
Hummock Pools

Sphagnum magellanicum 95 40 <5 80 0
Sphagnum cuspidatum 0 0 0 0 (80)

Empetrum rubrum <5 45 90 20 0
Marsippospermum grandiflorum 0 5 0 <5 0

litter Marsippospermum grandiflorum 0 10 0 <5 0
lichens 0 <5 5 <5 0

2.2. Remote Sensing

2.2.1. UAS Platform and Sensor Technique

For image data acquisition, a radio-controlled, four-propeller powered multicopter was operated
as an UAS remote sensing platform (Figure 3). The used quadrocopter was a ready-made and
commercially available Microdrones MD4-200 (Microdrones GmbH, Siegen, Germany). For navigation
and control, this airframe is equipped with an inertial measurement unit (IMU) and a global navigation
satellite system (GNSS). The system was developed for full automatic flight control, executed by
pre-setting a track of waypoints and a requested flight altitude using registered (Microdrones GmbH)
software. The specifications of the UAS remote sensing platform are summarized in Table 2.
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Figure 3. The used Unmanned Aerial System (UAS), a commercially available Microdrones MD 4–200.
The camera system, a color-infrared (CIR) modified digital Canon Power Shot SD780 IS camera is
pointing downward.

Table 2. Key specifications of the used Unmanned Aerial System (UAS).

Microdrone MD 4–200 Manufacturer: Microdrones GmbH, Siegen, Germany

Type Four-propeller powered multicopter
Dimension 540 mm from rotor-hub to rotor-hub

Weight 800 g (depending on configuration)
Engine power 4ˆ flat core motors

Payload max. 250 g
Flight mode Automatic with waypoint navigation or radio control
Endurance up to 30 min (depending on load/wind/battery)

In the present study, a modified Canon PowerShot SD780 IS camera was utilized to create false
color composites (Figure 4). The modification includes the replacement of the “hot mirror” filter, which
blocks the NIR radiation and ensures natural color images with a color effect corresponding to the
human eye [37]. Due to this modification, the charge-coupled device (CCD) sensor of the camera
could record NIR information. An additionally fitted cyan filter removed the visible red, enabling the
system to produce false color composites where the red band was substituted by the NIR radiation.
A software script installed on the SD memory card allowed setting a fixed focus, control shutter speed
and lens aperture and also to release the shutter in a suitable time interval. The camera system was
mounted on the UAS platform using a gimbal-mounted holder to compensate tilt and roll movements
during flight enabling the vertical alignment of the optical axis during exposure. For more information
about the used UAS platform and camera system, see Knoth et al. [26] and Lehmann et al. [34].

2.2.2. Image Acquisition

The CIR imagery was acquired in February 2014. The altitude Above Ground Level (AGL) was
30 m. The sensor size of the compact digital camera was 6.2 by 4.6 mm and the focal length used
during the flight was 34.2 mm (35 mm equivalent). Given the flight altitude, this resulted in a ground
footprint of 30.8 m ˆ 23.1 m per image. Weather conditions were calm and sunny with scattered cloud
cover forming during the time of image acquisition. Before the flights were conducted, 20 ground
control points (GCPs; white Compact Discs with a diameter of 12 cm) were laid out in the studied bog
and logged with a Garmin GPSMap 60CSx (~4 m accuracy) for georeferencing.
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Figure 4. Original color infrared image with linear band equalization applied. Dominant
bog microforms identified by the different characteristic composition of the objects classified on
species level are indicated by Roman numerals (see also Figure 2): I. Sphagnum lawn dominated
by Sphagnum magellanicum; II. Sphagnum hummock dominated by Sphagnum magellanicum and
Empetrum rubrum and characterized by shoots of Marsippospermum grandiflorum; III. Empetrum heath
dominated by Empetrum rubrum; IV. pools; and V. others, such as a. lichens; b. dead vegetation; and
c. Sphagnum cuspidatum.

2.2.3. Data Processing and Object-Based Classification

For our further image analysis, we selected a representative bog area of 1.8 ha, which included the
in situ CH4 fluxes measurement sites. The resulting imagery for this study area (241 CIR images) was
preprocessed by first removing low-quality data such as blurred and under- or over-exposed images.
With the remaining image data (149 CIR images) a high-resolution orthoimage mosaic with a ground
resolution of less than 1.1 cm was composed using Agisoft PhotoScan Professional (v. 0.9.0; Agisoft
LLC, St. Petersburg, Russia). This software uses a bundle block adjustment procedure in order to
reconstruct image centre positions and orientations, from which surface models and orthoimages can
then be generated. Due to low surface level differences in the studied peat bog, cast shadows caused
by low illumination angles were negligible. The resulting orthoimage mosaic was georeferenced in
ArcGIS (v. 10.2; ESRI, Redlands, CA, USA) using the GCPs and their GPS coordinates.

For both the species and the microform level, we performed an object-based vegetation
classification using eCognition Developer software (v. 8.64.1; Trimble GeoSpatial, Sunnyvale, CA, USA).
To this end, it is advantageous to use object-based image analysis (OBIA) rather than a pixel-based
method to leverage the high spatial resolution of the images, with a pixel size clearly below the
size of the objects of interest. OBIA allows for analyzing an extended feature space including, e.g.,
spectral, shape and texture characteristics. This capacity facilitates the extraction of ecologically
significant image objects, making it greatly suitable for very high resolution imagery [38]. Furthermore,
relational, topological and hierarchical features can be used to classify image objects on multiple levels
incorporating expert knowledge on the scene context. This is particularly useful for this study, as the
microforms could not be defined on the level of single plants but rather by using previous knowledge
on typical species compositions (Table 1).

The classification procedure consisted of two major steps: (1) a multiresolution segmentation;
and (2) an Object-Based Image Analysis (OBIA). The multiresolution segmentation was used to
separate neighboring pixels into segments (objects) based on homogeneity criteria (shape/color and
compactness/smoothness) and a scale factor (scale parameter), both adjustable by the user [39]. As bog
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vegetation can be well distinguished in the NIR-wavelength region [26], the color feature appeared
as a more promising distinctive feature than shape-related characteristics. Consequently, a ratio of
0.2/0.8 for shape/color was selected (with 0.1 = lowest and 0.9 = highest possible influence of shape
on the segmentation). The level of compactness and smoothness has a relatively small influence on
the output objects if the shape level is set low. Thus, we used the pre-set ratio of 0.5/0.5 for the
compactness/smoothness threshold. For the scale parameter, a threshold of 70 was defined by visual
interpretation of the image segmentation results, based on field records and expert knowledge [10,12].
As a result, smallest segments reached a diameter of around 4 cm.

For the detailed species-level classification, the subsequent OBIA was performed using
class-specific features, which have proven to be useful in previous studies applying the presented
image acquisition technique [26,34]. These involved spectral information (e.g., mean green),
customized vegetation indices (e.g., NDVImod), texture pattern (grey level co-occurrence matrix
features (GLCM; [40]) and shape characteristics of the segments. An overview of the used object
features and key thresholds is given in Tables 3 and 4. The classification separated the image
objects into seven classes, namely Sphagnum magellanicum, Sphagnum cuspidatum, Empetrum rubrum,
Marsippospermum grandiflorum, lichens, dead vegetation and pools.

In contrast to the species-level classification, the classification of the dominant bog microforms
required a different approach to take into account the larger floristic and structural variability within
each class. These microforms cannot be identified on the species-level only, i.e., looking at single plants,
but by taking into account their species composition and cover. Therefore, we added a chessboard
segmentation dividing the CIR orthoimage mosaic into a regular grid of square segments. The size of
these grid cells only depends on the set scale factor and not on homogeneity criteria. This characteristic
leads to equal size and shape and thereby better comparability of the segments during the subsequent
analysis. We selected a threshold of 65 for the scale parameter. The resulting size of 60 cm ˆ 60 cm for
each grid cell corresponds to the minimum resolution of image data for a representative detection of
bog microform suggested by Becker et al. [24].

Table 3. Object features used during object-based image classification with eCognition.

Customized

NDVImod: prMean nirs ´ rMean blues q/p rMean nirs ` rMean bluesq
TVI: 0.5 ˆ p120 ˆ prMean nirs ´ rMean greensqq ´ 120 ˆ prMean blues ´ rMean greensq

Layer Values
HSI Transformation Intensity (R = nir, G = green, B = blue)

HSI Transformation Hue (R = nir, G = green, B = blue)
HSI Transformation Saturation (R = nir, G = green, B = blue)

Mean NIR
Mean Green
Mean Blue

Mean Brightness
Standard Deviation NIR

Standard Deviation Green
Standard Deviation Blue

Texture
GLCM Homogeneity

GLCM Entropy
GLCM Mean

GLDV Entropy

Class Related Features
Relative border to neighbor objects

Relative area of sub-objects
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Table 4. Image examples of the classes in CIR composite (with linear band equalization applied) and
key features with thresholds for the classification on the species-level.

Class Image Example Key Features and Thresholds

Pools
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For each microform, the classification was done by implementing simple class rules for each
grid cell. We used the “relative area of sub-object” features to define the microforms. This algorithm
determined for each cell the species composition in terms of the proportional area covered by the
different species (see Table 1). This area was calculated from the sub-objects classified in the previous
step on the species-level. The microform classification represented the present microforms Empetrum
heath, Sphagnum lawn, Sphagnum hummock, pools and others. The class “others” included dead
vegetation, Sphagnum cuspidatum, lichens and transitional microforms that could not be clearly assigned
to the Sphagnum hummock class.
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The accuracy of both classifications was evaluated by selecting random samples, with a minimum
of 220 samples within each vegetation class. These randomly selected samples were then manually
classified by an on-screen interpretation of the available image information together with additional
field data. Based on the samples, a confusion matrix was produced to evaluate the accuracy of
the final classifications including overall, user’s, and producer’s classification accuracies, and Kappa
statistics [41]. The interpretation of the Kappa statistics was based on the categories proposed by Landis
and Koch [42], with a classification accuracy of Kappa <0.20 considered poor, 0.21 < kappa < 0.40 fair,
0.41 < kappa < 0.60 moderate, 0.61 < kappa < 0.80 good, and 0.81 < kappa < 1 very good.

2.3. Methane (CH4) Flux Measurements

The closed chamber technique was used to measure microform-level CH4 fluxes during four
days in the end of January 2015, in the austral summer. Measurements were performed on surface
microforms representing the main vegetation units of the studied peat bog (Table 1, Figure 2). Selected
microforms were Empetrum heaths, Sphagnum lawns and Sphagnum hummocks (Figure 5) with three
replicates each representing the variation within microforms. Transitions between microforms were
not considered. On each of the nine plots, collars were permanently installed in the beginning of
January 2015. A transparent chamber with a diameter of 40 cm and a height of 40 cm was gently
placed on each collar for at least 3 min to perform measurements. A fan ensured mixing of the air
within the chamber during measurements. The chamber was equipped with a cooling system and
a temperature sensor to avoid an increase of chamber temperature by more than 3 ˝C deviation of
the ambient air temperature. Collars were equipped with a water-filled rim to ensure a gas-tight
seal between chamber and collar during measurements. In addition, CH4 fluxes of two pools were
determined with a floating chamber of identical dimension and design. The chamber wall extended
approximately 4 cm into the water. The chamber was connected to a greenhouse gas analyzer (Los
Gatos Ultraportable Greenhouse Gas Analyzer 915-001, Los Gatos Research) to measure the increase of
CH4 concentrations over time. We equipped this instrument with an external pump providing a flow
rate of 2 L¨ min´1 CH4 concentration was recorded at a rate of 1 Hz.
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four measurements were excluded from analysis because a strong temperature increase had been 
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increase indicative of ebullient events during our campaign. Of the 3 min measurement time, 60–140 
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lawn, Sphagnum hummock and pools (from left to right).

Microform-level CH4 fluxes were calculated from the CH4 concentration increase over time
within the chamber using a modified version of the software package (MATLAB Release R2014a)
routine described in [43]. CH4 concentration was modeled either as a linear (93% of cases, N = 65
flux measurements) or an exponential (7% of cases, N = 5) function of time. Models performance
was compared using Akaike’s Information Criterion (AIC) as a measure of goodness-of-fit.
Two measurements had to be excluded from further analyses because residuals were auto-correlated
and four measurements were excluded from analysis because a strong temperature increase had
been detected during chamber closure. None of the measurements showed a stepwise concentration
increase indicative of ebullient events during our campaign. Of the 3 min measurement time, 60–140 s
(mainly 90 s) were selected for the CH4 flux calculation. This excluded unstable conditions particularly
at the beginning of the measurement. For up-scaling the microform-level CH4 fluxes to the ecosystem
scale of the investigated area in the studied bog, fluxes measured on the nine plots were averaged
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for each microform over the four-day measurement period, multiplied with the fractional surface
cover of each microform of the microform-level classification and summed to the area-weighted
mean (hereafter referred to as total ecosystem CH4 flux). For the up-scaling based on the species-level
classification, mean microform fluxes were multiplied with the fractional surface cover of the respective
classes Empetrum rubrum (Empetrum heath fluxes), Sphagnum magellanicum (Sphagnum lawn fluxes),
Marsippospermum grandiflorum (Sphagnum hummock fluxes) and pools (pool fluxes). Standard deviation
of CH4 fluxes were linearly extrapolated to the classified bog area similar as the fluxes itself.

3. Results

3.1. Object-Based Classification

The resulting maps of the species- and microform-level classification are presented in Figure 6.
The semi-automatic object-based classification revealed an overall accuracy level of 92% for the
species-level classification (Table 5) and 86% for the microform-level classification (Table 6). The overall
KIA statistic had a maximum of 0.90 and 0.83 at microform level and species level, respectively. The KIA
per class statistics for the species-level classification suggested that Sphagnum magellanicum was the best
distinguishable class with a coefficient of 0.99, followed by Empetrum rubrum (0.97), pool (0.96), dead
vegetation (0.95), Sphagnum cuspidatum (0.92), lichens (0.80) and Marsippospermum grandiflorum (0.73).
For the microform level classification the best class-specific KIA statistics were those for water (0.94),
Sphagnum lawn (0.92), and “others” (0.87), followed by Empetrum lawn (0.76) and Sphagnum hummock
(0.65). The class-specific producer’s accuracies for the species level classification ranged from 99% for
Sphagnum magellanicum to 76% for Marsippospermum grandiflorum. For the microform level classification,
the producer’s accuracy was highest for water (95%) and lowest for Sphagnum hummock (71%).
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Figure 6. (a) A part of the original CIR orthoimage mosaic (with linear band equalization applied).
The area shown covers ca. 0.2 ha; (b) classification maps of species; and (c) microforms obtained by
segmentation and subsequent object-based classification. The class “others” included dead vegetation,
Sphagnum cuspidatum, lichens and drier Sphagnum-dominated vegetation (transitional microforms) that
could not be clearly assigned to the Sphagnum hummock class.
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Table 5. Confusion matrix and accuracy results of the object-based image analysis (OBIA) on species
level. Producer’s accuracy (%): ratio between correctly classified objects and reference samples within
a class. User’s accuracy (%): ratio between correctly classified objects and the total number of samples
assigned to a class. Overall accuracy (%): ratio between the number of all correctly classified objects
and the total number of samples. Kappa Index of Agreement (KIA): measure of the proportion of
agreement after removing random effects.

Species-Level Pools Sphagnum
magellanicum

Sphagnum
cuspidatum Lichens Dead

Vegetation
Empetrum

rubrum
Marsippospermum

grandiflorum

pools 217 0 7 0 2 0 0
Sphagnum magellanicum 1 304 0 6 0 2 43
Sphagnum cuspidatum 0 0 225 32 0 0 0

lichens 0 0 0 188 0 0 3
dead vegetation 4 0 0 0 211 0 0

Empetrum rubrum 2 2 7 0 4 240 18
Marsippospermum

grandiflorum 0 0 0 3 0 4 206

unclassified 1 0 2 0 4 0 0
Sum 225 306 241 229 221 246 270

Producer’s accuracy 96.4 99.3 93.3 82.1 95.4 97.5 76.3
User’s accuracy 96.0 85.4 87.5 98.4 98.1 87.9 96.7
Overall accuracy 91.5

KIA Per Class 0.96 0.99 0.92 0.80 0.95 0.97 0.73
KIA 0.90

Table 6. Confusion matrix and accuracy results of the object-based image analysis (OBIA) on
microform level.

Microform-Level Pools Sphagnum
Hummock

Empetrum
Heath

Sphagnum
Lawn Others

pools 225 0 0 0 2
Sphagnum hummock 0 175 26 6 2

Empetrum heath 1 23 205 5 11
Sphagnum lawn 4 5 0 272 1

others 6 12 1 7 254
unclassified 1 32 24 0 12

Sum 237 247 256 290 282

Producer’s accuracy 94.9 70.8 80.0 93.8 90.0
User’s accuracy 99.1 83.7 83.6 96.4 90.7
Overall accuracy 86.2

KIA per Class 0.94 0.65 0.76 0.92 0.87
KIA 0.83

3.2. CH4 Fluxes

Summer CH4 fluxes in South Patagonia differed strongly across the four surface microforms
Sphagnum lawn, Sphagnum hummock, Empetrum heath and pools and were highly variable within
each microform (Table 7). Among the three (semi-)terrestrial microforms, the Empetrum heath emitted
the least CH4 while emissions released from Sphagnum lawns were on average more than 10 times
higher. Sphagnum lawns covered 20%–40% of the surface area of the bog (Table 8), depending on
the classification approach, and contributed to 75% or almost 90% to the total ecosystem CH4 flux
(Figure 7). Both classification approaches suggested that further microforms covered a substantial part
of the surface area of the bog (Table 7). Nevertheless, their contribution to the total ecosystem CH4 flux
was negligible for the species-level classification, while for the microform-level classification Sphagnum
hummocks and Empetrum heath together accounted for more than 20% of the total ecosystem CH4 flux.

Excluding the area where no chamber measurements were conducted and therefore no CH4 fluxes
were available, the sum of the area-weighted mean fluxes per microform yielded total ecosystem



Remote Sens. 2016, 8, 173 12 of 19

CH4 fluxes of 13.1 mg¨ m´2¨ day´1 and 21.8 mg¨ m´2¨ day´1 for the microform-level and species-level
classification, respectively (Table 7, Figure 7). While the unclassified surface area amounted to almost
30% for the microform-level classification, it comprised only 6% for the species-level classification.
To estimate the CH4 flux for the proportion of the surface area where no chamber measurements were
conducted (e.g., lichen dominated patches), we assigned either a low CH4 flux of 3.97 mg¨ m´2¨ day´1

as determined for Empetrum heath or a high CH4 flux of 49.04 mg¨ m´2¨ day´1 as determined for
Sphagnum lawn to this area. Based on this assumption, the sum of the area-weighted mean fluxes per
microform increased to at least 14.2 mg¨ m´2¨ day´1 (low estimate microform-level classification) or to
a maximum of 26.8 mg¨ m´2¨ day´1 (high estimate microform-level classification) for the classified
area. Estimates based on the species-level classification ranged within the estimates based on the
microform-level classification (Figure 7).

Table 7. Mean surface microform CH4 fluxes (˘ SD) of a Patagonian peat bog during four days in the
austral summer estimated from closed chamber measurements.

Surface Microform N Mean CH4 Flux (mg¨m´2¨d´1)

Sphagnum lawn 21 49.04 ˘ 25.67
Sphagnum hummock 21 10.49 ˘ 6.02

Empetrum heath 21 3.97 ˘ 2.99
pools 7 5.41 ˘ 5.98
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Figure 7. Contribution of surface microforms to the total ecosystem CH4 flux of the classified area.
Two classification approaches are compared and CH4 fluxes were calculated as area-weighted means.
Proportions of the surface area where no chamber measurements were conducted were excluded, or
assigned to a high or low flux to give a range for the total ecosystem CH4 flux including the unclassified
surface area.
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Table 8. Fraction of surface microform coverage and area-weighted mean CH4 fluxes (˘area-weighted
SD) of a Patagonian peat bog during austral summer as determined by closed chamber measurements.

Surface Microform

Species-Level Classification Microform-Level Classification

Area (%)
Area-Weighted
Mean CH4 Flux

(mg¨m´2¨day´1)
Area (%)

Area-Weighted
Mean CH4 Flux

(mg¨m´2¨day´1)

Sphagnum lawn 39 19.2 ˘ 10.0 20 9.8 ˘ 5.1
Sphagnum hummock 5 0.5 ˘ 0.3 16 1.7 ˘ 1.0

Empetrum heath 41 1.6 ˘ 1.2 27 1.1 ˘ 0.8
pools 9 0.5 ˘ 0.5 9 0.5 ˘ 0.5

unclassified/others 6 x 28 x
Sum 100 21.8 ˘ 12.1 100 13.1 ˘ 7.4

4. Discussion

Microform-level CH4 fluxes in the present study estimated from chamber measurements showed
a pronounced spatial variability: Sphagnum lawns were local emission hotspots with comparatively
high CH4 fluxes of 49.04 ˘ 25.7 mg¨ m´2¨ day´1. Methane flux data from South Patagonia are scarce,
and, to our knowledge, we here present the first CH4 fluxes determined on several microforms in
a pristine Sphagnum bog in Tierra del Fuego. CH4 fluxes from Sphagnum lawns in a bog ecosystem in
Tierra del Fuego have been reported to range from 1 to 11 mg¨ m´2¨ day´1 [11] which are considerably
lower rates compared to our findings. Broder et al. [44] presented CH4 fluxes from Patagonian
bogs further north near Punta Arenas (Chile). Their surface fluxes (microform corresponds to our
Sphagnum lawn microform) were less than 0.2 mmol¨ m´2¨ day´1 (3.21 mg¨ m´2¨ day´1 and in the
range of our Empetrum heath fluxes, while their fluxes at the water table were 1–9 mmol¨ m´2¨ day´1

(16–144 mg¨ m´2¨ day´1 and up to 30 times higher compared to pool fluxes in the present study. The
number of chamber measurements was restricted in the present and both of the studies cited. CH4 flux
estimates from southern Patagonia are therefore still afflicted with a comparatively high uncertainty
and need to be proven by further field measurements. As CH4 is produced under anaerobic conditions
and water table depth is known as a major control of CH4 emissions [7], pools were suggested to
be major CH4 sources in earlier studies. In contrast, CH4 fluxes from pools found in the present
study were among the lowest of all investigated microforms. This might be due to an inhibition of
microbial activity for example due to low supply of fresh organic substrate for methanogenesis [45].
The spatial heterogeneity of CH4 fluxes found in the present study is characteristic for bog ecosystems
and has been reported previously for northern hemispheric peatlands that typically show a high spatial
variability of CH4 fluxes owing to numerous factors controlling CH4 production, consumption and
emission [7].

The high spatial variability of CH4 emissions requires accurate measurements not only of the
fluxes themselves but also of the small-scale surface heterogeneity of bogs to understand the relative
importance of single microforms for the total CH4 flux. The quality of any study comparing between
scales, e.g., microform and ecosystem scale, thus depends on the quality of the underlying map.
The OBIA classification processes of the high resolution CIR data collected by an UAS that we use
here lead to overall very high accuracy on the species and the microform level. Especially the high
accuracy observed for the Sphagnum lawn class, which was identified as the most relevant microform
for ecosystem-scale CH4 fluxes, underlines the appropriateness of our CH4 flux extrapolation
approach. The semi-automatic classification of microforms at our test site was only feasible using
very high-resolution CIR UAS images. The use of conventional remote-sensing data such as satellite
or aerial images would not have allowed acceptable classifications that meet the requirements to
extrapolate spatially variable CH4 fluxes due to their low spectral and spatial resolution. The overall
KIA statistic showed a maximum of 0.90 at species level and 0.83 at microform level, indicating high
reliability of our multi-level upscaling classification process.
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The classification procedure still left segments unclassified due to similar “mixed” spectral and
textural features on the species level. In addition, on microform level several segments (grid cells)
could not be assigned by the applied class rules. To further increase classification accuracy and to
minimize unclassified segments, the integration of a high resolution digital surface model (DSM) in
the classification process would be beneficial [46–48]. Since microforms in bog ecosystems are closely
related to the water level and drier microforms such as hummocks occur only on elevated parts of the
bog [36], height information could be used to improve the classification model.

One approach to generate such a surface model would be stereo photogrammetric analysis of
the overlapping imagery (see for example [49] or the review article by Nex and Remondino [50]).
However, such dense and accurate image based 3D surface models depend on a stable, accurate 3D
flight pattern and sufficient image overlaps (minimum of 60% for side overlap and 80% for forward
overlap) to allow accurate aerial triangulation and point cloud calculation [51]. In this study, such
a large overlap was not available in most of the study area. In addition, the abovementioned height
differences characterizing the different microforms are very small (e.g., variation at a centimeter scale
matters; see Figure 2) and require an extremely accurate surface model for a successful integration
into the classification process. There is an ongoing discussion in recent research articles about the
achievable accuracy of surface models created by UAS based stereo photogrammetric analysis [52–55].
Thus, it is unclear if this achievable accuracy is sufficient for ecosystems, where the morphology is
characterized by slight surface differences. Further research with a specific flight and sampling design
(e.g., a high-resolution RGB camera; accurate ground truth point sampling with DGPS) is needed to
investigate this approach in such ecosystems.

Another possible approach to improve the identification bog microforms and related
microform-level CH4 fluxes by including additional height information, would be to use
UAS-generated LIDAR data. Today’s ultra-light laser scanners are intended for UAS use [56] and can
thus efficiently contribute to the classification of microforms by their microreliefs. Particularly for
wetland areas, ecological monitoring of vegetation and relevant ecosystem processes using UAS-based
remote sensing techniques may strongly benefit from a combination of LIDAR-generated 3D data
and the spectral information provided by high-resolution CIR images. While LIDAR technology was
not used in the presented study (payload restrictions), it is a promising option for future research
since new generations of UAS are offering a continuously increasing flight duration and payload
capacity (flight times >1 h and >1 kg payload are within reach; e.g., HiSystems 2015; Microdrones
2015). Nevertheless, our results already show that it is possible to extrapolate microform CH4

measurements to the ecosystem scale with sufficient reliability using multispectral image features
without height information.

Another aspect is the identification of the interdependent classes Marsippospermum grandiflorum
and Sphagnum hummock, which achieved comparably poor results (KIA per class 0.73 and 0.65).
At species level, living individuals of Marsippospermum grandiflorum were difficult to identify because
of the very small diameter and the upright growth of their shoots as well as similar spectral properties
to the surrounding vegetation. On the other hand, dead shoots were sometimes misclassified when
their texture properties did not clearly display in the imagery due to the limited quality of the used
low cost sensor [34]. This resulted in misclassifications for individual plant species, especially with
Sphagnum magellanicum and Empetrum rubrum. Besides the image quality (sharpness) additional
restrictions related to the use of the low cost sensor should be considered. These mainly concern the
separation of NIR radiation in one channel of the CIR imagery [26]. A better distinction of the NIR
radiation in CIR images can be achieved using professional, purpose-built and commercially available
multispectral sensors or a hyperspectral device [57]. However, such cameras cost at least several
thousand Euros, whereas images recorded with a modified customer digital camera (less than 300 €)
achieve a good cost–benefit ratio with the image characteristics being sufficient for a wide CIR image
classification spectrum. Furthermore, it is important to take into account the effect of bidirectional
reflectance in this context, especially during sunny weather. This effect can cause image hotspots in
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the resulting orthoimage mosaic. This may reduce the accuracy of the image classifiers. Using image
ratios and indices like NDVImod (see Section 2.2.3) can mitigate these effects. However, bidirectional
reflectance still was an issue that influenced the accuracy of the classification.

Although both classification approaches resulted in a very good overall accuracy particularly
for the Sphagnum lawn microform emitting most CH4, our findings clearly show that the image
classification is a critical issue potentially introducing a high proportion of additional uncertainty
when up-scaling CH4 microform measurements to the ecosystem scale. The OBIA procedure including
the segmentation process always generalizes the situation in the field and therefore is a potential
source of error. The relation between image-objects and their radiometric characteristics can only partly
be influenced during the segmentation process often resulting in over- or undersegmentation [58].
However, segmentation is a crucial step in analyzing complex vegetation pattern when solely spectral
properties are insufficient to identify classes of interest. The presented image analysis method is
a basic and straightforward OBIA approach which is not directly transferable to other use cases.
However, it proved to be efficient and adequately accurate in terms of creating a detailed classification
distribution of characteristic bog plant species and microforms that are relevant in terms of CH4-fluxes.
It also demonstrates the high potential of object-based classification for studies of bog environments
in general. This potential could be further leveraged and the transferability improved by applying
more objective measures for the determination of segmentation parameters or classification features
and thresholds. Several studies developed tools for automatically estimating and optimizing the
scale parameter (e.g., [59–61]). There has also been work on the automatic definition of suitable
object parameters and respective thresholds for the classification (e.g., [62]). The high potential of
OBIA in this context has been demonstrated in many studies (see for example [63,64] or the review
article by Blaschke [39]). In our approach, we combined parameters of the extended feature space
in OBIA (e.g., texture, geometric dimensions and relative positions) using a hierarchical multi-level
classification which increased accuracy and allowed for the analysis of composition of typical plant
communities. The studied pools were readily identified from the high-resolution images, and their
proportion of the area did not differ between both of our classification approaches, while the applied
classification procedure yielded pronounced differences in the surface cover of poorly identifiable
Sphagnum hummocks (KIA per class 0.65). Empetrum heaths were also difficult to identify (KIA per
class 0.76) but in contrast to Sphagnum hummocks, differences in the spatial coverage due to the
classification approach did not affect the contribution of this microform to the total CH4 flux.

Our results demonstrate that a simple microform-level classification can result in estimates of
almost 70% lower total CH4 fluxes on the ecosystem scale compared to a more detailed species-level
classification. This result is inconsistent with studies by Becker et al. [24] and Hartley et al. [65]
who found that a coarse classification leads to higher total CH4 fluxes in comparison with a finer
classification. The substantially lower total ecosystem CH4 fluxes obtained by the microform-level
classification found in the present study might be explained by the fact that this classification resulted
in a proportion of almost 30% of unclassified surface area, which could not be assigned to one of
the four microforms were CH4 fluxes were determined (Table 7, microform “unclassified/others”).
Furthermore, the microform-level classification led to a considerably lower area covered by Sphagnum
lawns compared to the species-level classification. Accordingly, the contribution of this microform to
the total ecosystem CH4 flux was underestimated compared to the species-level classification leading
to this 70% lower estimate of total CH4 fluxes.

The species-level classification is assumed to yield a more realistic estimate of total ecosystem CH4

fluxes of 21.8 mg¨ m´2¨ day´1 of the classified area compared to the microform-level classification. This
estimate is in the range of previously reported CH4 emissions from northern hemispheric peatlands that
vary between 5 and 80 mg¨ m´2¨ day´1 [5]. Total ecosystem CH4 fluxes obtained by the species-level
classification are suggested to better reflect the small-scale surface heterogeneity of the bog and,
furthermore, this approach allowed assigning 94% of the surface area to one of the microforms were
CH4 fluxes were determined by chamber measurements.
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In previous studies, the total surface area of the ecosystem was assigned to specific classes [24,65]
and, except for the study by Becker et al. 2008 [24], the classification itself as an error source was not
further investigated. Hence, these approaches did not focus on the uncertainty in total ecosystem
CH4 fluxes introduced by transitional microforms. We quantified this uncertainty by assigning either
a high or low flux to the unclassified surface area. This potential uncertainty in up-scaled CH4 flux
estimates introduced by the classification procedure ranged from 14.2 mg¨ m´2¨ day´1 (low estimate
microform-level classification) to 26.8 mg¨ m´2¨ day´1 (high estimate microform-level classification)
in the present study. To reduce this potential uncertainty, future studies should attempt to include
transitional microforms when measuring CH4 fluxes with chambers.

5. Conclusions

Our results demonstrate pronounced differences between two object-based classification
approaches regarding both, the unclassified surface cover of the bog and the surface cover where
no fluxes were available. These differences strongly affected the total amount of emitted CH4.
A classification with only a few classes potentially can lead to pronounced bias in total CH4 fluxes
when plot-scale fluxes are up-scaled.

At our study site, one microform (Sphagnum lawn) contributed most to the total CH4 flux, whereas
other microforms emitted much less CH4. Therefore, the proportional surface cover did not strongly
affect the total ecosystem CH4 flux. Our results clearly demonstrate that the higher the emissions of
a microform and the more difficult the identification of a microform from an image, the more important
becomes the exact identification of which classes build that particular type of microform. The use of
an UAS sensor platform with high resolution CIR imaging capabilities and a consequent OBIA data
analysis seems to be an appropriate remote sensing strategy to tackle that challenge. A non-OBIA
image classification of conventional aerial or satellite data (even on CIR composites) would certainly
fail under the given requirements or simply be limited to bogs where only a single “dominant hotspot”
microform that is easy to detect at an average spatial and spectral resolution contributes most to the
total ecosystem CH4 flux.
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59. Drăguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]
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