

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Bubble dislodgment in a capillary network with microscopic multi-channel and multi-bifurcation features

Citation for published version:

Chao, C, Jin, X, Teng, L, Stokes, A & Fan, X 2019, 'Bubble dislodgment in a capillary network with microscopic multi-channel and multi-bifurcation features', *Langmuir*, vol. 35, no. 8, pp. 3194-3203. https://doi.org/10.1021/acs.langmuir.8b03323

Digital Object Identifier (DOI):

10.1021/acs.langmuir.8b03323

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Other version

Published In: Langmuir

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Supporting information:

Bubble dislodgment in a capillary network with microscopic multi-

channel and multi-bifurcation features

Cong Chao¹, Xiaoqiang Jin¹, Lijun Teng², Adam A Stokes², Xianfeng Fan^{1*}

- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, The King's Buildings, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FB, UK

*Corresponding Author Email: x.fan@ed.ac.uk

Number of page: 4 Number of figures: 2 Number of tables: 1

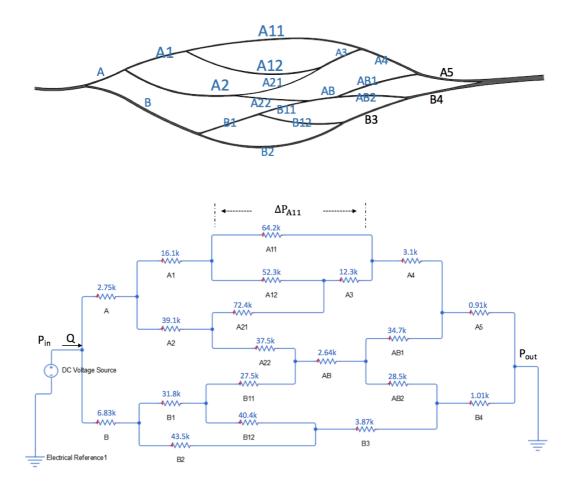
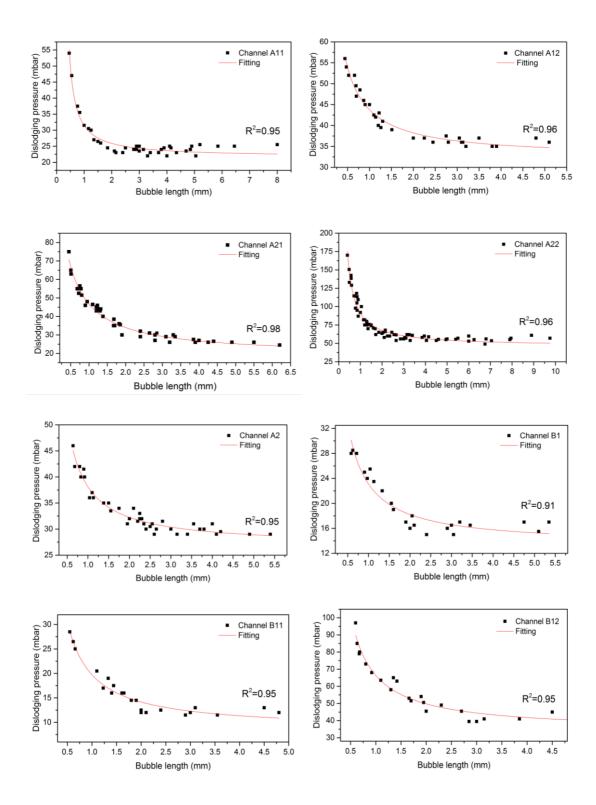



Fig. S1 Schematic of the microfluidic network, the equivalent fluidic circuit and fluidic resistors. The hydraulic resistance R_H of each channel has been provided above each resistor (the unit is Pa·s·cm⁻³).

Bubble length (mm)	ΔP_{A11} (mbar)	ΔP_{A12} (mbar)	ΔP_{AB1} (mbar)	ΔP_{AB2} (mbar)
1.0	22.62	28.54	10.07	8.62
1.5	19.25	24.73	8.34	7.39
3.0	17.11	23.15	7.19	5.85

Table S1 Pressure difference across the single channel (ΔP_j is the predicted pressure across the single channel *j* where the bubble is lodged)

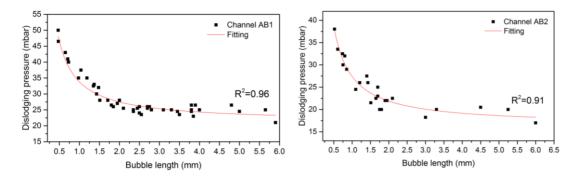


Fig. S2 The plot of the dislodging pressure profiles for bubbles in different channels, and the red lines are the model-fitted values