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Abstract

An algebra A = 〈A,→, 0〉, where→ is binary and 0 is a constant, is
called an implication zroupoid (I-zroupoid, for short) if A satisfies the
identities: (x → y) → z ≈ ((z′ → x) → (y → z)′)′ and 0′′ ≈ 0, where
x′ := x → 0. An implication zroupoid is symmetric if it satisfies:
x′′ ≈ x and (x → y′)′ ≈ (y → x′)′. The variety of symmetric I-
zroupoids is denoted by S. We began a systematic analysis of weak
associative laws (or identities) of length ≤ 4 in [CS18a], by examining
the identities of Bol-Moufang type, in the context of the variety S.

In this paper we complete the analysis by investigating the rest of
the weak associative laws of length ≤ 4 relative to S. We show that,
of the (possible) 155 subvarieties of S defined by the weak associative
laws of length ≤ 4, there are exactly 6 distinct ones. We also give
an explicit description of the poset of the (distinct) subvarieties of S
defined by weak associative laws of length ≤ 4.

1 Introduction

Bernstein, in [Be34], gave a system of axioms for Boolean algebras using
implication as the only connective. His system, while not equational, could
easily be modified into an equational one by using an additional constant.
In 2012, the second author of this paper extended this “modified Bernstein’s
theorem” to De Morgan algebras (see [San12]). Indeed, he showd in [San12]
that the varieties of De Morgan algebras, Kleene algebras, and Boolean al-
gebras are term-equivalent, respectively, to the varieties, DM, KL, and BA
(defined below) whose defining axioms use only an implication→ and a con-
stant 0.



The essential role played by the identity (I): (x→ y)→ z ≈ ((z′ → x)→
(y → z)′)′, where x′ := x → 0, in the axiomatization of DM, KL, and BA
motivated the second author to introduce a new equational class of algebras
called “implication zroupoids” in [San12].

DEFINITION 1.1. An algebra A = 〈A,→, 0〉, where → is binary and 0 is
a constant, is called a zroupoid. A zroupoid A = 〈A,→, 0〉 is an implication
zroupoid (I-zroupoid, for short) if A satisfies:

(I) (x→ y)→ z ≈ ((z′ → x)→ (y → z)′)′, where x′ := x→ 0,

(I0) 0′′ ≈ 0.

I denotes the variety of implication zroupoids. It is also known that this new
variety I contains the variety SL (defined below) which is term-equivalent to
the variety of ∨-semilattices with the least element 0 (see [CS16a], wherein
the name “implicator groupoid” is used instead of “implication zroupoid”).

The varieties DM and SL are defined relative to I, respectively, by the
following identities:

(DM) (x→ y)→ x ≈ x (De Morgan Algebras);
(SL) x′ ≈ x and x→ y ≈ y → x.

The varieties KL and BA are defined relative to DM, respectively, by the
following identities:

(KL) (x→ x)→ (y → y) ≈ y → y (Kleene algebras);
(BA) x→ x ≈ 0′ (Boolean algebras).

According to [San12], the variety I generalizes the variety of De Morgan
algebras and also exhibits some interesting properties; for example, the iden-
tity x′′′ → y ≈ x′ → y holds in I. Several new subvarieties of I are also
introduced and investigated in [San12]. The (largely unexplored) lattice of
subvarieties of I seems to be fairly complex. In fact, Problem 6 of [San12]
calls for an investigation of the structure of the lattice of subvarieties of I.

The papers [CS16a], [CS16b], [CS16c], [CS17], [CS18a], [CS18b], [CS18c]
and [GSV] have addressed further, but still partially, the above-mentioned
problem by introducing new subvarieties of I and investigating relationships
among them. It follows from [GSV] that the lattice of subvarieties of I is
not modular, whcih answers Problem 5 of [San12] in the negative. The size
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of the poset of subvarieties of I is known to be at least 40 (as of October 24,
2018); but it is still unknown whether the lattice of subvarieties is finite or
infinite.

Given an I-zroupoid A, there are two operations ∧ and ∨ on A defined as
follows: x ∧ y := (x→ y′)′ and x ∨ y := (x′ ∧ y′)′. These operations give rise
to the (derived) algebra 〈A,∧,∨, 0〉 which has been investigated in [CS16a]
and [CS17]. Among the important subvarieties of I, the two that are the
most relevant to this paper are: I2,0 and MC which are defined relative to
I, respectively, by the following identities:

(I2,0) x′′ ≈ x;
(MC) x ∧ y ≈ y ∧ x, where x ∧ y := (x→ y′)′.

We are now ready to make the following definition which plays a funda-
mental role in the rest of this paper.

DEFINITION 1.2. Let A ∈ I. A is involutive if A ∈ I2,0. A is meet-
commutative if A ∈ MC. A is symmetric if A is both involutive and meet-
commutative. Let S denote the variety of symmetric I-zroupoids. In other
words, S = I2,0 ∩MC.

The investigations in [CS16a] and [CS17] reveal that the variety S has
some interesting properties; for example, for A ∈ I2,0 ∩MC, the (derived)
algebra 〈A,∧,∨, 0〉, where x ∨ y := (x′ ∧ y′)′, is both a distributive bisemi-
lattice and a Birkhoff system (i.e., satisfies x ∧ (x ∨ y) ≈ x ∨ (x ∧ y)). (The
name “symmetric I-zroupoids” for the members of I2,0 ∩MC is new.)

In the present paper we continue our investigations into S. More precisely,
we are interested in the subvarieties of S defined by weak associative laws.
A precise definition of a weak associative law appears in [Ku96], which is
essentially restated below in our terminology.

DEFINITION 1.3. Let n ∈ N and let L := 〈×〉, where × is a binary
operation symbol. Let p be a (groupoid) term in the language L. Then V ar(p)
denotes the set of distinct variables occurring in p. p is of length n if the
number of (not necessarily distinct) occurrences of variables (in p) is n. An
identity p ≈ q is said to be a weak associative law of length n in L if the
following conditions hold:
(1) p and q are terms of length n;
(2) V ar(p) = V ar(q);
(3) the variables in p and q occur in the same order (only the bracketings are
possibly different). (In other words, p and q are built from the same word
using (possibly) different bracketings.)
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The following (general) problem was raised in [CS18a]. (In the sequel we
use the words “law” and “identity” interchangeably).

PROBLEM: Let V be a given variety of algebras (whose language includes
a binary operation symbol, say, ×). Investigate the subvarieties of V defined
by weak associative laws (with respect to ×) and their mutual relationships.

Special cases of the above problem have already been considered in the
literature, wherein the weak associative laws chosen are the identities of
Bol-Moufang type (i.e., weak associative laws of length 4 with 3 distinct
variables), and the variety V is chosen to be the variety of quasigroups or the
variety of loops (for more information about these identities in the context
of quasigroups and loops see [Fe69], [Ku96], [PV05a], [PV05b]).

Let W denote the set of identities of weak associative laws of size ≤ 4.
The systematic notation given in the next definition for the identities in W is
influenced by the notation developed in [PV05a] for Bol-Moufang identities.

Without loss of generality, we will assume that the variables in the terms
t1 and t2 occur alphabetically in any weak associative identity t1 ≈ t2. Given
a word X of variables, we refer to each possible way of bracketing X that
will transform X into a term, as a “bracketing”; and we assign a number to
each such bracketing and call it the “bracketing number” of that term.

We will now develop a notation for weak associative laws that helps us
to investigate them.

DEFINITION 1.4. Let n,m, p, q ∈ N and let X denote a word of length
n in which there are m distinct variables occurring alphabetically (with some
variables possibly repeated). We denote by (nmXpq) the weak associative
identity t1 ≈ t2 of length n, with m distinct variables, whose terms t1 and
t2 are obtained from X and have p and q as their respective bracketing
numbers. We denote by nmXpq the variety defined, relative to S, by the
weak associative identity (nmXpq).

EXAMPLE 1.5. Let X be the word A:= 〈x, x, x〉 where n = 3 and m = 1.
Then there are two possible brackettings, numbered 1 and 2, with a as a
place holder:

1: a→ (a→ a), and 2: (a→ a)→ a.
Thus, (31A12) denotes the identity x→ (x→ x) ≈ (x→ x)→ x of length 3
with one variable, and with bracketing numbers 1 and 2, and 31A12 denotes
the subvariety of I defined by (31A12), relative to S.
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Here is a second example: Let X be the word B:= 〈x, y, x, z〉 where
n = 4 and m = 3. Then (43B23) denotes the identity x→ ((y → x)→ z) ≈
(x→ y)→ (x→ z) of length 4 with 3 distinct variables and with bracketting
numbers 2 and 3 in the listing of possible brackettings given in Section 6
below.

Observe that Bol-Moufang identities are precisely the weak associative
laws of the form (43Xpq) of length 4 that have 3 distinct variables. It was
shown in [CS18a] that there are 4 nontrivial subvarieties of the variety S of
Bol-Moufang type that are distinct from each other (out of the possible 60
varieties), giving the Hasse diagram of the poset formed by them, together
with the variety BA (which is contained in some of them).

In this paper we will complete that analysis by examining the rest of
the weak associative laws of length ≤ 4, relative to S. Clearly, x ≈ x and
x→ y ≈ x→ y are the only identitities of length 1 and 2 respectively, which
are trivial. So, we will consider the identities of length 3 and 4. In Section
8, we show, as our main result, that, of the (possible) 155 subvarieties of
S, each defined by a single weak associative law of length ≤ 4, there are
exactly 6 distinct ones. We also give an explicit description, by means of
a Hasse diagram, of the poset of the (distinct) subvarieties of S defined by
weak associative laws of length ≤ 4.

We would like to acknowledge that the software “Prover 9/Mace 4” devel-
oped by McCune [Mc] has been useful to us in some of our findings presented
in this paper. We have used it to find examples and to check some conjectures.

2 Preliminaries and Properties of S
We refer the reader to the standard references [BD74], [BS81] and [R74] for
concepts and results used, but not explained, in this paper.

Recall from [San12] that SL is the variety of semilattices with a least
element 0. It was shown in [CS16a] that SL = C∩I1,0 where the subvarieties
C and I1,0 of I are defined, respectively, by the identities x → y ≈ y → x
and x′ ≈ x.

The two-element algebras 2s, 2b were introduced in [San12]. Their oper-
ations → are respectively as follows:
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→: 0 1
0 0 1
1 1 1

→: 0 1
0 1 1
1 0 1

Recall that V(2b) = BA, and V(2s) = SL ([CS16a, Corollary 10.4]).

LEMMA 2.1. [CS16a] MC ∩ I1,0 ⊆ C ∩ I1,0 = SL.

LEMMA 2.2. [San12, Theorem 8.15] Let A be an I-zroupoid. Then the
following are equivalent:

1. 0′ → x ≈ x,

2. x′′ ≈ x,

3. (x→ x′)′ ≈ x,

4. x′ → x ≈ x.

Recall that I2,0 andMC are the subvarieties defined, respectivaly, relative
to I by the equations

x′′ ≈ x. (I2,0)

x ∧ y ≈ y ∧ x. (MC)

LEMMA 2.3. [San12] Let A ∈ I2,0. Then

1. x′ → 0′ ≈ 0→ x,

2. 0→ x′ ≈ x→ 0′.

LEMMA 2.4. Let A ∈ I2,0. Then A satisfies:

1. (x→ 0′)→ y ≈ (x→ y′)→ y,

2. ((0→ x)→ y)→ x ≈ y → x,

3. (x→ (y → x)′)′ ≈ (x→ y)→ x,

4. (y → x)→ y ≈ (0→ x)→ y,

5. (0→ x)→ (x→ y) ≈ x→ (x→ y),

6. (0→ x)→ (0→ y) ≈ x→ (0→ y),
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7. x→ y ≈ x→ (x→ y),

8. 0→ (0→ x)′ ≈ 0→ x′,

9. 0→ (x→ y) ≈ x→ (0→ y),

10. 0→ (x→ y′)′ ≈ 0→ (x′ → y),

11. x→ (y → x′) ≈ y → x′,

12. (x→ y)→ (y → x) ≈ y → x,

13. (x→ y)→ (y → z) ≈ (0→ x′)→ (y → z),

14. (x→ y)′ → y ≈ x→ y,

15. (x→ y)→ ((0→ y)→ z) ≈ (x→ y)→ z,

16. (x→ y)→ ((z → y)→ (u→ z)) ≈ (x→ y)→ (u→ z).

Proof. For the proofs of items (1), (3), (4), (9), (10), (11) we refer the reader
to [CS16a], and for the proofs of items (2), (6), (7), (8) to [CS16b]. Items
(5), (12) are proved in [CS16c]. For the proofs of items (13), (14) we refer
the reader to [CS17]. Finally, for the proof of (15), the reader is referred to
the proof of the equation (3.4) in the proof of Lemma 3.1 of [CS17].

Proof of (16): Let a, b, c, d ∈ A. Hence, (a → b) → ((c → b) → (d → c))
(I)
= (a → b) → (((d → c)′ → c) → (b → (d → c))′)′

(14)
= (a → b) →

((d → c) → (b → (d → c))′)′
(3)
= (a → b) → (((d → c) → b) → (d → c))

(4)
= (a → b) → ((0 → b) → (d → c))

(15)
= (a → b) → (d → c), completing the

proof.

LEMMA 2.5. Let A ∈ I2,0 such that A |= 0 ≈ 0′, then A |= 0→ x ≈ x.

Proof. Let a ∈ A. Then a = 0′ → a = (0 → 0) → a = (0′ → 0) → a
2.2(4)
=

0→ a.

LEMMA 2.6. [CS18a] Let A ∈ I2,0 such that A |= 0 → x ≈ x, then
A |= (x→ y)′ ≈ x′ → y′.

Throughout the rest of this paper, A ∈ S.
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LEMMA 2.7. [CS18a] A satisfies:

1. x→ (y → z) ≈ y → (x→ z),

2. x′ → y ≈ y′ → x.

LEMMA 2.8. Let A ∈ S such that A |= 0→ x ≈ x→ x, then

1. A |= 0→ (x→ x) ≈ x→ x.

2. A |= 0→ x′ ≈ 0→ x.

Proof. Let a ∈ A.

1. Observe that 0→ (a→ a)
hyp
= (a→ a)→ (a→ a)

2.4(12)
= a→ a.

2. 0→ a
hyp
= a→ a

2.7(2)
= a′ → a′

hyp
= 0→ a′.

This proves the lemma.

LEMMA 2.9. Let A ∈ S such that A |= 0 → (x → x) ≈ x → x, then A
satisfies the following identities:

1. (x→ x)→ y′ ≈ ((x→ x)→ y)′,

2. (x→ x)→ (y → z) ≈ ((x→ x)→ y)→ z,

3. (x→ y)→ (x→ y) ≈ (x→ x)→ (y → y).

Proof. Items (1) and (2) follow from [CS18a, Lemma 3.4]. Let us prove (3).
Let a, b ∈ A. Observe that

(a → a) → (0 → a′)
2.7(1)
= 0 → ((a → a) → a′)

2.4(1)
= 0 → ((a → 0′) → a′)

2.3(2)
= 0→ ((0→ a′)→ a′)

2.7(1)
= (0→ a′)→ (0→ a′)

2.4(6)and(9)
= 0→ (a′ → a′)

hyp
= a′ → a′

2.7(2)
= a→ a. Hence,

A |= (x→ x)→ (0→ x′) ≈ x→ x. (2.1)

Since

(a → b) → (a → b)
2.7(1)
= a → ((a → b) → b)

2.7(2)
= a → (b′ → (a → b)′)

2.7(1)
= b′ → (a → (a → b)′)

2.7(2)
= b′ → ((a → b) → a′)

(I)
= b′ → ((a → a) →

(b → a′)′)′
2.7(2)
= b′ → ((a → a) → (a → b′)′)′

(1)
= b′ → ((a → a) → (a →
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b′))′′
x′′≈x
= b′ → ((a → a) → (a → b′))

2.7(1)
= (a → a) → (b′ → (a → b′))

(2)
= ((a → a) → b′) → (a → b′)

2.7(2)
= ((a → a) → b′) → (b → a′)

2.7(1)
= b →

(((a → a) → b′) → a′)
(2)
= b → ((a → a) → (b′ → a′))

2.7(2)
= b → ((a → a) →

(a → b))
2.7(1)
= (a → a) → (b → (a → b))

2.7(1)
= (a → a) → (a → (b → b))

2.7(2)
= (a → a) → ((b → b)′ → a′) = (a → a) → (((b → b) → 0) → a′)

(2)
= (a → a) → ((b → b) → (0 → a′))

2.7(1)
= (b → b) → ((a → a) → (0 → a′))

(2.1)
= (b→ b)→ (a→ a), we have

A |= (x→ y)→ (x→ y) ≈ (y → y)→ (x→ x). (2.2)

Consequently,

(a → b) → (a → b)
2.7(2)
= (b′ → a′) → (b′ → a′)

(2.2)
= (a′ → a′) → (b′ → b′)

2.7(2).
= (a→ a)→ (b→ b).

LEMMA 2.10. [CS18a] Let A |= x→ x ≈ x. Then A |= x′ ≈ x.

LEMMA 2.11. Let A |= 0 → x ≈ x. Then A |= x → (x → x) ≈ (x →
x)→ x.

Proof. By Lemma 2.6,

A |= (x→ y)′ ≈ x′ → y′. (2.3)

Let a ∈ A. Then (a → a) → a
2.7(2)
= a′ → (a → a)′

(2.3)
= a′ → (a′ → a′)

2.4(7)
= a′ → a′

2.7(2)
= a→ a

2.4(7)
= a→ (a→ a).

Let E be the set consisting of the terms:
t1(x, y, z, t) = ((x→ y)→ z)→ t,
t2(x, y, z, t) = z → ((y → x)→ t),
t3(x, y, z, t) = (y → x)→ (z → t),
t4(x, y, z, t) = ((z → y)→ x)→ t, and
t5(x, y, z, t) = (y → z)→ (x→ t).

LEMMA 2.12. If A |= 0→ x ≈ x, then A |= e1 ≈ e2 where e1, e2 ∈ E.

Proof. Since A |= 0→ x ≈ x, by Lemma 2.6,

A |= (x→ y)′ ≈ x′ → y′. (2.4)
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Let a, b, c, d ∈ A. Then

((a→ b)→ c)→ d
2.7(2)
= d′ → ((a→ b)→ c)′

(2.4)
= (d→ ((a→ b)→ c))′

2.7(2)
=

(d→ (c′ → (a→ b)′))′
2.7(1)
= (c′ → (d→ (a→ b)′))′

(2.4)
= c′′ → (d→ (a→ b)′)′

x≈x′′
= c→ (d→ (a→ b)′)′

2.7(2)
= c→ (d→ (b′ → a′)′)′

(2.4)
= c→ (d→ (b→ a))′

(2.4)
= c → (d′ → (b → a)′)

2.7(2)
= c → ((b → a) → d)

2.7(1)
= (b → a) → (c → d),

proving t1 ≈ t2 and t1 ≈ t3.

Next, ((a → b) → c) → d
2.7(2)
= (c′ → (a → b)′) → d

(2.4)
= (c′ → (a′ →

b′)) → d
2.7(1)
= (a′ → (c′ → b′)) → d

2.7(2)
= ((c′ → b′)′ → a) → d

(2.4)
= ((c →

b)→ a)→ d, proving t1 ≈ t4.
Also, we have that

c → ((b → a) → d)
2.7(2)
= c → (d′ → (b → a)′)

2.7(2)
= c → (d′ → (a′ → b′)′)

(2.4)
= c → (d′ → (a → b))

2.7(1)
= c → (a → (d′ → b))

2.7(1)
= a → (c → (d′ → b))

2.7(1)
= a→ (d′ → (c→ b))

2.7(2)
= a→ ((c→ b)′ → d)

2.7(2)
= a→ ((b′ → c′)′ → d)

(2.4)
= a→ ((b→ c)→ d)

2.7(1),
= (b→ c)→ (a→ d), proving t2 ≈ t5.

LEMMA 2.13. If A |= 0→ x ≈ x, then A |= x→ ((x→ x)→ y) ≈ (x→
(x→ x))→ y.

Proof. By Lemma 2.12, A |= e1 ≈ e2 for all e1, e2 ∈ E. Consider a, b ∈ A.
We have that a → ((a → a) → b) = t2(a, a, a, b) = t4(a, a, a, b) = ((a →
a)→ a)→ b

2.11
= (a→ (a→ a))→ b, proving the lemma.

LEMMA 2.14. A satisfies:

1. (x→ x)→ (x→ x) ≈ x→ (x→ (x→ x)),

2. ((x→ x)→ x)→ x ≈ x→ (x→ (x→ x)),

3. (x→ y)→ (y → z) ≈ ((y → x)→ y)→ z,

4. y → ((x→ y)→ z) ≈ ((y → x)→ y)→ z,

5. (x→ x)→ (x→ y) ≈ x→ ((x→ x)→ y),

6. x→ ((x→ x)→ y) ≈ ((x→ x)→ x)→ y,

7. x→ ((y → x)→ x) ≈ ((x→ y)→ x)→ x,

8. x→ ((y → x)→ y) ≈ ((x→ y)→ x)→ y.
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Proof. Let a, b, c ∈ A.

1. Observe that

(a → a) → (a → a)
2.7(1)
= a → ((a → a) → a)

2.4(4)
= a → ((0 → a) → a)

2.7(1)
= (0→ a)→ (a→ a)

2.4(5)
= a→ (a→ a)

2.4(7)
= a→ (a→ (a→ a)).

2. ((a → a) → a) → a
2.4(4)
= ((0 → a) → a) → a

2.4(2)
= a → a

2.4(7)
= a →

(a→ a)
2.4(7)
= a→ (a→ (a→ a)).

3. (a → b) → (b → c)
2.4(13)

= (0 → a′) → (b → c)
(I)
= (((b → c)′ →

0) → (a′ → (b → c))′)′
x≈x′′
= ((b → c) → (a′ → (b → c))′)′

2.7(2)
=

((a′ → (b → c)) → (b → c)′)′
2.7(1)
= ((b → (a′ → c)) → (b → c)′)′

2.7(2)
= ((b → (c′ → a)) → (b → c)′)′

2.7(1)
= ((c′ → (b → a)) → (b → c)′)′

(I)
= ((b→ a)→ b)→ c.

4. b→ ((a→ b)→ c)
2.7(1)
= (a→ b)→ (b→ c)

(3)
= ((b→ a)→ b)→ c.

For (5) use Lemma 2.7 (1), and for (6) use Lemma 2.7 (1) and item (3).
(7) is a special case of (4). Finally, one can use Lemma 2.7 (1) and item (3)
to prove (8).

3 Weak associative laws of length 3

In this section we examine all the weak associative laws of length 3.

3.1 With one variable:

The only word of length 3 with 1 variable is:
A: 〈x, x, x〉.

Ways in which the word A can be bracketed (where a is just a place holder)
are:

1: a→ (a→ a), 2: (a→ a)→ a.

The only weak associative identitiy in this category is:

1: (31A12) x→ (x→ x) ≈ (x→ x)→ x.
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3.2 With 2 variables:

Possible words of length 3 with 2 variables are:

A: 〈x, x, y〉, B: 〈x, y, x〉, C: 〈x, y, y〉.
Ways in which a word of length 3 can be bracketed:

1: a→ (a→ a), 2: (a→ a)→ a.

The weak associative identities in this category are:

1: (LALT) x→ (x→ y) ≈ (x→ x)→ y (the left-alternative law)
2: (FLEX) x→ (y → x) ≈ (x→ y)→ x (the flexible law)
3: (RALT) x→ (y → y) ≈ (x→ y)→ y (the right-alternative law)

We should note that we did not follow our convention in this case, since
these identities are well known by the above names. We let LALT , FLEX
and RALT denote, respectively, the subvarieties S defined by (LALT),
(FLEX) and (RALT).

THEOREM 3.1. FLEX = RALT = LALT = SL.

Proof. Let A ∈ LALT ∪ FLEX ∪RALT and a ∈ A.

First, let A ∈ LALT . Then a
x≈x′′
= a′′

2.2(4)
= (a′′ → a′)′

x≈x′′
= (a → a′)′

= (a→ (a→ 0))′
(LALT )

= ((a→ a)→ 0)′ = (a→ a)′′
x≈x′′
= a→ a.

Next, let A ∈ FLEX . Then a
2.2(4)
= a′ → a

2.2(4)
= (a′′ → a′)→ a

x≈x′′
= (a→

a′)→ a
(FLEX)

= a→ (a′ → a)
2.2(4)
= a→ a.

Finally, let A ∈ RALT . Then a→ a
x≈x′′
= a′′ → a = ((a→ 0)→ 0)→ a

(RALT )
= (a → (0 → 0)) → a = (a → 0′) → a

2.4(1)
= (a → a′) → a

x≈x′′
= (a′′ →

a′) → a
2.2(4)
= a′ → a

2.2(4)
= a. Therefore, A |= x → x ≈ x. By Lemma 2.10,

A |= x ≈ x′ and consequently, A ∈ SL.
For the converse, it is easy to verify that 2s satisfies (FLEX), (RALT)

and (LALT). The theorem follows since V(2s) = SL.

3.3 With 3 variables:

The only word of length 3 with 3 variables is:

A: 〈x, y, z〉.

12



Ways in which a word of length 3 can be bracketed:

1: a→ (a→ a), 2: (a→ a)→ a.

The only weak associative identitiy in this category is:

(33A12) x→ (y → z) ≈ (x→ y)→ z (associative law).

LEMMA 3.2. 33A12 = SL.

Proof. By [CS16a], SL ⊆ 33A12. Hence let us consider A ∈ 33A12 and

a ∈ A. Observe that 0′
2.8(2)
= 0 → 0′ = 0 → (0 → 0) = (0 → 0) → 0 = 0′ →

0
2.2(1)
= 0. Then

A |= 0′ ≈ 0. (3.1)

Therefore, a
2.2(4)
= a′ → a = (a→ 0)→ a

(33A12)
= a→ (0→ a)

(3.1)
= a→ (0′ →

a)
2.2(1)
= a→ a. Consequently, A ∈ SL by Lemmas 2.1 and 2.10.

4 Weak associative laws with length 4 and

with 1 variable.

The only word of length 4 with 1 variable is:

A: 〈x, x, x, x〉.
Ways in which a word of length 4 can be bracketed are:

1: a→ (a→ (a→ a)),
2: a→ ((a→ a)→ a),

3: (a→ a)→ (a→ a),
4: (a→ (a→ a))→ a,

5: ((a→ a)→ a)→ a.

By now, we believe that the reader is well acquainted with our notation
for identities. So, we will, no longer, present the list of the identities in this
and the remaining categories.

LEMMA 4.1. The following hold:

1. 41A12 = 41A13,

2. 41A24 = 41A34,

3. 41A25 = 41A35,

4. 41A23 = S,
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5. 41A13 = 41A15 = 41A35 = S,

6. 41A14 = 41A34 = 41A45.

Proof. Items (1), (2), (3) and (4) follow from Lemma 2.7 (1). For (5), observe
that S ⊆ 41A13 by Lemma 2.14 (1), S ⊆ 41A15 by Lemma 2.14 (2), and
S ⊆ 41A35 by Lemma 2.14 (6) and (5).

To prove (6), 41A14 ⊆ 41A34 follows from (41A14) and Lemma 2.14 (1).
From (41A34), Lemma 2.7 (1) and Lemma 2.14 (6) we have that 41A34 ⊆
41A45. The inclusion 41A45 ⊆ 41A14 follows from (41A45) and Lemma
2.14 (2).

LEMMA 4.2. 41A14 = 31A12.

Proof. In view of Lemma 2.4 (7), we get 31A12 ⊆ 41A14. So, we will prove

the converse. Let A ∈ 41A14. Hence 0
2.2(1)
= 0′ → 0

2.2(4)
= (0′′ → 0′) → 0

(I0)
= (0→ 0′)→ 0 = (0→ (0→ 0))→ 0

(41A14)
= 0→ (0→ (0→ 0))

2.4(7)
= 0→ 0

= 0′. Therefore
A |= 0 ≈ 0′. (4.1)

Let a ∈ A. Then we have that (a → a) → a
2.4(4)
= (0 → a) → a

(4.1)
= (0′ →

a) → a
2.2(1)
= a → a

2.4(7)
= a → (a → a). Thus 41A14 ⊆ 31A12, completing

the proof.

5 Weak associative laws with length 4 and

with 2 variables.

Possible words of length 4 with 2 variables are:

A: 〈x, x, x, y〉,
B: 〈x, x, y, x〉,

C: 〈x, x, y, y〉,
D: 〈x, y, x, x〉,

E: 〈x, y, x, y〉,
F: 〈x, y, y, x〉,

G: 〈x, y, y, y〉.

Ways in which a word of length 4 can be bracketed are:

1: a→ (a→ (a→ a)),
2: a→ ((a→ a)→ a),
3: (a→ a)→ (a→ a),

4: (a→ (a→ a))→ a,
5: ((a→ a)→ a)→ a.

It is easy to see that there are 70 identities in this category, and accord-
ingly there are 70 subvarieties of S defined by them. As not all of them
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will be distinct, we will partition these 70 varieties subject to the relation
of “being equal”. We will choose one representative from each block of the
partition. As will be shown below, some of them will equal SL and some
others will equal S. We will use SL and S as representatives of the blocks
whose varieties are equal to SL and S, respectively.

LEMMA 5.1. SL ⊆ 42X ij, for X ∈ {A,B,C,D,E, F,G} and for all i, j
such that 1 ≤ i < j ≤ 5.

Proof. By a routine computation, it is easy to check that 2s ∈ 42X ij for all
1 ≤ i < j ≤ 5. Then the proof is complete since V(2s) = SL, in view of
[CS16a, Corollary 10.4].

LEMMA 5.2. We have

1. 42A23 = 42A25 = 42A35 = 42D25 = 42E25 = S,

2. 42A12 = 42A13 = 42A15 and 42A24 = 42A34,

3. 42D12 = 42D15 and 42E12 = 42E15.

Proof. 1. From Lemma 2.14 (5) and (6) we have that

42A23 = 42A25 = 42A35 = S.

Using Lemma 2.14 (7) and (8) we can conclude that

42D25 = 42E25 = S.

2. Follows from Lemma 2.14 (5) and (6).

3. Follows from Lemma 2.14 (7) and (8).
The proof is complete.

Let M be the set consisting of the following pairs of varieties: (42B12, 42D13),
(42B13, 42G12), (42C12, 42E13), (42C13, 42F12), (42D12, 42G13), (42D14, 42G14),
(42D24, 42G34), (42E12, 42F13), (42E14, 42F14), (42E24, 42F34).

LEMMA 5.3. If (A,B) ∈M then A = B.

Proof. Follows from Lemma 2.7 (1). Rename the variables, if necessary.
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Let N be the set consisting of the following varieties 42A14, 42B14,
42B24, 42B34, 42B45, 42C14, 42C24, 42C34, 42C45, 42D14, 42D34, 42E12,
42E14, 42E23, 42E24, 42E34, 42E35, 42E45, 42F15, 42F23, 42F24, 42F45,
42G23, 42G24, 42G35 , 42G45.

THEOREM 5.4. If X ∈ N then X = SL.

Proof. In the proof below the following list of statements will be useful.

(∗)
The identity (I2,0), Lemma 2.2 (1), Lemma 2.2 (4), Lemma 2.4 (1),
Lemma 2.4 (4), Lemma 2.4 (7), Lemma 2.4 (10), Lemma 2.7 (1) and
Lemma 2.7 (2)

Let X ∈ N . In view of Lemma 5.1, it suffices to prove that X ⊆ SL. In
fact, by Lemma 2.1, it suffices to prove that X |= x′ ≈ x.

Let A ∈ X and let a ∈ A.
To facilitate a uniform presentation (and to make the proof shorter), we

introduce the following notation, where x0, y0 ∈ A:

The notation
X/x0, y0

denotes the following statement:

“In the identity (X) that defines the variety X , relative to S, if we assign
x := x0, y := y0 (and simplify it using the list (∗)), then A |= x→ x ≈ x”.

Firstly, we consider the varieties associated with the following statements:

1. 42A14/a, 0,

2. 42B14/a, a′,

3. 42B24/a, a′,

4. 42C24/a, 0,

5. 42C45/a, 0,

6. 42E12/a′, a,

7. 42E23/a′, 0,

8. 42E35/a′, 0,

9. 42F24/a, 0,

10. 42F45/a, 0.

We prove (7) as an illustration.

a
2.2(4)
= a′ → a

2.2(4)
= (a′′ → a′) → a

x≈x′′
= (a → a′) → a

2.4(4)
= (0 → a′) → a

2.7(2)
= a′ → (0 → a′)′ = a′ → ((0 → a′) → 0)

(42E23)
= (a′ → 0) → (a′ → 0)

= a′′ → a′′
x≈x′′
= a→ a.
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Hence the statement (7) is true. Similarly, one can verify the rest of the
above statements is true, from which it follows that, in each of the above
cases, X |= x→ x ≈ x.

Then, applying Lemma 2.10, we get that X |= x′ ≈ x.

The notation, where x0, y0, x1, y1,∈ A,

X/x0, y0/x1, y1 /p ≈ q

is an abbreviation for the following statement:

“In the identity (X) that defines the variety X , relative to S, if we assign
x := x0, y := y0, (and simplify (X) using the appropriate lemmas from the list
(∗)), we obtain that A |= 0′ ≈ 0; and then we assign x := x1, y := y1 in the
identity (X) (and simplify it using 0′ = 0 and the list (∗)), then A |= p ≈ q.”

Secondly, consider the varieties associated with the following statements:

1. 42B45/0, 0/a, a′ /x→ x ≈ x,

2. 42C34/0, 0/a, 0 /x→ x ≈ x,

3. 42E14/0, 0/a, 0 /x→ x ≈ x,

4. 42E24/0, 0/a, 0 /x→ x ≈ x,

5. 42E34/0, 0/0, a /x→ x ≈ x,

6. 42E45/0, 0/a, 0 /x→ x ≈ x,

7. 42F23/0, 0′/a, 0 /x→ x ≈ x.

As a sample, we prove (2) below:

0
2.2(4)
= 0′ → 0

2.2(4)
= (0′′ → 0′) → 0 = (0 → 0′) → 0 = (0 → (0 → 0)) → 0

(42C34)
= (0 → 0) → (0 → 0) = 0′ → 0′

2.2(1)
= 0′ then a → a

2.2(1)
= 0′ → (a → a)

0≈0′
= 0→ (a→ a)

2.7(2)
= 0→ (a′ → a′)

2.4(10)
= 0→ (a→ a)′ = 0→ ((a→ a)→

0)
2.7(1)
= (a → a) → (0 → 0)

(42C34)
= (a → (a → 0)) → 0 = (a → a′)′

2.2(4)
= a′′

x≈x′′
= a. Hence, (2) holds. Similarly, one can verify that each of the above

statements is true. So, it follows that in each case X |= x → x ≈ x. Then,
applying Lemma 2.10, we get that X |= x′ ≈ x.

Thirdly, consider the varieties associated with the following statements:

1. 42C14/0, 0/a, 0 /x′ ≈ x,

2. 42D14/0, 0/0, a /x′ ≈ x,

3. 42D34/0, 0/0, a /x′ ≈ x,

4. 42G23/0′, 0/a, 0 /x′ ≈ x,
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5. 42G24/0, 0/a, 0 /x′ ≈ x,

6. 42G35/0′, 0/a, 0 /x′ ≈ x,

7. 42G45/0, 0/a, 0 /x′ ≈ x.

It is easy to verify that the above statements are true. Hence, it follows
in each of the above cases that X |= x′ ≈ x.

Thus, the varieties still left to consider are 42B34 and 42F15.

Let A ∈ 42B34 and let a ∈ A. Since a
x≈x′′
= a′′

2.2(1)
= (0′ → a′)′ = ((0 →

0)→ (a→ 0))′
(42B34)

= ((0→ (0→ a))→ 0)′
2.4(7)
= ((0→ a)→ 0)′

x≈x′′
= 0→ a,

we have that
A |= x ≈ 0→ x. (5.1)

Therefore, a → a
(5.1)
= (0 → a) → a

2.4(4)
= (a → a) → a

2.2(1)
= (a → a) →

(0′ → a)
(42B34)

= (a → (a → 0′)) → a
2.4(7)
= (a → 0′) → a

2.4(1)
= (a → a′) → a

x≈x′′
= (a′′ → a′)→ a

2.2(4)
= a′ → a

2.2(4)
= a. Hence

A |= x ≈ x→ x.

Then, applying Lemma 2.10, we get that A |= x′ ≈ x.
Let A ∈ 42F15 and let a ∈ A. If we replace x := 0 and y := 0′ we obtain

that

A |= 0 ≈ 0′. (5.2)

Since a
2.2(1)
= 0′ → a

(5.2)
= 0 → a

2.2(4)
= 0 → (a′ → a)

x≈x′′
= 0 → (a′ → a′′)

= 0→ (a′ → (a′ → 0))
(42F15)

= ((0→ a′)→ a′)→ 0
(5.2)
= ((0′ → a′)→ a′)→ 0

2.2(1)
= (a′ → a′)→ 0

2.7(2)
= (a→ a)→ 0, the identity

A |= x ≈ (x→ x)′ (5.3)

holds in A. Hence a′
(5.3)
= (a′ → a′)′

2.7(2)
= (a → a)′

(5.3)
= a, proving the

theorem.

Let I be the set consisting of the following identities: (42A24), (42A45),
(42B13), (42B15), (42B23), (42B25), (42D24), (42D45), (42F25) and (42G15).

LEMMA 5.5. Let (x) ∈ I. If A |= (x) then A |= 0→ x ≈ x.
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Proof. Let a ∈ A. We consider the following cases:

Case 1: A |= (42A24). Then a
2.2(1)
= 0′ → a

2.2(4)
= (0′′ → 0′) → a = (0 →

0′) → a = (0 → (0 → 0)) → a
(42A24)

= 0 → ((0 → 0) → a) = 0 → (0′ → a)
2.2(1)
= 0→ a.

Case 2: A |= (42A45). We have a
2.2(1)
= 0′ → a

2.2(4)
= (0′′ → 0′) → a

= (0 → 0′) → a = (0 → (0 → 0)) → a
(42A45)

= ((0 → 0) → 0) → a

= (0′ → 0)→ a
2.2(1)
= 0→ a.

Case 3: A |= (42B13). In this case, we get a
x≈x′′
= a′′ = a′ → 0

2.2(1)
= 0′ →

(a′ → 0) = (0 → 0) → (a′ → 0)
(42B13)

= 0 → (0 → (a′ → 0))
2.4(7)
= 0 → (a′ →

0) = 0→ a′′
x≈x′′
= 0→ a.

Case 4: A |= (42B15). Then a
x≈x′′
= a′′ = a′ → 0

2.2(1)
= (0′ → a′) → 0

= ((0 → 0) → a′) → 0
(42B15)

= 0 → (0 → (a′ → 0))
2.4(7)
= 0 → (a′ → 0)

= 0→ a′′
x≈x′′
= 0→ a.

Case 5: If A |= (42B23), a
x≈x′′
= a′′ = a′ → 0

2.2(1)
= 0′ → (a′ → 0) = (0 →

0)→ (a′ → 0)
(42B23)

= 0→ ((0→ a′)→ 0)
2.4(8)
= 0→ a′′

x≈x′′
= 0→ a.

Case 6: A |= (42B25). One has a
x≈x′′
= a′′ = a′ → 0

2.2(1)
= (0′ → a′) → 0

= ((0→ 0)→ a′)→ 0
(42B25)

= 0→ ((0→ a′)→ 0)
2.4(8)
= 0→ a′′

x≈x′′
= 0→ a.

Case 7: A |= (42D24). Then, setting x := 0 and y := 0 in the identity
(42D24), we obtain that 0′ = 0. Then apply Lemma 2.5.
Case 8: A |= (42D45), Then, set x := 0 and y := 0 in the identity (42D45)
to obtain that 0′ = 0. Now, apply Lemma 2.5.
Case 9: A |= (42F25). and we consider x := 0 and y := 0′ in the identity
(42F25) we obtain that 0′ = 0. Then apply Lemma 2.5.
Case 10: A |= (42G15). Then, setting x := 0′ and y := 0 in the identity
(42G15), it is easy to obtain that 0′ = 0. Then apply Lemma 2.5.

THEOREM 5.6. If A |= 0→ x ≈ x, then A |= (y) for all (y) ∈ I.

Proof. Observe that, by Lemma 2.12,

A |= t1 ≈ t2 ≈ t4 ≈ t5. (5.4)

Also, by Lemma 2.13, A |= (42A24). Hence, by Lemma 2.14 (6), A |=
(42A45). Now, A |= (42B13) is true, since (a → a) → (b → a)

2.7(1)
= b →
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((a → a) → a)
2.11
= b → (a → (a → a))

2.7(1)
= a → (b → (a → a))

2.7(1)
=

a → (a → (b → a)). Observe that ((a → a) → b) → a = t1(a, a, b, a)
(5.4)
= t2(a, a, b, a) = b → ((a → a) → a)

2.11
= b → (a → (a → a))

2.7(1)
= a →

(b→ (a→ a))
2.7(1)
= a→ (a→ (b→ a)). Consequently, A |= (42B15). From

(a → a) → (b → a) = t5(b, a, a, a) = t2(b, a, a, a) = a → ((a → b) → a),
we have that A |= (42B23). Since a → ((a → b) → a) = t2(b, a, a, a) =
t4(b, a, a, a) = ((a→ a)→ b)→ a we conclude that A |= (42B25).

Since A |= 0→ x ≈ x, by Lemma 2.6,

A |= (x→ y)′ ≈ x′ → y′. (5.5)

Since (a→ (b→ a))→ a
2.7(2)
= a′ → (a→ (b→ a))′

2.7(1)
= a′ → (b→ (a→ a))′

(5.5)
= a′ → (b′ → (a → a)′)

(5.5)
= a′ → (b′ → (a′ → a′))

2.7(2)
= a′ → (b′ → (a →

a))
2.7(1)
= b′ → (a′ → (a → a))

2.4(11)
= b′ → (a → a)

2.4(7)
= b′ → (a → (a → a))

2.7(1)
= a → (b′ → (a → a))

2.7(2)
= a → (b′ → (a′ → a′))

2.7(1)
= a → (a′ → (b′ →

a′))
(5.5)
= a → (a′ → (b → a)′)

2.7(2)
= a → ((b → a) → a). A satisfies the

identity (42D24). Notice that A satisfies the identity (42D45), in view of

((a → b) → a) → a = t1(a, b, a, a)
(5.4)
= t2(a, b, a, a) = a → ((b → a) → a)

using(42D24)
= (a→ (b→ a))→ a.

Since ((a→ b)→ b)→ a = t4(b, b, a, a) = t2(b, b, a, a) = a→ ((b→ b)→
a), the algebra A |= (42F25). Also, since ((a → b) → b) → b = t4(b, b, a, b)
(5.4)
= t2(b, b, a, b) = a → ((b → b) → b)

2.11
= a → (b → (b → b)), we have that

A |= (42G15).

Recall that the varieties 42A24, 42A45, 42B13, 42B15, 42B23, 42B25,
42D24, 42D45, 42F25, and 42G15 are defined, respectively, by the following:

(42A24) x→ ((x→ x)→ y) ≈ (x→ (x→ x))→ y
(42A45) (x→ (x→ x))→ y ≈ ((x→ x)→ x)→ y
(42B13) x→ (x→ (y → x)) ≈ (x→ x)→ (y → x)
(42B15) x→ (x→ (y → x)) ≈ ((x→ x)→ y)→ x
(42B23) x→ ((x→ y)→ x) ≈ (x→ x)→ (y → x)
(42B25) x→ ((x→ y)→ x) ≈ ((x→ x)→ y)→ x
(42D24) x→ ((y → x)→ x) ≈ (x→ (y → x))→ x
(42D45) (x→ (y → x))→ x ≈ ((x→ y)→ x)→ x
(42F25) x→ ((y → y)→ x) ≈ ((x→ y)→ y)→ x
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(42G15) x→ (y → (y → y)) ≈ ((x→ y)→ y)→ y

Using Lemma 5.5 and Theorem 5.6, one can easily verify the following
Theorem.

THEOREM 5.7. 42A24 = 42A45 = 42B13 = 42B15 = 42B23 = 42B25 =
42D24 = 42D45 = 42F25 = 42G15.

LEMMA 5.8. 42A24 = 31A12.

Proof. Let A ∈ 31A12. Since, replacing x := 0 in the identity (31A12), we
obtain 0 = 0′ then a = a′′ = a′ → 0 = a′ → 0′ = 0 → a by Lemma 2.3 (2).
Then, by Lemma 2.13, A ∈ 42A24. Therefore 31A12 ⊆ 42A24.

For the converse let consider A ∈ 42A24. Let a ∈ A. By Lemma 5.5

A |= 0→ x ≈ x. (5.6)

Hence, (a→ a)→ a
2.4(4)
= (0→ a)→ a

(5.6)
= a→ a

2.4(7)
= a→ (a→ a).

Let J be the set consisting of the following identities: (42B12), (42B35),
(42C23), (42C25), (42C35) and (42G25).

LEMMA 5.9. Let (x) ∈ J . If A |= (x) then A |= 0→ (x→ x) ≈ x→ x.

Proof. Let a ∈ A. Consider the following cases:

Case 1: A |= (42B12). Then a→ a
2.2(4)
= a→ (a′ → a) = a→ ((a→ 0)→ a)

(42B12)
= a→ (a→ (0→ a))

2.7(1)
= a→ (0→ (a→ a))

2.7(1)
= 0→ (a→ (a→ a))

2.4(7)
= 0→ (a→ a).

Case 2: (x) = (42B35). Hence 0 → (a → a)
2.4(6)and(9)

= (0 → a) → (0 → a)
2.7(1)
= 0 → ((0 → a) → a)

2.4(4)
= 0 → ((a → a) → a)

2.7(1)
= (a → a) → (0 → a)

(42B35)
= ((a→ a)→ 0)→ a = (a→ a)′ → a

2.7(2)
= a′ → (a→ a)

2.4(11)
= a→ a.

Case 3: (x) = (42C23). We get a → a
2.2(1)
= 0′ → (a → a) = (0 →

0) → (a → a)
(42C23)

= 0 → ((0 → a) → a)
2.7(1)
= (0 → a) → (0 → a)

2.4(6)and(9)
= 0→ (a→ a).

Case 4: (x) = (42C25). One has a → a
2.2(1)
= (0′ → a) → a = ((0 →

0) → a) → a
(42C25)

= 0 → ((0 → a) → a)
2.7(1)
= (0 → a) → (0 → a)

2.4(6)and(9)
= 0→ (a→ a).
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Case 5: (x) = (42C35). Then 0→ (a→ a)′
2.7(2)
= (a→ a)→ 0′ = (a→ a)→

(0→ 0)
(42C35)

= ((a→ a)→ 0)→ 0
x≈x′′
= a→ a. Therefore,

A |= 0→ (x→ x)′ ≈ x→ x. (5.7)

Hence a→ a
(5.7)
= 0→ (a→ a)′

(5.7)
= 0→ (0→ (a→ a)′)′

2.4(8)
= 0→ (a→ a)′′

x≈x′′
= 0→ (a→ a).

Case 6: (x) = (42G25). We have 0→ (a→ a)
2.4(6)and(9)

= (0→ a)→ (0→ a)
2.7(1)
= 0→ ((0→ a)→ a)

2.4(4)
= 0→ ((a→ a)→ a)

(42G25)
= ((0→ a)→ a)→ a

2.4(2)
= a→ a, which proves the lemma.

THEOREM 5.10. If A |= 0 → (x → x) ≈ x → x then A |= (y), for all
(y) ∈ J .

Proof. Let a, b ∈ A. By Lemma 2.9 (1) and (2),

A |= (x→ x)→ y′ ≈ ((x→ x)→ y)′ (5.8)

and
A |= (x→ x)→ (y → z) ≈ ((x→ x)→ y)→ z (5.9)

Using (5.9) we have that A satisfies (42B35) and (42C35).

Since a → ((a → b) → a)
2.7(1)
= (a → b) → (a → a)

(I)
= (((a → a)′ → a) →

(b → (a → a))′)′ = ((((a → a) → 0) → a) → (b → (a → a))′)′
(5.9)
= (((a →

a) → (0 → a)) → (b → (a → a))′)′
2.7(1)
= ((0 → ((a → a) → a)) → (b →

(a → a))′)′
2.4(6)and(9)

= (((0 → (a → a)) → (0 → a)) → (b → (a → a))′)′

hyp
= (((a → a) → (0 → a)) → (b → (a → a))′)′

2.7(1)
= ((0 → ((a → a) →

a)) → (b → (a → a))′)′
2.4(4)
= ((0 → ((0 → a) → a)) → (b → (a → a))′)′

2.7(1)
= (((0 → a) → (0 → a)) → (b → (a → a))′)′

(5.8)
= (((0 → a) → (0 →

a)) → (b → (a → a)))′′
x≈x′′
= ((0 → a) → (0 → a)) → (b → (a → a))

2.4(6)and(9)
= (0 → (a → a)) → (b → (a → a))

hyp
= (a → a) → (b → (a → a))

2.7(1)
= b → ((a → a) → (a → a))

2.4(12)
= b → (a → a)

2.4(7)
= b → (a → (a → a))

2.7(1)
= a → (b → (a → a))

2.7(1)
= a → (a → (b → a)), the algebra A satisfies

(42B12). By Lemma 2.9 (3) and Lemma 2.7 (1), A satisfies (42C23). In view
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of (5.9) and (42C23), we have A |= (x→ x)→ (y → y) ≈ x→ ((x→ y)→
y) proving that the identity (42C25) holds in A.

It remains to verify that the algebra A satisfies identity (42G25). To

finish off the proof, ((a → b) → b) → b
(I)
= ((b′ → a) → (b → b)′)′ → b

2.7(2)
= b′ → ((b′ → a) → (b → b)′)′′

x′′≈x
= b′ → ((b′ → a) → (b → b)′)

2.7(2)
= b′ → ((b → b) → (b′ → a)′)

2.7(1)
= (b → b) → (b′ → (b′ → a)′)

2.7(2)
= (b →

b) → ((b′ → a) → b)
(I)
= (b → b) → ((b′ → b′) → (a → b)′)′

2.7(2)
= (b → b) →

((b → b) → (a → b)′)′
(5.8)
= (b → b) → ((b → b) → (a → b))′′

x′′≈x
= (b → b) →

((b → b) → (a → b))
2.4(7)
= (b → b) → (a → b)

2.7(1)
= a → ((b → b) → b).

Consequently, A |= (42G25).

Recall that the varieties 42B12, 42B35, 42C23, 42C25, 42C35, and 42G25
are defined, respectively, by the following:

(42B12) x→ (x→ (y → x)) ≈ x→ ((x→ y)→ x)
(42B35) (x→ x)→ (y → x) ≈ ((x→ x)→ y)→ x
(42C23) x→ ((x→ y)→ y) ≈ (x→ x)→ (y → y)
(42C25) x→ ((x→ y)→ y) ≈ ((x→ x)→ y)→ y
(42C35) (x→ x)→ (y → y) ≈ ((x→ x)→ y)→ y
(42G25) x→ ((y → y)→ y) ≈ ((x→ y)→ y)→ y

In view of Lemma 5.9 and Theorem 5.10, the following theorem is imme-
diate.

THEOREM 5.11. 42B12 = 42B35 = 42C23 = 42C25 = 42C35 = 42G25.

LEMMA 5.12. 42A12 = 42D23 = 42D35.

Proof. In view of Lemma 2.14 (7), we have

A |= x→ ((y → x)→ x) ≈ ((x→ y)→ x)→ x.

Hence,
A |= (42D23) if and only if A |= (42D35),

proving that 42D23 = 42D35.

Assume A ∈ 42A12 and a, b ∈ A. Observe that ((a → b) → a) → a
2.4(3)
=

(a → (b → a)′)′ → a
2.7(2)
= a′ → (a → (b → a)′)

2.7(2)
= a′ → ((b → a) → a′)
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2.7(1)
= (b→ a)→ (a′ → a′)

2.7(2)
= (b→ a)→ (a→ a)

2.7(2)
= (a′ → b′)→ (a→ a)

2.4(7)
= (a′ → (a′ → b′)) → (a → a)

2.4(7)
= (a′ → (a′ → (a′ → b′))) → (a → a)

(42A12)
= (a′ → ((a′ → a′) → b)) → (a → a)

2.7(1)
= ((a′ → a′) → (a′ → b)) →

(a → a)
2.7(2)
= ((a → a) → (a′ → b)) → (a → a)

2.4(4)
= (0 → (a′ → b)) →

(a → a)
2.7(1)
= (a′ → (0 → b)) → (a → a)

2.7(2)
= ((0 → b)′ → a) → (a → a)

2.4(13)
= (0 → (0 → b)′′) → (a → a)

x≈x′′
= (0 → (0 → b)) → (a → a)

2.4(7)
=

(0 → b) → (a → a)
2.7(2)
= (0 → b) → (a′ → a′)

x≈x′′
= (0 → b′′) → (a′ → a′)

2.4(13)
= (b′ → a′)→ (a′ → a′)

2.7(2)
= (a→ b)→ (a→ a). Hence A ∈ 42D35.

Now assume that A ∈ 42D35 and a, b ∈ A. Since 0 → a
x≈x′′
= (0 → a)′′

= ((0 → a) → 0) → 0
(42D35)

= (0 → a) → (0 → 0) = (0 → a) → 0′

2.7(2)
= 0→ (0→ a)′

2.4(8)
= 0→ a′, the algebra A satisfies

0→ x ≈ 0→ x′. (5.10)

Therefore, a → ((a → a) → b)
2.7(1)
= (a → a) → (a → b)

2.4(13)
= (0 → a′) →

(a → b)
2.7(1)
= a → ((0 → a′) → b)

(5.10)
= a → ((0 → a) → b)

2.4(4)
= a →

((b → a) → b)
2.7(1)
= (b → a) → (a → b)

2.4(12)
= a → b

2.4(7)
= a → (a → b)

2.4(7)
= a→ (a→ (a→ b)). Hence A ∈ 42A12.

Let K be the set consisting of the following identities: (42C12), (42C13),
(42C15), (42D12) and (42F35).

LEMMA 5.13. Let (x) ∈ K. If A |= (x) then A |= 0→ x ≈ x→ x.

Proof. Let a ∈ A.

If A |= (42C12), a→ a
2.7(2)
= a′ → a′

x′′≈x
= a′ → a′′′ = a′ → ((a′ → 0)→ 0)

(42C12)
= a′ → (a′ → (0→ 0)) = a′ → (a′ → 0′)

2.4(7)
= a′ → 0′

2.3(1)
= 0→ a.

If A |= (42C13), 0 → a
2.7(2)
= a′ → 0′

2.4(7)
= a′ → (a′ → 0′) = a′ → (a′ →

(0 → 0))
(42C13)

= (a′ → a′) → (0 → 0) = (a′ → a′) → 0′
2.3(2)
= 0 → (a′ → a′)′

2.4(10)
= 0 → (a′′ → a′′)

x′′≈x
= 0 → (a → a)

2.4(7)
= 0 → (0 → (a → a))

(42C13)
= (0→ 0)→ (a→ a) = 0′ → (a→ a)

2.2(1)
= a→ a.
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If A |= (42C15), 0 → a
2.7(2)
= a′ → 0′

2.4(7)
= a′ → (a′ → 0′) = a′ → (a′ →

(0→ 0))
(42C15)

= ((a′ → a′)→ 0)→ 0
x′′≈x
= a′ → a′

2.7(2)
= a→ a.

If A |= (42D12), 0 → a
2.7(2)
= a′ → 0′

2.2(4)
= a′ → (0 → 0′) = a′ →

(0 → (0 → 0))
2.7(1)
= 0 → (a′ → (0 → 0))

(42D12)
= 0 → ((a′ → 0) → 0)

x′′≈x
= 0→ (a→ 0) = 0→ a′.

Hence,
A |= 0→ x ≈ 0→ x′. (5.11)

Therefore, a → a
2.2(4)
= a → (a′ → a)

2.2(4)
= a → ((a → a′) → a)

2.4(4)
= a →

((0 → a′) → a)
(5.11)
= a → ((0 → a) → a)

(42D12)
= a → (0 → (a → a))

2.7(1)
= 0 → (a → (a → a))

2.4(7)
= 0 → (a → a)

2.4(6)and(9)
= (0 → a) → (0 → a)

(5.11)
= (0→ a′)→ (0→ a)

2.4(6)and(9)
= 0→ (a′ → a)

2.2(4)
= 0→ a.

If A |= (42F35), 0 → a
2.4(11)

= a′ → (0 → a) = (a → 0) → (0 → a)
(42F35)

= [(a→ 0)→ 0]→ a = a′′ → a
x′′≈x.

= a→ a.

THEOREM 5.14. If A |= 0→ x ≈ x→ x then A |= (y) for all (y) ∈ K.

Proof. Let a, b ∈ A. By the hypothesis and Lemma 2.8 (1) A satisfies

0→ (x→ x) ≈ x→ x. (5.12)

Hence, by Lemma 2.9 (3) and Lemma 2.7 (1), the algebra A satisfies (42C23).
In view of Theorem 5.11, the algebra A satisfies the identity (42B12) too.

Since (a → a) → (b → b)
hyp
= (0 → a) → (0 → b)

2.4(6)and(9)
= 0 → (a → b)

2.7(1)
= a → (0 → b)

hyp
= a → (b → b)

2.4(7)
= a → (a → (b → b)), the algebra A

satisfies (42C13). Therefore, a → ((a → b) → b)
(42C23)

= (a → a) → (b → b)
(42C13)

= a→ (a→ (b→ b)). Consequently, A |= (42C12). By Lemma 2.9 (2),

A |= (x→ x)→ (y → z) ≈ ((x→ x)→ y)→ z. (5.13)

Therefore, a → (a → (b → b))
(42C12)

= a → ((a → b) → b)
2.7(1)
= (a → b) →

(a → b)
2.9(3)and(5.12)

= (a → a) → (b → b)
(5.13)
= ((a → a) → b) → b proving

(42C15). By Lemma 2.8 (2) A satisfies

0→ x′ ≈ 0→ x. (5.14)
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Since a→ ((b→ a)→ a)
2.7(1)
= (b→ a)→ (a→ a)

hyp
= (b→ a)→ (0→ a)

(I)
= (((0 → a)′ → b) → (a → (0 → a))′)′

2.7(1)
= (((0 → a)′ → b) → (0 → (a →

a))′)′
(5.12)
= (((0 → a)′ → b) → (a → a)′)′

hyp
= (((0 → a)′ → b) → (0 → a)′)′

2.2(1)
= (((0 → a)′ → b) → (0′ → (0 → a))′)′

(I)
= (b → 0′) → (0 → a)

2.3(2)
= (0 → b′) → (0 → a)

(5.14)
= (0 → b) → (0 → a)

hyp
= (0 → b) → (a → a)

2.7(1)
= a → ((0 → b) → a)

2.4(4)
= a → ((a → b) → a)

(42B12)
= a → (a → (b →

a))
2.7(1)
= a → (b → (a → a)), the identity (42D12) holds in A. Finally,

A |= (42F35), in view of the following derivation: ((a → b) → b) → a
(I)
= ((a′ → (a → b)) → (b → a)′)′

2.7(1)
= ((a → (a′ → b)) → (b → a)′)′

2.7(2)
= ((a → (b′ → a)) → (b → a)′)′

2.7(1)
= ((b′ → (a → a)) → (b → a)′)′

hyp
= ((b′ → (0 → a)) → (b → a)′)′

2.7(1)
= ((0 → (b′ → a)) → (b → a)′)′

2.4(6)and(9)
= (((0→ b′)→ (0→ a))→ (b→ a)′)′

(5.14)
= (((0→ b)→ (0→ a))→

(b → a)′)′
2.4(6)and(9)

= ((0 → (b → a)) → (b → a)′)′
2.4(4)
= (((b → a)′ → (b →

a)) → (b → a)′)′
2.2(4)
= ((b → a) → (b → a)′)′

2.2(4)
= (b → a)′′

x′′≈x
= b → a

2.4(12)
= (a→ b)→ (b→ a), completing the proof.

THEOREM 5.15. 42C12 = 42C13 = 42C15 = 42D12 = 42F35.

Proof. If A ∈ 42C12 then, by Lemma 5.13, A |= 0 → x ≈ x → x. Hence,
using Theorem 5.14, A |= (y) for all (y) ∈ K. Consequently A |= (42C13),
proving 42C12 ⊆ 42C13. Similar arguments can be used for the remaining
inclusions.

6 Weak associative laws with length 4 and

with 3 variables.

Possible words of length 4 with 3 variables are:

A: 〈x, x, y, z〉,
B: 〈x, y, x, z〉,
C: 〈x, y, y, z〉,

D: 〈x, y, z, x〉,
E: 〈x, y, z, y〉,
F: 〈x, y, z, z〉.

Ways in which a word of length 4 can be bracketed:

1: a→ (a→ (a→ a)),
2: a→ ((a→ a)→ a),
3: (a→ a)→ (a→ a),

4: (a→ (a→ a))→ a,
5: ((a→ a)→ a)→ a.

26



Note that these identities are precisely the identities of Bol-Moufang type
which were, as mentioned in the Introduction, analysed in [CS18a] with a
slightly different notation wherein the first two digits were not used; for
example, 43A23 was denoted by A23, etc.

Recall that the varieties 43A12, 43A23, and 43A23 are defined, respec-
tively, by the following:
(43A12) x→ (x→ (y → z)) ≈ x→ ((x→ y)→ z)
(43A23) x→ ((x→ y)→ z) ≈ (x→ x)→ (y → z)
(43F25) x→ ((y → z)→ z) ≈ ((x→ y)→ z)→ z.

THEOREM 6.1. [CS18a] There are 4 nontrivial varieties of Bol-Moufang
type that are distinct from each other: SL, 43A12, 43A23 and 43F25; and
they satisfy the following inclusions:

1. SL ⊂ 43A23 ⊂ 43F25,

2. SL ⊂ 43A12,

3. BA ⊂ 43A12 ⊂ 43F25,

4. 43F25 ⊂ S,

5. SL = 43A23 ∩ 43A12.

LEMMA 6.2. 43F25 = 42B35.

Proof. Let A ∈ 42B35. By Lemma 5.9,

A |= 0→ (x→ x) ≈ x→ x. (6.1)

Hence, using Lemmas 2.8 and 2.9, we have

A |= (x→ x)→ y′ ≈ ((x→ x)→ y)′. (6.2)

Let a, b, c ∈ A. Then ((a → b) → c) → c
(I)
= ((c′ → a) → (b → c)′)′ → c

2.7(2)
= c′ → ((c′ → a) → (b → c)′)′′

x′′≈x
= c′ → ((c′ → a) → (b → c)′)

2.7(2)
= c′ → ((b → c) → (c′ → a)′)

2.7(1)
= (b → c) → (c′ → (c′ → a)′)

2.7(2)
= (b →

c) → ((c′ → a) → c)
(I)
= (b → c) → ((c′ → c′) → (a → c)′)′

2.7(2)
= (b → c) →

((c → c) → (a → c)′)′
(6.2)
= (b → c) → ((c → c) → (a → c))′′

x′′≈x
= (b → c) →
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((c → c) → (a → c))
2.4(16)

= (b → c) → (a → c)
2.7(1)
= a → ((b → c) → c).

Hence, A |= (43F25) and consequently,

42B35 ⊆ 43F25.

Assume now that A ∈ 43F25 and a ∈ A. Then 0 → (a → a)
2.2(1)
= 0 →

((0′ → a) → a)
(43F25)

= ((0 → 0′) → a) → a
2.2(4)

= (0′ → a) → a
2.2(1)
= a → a.

Hence, using Lemma 2.9, we get

A |= (x→ x)→ (y → z) ≈ ((x→ x)→ y)→ z (6.3)

Using (6.3) we have that A |= (42B35). This completes the proof.

LEMMA 6.3. 43A12 = 42C12.

Proof. Let A ∈ 43A12 and a ∈ A. Observe that a → a
2.7(2)
= a′ → a′

x≈x′′
= a′ → a′′′ = a′ → ((a′ → 0) → 0)

(43A12)
= a′ → (a′ → (0 → 0))

2.4(7)
=

a′ → (0 → 0) = a′ → 0′
2.7(2)
= 0 → a. Hence, by Theorem 5.14, A ∈ 42C12,

implying 43A12 ⊆ 42C12.
Conversely, take A ∈ 42C12 and a, b, c ∈ A. By Lemma 5.13,

A |= 0→ x ≈ x→ x. (6.4)

Hence, by Lemmas 2.8 and 2.9,

A |= (x→ x)→ y′ ≈ ((x→ x)→ y)′ (6.5)

and
A |= (x→ x)→ (y → z) ≈ ((x→ x)→ y)→ z. (6.6)

Therefore,

a → ((a → b) → c)
(I)
= a → ((c′ → a) → (b → c)′)′

2.7(2)
= ((c′ → a) →

(b → c)′) → a′
(I)
= {(a′′ → (c′ → a)) → ((b → c)′ → a′)′}′ x≈x′′

= {(a →
(c′ → a)) → ((b → c)′ → a′)′}′ 2.7(1)

= {(c′ → (a → a)) → ((b → c)′ → a′)′}′
2.4(7)
= {(c′ → (c′ → (a→ a)))→ ((b→ c)′ → a′)′}′ (42C12)

= {(c′ → ((c′ → a)→
a)) → ((b → c)′ → a′)′}′ 2.7(1)= {((c′ → a) → (c′ → a)) → ((b → c)′ → a′)′}′
(6.5)
= {((c′ → a) → (c′ → a)) → ((b → c)′ → a′)}′′ x≈x′′

= ((c′ → a) → (c′ →
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a)) → ((b → c)′ → a′)
(6.6)
= (((c′ → a) → (c′ → a)) → (b → c)′) → a′

(6.5)
= (((c′ → a) → (c′ → a)) → (b → c))′ → a′

2.7(1)
= ((c′ → ((c′ → a) →

a)) → (b → c))′ → a′
(42C12)

= ((c′ → (c′ → (a → a))) → (b → c))′ → a′

2.4(7)
= ((c′ → (a → a)) → (b → c))′ → a′

(6.4)
= ((c′ → (0 → a)) → (b →

c))′ → a′
2.7(1)
= ((0 → (c′ → a)) → (b → c))′ → a′

2.4(6)and(9)
= (((0 → c′) →

(0 → a)) → (b → c))′ → a′
(6.4)
= (((c′ → c′) → (0 → a)) → (b → c))′ → a′

2.7(2)
= (((c → c) → (0 → a)) → (b → c))′ → a′

(6.4)
= (((0 → c) → (0 → a)) →

(b→ c))′ → a′
2.4(6)and(9)

= ((0→ (c→ a))→ (b→ c))′ → a′.

So, a → ((a → b) → c)
2.7(1)
= ((c → (0 → a)) → (b → c))′ → a′

2.7(2)
=

(((0 → a)′ → c′) → (b → c))′ → a′
2.7(2)
= (((0 → a)′ → c′) → (c′ → b′))′ → a′

2.4(13)
= ((0 → (0 → a)′′) → (c′ → b′))′ → a′

x≈x′′
= ((0 → (0 → a)) → (c′ →

b′))′ → a′
2.4(7)
= ((0 → a) → (c′ → b′))′ → a′

2.7(2)
= ((0 → a) → (b → c))′ → a′

2.4(11)
= a → {((0 → a) → (b → c))′ → a′} (6.4)

= a → {((a → a) → (b →
c))′ → a′} (6.5)

= a → {((a → a) → (b → c)′) → a′} (I)
= a → {(a → (a →

a)) → ((b → c)′ → a′)′}′ 2.4(7)= a → {(a → a) → ((b → c)′ → a′)′}′ 2.7(2)= a →
{((b → c)′ → a′) → (a → a)′}′ 2.7(2)

= a → {(a → (b → c)) → (a → a)′}′
2.7(2)
= a → {(a → (b → c)) → (a′ → a′)′}′ (6.4)

= a → {(a → (b → c)) →
(0 → a′)′}′ (I)

= a → (((b → c) → 0) → a′)
2.7(2)
= a → (a → (b → c)). Hence

A ∈ 43A12.

7 Weak associative laws with length 4 and

with 4 variables.

The only word of length 4 with 4 variables is:

A: 〈t, x, y, z〉.
Ways in which a word of length 4 can be bracketed:

1: a→ (a→ (a→ a)),
2: a→ ((a→ a)→ a),
3: (a→ a)→ (a→ a),
4: (a→ (a→ a))→ a,
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5: ((a→ a)→ a)→ a.

Let L be the set consisting of the following varieties 44A12, 44A13,
44A14, 44A15, 44A23, 44A24, 44A34, 44A35 and 44A45.

THEOREM 7.1. If X ∈ L then X = 33A12.

Proof. It is easy to see that 33A12 ⊆ X .

Let A ∈ X and let a, b, c ∈ A.
To facilitate a uniform presentation (and to make the proof shorter), we

introduce the following notation, where u0, x0, y0, z0 ∈ A:

The notation
X/u0, x0, y0, z0

denotes the following statement:
“In the identity (X) that defines the variety X , relative to S, if we assign

u := u0, x := x0, y := y0, z := z0 (and simplify it using Lemma 2.2 (1) and
x ≈ x′′), then A |= x→ (y → z) ≈ (x→ y)→ z”.

Hence, we consider the varieties associated with the following statements:

1. 44A12/0′, a, b, c;

2. 44A13/a, b, 0′, c;

3. 44A14/0′, a, b, c;

4. 44A15/0′, a, b, c;

5. 44A23/0′, a, b, c;

6. 44A24/a, 0′, b, c;

7. 34A12/0′, a, b, c;

8. 44A35/0′, a, b, c;

9. 44A45/a, b, c, 0.

It is routine to verify that each of the above statements is true, from
which we conclude that, for X ∈ L, X ⊆ 33A12.

LEMMA 7.2. If A ∈ 31A12 ∪ 43A23 ∪ 44A25 then A |= 0→ x ≈ x.

Proof. First, we will show that if A ∈ 31A12 ∪ 43A23 ∪ 44A25, then A |=
0′ ≈ 0.

Let A ∈ 31A12. Then, by Lemma 2.2 (4) and (31A12), 0′ = 0 → 0′ =
0→ (0→ 0) = (0→ 0)→ 0 = 0′ → 0 = 0.

Let A ∈ 43A23. Then 0
2.2(1)
= 0′ → 0

2.2(1)
= 0′ → (0′ → 0) = (0 → 0) →

(0′ → 0)
(43A23)

= 0→ ((0→ 0′)→ 0)
2.2(4)
= 0→ (0′ → 0)

2.2(1)
= 0→ 0 = 0′.
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Let A ∈ 44A25, Then 0′ = 0 → 0
2.2(1)
= 0 → (0′ → 0)

2.2(4)
= 0 → ((0 →

0′) → 0)
(44A25)

= ((0 → 0) → 0′) → 0 = (0′ → 0′) → 0
2.2(1)
= 0′ → 0

2.2(1)
= 0.

Therefore,
A |= 0 ≈ 0′.

Hence, for a ∈ A, 0→ a = 0′ → a = a by Lemma 2.2 (1).

LEMMA 7.3. If A |= 0→ x ≈ x then A ∈ 31A12 ∩ 43A23 ∩ 44A25.

Proof. Let a, b, c, d ∈ A. Since a→ (a→ a)
2.4(7)
= a→ a

hyp
= (0→ a)→ a

2.4(4)
=

(a→ a)→ a, we have A |= (31A12). Observe that, by Lemma 2.12 we have
that A |= t3(x, y, z, t) ≈ t5(x, y, z, t) and A |= t3(x, y, z, t) ≈ t4(x, y, z, t).
Hence, (a → a) → (b → c) = t3(a, a, b, c) = t5(a, a, b, c) = (a → b) → (a →
c)

2.7(1)
= a→ ((a→ b)→ c) and consequently, the algebra A satisfies (43A23).

Also, the algebra satisfies the identity (44A25), since
((d → a) → b) → c = t4(b, a, d, c) = t3(b, a, d, c) = (a → b) → (d →

c)
2.7(1)
= d→ ((a→ b)→ c),

LEMMA 7.4. 31A12 = 43A23 = 44A25

Proof. The proof is immediate from Lemma 7.2 and Lemma 7.3.

8 MAIN THEOREM

The purpose of this section is to prove our main theorem. The following
proposition will be needed to complete the proof of the main theorem.

In the following proposition we combine all the results obtained so far
both in this paper and in [CS18a]. In the latter, each of the 60 varieties
defined by the weak associative laws of lenth 4 with 3 variables was shown to
be equal to one of the three varieties: 43A12, 43A23, and 43F25. Therefore,
we will need only consider these three varieties with the remaining 95 varieties
in the following result.

We recall here that the varieties 42A12, 43A12, 43A23, and 43A23 are
defined, respectively, by the following:
(42A12) x→ (x→ (x→ y)) ≈ x→ ((x→ x)→ y)
(43A12) x→ (x→ (y → z)) ≈ x→ ((x→ y)→ z)
(43A23) x→ ((x→ y)→ z) ≈ (x→ x)→ (y → z)
(43F25) x→ ((y → z)→ z) ≈ ((x→ y)→ z)→ z.
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PROPOSITION 8.1. Each of the possible 155 weak associative subvarieties
of S is equal to one of the follwing varieties:

SL, 43A12, 43A23, 42A12, 43F25 and S.

Proof. We have

1. SL 3.1
= LALT 3.1

= FLEX 3.1
= RALT 3.2

= 33A12
5.4
= 42A14

5.4
= 42B14

5.4
=

42B24
5.4
= 42B34

5.4
= 42B45

5.4
= 42C14

5.4
= 42C24

5.4
= 42C34

5.4
= 42C45

5.4
=

42D14
5.4
= 42D34

5.4
= 42E12

5.4
= 42E14

5.4
= 42E23

5.4
= 42E24

5.4
= 42E34

5.4
=

42E35
5.4
= 42E45

5.4
= 42F15

5.4
= 42F23

5.4
= 42F24

5.4
= 42F45

5.4
= 42G23

5.4
=

42G24
5.4
= 42G35

5.4
= 42G45

5.2(3)
= 42E15

5.3
= 42G14

5.3
= 42F13

5.3
= 42F14

5.3
=

42F34
7.1
= 44A12

7.1
= 44A13

7.1
= 44A14

7.1
= 44A15

7.1
= 44A23

7.1
= 44A24

7.1
=

44A34
7.1
= 44A35

7.1
= 44A45.

2. 43A12
6.3
= 42C12

5.15
= 42C13

5.15
= 42C15

5.15
= 42D12

5.15
= 42F35

5.2(3)
=

42D15
5.3
= 42E13

5.3
= 42F12

5.3
= 42G13.

3. 43A23
7.4
= 31A12

4.2
= 41A14

4.1(6)
= 41A34

4.1(6)
= 41A45

4.1(2)
= 41A24

7.4
=

44A25
5.8
= 42A24

5.2(2)
= 42A34

5.7
= 42A45

5.7
= 42B13

5.7
= 42B15

5.7
= 42B23

5.7
=

42B25
5.7
= 42D24

5.7
= 42D45

5.7
= 42F25

5.7
= 42G15

5.3
= 42G34

5.3
= 42G12.

4. 42A12
5.2(2)
= 42A13

5.2(2)
= 42A15

5.12
= 42D23

5.12
= 42D35.

5. 43F25
6.2
= 42B35

5.11
= 42B12

5.11
= 42C23

5.11
= 42C25

5.11
= 42C35

5.11
= 42G25

5.3
=

42D13.

6. S 4.1(4)
= 41A23

4.1(5)
= 41A13

4.1(5)
= 41A15

4.1(5)
= 41A35

4.1(3)
= 41A25

4.1(1)
=

41A12
5.2(1)
= 42A23

5.2(1)
= 42A25

5.2(1)
= 42A35

5.2(1)
= 42D25

5.2(1)
= 42E25.

We are now ready to present the main theorem of this paper.

THEOREM 8.2.

(a) The following are the 6 varieties defined, relative to S, by the 155 weak
associative laws of length m ≤ 4 that are distinct from each other:

SL, 43A12, 43A23, 42A12, 43F25 and S.
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(b) They satisfy the following relationships:

1. SL ⊂ 43A23 ⊂ 43F25 ⊂ S,

2. SL ⊂ 43A12 ⊂ 42A12 ⊂ S,

3. BA ⊂ 43A12 ⊂ 43F25,

4. 43A12 6⊆ 43A23 and 43A23 6⊆ 43A12,

5. 42A12 6⊆ 43F25 and 43F25 6⊆ 42A12,

6. 43A23 6⊆ 42A12 and 42A12 6⊆ 43A23.

Proof. We first prove (b):

1. Follows from Theorem 6.1.

2. The statement SL ⊂ 43A12 follows from Theorem 6.1. Then it remains
to check that 43A12 ⊂ 42A12 ⊂ S.

Let A ∈ 43A12 and a, b ∈ A. By Proposition 8.1 (2), A ∈ 42C12.
Observe that

42C12 |= 0→ x ≈ x→ x (8.1)

by Lemma 5.13. Then, using Lemma 2.8 (1), we have 42C12 |= 0 →
(x→ x) ≈ x→ x. Hence, by Lemma 2.9 (1),

A |= (x→ x)→ y′ ≈ ((x→ x)→ y)′. (8.2)

Hence a → ((a → a) → b)
2.7(1)
= (a → a) → (a → b)

2.7(2)
= (a → a) →

(b′ → a′)
x≈x′′
= ((a → a) → (b′ → a′))′′

(8.2)
= ((a → a) → (b′ → a′)′)′

2.7(2)
= ((a′ → a′) → (b′ → a′)′)′

(8.1)
= ((0 → a′) → (b′ → a′)′)′

2.7(2)
=

((a → 0′) → (b′ → a′)′)′
(I)
= (0′ → b′) → a′

2.2(1)
= b′ → a′

2.7(2)
= a → b

2.4(7)
= a → (a → (a → b)). Thus, A ∈ 42A12. The following examples

show, respectively, that 42A12 6= 43A12 and 42A12 6= S.

→: 0 1 2
0 2 2 2
1 1 1 2
2 0 1 2

→: 0 1 2 3
0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3
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3. Follows from Theorem 6.1.

4. The algebra 2b shows that 43A12 6⊆ 43A23, whilst the following alge-
bra shows that 43A23 6⊆ 43A12.

→: 0 1 2 3
0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

5. The following algebras show that 42A12 6⊆ 43F25 and 43F25 6⊆ 42A12,
respectively.

→: 0 1 2
0 2 2 2
1 1 1 2
2 0 1 2

→: 0 1 2 3
0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

6. The following algebras show that 43A23 6⊆ 42A12 and 42A12 6⊆ 43A23,
respectively.

→: 0 1 2 3
0 0 1 2 3
1 2 3 2 3
2 1 1 3 3
3 3 3 3 3

→: 0 1
0 1 1
1 0 1

The proof of the theorem is now complete since (a) is an immediate conse-
quence of Proposition 8.1 and (b).

The Hasse diagram of the poset of the weak associative subvarieties of S
of length ≤ 4, together with the variety BA is given below:
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We conclude the paper with the remark that it would be of interest to
investigate the weak associative identities, and in particular, the identities of
Bol-Moufang type, relative to I and other (important) subvarieties of I.
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