
Modelling and Solving the Perfect Edge

Domination Problem

Vinicius L. do Forte ∗1, Min Chih Lin †2, Abilio Lucena ‡3, Nelson
Maculan §3, Veronica A. Moyano ¶2, and Jayme L. Szwarcfiter ‖3,4

1Universidade Federal Rural do Rio de Janeiro
Departamento de Matemática

Seropédica, Brasil
vlforte@ufrrj.br

2Universidad de Buenos Aires
Instituto de Cálculo and Departamento de Computación

Buenos Aires, Argentina
oscarlin@dc.uba.ar, vmoyano@ic.fcen.uba.ar

3Programa de Engenharia de Sistemas e Computação
Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brazil
{abiliolucena, maculan, jayme}@cos.ufrj.br

4Instituto de Matemática e Estat́ıstica, Universidade do Estado do
Rio de Janeiro

Rio de Janeiro, Brasil

June 2018

∗Vinicius leal do Forte was partially funded by CNPq.
†Min Chih Lin was partially funded by UBACyT Grant 20020120100058, and PICT AN-

PCyT Grants 2010-1970 and 2013-2205.
‡Abilio Lucena was partially funded by CNPq grant 307026/2013-2.
§Nelson Maculan was partially funded by CNPq.
¶Veronica A. Moyano was partially funded by UBACyT Grant 20020120100058, and PICT

ANPCyT Grants 2010-1970 and 2013-2205
‖Jayme L. Szwarcfiter was partially funded by CNPq.

1

Abstract

A formulation is proposed for the Perfect Edge Domination Problem
and some exact algorithms based on it are designed and tested. So far,
perfect edge domination has been investigated mostly in computational
complexity terms. Indeed, we could find no previous explicit mathemati-
cal formulation or exact algorithm for the problem. Furthermore, testing
our algorithms also represented a challenge. Standard randomly gener-
ated graphs tend to contain a single perfect edge dominating solution, i.e.,
the trivial one, containing all edges in the graph. Accordingly, some quite
elaborated procedures had to be devised to have access to more challeng-
ing instances. A total of 736 graphs were thus generated, all of them
containing feasible solutions other than the trivial ones. Every graph giv-
ing rise to a weighted and a non weighted instance, all instances solved to
proven optimality by two of the algorithms tested.

Keywords: Perfect Edge Domination, Exact Algorithms, Instance Gener-
ation, Computational Results.

1 Introduction

Let G = (V,E) be a simple undirected graph with a set of vertices V and a
set of edges E. Denote by δ(i) ⊆ E the set of edges incident to i ∈ V and
respectively by N [e] = δ(i)∪δ(j) and N(e) = N [e]\{e} the closed and the open
edge neighborhoods of e = {i, j} ∈ E. A set D ⊆ E is said to dominate all the
edges of N [D] and is called an Edge Dominating Set (EDS) if D∩N [e] 6= ∅ holds
for every e ∈ E, i.e., if D dominates all the edges of G. The Minimum Edge
Dominating Set Problem (MEDSP) is to find an EDS of G with cardinality as
small as possible.

Edge domination has also been investigated in the literature under more
restricted forms than the one described above. Indeed, perfect and efficient
edge domination have probably attracted even more interest than the general
problem. Given an EDS D, perfect domination applies if |N(e) ∩D| = 1 holds
for every e ∈ E \ D, i.e., if e ∈ E \ D is dominated by a single edge of D.
Domination is efficient if, in addition, every edge of D is dominated just by
itself. The Perfect Edge Domination Problem (PEDP) is to find a Perfect
EDS (PEDS) of G with cardinality as small as possible. The Efficient Edge
Domination Problem (EEDP) is defined along similar lines.

MEDSP is known to be NP-complete for some time. Moreover, it still re-
mains NP-complete for graphs of maximum degree at most 3 that are either
bipartite or planar [27]. In [14] the hardness has been further proved for planar
bipartite graphs, planar cubic graphs, line graphs and total graphs. Addition-
ally, MEDSP was also shown to be NP-complete for regular bipartite graphs
[11]. On the other hand, polynomial-time algorithms are known for trees [27],
block graphs [10], series-parallel graphs [23], bipartite-permutation graphs [24],
and co-triangulated graphs [24]. As for exact algorithms for general graphs,
references [2, 25] investigate Integer Programming (IP) based approaches for

2

finding Minimum Maximal Matchings (MMMs), where a MMM is a restricted
type of EDS (see [2, 25] for details).

The problem of deciding whether a given graph admits an efficient EDS
(EEDS) is known to be NP-complete [12]. Furthermore, it remains so even for
planar bipartite graphs of maximum degree 3 [4], k-regular graphs with k ≥ 3
[8] and, as indicated in [9], for subcubic (C3, . . . , Ck, H1, . . . ,Hk)-free bipartite
graphs for any fixed k (where Hi is the graph obtained by subdividing i−1 times
the middle edge of an H graph). On the other hand, polynomial time algorithms
do exist for some graph classes, such as chordal graphs [21], generalized series-
parallel graphs [21] (for both weighted and non weighted variants), claw-free
graphs [9], weighted claw-free graphs [18], long claw-free graphs [13], graphs
with bounded clique-width [9], hole-free graphs [4], convex graphs [16], dually-
chordal graphs [5], P7-free graphs [6], P8-free graphs [7], bipartite permutation
graphs [22], AT-free graphs [5], interval-filament graphs [5], and weakly chordal
graphs [5]. Additionally, various exact algorithms do exist for general graphs
[20, 26]. In particular, the one proposed in [20] also allows the counting of the
number of EEDSs. So far, no exact IP based algorithm has yet been proposed
for EEDP.

Less is known about PEDSs. It is NP-complete to determine if a given
graph contains a PEDS of a given size [21] and that result also holds true for
claw-free graphs of degree at most 3, bipartite graphs [21], k-regular graphs
with k ≥ 3, and bounded-degree graphs of large girth or bounded-degree F -
free graphs, except when F is a set of disjoint paths (see [17], for all of these
particular cases). Polynomial time algorithms are known for chordal graphs
[21], circular-arc graphs [19], P5-free graphs [17], cubic claw-free graphs and
bounded-degree F -free graphs [17], where F is a set of disjoint paths. No exact
algorithm, combinatorial or IP based, appears to exist for PEDP. Indeed, we
could not even find in the literature any explicit mathematical formulation for
the problem.

Suggesting a formulation for PEDP and designing and testing some accom-
panying exact algorithm for it are two of the contributions of this paper. An
additional one, as we shall see, is to generate challenging graphs G = (V,E) that,
apart from the trivial solution, E, also contain additional feasible solutions for
the problem.

Closing this brief overview on edge domination, it should be mentioned that
it finds practical applications in the design and analysis of communication net-
works, network routing and coding theory [27, 12, 26].

Finally, it should also be stressed that we distinguish between the weighted
and the non weighted variants of the problem. The former is called here
Weighted PEDP (WPEDP) while the latter is simply called PEDP.

This paper contains four additional sections. Section 2 introduces our PEDSP
formulation and describes some exact algorithms for it. Section 3 then follows
with some quite elaborated procedures to generate graphs that contain PEDSs
other than trivial ones. Section 4 describes the computational experiments we
carried out for our algorithms. Finally, Section 5 closes the paper with some
conclusions and suggestions for future work.

3

2 Problem Formulation

Our WPEDP formulation associates variables x ∈ R|E|
+ with the edges of G =

(V,E) and enforces that xe = 1 holds if e ∈ E is selected as a dominating edge,
with xe = 0 applying otherwise. It is given by

min {
∑
e∈E

cexe : x ∈ R0 ∩ Z|E|}, (1)

where R0 is the polyhedral region defined by the intersection of inequalities∑
f∈N [e]

xf ≥ 1, ∀e ∈ E (2)

∑
e∈N(a)

xe + (1−N(a))xa ≤ 1, a ∈ E, |N(a)| ≥ 2 (3)

0 ≤ xe ≤ 1, e ∈ E. (4)

The formulation takes edge weights {ce ∈ R : e ∈ E} and specializes to PEDP
when {ce = 1 : e ∈ E} applies.

Inequalities (2) ensure that at least one edge is selected for every neighbor-
hood N [e], e ∈ E, thus guaranteeing that (1) returns an EDS of G. In turn,
as required for perfect edge domination, inequalities (3) enforce that any non
dominating edge, i.e., any a ∈ E with xa = 0, must be dominated by no more
than one of its neighbor vertices. These inequalities thus become redundant
when xa = 1 applies. However, when xa = 0 holds, they impose the required
dominance condition, in combination with (2), written for a. As previously re-
marked, formulation (1) appears to be the only one so far proposed for PEDP.

A Linear Programming (LP) relaxation for the formulation is defined as

min {
∑
e∈E

cexe : x ∈ R0} (5)

and may be reinforced with inequalities∑
e∈F

xe + (1− |F |)xa ≤ 1, a ∈ E, F ⊆ N(a), |F | ≥ 2, (6)

that contain (3) and are valid for PEDP. It should be pointed out that inequal-
ities (6) subsume

xb + (1− xa) + xc ≤ 2, a = {i, j} ∈ E, b ∈ δ(i) \ {a}, c ∈ δ(j) \ {a} (7)

and ∑
e∈F\{a}

xe + (2− |F |)xa ≤ 1, i ∈ V, F ⊆ δ(i), a ∈ F, |F | ≥ 3, (8)

and that we have two basic reasons to highlight that fact. The first is that
we came across inequalities (7) and (8) prior to reaching (6). The second and

4

most important one is that, out of our computational experiments, the best
performing BC algorithm we obtained is one that reinforces LP relaxation (5)
with inequalities in (7) and (8), and not with the additional inequalities in (6).
Although stronger LP relaxation bounds are attained by restricting oneself to
using only the inequalities in (6), the resulting algorithm did not pay off in
CPU time and RAM memory terms. Quoting specific figures for that, the BC
algorithm based on the latter bounds took, on average, 71% more CPU time
than its counterpart, in spite of exploring, on average, 10% less enumeration
tree nodes. Furthermore, under the CPU time limit imposed, it failed to solve 6
instances of our test set. That compares with only one for its counterpart. For
that reason and also due to space limitation constraints, computational results in
Section 4 are restricted to those obtained by IP solver CPLEX, version 12.6 [15],
used as a stand alone algorithm, and the BC algorithm based on the reinforced
formulation

min {
∑
e∈E

cexe : x ∈ R ∩ Z|E|}, (9)

where R is defined as the intersection of (2)-(4), (7), and (8).

2.0.1 Reinforcing the LP Relaxation with Cutting Planes

Out of the inequalities that define R, the very first LP relaxation for our BC
algorithm only uses (2)-(4) and (7). The number of inequalities in either (2) or
(3) is precisely |E|. On the other hand, O(|E|.|V |2) inequalities (7) do exist for
general graphs. These, however, would reduce to as low as O(|E|), as it applies
to the 3-regular graphs we will consider in Section 4. Finally, the exponentially
many inequalities in (8) are separated on the fly by the algorithm and are only
appended to LP relaxations when violated.

Assume that x is an optimal solution to the LP relaxation problem in hand
and that G = (V ,E) is its corresponding support graph, i.e., the subgraph of G
defined by the edges e ∈ E with xe > 0. We use notation δ(i) to identify support
graph edges incident to i ∈ V . Additionally, inequalities (8) are rewritten as∑

e∈F\{a}

(xe − xa) ≤ (1− xa), i ∈ V, F ⊆ δ(i), a ∈ F, |F | ≥ 3 (10)

and for every i ∈ V with |δ(i)| ≥ 3 and for every a ∈ δ(i), a particular set
F is defined. Namely, a set formed by a and all edges e ∈ δ(i) \ {a} with
non negative (xe − xa) values. If |F | ≥ 3 and

∑
e∈F\{a}(xe − xa) > (1 − xa)

holds, inequality (10) corresponding to the triplet i, a, F is violated and is used
to reinforce the relaxation. Conversely, if |F | < 3 applies, one then checks,
in decreasing order of (xe − xa) values, if there exists a subset Fc ⊂ δ(i) \ F
with |F | + |Fc| = 3 and

∑
e∈(F∪Fc)\{a}(xe − xa) > (1 − xa). In case it does,∑

e∈F∪Fc\{a}(xe − xa) ≤ (1 − xa) is then violated by x and the inequality is
used to reinforce the relaxation.

5

3 Test Instances

We initially tested our algorithms over general graphs G = (V,E), randomly
generated so as to enforce that a given pre-defined percentage density is attained.
Graph connectivity was ensured by initializing the scheme with a randomly
generated Hamiltonian path for G. Additional edges would then follow, until
the desired graph density was reached. However, as pointed out before, after
experimenting with literally hundreds of these graphs, they all contained no
PEDS apart from the trivial one, E. That outcome prompted us to look for
alternative generation schemes that would escape that pattern and produce
more challenging instances.

PEDP is known to be NP-hard for some specific graph classes. Among them,
bipartite graphs [21] and K3-free 3-regular graphs [17], where K3 stands for a
complete graph on three vertices. We have thus devised generation schemes
that produce particular graphs belonging to these two classes. Additionally, we
also consider graphs from an additional class we call Efficient Edge Domination
(EED) graphs. The reasoning behind that denomination is that these graphs, as
we shall see, always contain a feasible EEDP solution. As such they also contain
a feasible solution for PEDP, given that efficient edge domination implies perfect
edge domination. Finally, as it will be indicated, that solution is a non trivial
PEDP one.

EED graphs and the generation scheme we implemented for them will be
described first, followed by our particular types of connected bipartite and K3-
free 3-regular graphs. Every graph we generate gives rise to a PEDP and a
WPEDP instance, the latter instances with edge weights randomly drawn from
the uniform distribution in the range [1, 1000].

3.1 EED graphs

In order to generate graphs that contain non trivial PEDSs, we rely on the
alternative and frequently used description of an efficient EDS as a Dominating
Induced Matching (DIM) (see [1], for instance).

An induced matching of a graph G = (V,E) is a matching D ⊆ E such that
no two edges of D are joined by an edge of E \D. Additionally, D is a DIM if
every edge of E \D shares exactly one vertex with an edge of D. Accordingly, a
DIM and an EEDS define a same graph theoretical structure and the problem
of determining whether or not G contains an EEDS is frequently cast in the
literature in DIM terms. As indicate in [1], G contains a DIM if there exists a
partition of V into vertex subsets V1 and V2 such that V1 is an independent set
and V2 induces a matching of G. Furthermore, provided such a partition exists,
a DIM is defined by the matching induced by V2.

In addition to the conditions above, we also impose, for simplicity, that
n2 = |V2| is even, so that the resulting DIM is a perfect matching for the
vertices of V2. An EED graph, G = (V,E), is thus defined as follows: (a) vertex
set V that partitions into two non empty subsets V1 and V2, (b) n2 = |V2| is
even, (c) edge set E partitions into two disjoint subsets E1 and E2, (d) E1 edges,

6

numbering m1 = |E1|, all have an end vertex in V1 and the other in V2, and
(e) E2 edges, numbering m2 = |E2|, all have both end vertices in V2. Finally,
we will only consider connected EED graphs since, otherwise, one could simply
decompose them into connected components and solve a separate PEDP for
every component.

3.1.1 A Generation Procedure for Connected EED Graphs

A description follows of the procedure we use to generate connected EED graphs.
It takes n = |V | as an input and then randomly selects positive values for n1
and n2, with n2 even. In doing so the number of edges in E2, i.e., m2 = |V |

2 , is
automatically fixed and the edges of E2 are generated by randomly selecting the
pairs of vertices of V2 to be matched (see Figures 1(a) and 1(b) for an example
in which n = 10, n1 = 6, n2 = 4 and m = 12). Next, the number of edges of
G, i.e., m = |E| with m = m1 + m2, is fixed by randomly selecting a positive
integer m1 in the range [2 ·min{n1, n2}+ |n1−n2|−1, n1 ·n2]. At that stage, the
generation of E1 edges is initiated with an initial focus on enforcing connectivity
for G. Accordingly, 2 ·min{n1, n2} edges are generated in association with an
(inclusion-wise) maximal simple alternating path, every edge of it with an end
vertex in V1 and the other in V2. If |n1−n2| ≥ 2 holds, some leftover vertices in
either V1 or V2, whatever applies, would not belong to the alternating path. In
that case, additional E1 edges are generated, one edge for every leftover vertex,
all edges with a same end point in the opposite vertex set. See Figure 1(a)
for the required 8 simple path edges for our example plus an additional edge,
highlighted in dotted lines, associated with the single existing leftover vertex.
Notice that the E1 edges generated so far suffice to ensure that G is connected.
Finally the procedure terminates by generating the remaining edges of E1, so
that |E1| = m1 is attained. See Figure 1(b) for the three additional E1 edges
required by the example, all of them highlighted in dotted lines.

A total of 363 EED graphs were generated, with |E| ranging from 30 to 300
and densities ranging from either 50% to 10% or 50% to 1%, depending on the
values of n1, n2 and m.

V1

V2

(a) V2 matching + path + leftover edge.

V1

V2

(b) Remaining edges of E1.

Figure 1: EED graph generation.

7

3.2 Bipartite graphs

The (connectred) bipartite graphs we consider conform with those found within
the EED graphs described above. More specifically, they are defined by the E1

edges found within an EED graph. Accordingly, we partially follow the EED
graph generation scheme to obtain them. The only difference between the two
is that no edges with both end vertices in V2 are now generated.

A total of 363 bipartite graphs were generated, with |E| ranging from 30 to
300 and densities ranging from either 50% to 10% or 50% to 1%, depending on
the values of n1, n2 and m.

3.3 Connected K3-free 3-regular Graphs

We denote CR graphs the connected K3-free 3-regular graphs G = (V,E) consid-
ered in this subsection. Likewise any 3-regular graph, a CR graph must contain
an even number of vertices, n = |V |. However, contrary to general 3-regular
graphs, they decompose into three particular components. Among these, the
most important is a certain type of Binary Tree (BT), to be called an OBT.
The other two are: (a) an additional edge incident to two edge degree 2 OBT
vertices and (b) a simple cycle restricted to containing only all OBT leaves.
Cycles conforming to (b) are required to satisfy an additional constraint, to be
described later on, and will be called leaf-restricted cycles. A description of
these three components follows and will serve as a description for a CR graph.

Any OBT must contain all vertices of G. Additionally, as it will be explained
next, the OBT topology is tied to the topology of the minimal Complete BT
(CBT) that contains it. A p ≥ 0 levels CBT corresponding to a BT with
2k vertices at every level 0 ≤ k ≤ p. Accordingly, the standard graphical
representation of a BT, in terms of father vertices and their left an right sons,
thus applies to a CBT and will also be enforced here for OBTs.

For reasons that will become evident later on, OBTs are also required to
have p ≥ 4 levels, all of them complete up to level p − 1. That condition, in
conjunction with n even, implies that OBT level p is incomplete and contains
an odd number of vertices, t, with 1 ≤ t ≤ 2p − 1. Finally, these t vertices are
required to correspond exactly to the t leftmost p-level vertices at a p levels CBT.
Accordingly, all definitions put together, an OBT, as we shall see, is uniquely
defined by its corresponding number of vertices, n. For simplicity, assume that
the vertices of G are indexed so that: (a) vertices 1 and n are respectively the
OBT root and the right most vertex found at OBT level p, (b) vertex indices
increase with OBT level and within a level, from left to right. A 30 vertices OBT
is depicted in Figure 2, together with and additional edge connecting its two
edge degree 2 vertices and a leaf-restricted cycle, both components highlighted
in dotted lines.

From the definitions above, the following remarks would apply to an OBT:
(a) n is an OBT leaf and is the rightmost vertex found at level p, (b) n has no
brother and is the left son of f , a vertex located at level p − 1, (c) f and the
OBT root vertex, 1, are the only two edge degree 2 vertices found in the OBT,

8

and (d) remaining OBT vertices either have edge degree 1, as it applies to OBT
leaves, or else, edge degree 3.

1

3

4

2

0

Figure 2: CR graph = OBT + single edge + leaf-restricted cycle.

Edge {1, f} ensures that vertices 1 and f have edge degrees 3, in G, as
required by a 3-regular graph such as G. It also explains why an OBT is
required to have p ≥ 4 levels. Notice that vertices 1 and f respectively belong
to OBT levels 0 and (p− 1) ≥ 3. They are therefore more than 3 levels apart,
what guarantees that no K3 subgraph is thus induced by {1, f}.

Let us now turn to leaf-constrained cycles. They ensure that OBT leaves
have edge degrees 3, in G. Furthermore, they must not contain edges between
leaves of a same father, what prevents K3 subgraphs being formed. At this
point, it only remains to be shown that a leaf-restricted cycle always exists for
an OBT. We will show that through an example.

Under a conveniently chosen layout, Figure 3 displays the leaves for 16, 18, 20
and 22 vertices OBTs. In particular, 16 is the least possible number of vertices
for an OBT. Examples of accompanying leaf-restricted cycles are also depicted
in that figure, highlighted in dotted lines. Leaves are displayed side-by-side in
increasing order of their indices, as if they all belonged to a same level. The
16 vertices OBT contains two type 1 leaves and 3 sets of type 2 leaves. A type
1 leaf defined as a son of f while a type 2 set is formed by exactly the two
sons of a father other than f . Corresponding type 1 and type 2 figures for the
18 vertices OBT are respectively 2 and 4. On the other hand, the 20 vertices
OBT, that conforms with the 16 vertices OBT, contains one type 1 leaf and
four type 2 sets. Corresponding figures for the 22 vertices OBT, that conforms
with the 18 vertices OBT, are respectively 1 and 5. As one may then infer from
the cycle patterns we present, leaf-restricted cycles would always exist for OBTs
with n ≥ 24.

3.3.1 A CR Graph Generator

Our CR graph generator relies on leaf-restricted cycles similar to those displayed
in Figure 3. It take n as an input, n ≥ 16, and firstly generates an n vertices
OBT. In doing so, edge {1, f} is automatically defined. Additionally, depending

9

on the number of type 1 leaves involved, one out of two leaf-restricted cycle
building procedures is activated. If a single type 1 leaf exists, the cycle would
involve the following edges: {{f + 2k, f + 2k + 1} : k = 1, . . . l2}, where l2 is
the number of type 2 brother pairs, {f + 1, f + 3}, {{f + 2k, f + 2k + 3} : k =
1, . . . l2 − 1}, and {f + 1, f + 2l2}. Otherwise, if two type 1 leaves exist, one
would then have: {{f + 2k − 1, f + 2k} : k = 1, . . . , l2 + 1}, {f + 2, f + 4},
{{f + 2k + 1, f + 2k + 4} : k = 1, . . . , l2 − 1}, and {f + 1, f + 2l2 + 1}. To
introduce a degree of randomness into the procedure, a permutation of type
2 sets is randomly selected and the ordering it implies is then followed by the
generation procedure. Namely, the positioning of type 1 leaves would be taken
unaltered. However, type 2 sets would be taken in their permutation implied
positions, and not in their true ones.

Ten CR graphs were generated, for n ∈ {20, 40, . . . , 200} and |E| rang-
ing from 30 to 300. Instances are identified by their corresponding parame-
ters {|V |, d, |E|}, where d stands for percentage graph density: {20, 15.79, 30},
{40, 7.69, 60}, {60, 5.08, 90}, {80, 3.8, 120}, {100, 3.03, 150}, {120, 2.52, 180},
{140, 2.16, 210}, {160, 1.89, 240}, {180, 1.68, 270}, and {200, 1.51, 300}.

5 4

11

7 6

 9 10 14 13 12 15

8

16

(a) 2 type 1 leaves and 3 type 2 sets.

5

18 11

7 6 9

10 14 13 12 15

8

16 17

(b) 1 type 1 leaf and 4 type 2 sets.

6 5

13

8 7

 11 12 14

6
15 14 17

10

20

9

19 18

(c) 2 type 1 leaves and 4 type 2 sets.

7

22 15

9 8 11

14 18 17 16 19

10

20 21

6

13 12

(d) 1 type 1 leaf and 5 type 2 sets.

Figure 3: Leaves and leaf-restricted cycles for {16, 18, 20, 22}-vertices OBTs.

10

4 Computational Experiments

Computational experiments are reported in this section for the BC algorithm
described in Section 2, denoted BCA, and also for CPLEX IP solver, version
12.6 [15], operating as a stand alone algorithm and denoted CPLEX-BC, here.
BCA was implemented in C, uses the LP module of CPLEX, and also relies on
that solver for the management of the BC trees. However, it makes no use of
the pre-processing, cutting plane, and heuristic modules CPLEX offers. BCA
separates inequalities (8) at every node of the BC tree, under the procedure
described in Subsection 2.0.1. An Intel Xeon X5675 based machine with 48 Gb
of RAM memory and running at 3.07 GHz was used in the experiments. A CPU
time limit of 7,200 seconds was imposed on every run and to simplify eventual
future comparisons, the experiments were performed on a single CPU thread.

Results are presented by graph class and problem variant, i.e., PEDP or
WPEDP. Furthermore, due to space limitation, we only show detailed results
for some particular representative graphs for either variant. These are packed in
two groups of five graphs, each. Each group highlighting one of the following BC
performance parameters: (a) CPU time and (b) percentage LP relaxation gap,
given by (optimal solution value - LP relaxation value)/(optimal solution value).
In particular, for every different graph class, results are presented for the five
PEDP and the five WPEDP graphs for which CPLEX-BC performed the best
(resp. the worst). These results are accompanied by BCA results for the same
set of instances. Additionally, some complementary information is also included.
Namely, we replicate these experiments for the same graphs, but now tested for
the alternative problem variant, PEDSP or WPEDP, whatever applies. In doing
so one is able to compare, at least for extreme cases, the differences involved in
solving the two problem variants over a same set of graphs.

For any of the tables that follow, a graph G = (V,E) is identified by its
corresponding |E|, density, d, and |V |. Algorithm statistics come next and
indicate: optimal solution value, OPT ; number of BC nodes, NN ; CPU time in
seconds, t(s); LP relaxation value at the root node of the enumeration tree, LB0;
LP relaxation gap at the root node of the enumeration tree, GAP , and number
of cuts separated by the BC algorithm, NUC. Following that, as complementary
information, statistics are also presented for these same graphs, but solved for
the alternative problem variant.

4.1 Results for EED graphs

Under the 7, 200 seconds CPU time limit imposed, both algorithms obtained
optimal PEDP and WPEDP solutions for all 363 EED graphs. The average
CPU time taken by CPLEX-BC to solve a PEDP instance was 0.52 seconds
while its average LP relaxation gap was 0%. Corresponding figures for BCA are
respectively 0.823 and 0%. For WPEDP instances, the corresponding CPLEX-
BC figures are 0.91 and 15.8% while those for BCA are 5.01 and 37.6%. From
the average results obtained, CPLEX-BC outperforms BCA for EED graphs.

Tables 1, 2 and 3 show extreme CPU time and LP relaxation gaps for EED

11

graph instances. The first table applies to PEDP instances while the other two
are for WPEDP.

Naturally integral LP relaxation solutions were obtained for all PEDP in-
stances, either by CPLEX-BC or BCA. Accordingly, no table is used to display
these results. Differently from that, fractional LP relaxation solutions were ob-
tained by CPLEX-BC for all but 8 WPEDP instances. The corresponding figure
for BCA is 9.

From the average results obtained and also from an analysis of the extreme
cases shown in the tables, PEDP instances appear to be much easier to solve
than their WPEDP counterparts, at least as far as EED graphs are concerned.

PEDP WPEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

290 33.68% 42 5 0 1.027 5 0 0% 3546 0 2.491 3544.63 0 0.04%

Five highest 220 39.22% 34 8 0 1.021 8 0 0% 4461 0 1.219 4415.57 0 1.02%

CPU times 240 34.14% 38 6 0 1.009 6 0 0% 3524 0 2.124 3470.42 0 1.52%

for CPLEX-BC 70 40.94% 19 4 0 1.002 4 0 0% 1735 3 0.605 1610.91 0 7.15%

260 19.61% 52 8 0 1.001 8 0 0% 4305 0 2.612 4261.14 0 1.02%

290 33.68% 42 5 0 2.672 5 0 0% 3546 66 101.56 1411.13 1049 60.21%

BCA results 220 39.22% 34 8 0 1.167 8 0 0% 4461 72 14.678 1970.1 331 55.84%

for the same 240 34.14% 38 6 0 2.267 6 0 0% 3524 3 6.664 1798.37 0 48.97%

instances above 70 40.94% 19 4 0 0.369 4 0 0% 1735 6 0.467 1195.67 0 31.09%

260 19.61% 52 8 0 0.977 8 0 0% 4305 49 16.255 2715.94 100 36.91%

70 45.75% 18 3 0 0.019 3 0 0% 1338 0 0.638 1193.17 0 10.82%

Five lowest 120 24.19% 32 4 0 0.021 4 0 0% 1709 0 0.743 1690.67 0 1.07%

CPU times 180 24.29% 39 8 0 0.027 8 0 0% 2341 0 0.324 2303.84 0 1.59%

for CPLEX-BC 150 34.48% 30 6 0 0.027 6 0 0% 2692 0 0.957 2663.24 0 1.07%

70 51.47% 17 4 0 0.031 4 0 0% 2177 5 0.786 1751.73 0 19.53%

70 45.75% 18 3 0 0.403 3 0 0% 1338 5 0.643 937.261 48 29.95%

BCA results 120 24.19% 32 4 0 0.595 4 0 0% 1709 3 1.085 1293.56 43 24.31%

for the same 180 24.29% 39 8 0 1.01 8 0 0% 2341 3 1.923 1915.72 0 18.17%

instances above 150 34.48% 30 6 0 1.054 6 0 0% 2692 34 3.626 1866.73 90 30.66%

70 51.47% 17 4 0 0.438 4 0 0% 2177 18 0.847 1213.77 0 44.25%

Table 1: Extreme PEDP cases and WPEDP complementary information.

12

WPEDP PEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

280 24.82% 48 4754 3 3.819 4453.95 0 6.31% 9 0 0.257 9.00 0 0%

Five highest 270 24.98% 47 4513 3 3.715 4235.26 0 6.15% 10 0 0.619 10.00 0 0%

CPU times 270 38.41% 38 4323 0 3.621 4258.22 0 1.5% 8 0 0.780 8.00 0 0%

for CPLEX-BC 300 14.88% 64 5971 1 3.556 5604.03 0 6.15% 11 0 0.545 11.00 0 0%

290 24.66% 49 4896 1 3.320 4663.22 0 4.75% 11 0 0.917 11.00 0 0%

280 24.82% 48 4754 39 19.695 2449.23 71 48.48% 9 0 2.168 9.00 0 0%

BCA results 270 24.98% 47 4513 38 18.508 2268.39 83 49.74% 10 0 0.255 10.00 0 0%

for the same 270 38.41% 38 4323 42 16.719 1691.68 28 60.87% 8 0 3.085 8.00 0 0%

instances above 300 14.88% 64 5971 41 21.561 3464.94 272 41.97% 11 0 0.585 11.00 0 0%

290 24.66% 49 4896 37 17.887 3274.22 50 33.12% 11 0 2.568 11.00 0 0%

220 0.99% 211 4841 0 0.023 2207.91 0 54.39% 10 0 0.655 10.00 0 0%

Five lowest 100 24.63% 29 842 0 0.033 799.35 0 5.07% 2 0 0.492 2.00 0 0%

CPU times 190 9.73% 63 4996 0 0.063 4614.37 0 7.64% 10 0 0.344 10.00 0 0%

for CPLEX-BC 230 1% 215 6291 0 0.086 2498.20 0 60.29% 11 0 0.121 11.00 0 0%

170 24.18% 38 1787 0 0.096 1725.17 0 3.46% 5 0 0.661 5.00 0 0%

220 0.99% 211 4841 63 0.709 2521.84 21 47.91% 10 0 0.131 10.00 0 0%

BCA results 100 24.63% 29 842 3 0.543 317.57 0 62.28% 2 0 0.792 2.00 0 0%

for the same 190 9.73% 63 4996 29 2.385 3393.05 33 32.08% 10 0 0.967 10.00 0 0%

instances above 230 1% 215 6291 91 0.687 3126.17 28 50.31% 11 0 0.831 11.00 0 0%

170 24.18% 38 1787 3 1.790 1464.75 0 18.03% 5 0 0.931 5.00 0 0%

Table 2: Extreme WPEDP cases and PEDP complementary information.

WPEDP PEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

280 0.99% 238 2974 0 0.586 204.85 0 93.11% 4 0 0.937 4.00 0 0%

Five highest 140 2.95% 98 1182 0 0.482 157.71 0 86.66% 2 0 0.494 2.00 0 0%

gaps 280 3.99% 119 2558 0 0.854 342.20 0 86.62% 4 0 0.045 4.00 0 0%

for CPLEX-BC 260 1.99% 162 1759 0 0.593 254.47 0 85.53% 3 0 0.772 3.00 0 0%

300 4% 123 3736 0 0.281 566.61 0 84.83% 5 0 0.346 5.00 0 0%

280 0.99% 238 2974 131 1.795 382.24 55 87.15% 4 0 0.123 4.00 0 0%

BCA results 140 2.95% 98 1182 60 0.590 224.01 24 81.05% 2 0 0.238 2.00 0 0%

for the same 280 3.99% 119 2558 61 4.995 411.88 43 83.9% 4 0 0.711 4.00 0 0%

instances above 260 1.99% 162 1759 75 1.662 320.46 42 81.78% 3 0 0.923 3.00 0 0%

300 4% 123 3736 87 6.182 710.71 57 80.98% 5 0 0.385 5.00 0 0%

30 19.61% 18 1480 0 0.133 1480.00 0 0% 4 0 0.443 4.00 0 0%

Five lowest 40 23.39% 19 1475 0 0.233 1475.00 0 0% 4 0 0.519 4.00 0 0%

gaps 40 9.85% 29 206 0 0.197 206.00 0 0% 1 0 0.493 1.00 0 0%

for CPLEX-BC 50 29.24% 19 867 0 0.406 867.00 0 0% 4 0 0.651 4.00 0 0%

70 9.96% 38 11 0 0.150 11.00 0 0% 1 0 0.900 1.00 0 0%

30 19.61% 18 1480 0 0.109 1480.00 0 0% 4 0 0.332 4.00 0 0%

BCA results 40 23.39% 19 1475 0 0.314 1475.00 0 0% 4 0 0.463 4.00 0 0%

for the same 40 9.85% 29 206 0 0.237 206.00 0 0% 1 0 0.409 1.00 0 0%

instances above 50 29.24% 19 867 0 0.646 867.00 0 0% 4 0 0.648 4.00 0 0%

70 9.96% 38 11 0 0.782 11.00 0 0% 1 0 0.108 1.00 0 0%

Table 3: Extreme WPEDP cases and PEDP complementary information.

4.2 Results for bipartite graphs

Under the 7, 200 seconds CPU time limit imposed, optimal PEDP and WPEDP
solutions were obtained for all 363 EED graphs by both algorithms. The average
CPU time taken by CPLEX-BC to solve a PEDP instance was 1.06 seconds while

13

the average LP relaxation gap it attained was 40.7%. Corresponding figures for
BCA are respectively 56.3 and 43.3%. For WPEDP instances, the corresponding
CPLEX-BC figures are 1.68 and 43.3%, while those for BCA are 25.3 and 64.3%.
From average bipartite graph results, CPLEX-BC clearly outperforms BCA for
these graphs.

Tables 4, 5, 6 and 7 show extreme CPU time and LP relaxation gaps for
bipartite graph instances. From average bipartite graph results and also from
an analysis of the extreme cases shown in the tables, WPEDP instances appear
to be easier to solve than their PEDP counterparts. Accordingly, the picture
that emerges here is the opposite of that we have for EED graphs.

PEDP WPEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

270 1% 233 82 1791 4.782 75.63 0 7.77% 36490 661 3.803 34228.50 0 6.2%

Five highest 260 1.99% 162 256 427 4.617 46.98 0 81.65% 126532 133 2.832 21867.50 0 82.72%

CPU times 290 2.98% 140 42 421 3.624 34.42 0 18.04% 20464 628 4.907 13380.10 0 34.62%

for CPLEX-BC 290 24.66% 49 290 129 3.211 12.47 0 95.7% 153572 95 5.159 3909.79 0 97.45%

300 4.91% 111 300 35 3.137 29.40 0 90.2% 152468 126 4.075 10545.50 0 93.08%

270 1% 233 82 27370 45.390 71.07 231 13.33% 36490 20848 29.980 27352.10 204 25.04%

BCA results 260 1.99% 162 256 6512 51.136 46.03 641 82.02% 126532 11076 65.697 16482.40 591 86.97%

for the same 290 2.98% 140 42 8711 209.645 32.62 829 22.33% 20464 14254 230.704 9792.03 744 52.15%

instances above 290 24.66% 49 290 409 517.736 12.15 1922 95.81% 153572 253 192.540 3166.54 1875 97.94%

300 4.91% 111 300 1222 113.732 29.15 750 90.28% 152468 863 65.100 9121.98 785 94.02%

30 25% 16 7 21 0.037 4.43 0 36.66% 4313 17 0.613 2761.13 0 35.98%

Five lowest 30 28.57% 15 3 0 0.047 2.85 0 4.91% 1173 0 0.623 1172.71 0 0.02%

CPU times 50 36.76% 17 4 0 0.057 3.40 0 15% 1220 0 0.120 1108.21 0 9.16%

for CPLEX-BC 300 1.99% 174 15 0 0.058 15.00 0 0% 3597 0 0.370 3390.92 0 5.73%

190 4.96% 88 11 0 0.089 11.00 0 0% 1796 0 0.109 1353.93 0 24.61%

30 25% 16 7 19 0.354 4.02 16 42.52% 4313 17 0.603 1593.24 24 63.06%

BCA results 30 28.57% 15 3 5 0.370 2.67 3 11.11% 1173 17 0.636 799.02 32 31.88%

for the same 50 36.76% 17 4 26 0.648 3.26 0 18.44% 1220 13 0.933 620.82 5 49.11%

instances above 300 1.99% 174 15 0 0.302 15.00 1 0% 3597 4160 22.286 1856.22 64 48.4%

190 4.96% 88 11 15 0.734 10.15 15 7.73% 1796 105 1.622 914.59 28 49.08%

Table 4: Extreme PEDP cases and WPEDP complementary information.

14

PEDP WPEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

260 33.33% 40 260 80 2.141 8.91 0 96.57% 134029 69 2.916 2545.52 0 98.1%

Five highest 300 38.46% 40 300 15 2.065 10.61 0 96.46% 156804 75 3.039 2338.67 0 98.51%

gaps 260 39.04% 37 260 23 1.050 9.26 0 96.44% 125767 121 3.456 2354.67 0 98.13%

for CPLEX-BC 300 34.84% 42 300 15 2.077 10.78 0 96.41% 149764 15 4.890 2910.39 0 98.06%

290 29.29% 45 290 12 1.483 10.68 0 96.32% 140961 261 6.251 2885.52 0 97.95%

0.00 0.00 260 33.33% 40 260 219 509.720 8.69 953 96.66% 134029 125 103.271 1848.28 1944 98.62%

BCA results 300 38.46% 40 300 71 250.260 10.33 822 96.56% 156804 97 148.434 2183.34 1413 98.61%

for the same 260 39.04% 37 260 137 362.016 9.01 1350 96.53% 125767 87 97.805 1699.47 1481 98.65%

instances above 300 34.84% 42 300 259 745.003 10.50 2103 96.5% 149764 81 130.293 2206.02 1259 98.53%

290 29.29% 45 290 133 534.155 10.39 2207 96.42% 140961 163 147.143 1869.58 1552 98.67%

30 10% 25 6 0 0.917 6.00 0 0% 1749 0 0.415 1719.79 0 1.67%

Five lowest 40 51.28% 13 5 0 0.548 5.00 0 0% 1707 16 0.459 1306.72 0 23.45%

gaps 40 14.49% 24 2 0 0.183 2.00 0 0% 316 0 0.854 150.48 0 52.38%

for CPLEX-BC 50 14.25% 27 4 0 0.666 4.00 0 0% 1269 0 0.613 1143.42 0 9.9%

70 3.95% 60 3 0 0.897 3.00 0 0% 240 0 0.140 240.00 0 0%

30 10% 25 6 10 0.293 5.25 8 12.5% 1749 5 0.533 1509.79 0 13.68%

BCA results 40 51.28% 13 5 17 0.907 3.33 3 33.33% 1707 16 0.162 943.11 30 44.75%

for the same 40 14.49% 24 2 0 0.521 2.00 0 0% 316 7 0.790 211.14 0 33.18%

instances above 50 14.25% 27 4 5 0.042 3.73 1 6.82% 1269 34 0.310 646.31 2 49.07%

70 3.95% 60 3 2 0.608 3.00 0 0% 240 0 0.960 240.00 0 0%

Table 5: Extreme PEDP cases and WPEDP complementary information.

WPEDP PEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

300 24.49% 50 150578 167 6.801 3535.04 0 97.65% 300 209 2.590 11.62 0 96.13%

Five highest 300 19.48% 56 148208 77 6.605 4367.37 0 97.05% 300 59 2.583 14.64 0 95.12%

CPU times 270 3.98% 117 11380 573 6.455 8032.53 0 29.42% 27 46 1.334 23.13 0 14.32%

for CPLEX-BC 290 29.29% 45 140961 261 6.251 2885.52 0 97.95% 290 12 1.483 10.68 0 96.32%

290 14.85% 63 147212 161 6.166 4593.26 0 96.88% 290 55 2.379 15.22 0 94.75%

300 24.49% 50 150578 225 192.844 2426.91 1179 98.39% 300 263 625.378 11.33 1691 96.22%

BCA results 300 19.48% 56 148208 235 139.109 3436.92 1632 97.68% 300 325 412.606 14291.00 1976 95.24%

for the same 270 3.98% 117 11380 2246 65.594 5344.95 567 53.03% 27 2266 64.464 22.45 470 16.87%

instances above 290 29.29% 45 140961 163 147.143 1869.58 1552 98.67% 290 133 534.155 10.39 2207 96.42%

290 14.85% 63 147212 261 118.512 3383.94 953 97.7% 290 593 456.276 14.85 1422 94.88%

40 29.41% 17 575 0 0.036 451.97 0 21.4% 3 0 0.334 2.99 0 0.38%

Five lowest 180 2.95% 111 2146 0 0.051 2081.77 0 2.99% 12 0 0.164 12.00 0 0%

CPU times 220 0.99% 211 3957 0 0.074 3876.50 0 2.03% 26 0 0.715 26.00 0 0%

for CPLEX-BC 120 9.8% 50 434 0 0.084 429.76 0 0.98% 3 0 1.010 2.97 0 1.15%

90 3% 78 8620 0 0.095 8500.88 0 1.38% 22 0 0.957 21.74 0 1.16%

40 29.41% 17 575 4 0.918 505.87 1 12.02% 3 5 0.659 2.64 12 11.97%

BCA results 180 2.95% 111 2146 209 1.056 1524.03 11 28.98% 12 0 0.491 12.00 4 0%

for the same 220 0.99% 211 3957 23 0.416 3744.02 0 5.38% 26 1 0.386 26.00 0 0%

instances above 120 9.8% 50 434 20 0.863 110.40 1 74.56% 3 10 0.840 2.91 1 2.9%

90 3% 78 8620 143 0.237 6559.05 19 23.91% 22 53 0.897 19.82 28 9.91%

Table 6: Extreme WPEDP cases and PEDP complementary information.

15

WPEDP PEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

300 38.46% 40 156804 75 3.039 2338.67 0 98.51% 300 15 2.065 10.61 0 96.46%

Five highest 280 19.57% 54 139915 95 3.645 2490.39 0 98.22% 280 179 2.932 10.47 0 96.26%

gaps 260 39.04% 37 125767 121 3.456 2354.67 0 98.13% 260 23 1.050 9.26 0 96.44%

for CPLEX-BC 260 33.33% 40 134029 69 2.916 2545.52 0 98.1% 260 80 2.141 8.91 0 96.57%

300 34.84% 42 149764 15 4.890 2910.39 0 98.06% 300 15 2.077 10.78 0 96.41%

300 38.46% 40 156804 97 148.434 2183.34 1413 98.61% 300 71 250.260 10329.00 822 96.56%

BCA results 280 19.57% 54 139915 453 144.288 1717.67 695 98.77% 280 549 434.465 10.26 1087 96.34%

for the same 260 39.04% 37 125767 87 97.805 1699.47 1481 98.65% 260 137 362.016 9.01 1350 96.53%

instances above 260 33.33% 40 134029 125 103.271 1848.28 1944 98.62% 260 219 509.720 8.69 953 96.66%

300 34.84% 42 149764 81 130.293 2206.02 1259 98.53% 300 259 745.003 10496.00 2103 96.5%

70 3.95% 60 240 0 0.140 240.00 0 0% 3 0 0.897 3.00 0 0%

Five lowest 110 1.98% 106 131 0 0.221 131.00 0 0% 4 0 0.877 4.00 0 0%

gaps 120 19.05% 36 701 0 0.889 701.00 0 0% 4 0 0.309 3.74 0 6.62%

for CPLEX-BC 120 1.97% 111 291 0 0.481 291.00 0 0% 7 0 0.772 7.00 0 0%

140 4.91% 76 978 0 1.036 978.00 0 0% 6 0 0.246 6.00 0 0%

70 3.95% 60 240 0 0.960 240.00 0 0% 3 2 0.608 3.00 0 0%

BCA results 110 1.98% 106 131 0 0.135 131.00 0 0% 4 0 0.654 4.00 0 0%

for the same 120 19.05% 36 701 25 0.927 302.47 4 56.85% 4 63 1.463 3.67 0 8.32%

instances above 120 1.97% 111 291 0 0.457 291.00 0 0% 7 4 0.699 7.00 0 0%

140 4.91% 76 978 58 0.728 369.66 6 62.2% 6 0 0.871 6.00 1 0%

Table 7: Extreme WPEDP cases and PEDP complementary information.

4.3 Results for 3-regular graphs

Under the 7, 200 seconds CPU time limit imposed, optimal PEDP and WPEDP
solutions were obtained for all 10 CR graphs by both algorithms. The average
CPU time taken by CPLEX-BC to solve a PEDP instance was 11.85 seconds
while the average LP relaxation gap it attained was 63%. Corresponding fig-
ures for BCA are respectively 18.95 and 64.85%. For WPEDP instances, the
corresponding CPLEX-BC figures are 17.68 and 65.93%, while those for BCA
are 38.80 and 72.80%. From average CR graph results, CPLEX-BC clearly out-
performs BCA for these graphs. Furthermore, CR graph instances appear to be
the hardest to solve in our test set.

Tables 8, 9, 10 and 11 show extreme CPU time and LP relaxation gaps for
CR graph instances.

16

PEDP WPEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

270 1.68% 180 108 13729 81.469 54.94 0 49.13% 54409 9178 72.969 25195.00 0 53.69%

Five highest 240 1.89% 160 108 2096 12.329 50.90 0 52.87% 58105 3728 22.881 24481.40 0 57.87%

CPU times 300 1.51% 200 222 1418 10.968 65.78 0 70.37% 113030 4935 64.715 30576.60 0 72.95%

for CPLEX-BC 210 2.16% 140 210 762 4.531 44.52 0 78.8% 110808 825 6.474 21488.10 0 80.61%

150 3.03% 100 60 795 2.883 31.72 0 47.14% 28504 708 3.297 15289.30 0 46.36%

270 1.68% 180 108 28307 80.490 54.00 487 50% 54409 32959 110.797 20764.00 506 61.84%

BCA results 240 1.89% 160 108 9615 27.853 48.00 398 55.56% 58105 59569 151.613 20090.60 452 65.42%

for the same 300 1.51% 200 222 8591 35.889 60.00 521 72.97% 113030 20796 92.619 24740.30 560 78.11%

instances above 210 2.16% 140 210 6071 20.050 42.00 374 80% 110808 5624 14.967 17072.60 371 84.59%

150 3.03% 100 60 6523 12.291 30.00 262 50% 28504 2725 4.692 11912.20 253 58.21%

90 5.08% 60 90 728 0.735 19.03 0 78.86% 45141 484 1.222 8389.91 0 81.41%

Five lowest 30 15.79% 20 30 53 0.869 6.48 0 78.39% 15218 85 0.324 2873.61 0 81.12%

CPU times 60 7.69% 40 60 269 1.046 12.71 0 78.81% 31511 389 0.604 5930.93 0 81.18%

for CPLEX-BC 120 3.8% 80 60 502 1.581 24.76 0 58.74% 29526 529 1.398 10872.90 0 63.18%

180 2.52% 120 60 159 2.057 37.80 0 37% 28055 424 2.920 16560.00 0 40.97%

90 5.08% 60 90 2427 2.707 18.00 172 80% 45141 1277 2.102 6964.47 159 84.57%

BCA results 30 15.79% 20 30 53 0.854 6.00 31 80% 15218 71 0.421 2310.42 36 84.82%

for the same 60 7.69% 40 60 443 1.192 12.00 99 80% 31511 522 0.794 4550.62 105 85.56%

instances above 120 3.8% 80 60 1532 3.164 24.00 205 60% 29526 2327 3.379 8397.46 217 71.56%

180 2.52% 120 60 1907 4.987 36.00 267 40% 28055 2572 6.600 13085.50 289 53.36%

Table 8: Extreme PEDP cases and WPEDP complementary information.

PEDP WPEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

90 5.08% 60 90 728 0.735 19.03 0 78.86% 45141 484 1.222 8389.91 0 81.41%

Five highest 60 7.69% 40 60 269 1.046 12.71 0 78.81% 31511 389 0.604 5930.93 0 81.18%

gaps 210 2.16% 140 210 762 4.531 44.52 0 78.8% 110808 825 6.474 21488.10 0 80.61%

for CPLEX-BC 30 15.79% 20 30 53 0.869 6.48 0 78.39% 15218 85 0.324 2873.61 0 81.12%

300 1.51% 200 222 1418 10.968 65.78 0 70.37% 113030 4935 64.715 30576.60 0 72.95%

90 5.08% 60 90 2427 2.707 18.00 172 80% 45141 1277 2.102 6964.47 159 84.57%

BCA results 60 7.69% 40 60 443 1.192 12.00 99 80% 31511 522 0.794 4550.62 105 85.56%

for the same 210 2.16% 140 210 6071 20.05 42.00 374 80% 110808 5624 14.967 17072.60 371 84.59%

instances above 30 15.79% 20 30 53 0.854 6.00 31 80% 15218 71 0.421 2310.42 36 84.82%

300 1.51% 200 222 8591 35.889 60.00 521 72.97% 113030 20796 92.619 24740.30 560 78.11%

180 2.52% 120 60 159 2.057 37.80 0 37% 28055 424 2.92 16560.00 0 40.97%

Five lowest 150 3.03% 100 60 795 2.883 31.72 0 47.14% 28504 708 3.297 15289.30 0 46.36%

gaps 270 1.68% 180 108 13729 81469 54.94 0 49.13% 54409 9178 72.969 25195.00 0 53.69%

for CPLEX-BC 240 1.89% 160 108 2096 12.329 50.90 0 52.87% 58105 3728 22.881 24481.40 0 57.87%

120 3.8% 80 60 502 1.581 24.76 0 58.74% 29526 529 1.398 10872.90 0 63.18%

180 2.52% 120 60 1907 4.987 36.00 267 40% 28055 2572 6.6 13085.50 289 53.36%

BCA results 150 3.03% 100 60 6523 12.291 30.00 262 50% 28504 2725 4.692 11912.20 253 58.21%

for the same 270 1.68% 180 108 28307 80.49 54.00 487 50% 54409 32959 110.797 20764.00 506 61.84%

instances above 240 1.89% 160 108 9615 27.853 48.00 398 55.56% 58105 59569 151.613 20090.60 452 65.42%

120 3.8% 80 60 1532 3.164 24.00 205 60% 29526 2327 3.379 8397.46 217 71.56%

Table 9: Extreme PEDP cases and WPEDP complementary information.

17

WPEDP PEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

270 1.68% 180 54409 9178 72.969 25195.00 0 53.69% 108 13729 81.469 54.94 0 49.13%

Five highest 300 1.51% 200 113030 4935 64.715 30576.60 0 72.95% 222 1418 10.968 65.78 0 70.37%

CPU times 240 1.89% 160 58105 3728 22.881 24481.40 0 57.87% 108 2096 12.329 50.90 0 52.87%

for CPLEX-BC 210 2.16% 140 110808 825 6.474 21488.10 0 80.61% 210 762 4.531 44.52 0 78.8%

150 3.03% 100 28504 708 3.297 15289.30 0 46.36% 60 795 2.883 31.72 0 47.14%

270 1.68% 180 54409 32959 110.797 20764.00 506 61.84% 108 28307 80.49 54.00 487 50%

BCA results 300 1.51% 200 113030 20796 92.619 24740.30 560 78.11% 222 8591 35.889 60.00 521 72.97%

for the same 240 1.89% 160 58105 59569 151.613 20090.60 452 65.42% 108 9615 27.853 48.00 398 55.56%

instances above 210 2.16% 140 110808 5624 14.967 17072.60 371 84.59% 210 6071 20.05 42.00 374 80%

150 3.03% 100 28504 2725 4.692 11912.20 253 58.21% 60 6523 12.291 30.00 262 50%

30 15.79% 20 15218 85 0.324 2873.61 0 81.12% 30 53 0.869 6.48 0 78.39%

Five lowest 60 7.69% 40 31511 389 0.604 5930.93 0 81.18% 60 269 1.046 12.71 0 78.81%

CPU times 90 5.08% 60 45141 484 1.222 8389.91 0 81.41% 90 728 0.735 19.03 0 78.86%

for CPLEX-BC 120 3.8% 80 29526 529 1.398 10872.90 0 63.18% 60 502 1.581 24.76 0 58.74%

180 2.52% 120 28055 424 2.920 16560.00 0 40.97% 60 159 2.057 37.80 0 37%

30 15.79% 20 15218 71 0.421 2310.42 36 84.82% 30 53 0.854 6.00 31 80%

BCA results 60 7.69% 40 31511 522 0.794 4550.62 105 85.56% 60 443 1.192 12.00 99 80%

for the same 90 5.08% 60 45141 1277 2.102 6964.47 159 84.57% 90 2427 2.707 18.00 172 80%

instances above 120 3.8% 80 29526 2327 3.379 8397.46 217 71.56% 60 1532 3.164 24.00 205 60%

180 2.52% 120 28055 2572 6.6 13085.50 289 53.36% 60 1907 4.987 36.00 267 40%

Table 10: Extreme WPEDP cases and PEDP complementary information.

WPEDP PEDP

|E| dens.(%) |V | OPT NN t(s) LB0 NUC GAP OPT NN t(s) LB0 NUC GAP

90 5.08% 60 45141 484 1.220 8389.91 0 81.41% 90 728 0.730 19.03 0 78.86%

Five highest 60 7.69% 40 31511 389 0.600 5930.93 0 81.18% 60 269 1.050 12.71 0 78.81%

gaps 30 15.79% 20 15218 85 0.320 2873.61 0 81.12% 30 53 0.870 6.48 0 78.39%

for CPLEX-BC 210 2.16% 140 110808 825 6.470 21488.10 0 80.61% 210 762 4.530 44.52 0 78.8%

300 1.51% 200 113030 4935 64.720 30576.60 0 72.95% 222 1418 10.970 65.78 0 70.37%

90 5.08% 60 45141 1277 2.102 6964.47 159 84.57% 90 2427 2.707 18.00 172 80%

BCA results 60 7.69% 40 31511 522 0.794 4550.62 105 85.56% 60 443 1.192 12.00 99 80%

for the same 30 15.79% 20 15218 71 0.421 2310.42 36 84.82% 30 53 0.854 6.00 31 80%

instances above 210 2.16% 140 110808 5624 14.967 17072.60 371 84.59% 210 6071 20.05 42.00 374 80%

300 1.51% 200 113030 20796 92.619 24740.30 560 78.11% 222 8591 35.889 60.00 521 72.97%

180 2.52% 120 28055 424 2.920 16560.00 0 40.97% 60 159 2.060 37.80 0 37%

Five lowest 150 3.03% 100 28504 708 3.300 15289.30 0 46.36% 60 795 2.880 31.72 0 47.14%

gaps 270 1.68% 180 54409 9178 72.970 25195.00 0 53.69% 108 13729 81.470 54.94 0 49.13%

for CPLEX-BC 240 1.89% 160 58105 3728 22.880 24481.40 0 57.87% 108 2096 12.330 50.90 0 52.87%

120 3.8% 80 29526 529 1.400 10872.90 0 63.18% 60 502 1.580 24.76 0 58.74%

180 2.52% 120 28055 2572 6.6 13085.50 289 53.36% 60 1907 4.987 36.00 267 40%

BCA results 150 3.03% 100 28504 2725 4.692 11912.20 253 58.21% 60 6523 12.291 30.00 262 50%

for the same 270 1.68% 180 54409 32959 110.797 20764.00 506 61.84% 108 28307 80.49 54.00 487 50%

instances above 240 1.89% 160 58105 59569 151.613 20090.60 452 65.42% 108 9615 27.853 48.00 398 55.56%

120 3.8% 80 29526 2327 3.379 8397.46 217 71.56% 60 1532 3.164 24.00 205 60%

Table 11: Extreme WPEDP cases and PEDP complementary information.

5 Conclusions

The paper suggests and investigates what appears to be the the very first formu-
lation proposed for the Perfect Edge Domination Problem. So far, the problem

18

has been studied mostly in computational complexity terms and no exact algo-
rithm, Combinatorial or IP based, was previously suggested for it. Based on
our formulation, two Branch-and-Cut algorithms were designed, implemented
and tested for the problem. Extensive computational tests are reported for the
best performing of the two, together with results obtained by IP solver CPLEX,
used as a stand alone Branch-and-Cut algorithm. Test instances used in these
experiments originate from quite elaborated procedures aimed at generating
challenging instances for the problem.

From the computational results obtained, one conclusion that may be drawn
is that there exists plenty of room for investigating valid inequalities to reinforce
our PEDP formulation. With the single exception of non weighted EED graph
test instances, LP relaxation gaps for the remaining instances are, on the aver-
age, quite high. Furthermore, the tailor made Branch-and-Cut algorithms we
tested lagged well behind CPLEX in terms of CPU time and, to a lesser extent,
LP relaxation gaps. The first part of the remark should probably be taken with
caution since all CPLEX pre-processing, cutting plane, and heuristic modules
were kept switched off for our algorithms. However, it is quite surprising that
the tailor-made cutting planes we use are outperformed by the generic ones used
by CPLEX. Accordingly, attempting to lift known inequalities for the Set Cov-
ering polytope [3] is an alternative one should probably investigate. However,
these inequalities have been of limited use, so far, even for the Set Covering
Problem itself. The investigation of PEDP heuristics is also another candidate
research topic to pursue.

Finally, taking a broader view of the subject, we also plan to investigate for-
mulations and exact algorithms for the Minimum Edge Dominating Set Problem
and the Efficient Edge Domination Problem.

References

[1] Enide Andrade, Domingos M. Cardoso, Luis Medina, and Oscar Rojo.
On the dominating induced matching problem: Spectral results and sharp
bounds. Discrete Applied Mathematics, 234:22 – 31, 2018. Special Issue
on the Ninth International Colloquium on Graphs and Optimization (GO
IX), 2014.

[2] M. Bodur, T. Ekim, and Z.C. Taskin. Decomposition algorithms for solving
the minimum weight maximal matching problem. Networks, 62(4):273–287,
2013.

[3] R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering. PhD
thesis, 1998.

[4] A. Brandstädt, C. Hundt, and R. Nevries. Efficient edge domination
on hole-free graphs in polynomial time. In Proceedings of the 9th Latin
American conference on Theoretical Informatics, LATIN’10, pages 650–
661, Berlin, Heidelberg, 2010. Springer-Verlag.

19

[5] A. Brandstädt, A. Leitert, and D. Rautenbach. Efficient dominating and
edge dominating sets for graphs and hypergraphs. In Algorithms and Com-
putation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan,
December 19-21, 2012. Proceedings, pages 267–277, 2012.

[6] A. Brandstädt and R. Mosca. Dominating induced matchings for P7-free
graphs in linear Time. CoRR, abs/1106.2772, 2011.

[7] A. Brandstädt and R. Mosca. Finding dominating induced matchings in
p8 -free graphs in polynomial time. Algorithmica, 77(4):1283–1302, 2017.

[8] D. M. Cardoso, J. O. Cerdeira, C. Delorme, and P. C. Silva. Efficient edge
domination in regular graphs. Discrete Applied Mathematics, 156(15):3060–
3065, 2008.

[9] D. M. Cardoso, N. Korpelainen, and V. V. Lozin. On the complexity of
the dominating induced matching problem in hereditary classes of graphs.
Discrete Appl. Math., 159(7):521–531, April 2011.

[10] G.J. Chang and S. Hwang. The edge domination problem. Discussiones
Mathematicae Graph Theory, 15(1):51–57, 1995.

[11] M. Demange and T. Ekim. Minimum maximal matching is np-hard in
regular bipartite graphs. In Theory and Applications of Models of Com-
putation, 5th International Conference, TAMC 2008, Xi’an, China, April
25-29, 2008. Proceedings, pages 364–374, 2008.

[12] D. L. Grinstead, P. J. Slater, N. A. Sherwani, and N. D. Holmes. Efficient
edge domination problems in graphs. Inf. Process. Lett., 48(5):221–228,
1993.

[13] A. Hertz, V.V. Lozin, B. Ries, V. Zamaraev, and D. de Werra. Dom-
inating induced matchings in graphs containing no long claw. CoRR,
abs/1505.02558, 2015.

[14] D.J. Horton and K. Kilakos. Minimum edge dominating sets. SIAM J.
Discrete Math., 6(3):375–387, 1993.

[15] Ibm. IBM ILOG CPLEX Optimization Studio V12.6.0 documentation,
2017.

[16] N. Korpelainen. A polynomial-time algorithm for the dominating induced
matching problem in the class of convex graphs. Electronic Notes in Dis-
crete Mathematics, 32:133–140, 2009.

[17] M.C. Lin, V. Lozin, V.A. Moyano, and J.L. Szwarcfiter. Perfect edge dom-
ination: Hard and solvable cases. Annals of Operations Research, 2017.

[18] M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter. Fast algorithms for some
dominating induced matching problems. Inf. Process. Lett., 114(10):524–
528, 2014.

20

[19] M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter. Efficient and perfect dom-
ination on circular-arc graphs. Electronic Notes in Discrete Mathematics,
50:307–312, 2015.

[20] M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter. Exact algorithms for mini-
mum weighted dominating induced matching. Algorithmica, 77(3):642–660,
2017.

[21] C. L. Lu, M. Ko, and C. Yu Tang. Perfect edge domination and efficient
edge domination in graphs. Discrete Applied Mathematics, 119(3):227–250,
2002.

[22] C. L. Lu and C. Y. Tang. Solving the weighted efficient edge domination
problem on bipartite permutation graphs. Discrete Applied Mathematics,
87(1-3):203–211, 1998.

[23] M.B. Richey and R.G. Parker. Minimum-maximal matching in series-
parallel graphs. European Journal of Operational Research, 33(1):98 – 105,
1988.

[24] A. Srinivasan, K. Madhukar, P. Nagavamsi, C.P. Rangan, and M-S. Chang.
Edge domination on bipartite permutation graphs and cotriangulated
graphs. Inf. Process. Lett., 56(3):165–171, 1995.

[25] Z.C. Taskin and T. Ekim. Integer programming formulations for the
minimum weighted maximal matching problem. Optimization Letters,
6(6):1161–1171, 2012.

[26] M. Xiao and H. Nagamochi. Exact algorithms for dominating induced
matching based on graph partition. Discrete Applied Mathematics, 190-
191:147–162, 2015.

[27] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM
Journal on Applied Mathematics, 38(3):364–372, 1980.

21

