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Abstract

A normalizing flow models a complex probability density as an invertible transfor-
mation of a simple base density. Flows based on either coupling or autoregressive
transforms both offer exact density evaluation and sampling, but rely on the pa-
rameterization of an easily invertible elementwise transformation, whose choice
determines the flexibility of these models. Building upon recent work, we pro-
pose a fully-differentiable module based on monotonic rational-quadratic splines,
which enhances the flexibility of both coupling and autoregressive transforms while
retaining analytic invertibility. We demonstrate that neural spline flows improve
density estimation, variational inference, and generative modeling of images.

1 Introduction

Models that can reason about the joint distribution of high-dimensional random variables are central
to modern unsupervised machine learning. Explicit density evaluation is required in many statis-
tical procedures, while synthesis of novel examples can enable agents to imagine and plan in an
environment prior to choosing a action. In recent years, the variational autoencoder [VAE, 29, 48]
and generative adversarial network [GAN, 15] have received particular attention in the generative-
modeling community, and both are capable of sampling with a single forward pass of a neural network.
However, these models do not offer exact density evaluation, and can be difficult to train. On the
other hand, autoregressive density estimators [13, 50, 56, 58, 59, 60] can be trained by maximum
likelihood, but sampling requires a sequential loop over the output dimensions.

Flow-based models present an alternative approach to the above methods, and in some cases provide
both exact density evaluation and sampling in a single neural-network pass. A normalizing flow
models data x as the output of an invertible, differentiable transformation f of noise u:

x = f(u) where u ∼ π(u). (1)

The probability density of x under the flow is obtained by a change of variables:

p(x) = π
(
f−1(x)

) ∣∣∣∣det(∂f−1∂x

)∣∣∣∣. (2)

Intuitively, the function f compresses and expands the density of the noise distribution π(u), and this
change is quantified by the determinant of the Jacobian of the transformation. The noise distribution
π(u) is typically chosen to be simple, such as a standard normal, whereas the transformation f
and its inverse f−1 are often implemented by composing a series of invertible neural-network
modules. Given a dataset D =

{
x(n)

}
N
n=1, the flow is trained by maximizing the total log likelihood∑

n log p
(
x(n)

)
with respect to the parameters of the transformation f . In recent years, normalizing

flows have received widespread attention in the machine-learning literature, seeing successful use in
density estimation [10, 43], variational inference [30, 36, 46, 57], image, audio and video generation
[26, 28, 32, 45], likelihood-free inference [44], and learning maximum-entropy distributions [34].
∗Equal contribution
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Figure 1: Monotonic rational-quadratic transforms are drop-in replacements for additive or affine
transformations in coupling or autoregressive layers, greatly enhancing their flexibility while retaining
exact invertibility. Left: A random monotonic rational-quadratic transform with K = 10 bins and
linear tails is parameterized by a series of K + 1 ‘knot’ points in the plane, and the K − 1 derivatives
at the internal knots. Right: Derivative of the transform on the left with respect to x. Monotonic
rational-quadratic splines naturally induce multi-modality when used to transform random variables.

A flow is defined by specifying the bijective function f or its inverse f−1, usually with a neural
network. Depending on the flow’s intended use cases, there are practical constraints in addition to
formal invertibility:

• To train a density estimator, we need to be able to evaluate the Jacobian determinant and the inverse
function f−1 quickly. We don’t evaluate f , so the flow is usually defined by specifying f−1.

• If we wish to draw samples using eq. (1), we would like f to be available analytically, rather than
having to invert f−1 with iterative or approximate methods.

• Ideally, we would like both f and f−1 to require only a single pass of a neural network to compute,
so that both density evaluation and sampling can be performed quickly.

Autoregressive flows such as inverse autoregressive flow [IAF, 30] or masked autoregressive flow
[MAF, 43] are D times slower to invert than to evaluate, where D is the dimensionality of x.
Subsequent work which enhances their flexibility has resulted in models which do not have an
analytic inverse, and require numerical optimization to invert [22]. Flows based on coupling layers
[NICE, RealNVP, 9, 10] have an analytic one-pass inverse, but are often less flexible than their
autoregressive counterparts.

In this work, we propose a fully-differentiable module based on monotonic rational-quadratic splines
which has an analytic inverse. The module acts as a drop-in replacement for the affine or additive
transformations commonly found in coupling and autoregressive transforms. We demonstrate that
this module significantly enhances the flexibility of both classes of flows, and in some cases brings the
performance of coupling transforms on par with the best-known autoregressive flows. An illustration
of our proposed transform is shown in fig. 1.

2 Background

2.1 Coupling transforms

A coupling transform φ [9] maps an input x to an output y in the following way:

1. Split the input x into two parts, x = [x1:d−1,xd:D].
2. Compute parameters θ = NN(x1:d−1), where NN is an arbitrary neural network.
3. Compute yi = gθi

(xi) for i = d, . . . ,D in parallel, where gθi
is an invertible function

parameterized by θi.
4. Set y1:d−1 = x1:d−1, and return y = [y1:d−1,yd:D].

The Jacobian matrix of a coupling transform is lower triangular, since yd:D is given by transforming
xd:D elementwise as a function of x1:d−1, and y1:d−1 is equal to x1:d−1. Thus, the Jacobian
determinant of the coupling transform φ is given by det

(
∂φ
∂x

)
=
∏D
i=d

∂gθi
∂xi

, the product of the
diagonal elements of the Jacobian.
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Coupling transforms solve two important problems for normalizing flows: they have a tractable
Jacobian determinant, and they can be inverted exactly in a single pass. The inverse of a coupling
transform can be easily computed by running steps 1–4 above, this time inputting y, and using g−1θi

to
compute xd:D in step 3. Multiple coupling layers can also be composed in a natural way to construct
a normalizing flow with increased flexibility. A coupling transform can also be viewed as a special
case of an autoregressive transform where we perform two splits of the input data instead of D, as
noted by Papamakarios et al. [43]. In this way, advances in flows based on coupling transforms can
be applied to autoregressive flows, and vice versa.

2.2 Invertible elementwise transformations

Affine/additive Typically, the function gθi
takes the form of an additive [9] or affine [10] transfor-

mation for computational ease. The affine transformation is given by:
gθi

(xi) = αixi + βi, where θi = {αi, βi}, (3)
and αi is usually constrained to be positive. The additive transformation corresponds to the special
case αi=1. Both the affine and additive transformations are easy to invert, but they lack flexibility.
Recalling that the base distribution of a flow is typically simple, flow-based models may struggle
to model multi-modal or discontinuous densities using just affine or additive transformations, since
they may find it difficult to compress and expand the density in a suitably nonlinear fashion (for an
illustration, see appendix C.1). We aim to choose a more flexible gθi

, that is still differentiable and
easy to invert.

Polynomial splines Recently, Müller et al. [39] proposed a powerful generalization of the above
affine transformations, based on monotonic piecewise polynomials. The idea is to restrict the input
domain of gθi

to the interval [0, 1], partition the input domain into K bins, and define gθi
to be a

simple polynomial segment within each bin. Müller et al. [39] restrict themselves to monotonically-
increasing linear and quadratic polynomial segments, whose coefficients are parameterized by θi.
Moreover, the polynomial segments are restricted to match at the bin boundaries so that gθi

is
continuous. Functions of this form, which interpolate between data using piecewise polynomials, are
known as polynomial splines.

Cubic splines In a previous iteration of this work [11], we explored the cubic-spline flow, a natural
extension to the framework of Müller et al. [39]. We proposed to implement gθi as a monotonic cubic
spline [54], where gθi is defined to be a monotonically-increasing cubic polynomial in each bin. By
composing coupling layers featuring elementwise monotonic cubic-spline transforms with invertible
linear transformations, we found flows of this type to be much more flexible than the standard
coupling-layer models in the style of RealNVP [10], achieving similar results to autoregressive
models on a suite of density-estimation tasks.

Like Müller et al. [39], our spline transform and its inverse were defined only on the interval [0, 1].
To ensure that the input is always between 0 and 1, we placed a sigmoid transformation before each
coupling layer, and a logit transformation after each coupling layer. These transformations allow the
spline transform to be composed with linear layers, which have an unconstrained domain. However,
the limitations of 32-bit floating point precision mean that in practice the sigmoid saturates for inputs
outside the approximate range of [−13, 13], which results in numerical difficulties. In addition,
computing the inverse of the transform requires inverting a cubic polynomial, which is prone to
numerical instability if not carefully treated [1]. In section 3.1 we propose a modified method based
on rational-quadratic splines which overcomes these difficulties.

2.3 Invertible linear transformations

To ensure all input variables can interact with each other, it is common to randomly permute
the dimensions of intermediate layers in a normalizing flow. Permutation is an invertible linear
transformation, with absolute determinant equal to 1. Oliva et al. [41] generalized permutations
to a more general class of linear transformations, and Kingma and Dhariwal [28] demonstrated
improvements on a range of image tasks. In particular, a linear transformation with matrix W is
parameterized in terms of its LU-decomposition W = PLU, where P is a fixed permutation matrix,
L is lower triangular with ones on the diagonal, and U is upper triangular. By restricting the diagonal
elements of U to be positive, W is guaranteed to be invertible.
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By making use of the LU-decomposition, both the determinant and the inverse of the linear trans-
formation can be computed efficiently. First, the determinant of W can be calculated in O(D) time
as the product of the diagonal elements of U. Second, inverting the linear transformation can be
done by solving two triangular systems, one for U and one for L, each of which costs O(D2M) time
where M is the batch size. Alternatively, we can pay a one-time cost of O(D3) to explicitly compute
W−1, which can then be cached for re-use.

3 Method

3.1 Monotonic rational-quadratic transforms

We propose to implement the function gθi
using monotonic rational-quadratic splines as a building

block, where each bin is defined by a monotonically-increasing rational-quadratic function. A
rational-quadratic function takes the form of a quotient of two quadratic polynomials. Rational-
quadratic functions are easily differentiable, and since we consider only monotonic segments of
these functions, they are also analytically invertible. Nevertheless, they are strictly more flexible
than quadratic functions, and allow direct parameterization of the derivatives and heights at each
knot. In our implementation, we use the method of Gregory and Delbourgo [17] to parameterize
a monotonic rational-quadratic spline. The spline itself maps an interval [−B,B] to [−B,B]. We
define the transformation outside this range as the identity, resulting in linear ‘tails’, so that the overall
transformation can take unconstrained inputs.

The spline uses K different rational-quadratic functions, with boundaries set by K+1 coordi-
nates

{
(x(k), y(k))

}
K
k=0 known as knots. The knots monotonically increase between (x(0), y(0))=

(−B,−B) and (x(K), y(K))=(B,B). We give the spline K−1 arbitrary positive values
{
δ(k)

}
K−1
k=1

for the derivatives at the internal points, and set the boundary derivatives δ(0) = δ(K) = 1 to match
the linear tails. If the derivatives are not matched in this way, the transformation is still continuous,
but its derivative can have jump discontinuities at the boundary points. This in turn makes the log-
likelihood training objective discontinuous, which in our experience manifested itself in numerical
issues and failed optimization.

The method constructs a monotonic, continuously-differentiable, rational-quadratic spline
which passes through the knots, with the given derivatives at the knots. Defining sk =(
yk+1 − yk

)
/
(
xk+1 − xk

)
and ξ(x) = (x − xk)/(xk+1 − xk), the expression for the rational-

quadratic α(k)(ξ)/β(k)(ξ) in the kth bin can be written

α(k)(ξ)

β(k)(ξ)
= y(k) +

(y(k+1) − y(k))
[
s(k)ξ2 + δ(k)ξ(1− ξ)

]
s(k) +

[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ) . (4)

Since the rational-quadratic transformation acts elementwise on an input vector and is monotonic, the
logarithm of the absolute value of the determinant of its Jacobian can be computed as the sum of the
logarithm of the derivatives of eq. (4) with respect to each of the transformed x values in the input
vector. It can be shown that

d

dx

[
α(k)(ξ)

β(k)(ξ)

]
=

(
s(k)

)
2
[
δ(k+1)ξ2 + 2s(k)ξ(1− ξ) + δ(k)(1− ξ)2

][
s(k) +

[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ)

]
2

. (5)

Finally, the inverse of a rational-quadratic function can be computed analytically by inverting eq. (4),
which amounts to solving for the roots of a quadratic equation. Because the transformation is
monotonic, we can always determine which of the two quadratic roots is correct, and that the solution
is given by ξ(x) = 2c/

(
−b−

√
b2 − 4ac

)
, where

a =
(
y(k+1) − y(k)

)[
s(k) − δ(k)

]
+
(
y − y(k)

)[
δ(k+1) + δ(k) − 2s(k)

]
, (6)

b =
(
y(k+1) − y(k)

)
δ(k) −

(
y − y(k)

)[
δ(k+1) + δ(k) − 2s(k)

]
, (7)

c = −s(k)
(
y − y(k)

)
, (8)

which can the be used to determine x. An instance of the rational-quadratic transform is illustrated in
fig. 1, and appendix A.1 gives full details of the above expressions.
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Implementation The practical implementation of the monotonic rational-quadratic coupling trans-
form is as follows:

1. A neural network NN takes x1:d−1 as input and outputs an unconstrained parameter vector
θi of length 3K − 1 for each i = d, . . . ,D.

2. Vector θi is partitioned as θi =
[
θwi ,θ

h
i ,θ

d
i

]
, where θwi and θhi have length K, and θdi has

length K − 1.
3. Vectors θwi and θhi are each passed through a softmax and multiplied by 2B; the outputs are

interpreted as the widths and heights of the K bins, which must be positive and span the
[−B,B] interval. Cumulative sums of the K bin widths and heights, each starting at −B,
yield the K+1 knots

{
(x(k), y(k))

}
K
k=0.

4. The vector θdi is passed through a softplus function and is interpreted as the values of the
derivatives

{
δ(k)

}
K−1
k=1 at the internal knots.

Evaluating a rational-quadratic spline transform at location x requires finding the bin in which x lies,
which can be done efficiently with binary search, since the bins are sorted. The Jacobian determinant
can be computed in closed-form as a product of quotient derivatives, while the inverse requires solving
a quadratic equation whose coefficients depend on the value to invert; we provide details of these
procedures in appendix A.2 and appendix A.3. Unlike the additive and affine transformations, which
have limited flexibility, a differentiable monotonic spline with sufficiently many bins can approximate
any differentiable monotonic function on the specified interval [−B,B]2, yet has a closed-form,
tractable Jacobian determinant, and can be inverted analytically. Finally, our parameterization is
fully-differentiable, which allows for training by gradient methods.

The above formulation can also easily be adapted for autoregressive transforms; each θi can be
computed as a function of x1:i−1 using an autoregressive neural network, and then all elements of x
can be transformed at once. Inspired by this, we also introduce a set of splines for our coupling layers
which act elementwise on x1:d−1 (the typically non-transformed variables), and whose parameters
are optimized directly by stochastic gradient descent. This means that our coupling layer transforms

Training data Flow density Flow samples

Figure 2: Qualitative results for two-dimensional
synthetic datasets using RQ-NSF with two cou-
pling layers.

all elements of x at once as follows:

θ1:d−1 = Trainable parameters (9)
θd:D = NN(x1:d−1) (10)
yi = gθi

(xi) for i = 1, . . . , D. (11)

Figure 2 demonstrates the flexibility of our
rational-quadratic coupling transform on syn-
thetic two-dimensional datasets. Using just two
coupling layers, each with K = 128 bins, the
monotonic rational-quadratic spline transforms
have no issue fitting complex, discontinuous
densities with potentially hundreds of modes.
In contrast, a coupling layer with affine trans-
formations has significant difficulty with these
tasks (see appendix C.1).

3.2 Neural spline flows

The monotonic rational-quadratic spline transforms described in the previous section act as drop-in
replacements for affine or additive transformations in both coupling and autoregressive transforms.
When combined with alternating invertible linear transformations, we refer to the resulting class of
normalizing flows as rational-quadratic neural spline flows (RQ-NSF), which may feature coupling
layers, RQ-NSF (C), or autoregressive layers, RQ-NSF (AR). RQ-NSF (C) corresponds to Glow [28]
with affine or additive transformations replaced with monotonic rational-quadratic transforms, where
Glow itself is exactly RealNVP with permutations replaced by invertible linear transformations.

2By definition of the derivative, a differentiable monotonic function is locally linear everywhere, and can
thus be approximated by a piecewise linear function arbitrarily well given sufficiently many bins. For a fixed and
finite number of bins such universality does not hold, but this limit argument is similar in spirit to the universality
proof of Huang et al. [22], and the universal approximation capabilities of neural networks in general.
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RQ-NSF (AR) corresponds to either IAF or MAF, depending on whether the flow parameterizes
f or f−1, again with affine transformations replaced by monotonic rational-quadratic transforms,
and also with permutations replaced with invertible linear layers. Overall, RQ-NSF resembles a
traditional feed-forward neural network architecture, alternating between linear transformations and
elementwise non-linearities, while retaining an exact, analytic inverse. In the case of RQ-NSF (C),
the inverse is available in a single neural-network pass.

4 Related Work

Invertible linear transformations Invertible linear transformations have found significant use
in normalizing flows. Glow [28] replaces the permutation operation of RealNVP with an LU-
decomposed linear transformation interpreted as a 1×1 convolution, yielding superior performance
for image modeling. WaveGlow [45] and FloWaveNet [26] have also successfully adapted Glow
for generative modeling of audio. Expanding on the invertible 1× 1 convolution presented in
Glow, Hoogeboom et al. [21] propose the emerging convolution, based on composing autoregressive
convolutions in a manner analogous to an LU-decomposition, and the periodic convolution, which
uses multiplication in the Fourier domain to perform convolution. Hoogeboom et al. [21] also
introduce linear transformations based on the QR-decomposition, where the orthogonal matrix is
parameterized by a sequence of Householder transformations [55].

Invertible elementwise transformations Outside of those discussed in section 2.2, there has
been much recent work in developing more flexible invertible elementwise transformations for
normalizing flows. Flow++ [20] uses the CDF of a mixture of logistic distributions as a monotonic
transformation in coupling layers, but requires bisection search to compute an inverse, since a closed
form is not available. Non-linear squared flow [61] adds an inverse-quadratic perturbation to an
affine transformation in an autoregressive flow, which is invertible under certain restrictions of
the parameterization. Computing this inverse requires solving a cubic polynomial, and the overall
transform is less flexible than a monotonic rational-quadratic spline. Sum-of-squares polynomial flow
[SOS, 25] parameterizes a monotonic transformation by specifying the coefficients of a polynomial
of some chosen degree which can be written as a sum of squares. For low-degree polynomials, an
analytic inverse may be available, but the method would require an iterative solution in general.

Neural autoregressive flow [NAF, 22] replaces the affine transformation in MAF by parameterizing
a monotonic neural network for each dimension. This greatly enhances the flexibility of the trans-
formation, but the resulting model is again not analytically invertible. Block neural autoregressive
flow [Block-NAF, 6] directly fits an autoregressive monotonic neural network end-to-end rather than
parameterizing a sequence for each dimension as in NAF, but is also not analytically invertible.

Continuous-time flows Rather than constructing a normalizing flow as a series of discrete steps,
it is also possible to use a continuous-time flow, where the transformation from noise u to data
x is described by an ordinary differential equation. Deep diffeomorphic flow [51] is one such
instance, where the model is trained by backpropagation through an Euler integrator, and the Jacobian
is computed approximately using a truncated power series and Hutchinson’s trace estimator [23].
Neural ordinary differential equations [Neural ODEs, 3] define an additional ODE which describes
the trajectory of the flow’s gradient, avoiding the need to backpropagate through an ODE solver. A
third ODE can be used to track the evolution of the log density, and the entire system can be solved
with a suitable integrator. The resulting continuous-time flow is known as FFJORD [16]. Like flows
based on coupling layers, FFJORD is also invertible in ‘one pass’, but here this term refers to solving
a system of ODEs, rather than performing a single neural-network pass.

5 Experiments

In our experiments, the neural network NN which computes the parameters of the elementwise
transformations is a residual network [18] with pre-activation residual blocks [19]. For autoregressive
transformations, the layers must be masked so as to preserve autoregressive structure, and so we use
the ResMADE architecture outlined by Nash and Durkan [40]. Preliminary results indicated only
minor differences in setting the tail bound B within the range [1, 5], and so we fix a value B = 3
across experiments, and find this to work robustly. We also fix the number of bins K = 8 across
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Table 1: Test log likelihood (in nats) for UCI datasets and BSDS300, with error bars corresponding to
two standard deviations. FFJORD†, NAF†, Block-NAF†, and SOS† report error bars across repeated
runs rather than across the test set. Superscript? indicates results are taken from the existing literature.
For validation results which can be used for comparison during model development, see table 6 in
appendix B.1.

MODEL POWER GAS HEPMASS MINIBOONE BSDS300

FFJORD?† 0.46± 0.01 8.59± 0.12 −14.92± 0.08 −10.43± 0.04 157.40± 0.19
GLOW 0.42± 0.01 12.24± 0.03 −16.99± 0.02 −10.55± 0.45 156.95± 0.28
Q-NSF (C) 0.64± 0.01 12.80± 0.02 −15.35± 0.02 −9.35± 0.44 157.65± 0.28
RQ-NSF (C) 0.64± 0.01 13.09± 0.02 −14.75± 0.03 −9.67± 0.47 157.54± 0.28

MAF 0.45± 0.01 12.35± 0.02 −17.03± 0.02 −10.92± 0.46 156.95± 0.28
Q-NSF (AR) 0.66± 0.01 12.91± 0.02 −14.67± 0.03 −9.72± 0.47 157.42± 0.28
NAF?† 0.62± 0.01 11.96± 0.33 −15.09± 0.40 −8.86± 0.15 157.73± 0.04
BLOCK-NAF?† 0.61± 0.01 12.06± 0.09 −14.71± 0.38 −8.95± 0.07 157.36± 0.03
SOS?† 0.60± 0.01 11.99± 0.41 −15.15± 0.10 −8.90± 0.11 157.48± 0.41
RQ-NSF (AR) 0.66± 0.01 13.09± 0.02 −14.01± 0.03 −9.22± 0.48 157.31± 0.28

our experiments, unless otherwise noted. We implement all invertible linear transformations using
the LU-decomposition, where the permutation matrix P is fixed at the beginning of training, and
the product LU is initialized to the identity. For all non-image experiments, we define a flow ‘step’
as the composition of an invertible linear transformation with either a coupling or autoregressive
transform, and we use 10 steps per flow in all our experiments, unless otherwise noted. All flows use
a standard-normal noise distribution. We use the Adam optimizer [27], and anneal the learning rate
according to a cosine schedule [35]. In some cases, we find applying dropout [53] in the residual
blocks beneficial for regularization. Full experimental details are provided in appendix B. Code is
available online at https://github.com/bayesiains/nsf.

5.1 Density estimation of tabular data

We first evaluate our proposed flows using a selection of datasets from the UCI machine-learning
repository [7] and BSDS300 collection of natural images [38]. We follow the experimental setup
and pre-processing of Papamakarios et al. [43], who make their data available online [42]. We also
update their MAF results using our codebase with ResMADE and invertible linear layers instead
of permutations, providing a stronger baseline. For comparison, we modify the quadratic splines
of Müller et al. [39] to match the rational-quadratic transforms, by defining them on the range
[−B,B] instead of [0, 1], and adding linear tails, also matching the boundary derivatives as in the
rational-quadratic case. We denote this model Q-NSF. Our results are shown in table 1, where the
mid-rule separates flows with one-pass inverse from autoregressive flows. We also include validation
results for comparison during model development in table 6 in appendix B.1.

Both RQ-NSF (C) and RQ-NSF (AR) achieve state-of-the-art results for a normalizing flow on the
Power, Gas, and Hepmass datasets, tied with Q-NSF (C) and Q-NSF (AR) on the Power dataset.
Moreover, RQ-NSF (C) significantly outperforms both Glow and FFJORD, achieving scores compet-
itive with the best autoregressive models. These results close the gap between autoregressive flows
and flows based on coupling layers, and demonstrate that, in some cases, it may not be necessary to
sacrifice one-pass sampling for density-estimation performance.

5.2 Improving the variational autoencoder

Next, we examine our proposed flows in the context of the variational autoencoder [VAE, 29, 48],
where they can act as both flexible prior and approximate posterior distributions. For our experiments,
we use dynamically binarized versions of the MNIST dataset of handwritten digits [33], and the
EMNIST dataset variant featuring handwritten letters [5]. We measure the capacity of our flows
to improve over the commonly used baseline of a standard-normal prior and diagonal-normal
approximate posterior, as well as over either coupling or autoregressive distributions with affine
transformations. Quantitative results are shown in table 2, and image samples in appendix C.
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Table 2: Variational autoencoder test-set results (in nats) for the evidence lower bound (ELBO) and
importance-weighted estimate of the log likelihood (computed as by Burda et al. [2] using 1000
importance samples). Error bars correspond to two standard deviations.

MNIST EMNIST

POSTERIOR/PRIOR ELBO log p(x) ELBO log p(x)

BASELINE −85.61± 0.51 −81.31± 0.43 −125.89± 0.41 −120.88± 0.38

GLOW −82.25± 0.46 −79.72± 0.42 −120.04± 0.40 −117.54± 0.38
RQ-NSF (C) −82.08± 0.46 −79.63± 0.42 −119.74± 0.40 −117.35± 0.38

IAF/MAF −82.56± 0.48 −79.95± 0.43 −119.85± 0.40 −117.47± 0.38
RQ-NSF (AR) −82.14± 0.47 −79.71± 0.43 −119.49± 0.40 −117.28± 0.38

All models improve significantly over the baseline, but perform very similarly otherwise, with most
featuring overlapping error bars. Considering the disparity in density-estimation performance in the
previous section, this is likely due to flows with affine transformations being sufficient to model the
latent space for these datasets, with little scope for RQ-NSF flows to demonstrate their increased
flexibility. Nevertheless, it is worthwhile to highlight that RQ-NSF (C) is the first class of model which
can potentially match the flexibility of autoregressive models, and which requires no modification for
use as either a prior or approximate posterior, due to its one-pass invertibility.

5.3 Generative modeling of images

Finally, we evaluate neural spline flows as generative models of images, measuring their capacity
to improve upon baseline models with affine transforms. In this section, we focus solely on flows
with a one-pass inverse in the style of RealNVP [10] and Glow [28]. We use the CIFAR-10 [31]
and downsampled 64 × 64 ImageNet [49, 60] datasets, with original 8-bit colour depth and with
reduced 5-bit colour depth. We use Glow-like architectures with either affine (in the baseline
model) or rational-quadratic coupling transforms, and provide full experimental detail in appendix B.
Quantitative results are shown in table 3, and samples are shown in fig. 3 and appendix C.

RQ-NSF (C) improves upon the affine baseline in three out of four tasks, and the improvement is most
significant on the 8-bit version of ImageNet64. At the same time, RQ-NSF (C) achieves scores that
are competitive with the original Glow model, while significantly reducing the number of parameters
required, in some cases by almost an order of magnitude. Figure 3 demonstrates that the model is
capable of producing diverse, globally coherent samples which closely resemble real data. There
is potential to further improve our results by replacing the uniform dequantization used in Glow
with variational dequantization, and using more powerful networks with gating and self-attention
mechanisms to parameterize the coupling transforms, both of which are explored by Ho et al. [20].

6 Discussion

Long-standing probabilistic models such as copulas [12] and Gaussianization [4] can simply represent
complex marginal distributions that would require many layers of transformations in flow-based
models like RealNVP and Glow. Differentiable spline-based coupling layers allow these flows,
which are powerful ways to represent high-dimensional dependencies, to model distributions with
complex shapes more quickly. Our results show that when we have enough data, the extra flexibility
of spline-based layers leads to better generalization.

For tabular density estimation, both RQ-NSF (C) and RQ-NSF (AR) excel on Power, Gas, and
Hepmass, the datasets with the highest ratio of data points to dimensionality from the five considered.
In image experiments, RQ-NSF (C) achieves the best results on the ImageNet dataset, which has over
an order of magnitude more data points than CIFAR-10. When the dimension is increased without a
corresponding increase in dataset size, RQ-NSF still performs competitively with other approaches,
but does not outperform them.

Overall, neural spline flows demonstrate that there is significant performance to be gained by
upgrading the commonly-used affine transformations in coupling and autoregressive layers, without
the need to sacrifice analytic invertibility. Monotonic spline transforms enable models based on
coupling layers to achieve density-estimation performance on par with the best autoregressive flows,
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Table 3: Test-set bits per dimension (BPD, lower is better) and parameter count for CIFAR-10 and
ImageNet64 models. Superscript? indicates results are taken from the existing literature.

CIFAR-10 5-BIT CIFAR-10 8-BIT IMAGENET64 5-BIT IMAGENET64 8-BIT

MODEL BPD PARAMS BPD PARAMS BPD PARAMS BPD PARAMS

BASELINE 1.70 5.2M 3.41 11.1M 1.81 14.3M 3.91 14.3M
RQ-NSF (C) 1.70 5.3M 3.38 11.8M 1.77 15.6M 3.82 15.6M

GLOW? 1.67 44.0M 3.35 44.0M 1.76 110.9M 3.81 110.9M

Figure 3: Samples from image models for 5-bit (top) and 8-bit (bottom) datasets. Left: CIFAR-10.
Right: ImageNet64.

while retaining exact one-pass sampling. These models strike a novel middle ground between
flexibility and practicality, providing a useful off-the-shelf tool for the enhancement of architectures
like the variational autoencoder, while also improving parameter efficiency in generative modeling.

The proposed transforms scale to high-dimensional problems, as demonstrated empirically. The only
non-constant operation added is the binning of the inputs according to the knot locations, which can
be efficiently performed in O(log2K) time for K bins with binary search, since the knot locations
are sorted. Moreover, due to the increased flexibility of the spline transforms, we find that we require
fewer steps to build flexible flows, reducing the computational cost. In our experiments, which employ
a linear O(K) search, we found rational-quadratic splines added approximately 30-40% to the wall-
clock time for a single traning update compared to the same model with affine transformations. A
potential drawback of the proposed method is a more involved implementation; we alleviate this by
providing an extensive appendix with technical details, and a reference implementation in PyTorch.
A third-party implementation has also been added to TensorFlow Probability [8].

Rational-quadratic transforms are also a useful differentiable and invertible module in their own right,
which could be included in many models that can be trained end-to-end. For instance, monotonic
warping functions with a tractable Jacobian determinant are useful for supervised learning [52].
More generally, invertibility can be useful for training very large networks, since activations can be
recomputed on-the-fly for backpropagation, meaning gradient computation requires memory which
is constant instead of linear in the depth of the network [14, 37]. Monotonic splines are one way of
constructing invertible elementwise transformations, but there may be others. The benefits of research
in this direction are clear, and so we look forward to future work in this area.
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Appendix for Neural Spline Flows

A Monotonic rational-quadratic transforms

A.1 Parameterization of the spline

We here include an outline of the method of Gregory and Delbourgo [17] which closely matches the
original paper. Let

{(
x(k), y(k)

)}
K
k=0 be a given set of knot points in the plane which satisfy

(x(0), y(0)) = (−B,−B), (12)

(x(K), y(K)) = (B,B), (13)

x(k) < x(k+1) and y(k) < y(k+1) for all k = 0, . . . ,K − 1. (14)

Let
{
δ(k)

}
K
k=0 be the non-negative derivative values at these knot points (we take δ(0) = δ(K) = 1

so that the spline matches the derivative of the linear tails). Given these quantities, the algorithm
of Gregory and Delbourgo [17] defines a monotonic rational-quadratic spline which passes through
each knot and has the given derivative value at each knot as follows:

1. Let w(k) = x(k+1)−x(k) be the bin widths, and s(k) =
(
y(k+1) − y(k)

)
/w(k) be the slopes

of the lines joining the co-ordinates.

2. For x ∈
[
x(k), x(k+1)

]
, let ξ =

(
x− x(k)

)
/w(k), so that ξ ∈ [0, 1].

3. Then, for x ∈
[
x(k), x(k+1)

]
, k = 0, . . . ,K − 1, define

g(x) =
α(k)(ξ)

β(k)(ξ)
, (15)

where

α(k)(ξ) = s(k)y(k+1)ξ2 +
[
y(k)δ(k+1) + y(k+1)δ(k)

]
ξ(1− ξ) + s(k)y(k)(1− ξ)2, (16)

β(k)(ξ) = s(k)ξ2 +
[
δ(k+1) + δ(k)

]
ξ(1− ξ) + s(k)(1− ξ)2. (17)

Gregory and Delbourgo [17] note that β(k)(ξ) can be rewritten as

β(k)(ξ) = s(k) +
[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ), (18)

so that the quotient can be written as

α(k)(ξ)

β(k)(ξ)
= y(k) +

(y(k+1) − y(k))
[
s(k)ξ2 + δ(k)ξ(1− ξ)

]
s(k) +

[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ) , (19)

which is less prone to numerical issues, especially for small values of s(k). Gregory and Delbourgo
[17] show that the spline defined by eq. (15) interpolates between the given knots, satisfies the
derivative constraints at the knot points, and is monotonic on each bin. Rational-quadratic functions
also provide flexibility over previous approaches: it is not possible to match arbitrary values and
derivatives of a function at two boundary knots with a quadratic polynomial, or a monotonic segment
of a cubic polynomial.

A.2 Computing the derivative

The derivative of eq. (15) is given by the quotient rule:

d

dx

[
α(k)(ξ)

β(k)(ξ)

]
=

d

dξ

[
α(k)(ξ)

β(k)(ξ)

]
dξ

dx
=

1

w(k)

β(k)(ξ) d
dξ

[
α(k)(ξ)

]
− α(k)(ξ) d

dξ

[
β(k)(ξ)

][
β(k)(ξ)

]
2

. (20)

It can be shown that

β(k)(ξ)
dα(k)(ξ)

dξ
− α(k)(ξ)

dβ(k)(ξ)

dξ
= w(k)

(
s(k)

)
2
[
δ(k+1)ξ2 + 2s(k)ξ(1− ξ) + δ(k)(1− ξ)2

]
,

(21)
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so that

d

dx

[
α(k)(ξ)

β(k)(ξ)

]
=

(
s(k)

)
2
[
δ(k+1)ξ2 + 2s(k)ξ(1− ξ) + δ(k)(1− ξ)2

][
s(k) +

[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ)

]
2

. (22)

Since the rational-quadratic transform is monotonic and acts elementwise, the logarithm of the
absolute value of the determinant of its Jacobian is given by a sum of the logarithm of eq. (22) for
each transformed x.

A.3 Computing the inverse

Computing the inverse of a monotonic rational-quadratic transformation when the value to invert
lies in the tails is trivial. The problem of inversion is thus reduced to computing the inverse of the
monotonic rational-quadratic spline. Consider a rational-quadratic function

y =
α(ξ(x))

β(ξ(x))
=
α0 + α1ξ(x) + α2ξ(x)

2

β0 + β1ξ(x) + β2ξ(x)2
, (23)

which arises as the result of the algorithm outlined in appendix A.1. The coefficients are such that the
function is monotonically-increasing in its associated bin. Inverting the function involves solving a
quadratic equation:

q(x) = α(ξ(x))− yβ(ξ(x)) (24)

= aξ(x)2 + bξ(x) + c = 0, (25)

where the coefficients depend on the target output y:

a = α2 − β2y, b = α1 − β1y, c = α0 − β0y. (26)

Only one of the two solutions lies in the function’s associated bin. To identify the solution in general,
we identify that along the line of corresponding (x, y) values, q(x)=0 and so dq

dx=0, where

dq

dx
=
∂q

∂x
+
∂q

∂y

∂y

∂x
(27)

=
∂q

∂x
− β(ξ(x))︸ ︷︷ ︸

>0

∂y

∂x︸︷︷︸
>0

= 0. (28)

We substituted a partial derivative of eq. (24), noted eq. (17) is positive, and noted that the spline
y(x) is monotonic and increasing. To satisfy eq. (28), ∂q∂x>0, which corresponds to this solution to
eq. (25):

ξ(x) =
−b+

√
b2 − 4ac

2a
=

2c

−b−
√
b2 − 4ac

, (29)

where the first form is more commonly quoted, but the second form is numerically more precise
when 4ac is small.

We can rearrange eq. (19) to show

a =
(
y(k+1) − y(k)

)[
s(k) − δ(k)

]
+
(
y − y(k)

)[
δ(k+1) + δ(k) − 2s(k)

]
, (30)

b =
(
y(k+1) − y(k)

)
δ(k) −

(
y − y(k)

)[
δ(k+1) + δ(k) − 2s(k)

]
, (31)

c = −s(k)
(
y − y(k)

)
, (32)

which yields ξ(x), which we can then use to determine the inverse x.

B Experimental details

B.1 Tabular density estimation

Model selection is performed using the standard validation splits for these datasets. We clip the norm
of gradients to the range [−5, 5], and find this helps stabilize training. We modify MAF by replacing
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permutations with invertible linear layers. Hyperparameter settings are shown for coupling flows in
table 4 and autoregressive flows in table 5. We include the dimensionality and number of training data
points in each table for reference. For higher dimensional datasets such as Hepmass and BSDS300,
we found increasing the number of coupling layers beneficial. This was not necessary for Miniboone,
where overfitting was an issue due to the low number of data points.

Table 4: Hyperparameters for density-estimation results using coupling layers in section 5.1.

POWER GAS HEPMASS MINIBOONE BSDS300

DIMENSION 6 8 21 43 63
TRAIN DATA POINTS 1,615,917 852,174 315,123 29,556 1,000,000

BATCH SIZE 512 512 256 128 512
TRAINING STEPS 400,000 400,000 400,000 200,000 400,000
LEARNING RATE 0.0005 0.0005 0.0005 0.0003 0.0005
FLOW STEPS 10 10 20 10 20
RESIDUAL BLOCKS 2 2 1 1 1
HIDDEN FEATURES 256 256 128 32 128
BINS 8 8 8 4 8
DROPOUT 0.0 0.1 0.2 0.2 0.2

Table 5: Hyperparameters for density-estimation results using autoregressive layers in section 5.1.

POWER GAS HEPMASS MINIBOONE BSDS300

DIMENSION 6 8 21 43 63
TRAIN DATA POINTS 1,615,917 852,174 315,123 29,556 1,000,000

BATCH SIZE 512 512 512 64 512
TRAINING STEPS 400,000 400,000 400,000 250,000 400,000
LEARNING RATE 0.0005 0.0005 0.0005 0.0003 0.0005
FLOW STEPS 10 10 10 10 10
RESIDUAL BLOCKS 2 2 2 1 2
HIDDEN FEATURES 256 256 256 64 512
BINS 8 8 8 4 8
DROPOUT 0.0 0.1 0.2 0.2 0.2

Table 6: Validation log likelihood (in nats) for UCI datasets and BSDS300, with error bars corre-
sponding to two standard deviations.

MODEL POWER GAS HEPMASS MINIBOONE BSDS300

RQ-NSF (C) 0.65± 0.01 13.08± 0.02 −14.75± 0.06 −9.03± 0.43 172.51± 0.60
RQ-NSF (AR) 0.67± 0.01 13.08± 0.02 −13.82± 0.05 −8.63± 0.41 172.5± 0.59

B.2 Improving the variational autoencoder

We use the Adam optimizer [27] with default hyperparameters, annealing an initial learning rate
of 0.0005 to 0 using a cosine schedule [35] over 150,000 training steps with batch size 256. We
use a ‘warm-up’ phase for the KL divergence term of the loss, where the multiplier for this term is
initialized to 0.5 and linearly increased to 1 over the first 10% of training. This modification initially
reduces the penalty incurred by the approximate posterior in deviating from the prior, and similar
schemes have been shown to improve VAE training dynamics [47]. Model selection is performed
using a held-out validation set of 10,000 samples for MNIST, and 20,000 samples for EMNIST.

We use 32 latent features, and residual nets use 2 blocks, with 64 latent features for coupling layers,
and 128 latent features for autoregressive layers. Both coupling and autoregressive flows use 10 steps.
As with the tabular density-estimation experiments, we modify IAF [30] and MAF [43] by replacing
permutations with invertible linear layers using an LU-decomposition. All NSF models use 8 bins.
The encoder and decoder architectures are set up exactly as described by Nash and Durkan [40], and
are similar to those used in IAF [30] and NAF [22].
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Conditioning the approximate posterior distribution q(z |x) follows a multi-stage procedure. First,
the encoder computes a context vector h of dimension 64 as a function of the input x. This vector
is then mapped to the mean and diagonal covariance of a Gaussian distribution in the latent space.
Then, h is also given as input to the residual nets in each of the flow’s coupling or autoregressive
layers, where it is concatenated with the input z, mapped to the required number of hidden features,
and also used to modulate the additive update of each residual block with a sigmoid gate. We found
this scheme to work well across experiments.

B.3 Generative modeling of images

For image-modeling experiments we use a Glow-like model architecture introduced by Kingma
and Dhariwal [28, Section 3]. This involves stacking multiple steps for each level in the multi-
scale architecture of Dinh et al. [10], where each step consists of an actnorm layer, an invertible
1 × 1 convolution and a coupling transform. For our RQ-NSF (C) model, we make the following
modifications to the original Glow model: we replace affine coupling transforms with rational-
quadratic coupling transforms, we go back to residual convolutional networks as used in RealNVP
[10], and we use an additional 1× 1 convolution at the end of each level of transforms. The basline
model is the same as RQ-NSF (C), except that it uses affine coupling transforms instead of rational-
quadratic ones. For CIFAR-10 experiments we do not factor out dimensions at the end of each level,
but still use the squeezing operation to trade spatial resolution for depth.

For all experiments we use 3 residual blocks and batch normalization [24] in the residual networks
which parameterize the coupling transforms. We use 7 steps per level for all experiments, resulting in
a total of 21 coupling transforms for CIFAR-10, and 28 coupling transform for ImageNet64 (Glow
models used by Kingma and Dhariwal [28] use 96 and 192 affine coupling transforms for CIFAR-10
and ImageNet64 respectively).

We use the Adam [27] optimizer with default β1 and β2 values. An initial learning rate of 0.0005 is
annealed to 0 following a cosine schedule [35]. We train for 100,000 steps for 5-bit experiments, and
for 200,000 steps for 8-bit experiments. To track the performance of our models, we split off 1% of
the training data to use as a development set. Due to the resource requirements of the experiments,
we perform a limited manual hyper-parameter exploration. Final values are reported in table 7.

We use a single NVIDIA Tesla P100 GPU card per CIFAR-10 experiment, and two such cards per
ImageNet64 experiment. Training for 200,000 steps takes about 5 days with this setup.

Table 7: Hyperparameters for generative image-modeling results in section 5.3.

DATASET BATCH SIZE LEVELS HIDDEN CHANNELS BINS DROPOUT

CIFAR-10 5-BIT 512 3 64 2 0.2
8-BIT 512 3 96 4 0.2

IMAGENET64 5-BIT 256 4 96 8 0.1
8-BIT 256 4 96 8 0.0

C Additional experimental results

C.1 Affine coupling transforms for 2D datasets

Densities fit by a model with two affine coupling layers on synthetic two-dimensional datasets are
shown in fig. 4.

C.2 Samples

Image samples for VAE experiments are shown in fig. 5. Additional samples for generative image-
modeling experiments are shown in fig. 6.
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Training data Flow density Flow samples

Figure 4: Qualitative results for two-dimensional synthetic datasets using two affine coupling layers.

(a) MNIST (b) EMNIST-letters

Figure 5: VAE samples. Top to bottom: training data, RQ-NSF (C), RQ-NSF (AR).
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(a) CIFAR-10 5-bit (b) ImageNet64 5-bit

(c) CIFAR-10 8-bit (d) ImageNet64 8-bit

Figure 6: Additional image samples for generative image-modeling experiments.
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