
Search-Based Test Case Generation with Model-
Based Testing Approach

M.Y. Suhaila
School of Information Technology and Electrical Engineering,

The University of Queensland, Brisbane 4072, Australia.
Email: s.mohdyasin@uq.edu.au

Abstract—The rapid development nature of web
applications remains an open challenge to the testing
community. One particular challenge is producing a small but
effective set of test cases that could uncover bugs in the system
under test. This research examines the combination of a
search-based testing with a model-based testing technique to
generate and optimise test cases. The goal of this approach is
to produce a set of effective test cases for functional testing of
web applications that can achieve satisfying test coverage.
Modeling languages used to create a model for web
applications are considered. Next, search-based testing
techniques are investigated. Fitness functions definitions that
could evaluate effective test cases are explored. Initial results
of the proposed technique is presented and discussed in order
to distinguish measures in improving the proposed technique
in terms of effectiveness and coverage.

Keywords—functional testing; search-based testing; genetic
algorithm; web application testing; model-based testing

I. INTRODUCTION
Testing web applications (WAs) has their own interesting

challenges. WAs commonly consist of widely distributed
components that are written in various programming
languages [1]. These programming languages are
distinguished into server-side, client-side and database
programming languages. The integration of multiple
programming languages is designed to provide a dynamic
web interface, which changes based on requests processed
from the user. Since accessibility is provided all the time,
WAs are concurrently used by myriads of users with diverse
experience levels. The concurrent access of WAs by its
users may sometimes lead to the web application behaving
unpredictably [2], triggering unanticipated faults. As WAs
are event-driven [3], the user is usually prompted to
complete a task in a step-by-step manner. Faults will
manifest when these processes are not followed, or when the
user fails to provide the expected input prior to submitting
their request. These issues need to be considered when
testing WAs.

This paper presents a search-based testing (SBT)
technique that utilises a model-based testing (MBT)
technique to produce effective test cases that provide
acceptable testing coverage. The Interaction Flow Modeling
Language (IFML) is used to model the system under test
(SUT) and subsequently generate the initial test cases. Next,

the initial test cases are optimised using a genetic algorithm
(GA) in order to improve their effectiveness and coverage.
Incorporating a model-based testing technique is useful in
realising this goal, since the model represents a simplified
representation of the WA’s behaviour [4]. The use of an
SBT algorithm is beneficial in generating good test cases by
evolving and mutating the current set of test cases [5]. But in
order to do that, a fitness function that can accurately capture
the testing goal is needed [6]. A suitable fitness function for
this proposed technique is also presented.

II. RELATED WORK
The related work is divided into three issues: search-

based testing, model-based testing and fault seeding.

A. Search-based Testing
According to McMinn, SBT is defined as, “the use of a

meta-heuristic optimising search techniques to automate or
partially automate a testing task" [6]. SBT is applied in
software testing with the purpose of finding an optimal
solution for a specific problem. SBT only requires two
elements: a representation of the problem and a fitness
function that captures the objectives [7]. In software testing,
test cases and test data are often chosen as the representation
for the testing problem, whereas the testing goal will be
translated into a suitable fitness function. The fitness
function will guide the search technique towards finding a
good solution in a given search space, within a practical time
limit [6]. The selected search technique is applied to
optimise the given representation to produce new solutions,
called offsprings. If these offsprings have a higher fitness
value than their predecessor, even after achieving the
maximum number of generations, this indicates optimal
solutions are found and the optimisation process ceased.

SBT has made major contributions in optimising test data
and test cases [5]. To date, GAs have been widely used to
optimise test cases [8, 9] and whole test suites [10]. Apart
from test optimisation, classifying test cases according to
their faults using GAs has also been presented [11]. Since
GAs are global algorithm, it is believed that they are capable
of handling large search spaces. However, Baudry et al.
introduce bacteriologic algorithms when GAs could not
rapidly improve the mutation scores of a small solution set in
.NET environment [12]. Aside from GAs, contributions of
other SBT algorithms were also reported. Yoo et al.

combine human expert analysis using an Analytic Hierarchy
Process algorithm and automate an Interleaved Cluster
Prioritisation algorithm to prioritise clustered test cases with
the intention of achieving higher structural coverage [13].
Next, the rural Chinese postman algorithm has been
demonstrated to isolate faulty states in a finite-state machine
(FSM) representation of the SUT [14]. All of the above
addresses issues in testing non-WAs. Due to the different
nature and complexity of WAs [2, 15], the need of a
customised SBT approach to address challenges in WAs are
inevitable.

So far, four works that propose SBT in testing WAs have
been published. An algorithm called HILL which is based on
the hill-climbing algorithm is applied to an FSM model of
Ajax WAs to extract suites of test cases that have longer
state-based sequences [16]. For branch coverage, an SBT
tool called SWAT that could automate test data generation
and reduce testing effort is proposed [17]. Another tool
called WETT optimises whole test suites using an
evolutionary algorithm (EA) for statement coverage [18],
while in security testing, addressing cross-side scripting
issues using GAs are introduced to expose security
vulnerabilities [19]. These efforts [17-19] concentrate on
achieving structural coverage; they do not extensively
consider functional testing. Most of the efforts use low-level
test case representations. Since one function in WA might
consists of several sequences of states or branches,
scrambling these states or branches during optimisation
might produce inexecutable offsprings. Even though an
attempt has been made to represent test cases at a higher
level [18], the results presented are directed towards
statement coverage, not towards uncovering faults or bugs in
the SUT. Furthermore, optimised test cases show a tendency
to bloat. To prevent or limit bloatness, controls in the form of
steps towards normalising these test cases is performed.
However, applying such controls might limit the diversity of
the test cases. It has also been shown that using evolutionary
algorithms such as GAs might lead to the generation of a lot
of unsuitable test cases over and over again. The crossover
and mutation operators if applied improperly might lead to
syntactically incorrect test scripts, and only a small number
of useful evolved offsprings obtainable after numerous
cycles of evolution.

B. Model-Based Testing
A model is an abstraction of the SUT’s behavior. In

MBT, the model is used to gain understanding of how an
application’s behaviour is processed e.g. the type of inputs
accepted, conditions and the expected outputs [20]. Existing
model-based testing efforts for web applications have
proposed FSMs [4, 21], statecharts [3], Nmodel [22] and also
Atomic Section model [23] as modeling languages. Aside
from Nmodel which focused on discovering errors in SUT,
the others were aimed towards discovering inconsistencies in
transitional paths. However, NModel is formerly meant for
programs written in C#. When it is implemented in
modeling WAs, Nmodel took considerable effort in learning
and bulding its test harness.

A number of modeling languages that are developed for
WAs are being considered for the proposed technique,

namely Interaction Flow Modeling Language (IFML) [24],
ReWeb [25], and Internet Application Modeling Language
(IAML) [26]. Presently, IFML seems the most suitable
choice due to its recognition by the Object Management
Group (OMG) and its extensive documentation. IFML is
designed to present a description of the WAs behaviour from
the perspective of the end user [24]. IFML provides high-
level representation of the SUT using simple notations, and
its initial learning process is relatively easy. Currently, the
feasibility of these modeling languages in functional testing
of WAs have not yet been reported.

C. Fault Seeding
 Fault seeding is performed by introducing artificial faults
inside the SUT. The purpose of seeding faults is to establish
the effectiveness of the generated test cases in discovering
faults residing in the SUT. To achive confidence, faults that
are introduced have to resemble real faults as closely as
possible [16]. Mutation operators have been used to mutate
the SUT during fault seeding [12]. Faults reproduced based
on real bug reports of the SUT have also been presented [16].
Apart from these strategies, faults can also be reproduced
based on fault taxonomies. Several fault taxonomies suitable
for WAs have been introduced based on investigations of
natural faults discovered in most WAs [15, 27-29]. Using
one of these fault taxonomies to reproduce faults are feasible
since they provide coherent classifications of faults.

III. RESEARCH COMPLETED TO DATE
To ensure that this research achieves its goal, a set of

research questions were designed.

A. Research Questions
The following research questions are posed:

• How can GAs increase the effectiveness of the test
cases for functional testing of WAs through the
optimisation process?

• Does IFML provide a suitable representation for test
cases when they are optimised using GA?

• How can the effectiveness of the test cases be defined
into a fitness function for the respective GA?

B. Case Study
 A case study is required in order to demonstrate the
feasibility of the approach. For that purpose, a library
management system called OpenBiblio is chosen as the SUT.
It is developed using PHP as its main programming
language. Other programming languages involved in its
development are HTML, SQL, JavaScript, CSS and XML
[30]. OpenBiblio is an event-driven WA that feeds on its
user’s input to dynamically generate the output. Its dynamic
web pages consists of GET and POST methods used to fetch,
store and update information relating to book loans and fines
in its database. Its methods are organised in classes.
OpenBiblio serves two main types of user: administrator and
library staff, with access levels dynamically controlled by the
administrator. It has an active development community and
is constantly updated. OpenBiblio is considered a suitable
candidate based on all the features discussed above.

IV. PROPOSED APPROACH
To answer the research questions, a test case generation

technique that utilises a GA is proposed. A MBT technique
is used in generating the test cases. After initial
considerations (see Section II), IFML is selected as the
modeling language for creating a model of the SUT and for
the representation of the test cases. The proposed technique
begins with generating the initial set of test cases from the
IFML model of the SUT. Using fault seedings, faults are
introduced into the SUT. Figure 1 illustrates an example of a
test case of adding a new bibliography in OpenBiblio. It
starts with visiting the Cataloging web page, which is
represented by the rectangle labelled View Container.
Adding new bibliography information is chosen from the list
of actions in Cataloging, represented by the rectangle called
ViewComponent. The circled arrow indicates an Event
produced by the user by clicking the new bibliography link.
The thin arrows represent Navigation Flow that takes the
user to another web page. Next, new bibliography
information is submitted. The details of the new
bibliography is then displayed in another web page. To
enable library members to loan the new bibliography, a copy
of the bibliography is then created by submitting new copy
information of the respective bibliography.

Fig. 1. A test case representation using IFML.

 In SBT, the representation of the individual and fitness
function are important in determining the sucess of the
algorithm [6]. An individual consists of a set of genes. A
gene represents either a ViewComponent, a Navigation Flow,
an Event, or an Action which corresponds to atomic units in
IFML. Adopting similar application of GAs [31], the fitness
values of initial population of test cases is first measured. In
determining the fitness function, similar works were
analysed. For now, mutation score is chosen as the fitness
function. A pair of individuals are randomly selected from
the initial population. These individuals (parents) are
evolved using crossover and mutation operators. The
crossover phase performs single-point crossover method.
The mutation phase requires suitable mutation operators to
mutate the individuals. For now, simple swap, insert and
delete mutation operators are proposed [18]. These mutation
operators are performed with !

!
 probabilities. This will

produce another pair of individuals, called offsprings. The
offsprings will be compared with its parents based on their
fitness values. Out of the comparative evaluation, the pair of
individuals with the highest fitness values is updated into the
the current solution set. Next, the current solution set will be
measured for its percentage of global mutants that it has
killed. This is to ensure that most of the seeded faults are

successfully killed. This process is reiterated until an optimal
solution set is found (indicated by satisfying percentage of
global mutants killed by the set), or until the maximum
iteration is reached. If optimal or near-optimal solution set
are not found even after maximum iteration is reached, the
optimisation process will be reevaluated and refined. Multi-
objective fitness function might be considered in the future if
it can significantly improves the initial results.

A. Initial Implementation and Results
 Modeling of the SUT is achieved using Eclipse 4.2.2
with IFML Editor as its plug-in [32]. A set of 10 test cases
representing 10 individuals is generated from the IFML
model of the SUT. For now, the test cases are manually
generated and optimised using the GA. Prior to this, the
SUT is seeded by 12 mutants created based on fault types
classified in a fault taxonomy [29]. The initial test cases
were then executed and their mutation scores and percentage
of killed and alive mutants are noted. There is no equivalent
mutants discovered. The first generation reported 75%
mutation score and left 25% alive mutants. The mutation
score slightly increased on the second iteration (81%) but
remains unchanged until the fourth iteration. One of the
offsprings produced during the second iteration manage to
kill an alive mutant. However, further iterations failed to kill
the rest of the alive mutants. Moreever, two of the offsprings
were not executable due to invalid navigation flows.

 The initial results indicate that GA shows promising
result, but further tuning is required. It appears that evolving
only a pair of individuals in an iteration is slow and not cost-
effective. To overcome this issue, approaches such as
evolving whole test suites [33] is a better choice. Another
reason is lack of proper controls introduced during the
crossover and mutation phases. GA is prone to produce
inexecutable test cases if the crossover and mutation phases
are not controlled. Exercising certain controls such as
allowing only syntactically legitimate crossover and
mutation has been proposed [31, 33]. The use of pre-defined
configuration files to assist manual modifications on the
genes has also been suggested in minimising the risk of
producing inexecutable offspring [18]. Another solution is
by inspecting the IFML model of the SUT and building a
repository of legitimate interaction flows which can be
referred to during the crossover and mutation phases. The
types of faults introduced during fault seeding may also need
to be examined. Since the offsprings fails to kill the
remaining alive mutants, a possible reason might be due to
the inappropriate choice of fault types e.g. non-functional
faults and so on. Until further analysis is performed, these
options remain open for consideration.

V. CONTRIBUTIONS
This research outlines the following contributions.

Firstly, the novel combination of GA with IFML for testing
WAs has never been investigated. Based on the literature
review, test case representation using IFML has never been
proposed since most efforts emphasise state or branch
coverage, as opposed to detecting faults related to WA’s
behaviour. It is believed that this combination will
potentially generate more effective test cases for functional

testing of WAs since IFML could depict a WA’s behaviour
and its interactions with the front end user. Secondly, the
fault seeding process introduces faults based from a fault
taxonomy for WAs. These faults were chosen in order to
create faults that closely resemble natural faults in WAs.
The fitness function is also crucial in determining the success
of optimising the inital test cases. Using mutation score as
the current fitness values looks encouraging, but it can be
improved by rewarding higher values towards test cases that
have higher user interaction coverage.

VI. CONCLUSION AND FURTHER WORKS
The importance of testing WAs is an ongoing issue given

the constantly expanding number of WA users. Having
smaller but effective test cases could facilitate quicker
testing. Aside from that, adequate testing coverage is
important to software testers, especially when the need to
rapidly develop and deploy WAs is a priority. Introducing a
SBT technique with MBT technique could address these
issues. The initial implementation shows promising results,
but further analysis is required in enhancing the technique in
optimising test cases for testing WAs.

ACKNOWLEDGMENT
The author wish to acknowledge the support of the

Ministry of Education (MoE) Malaysia in funding this
research work under the SLAI scheme.

REFERENCES
[1] J. Offutt, Y. Wu, X. Du, and H. Huang, "Bypass testing of web

applications," in 15th International Symposium on Software
Reliability Engineering (ISSRE), 2004, pp. 187-197.

[2] M. Benedikt, J. Freire, and P. Godefroid, "VeriWeb: Automatically
testing dynamic web sites," in Proceedings of 11th International
World Wide Web Conference (WWW), 2002.

[3] H. Reza, K. Ogaard, and A. Malge, "A model based testing technique
to test web applications using statecharts," in Fifth International
Conference on Information Technology: New Generations (ITNG),
2008, pp. 183-188.

[4] H. Achkar, "Model Based Testing of Web Applications," presented at
the The Science Technicians' Association of New Zealand
Conference (STANZ), Sydney, Australia, 2010.

[5] P. McMinn, "Search‐based software test data generation: a survey,"
Software Testing, Verification and Reliability, vol. 14, pp. 105-156,
2004.

[6] P. McMinn, "Search-based software testing: Past, present and future,"
in 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2011, pp. 153-163.

[7] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, "Search based
software engineering: Techniques, taxonomy, tutorial," in Empirical
Software Engineering and Verification, ed: Springer, 2012, pp. 1-59.

[8] A. Seesing and H.-G. Gross, "A genetic programming approach to
automated test generation for object-oriented software," presented at
the Proceedings of the 1st International Workshop on Evaluation of
Novel Approaches to Software Engineering, 2006.

[9] S. Wappler and F. Lammermann, "Using evolutionary algorithms for
the unit testing of object-oriented software," in Proceedings of the
2005 conference on Genetic and evolutionary computation, 2005, pp.
1053-1060.

[10] G. Fraser and A. Arcuri, "Whole Test Suite Generation," IEEE
Transactions on Software Engineering, vol. 39, pp. 276-291, 2013.

[11] A. Watkins, E. Hufnagel, D. Berndt, and L. Johnson, "Using genetic
algorithms and decision tree induction to classify software failures,"
International Journal of Software Engineering and Knowledge
Engineering, vol. 16, pp. 269-291, 2006.

[12] B. Baudry, F. Fleurey, J. M. Jézéquel, and Y. Le Traon, "From
genetic to bacteriological algorithms for mutation‐based testing,"
Software Testing, Verification and Reliability, vol. 15, pp. 73-96,
2005.

[13] S. Yoo, M. Harman, P. Tonella, and A. Susi, "Clustering test cases to
achieve effective and scalable prioritisation incorporating expert
knowledge," in Proceedings of the 18th international symposium on
software testing and analysis, 2009, pp. 201-212.

[14] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian, "Heuristics for
fault diagnosis when testing from finite state machines," Software
Testing, Verification and Reliability, vol. 17, pp. 41-57, 2007.

[15] A. Marchetto, F. Ricca, and P. Tonella, "Empirical validation of a
web fault taxonomy and its usage for fault seeding," in 9th IEEE
International Workshop on Web Site Evolution (WSE), 2007, pp. 31-
38.

[16] A. Marchetto and P. Tonella, "Search-Based Testing of Ajax Web
Applications," in 1st International Symposium on Search Based
Software Engineering, 2009, pp. 3-12.

[17] N. Alshahwan and M. Harman, "Automated web application testing
using search based software engineering," in Proceedings of the 2011
26th IEEE/ACM International Conference on Automated Software
Engineering, 2011, pp. 3-12.

[18] F. Bolis, A. Gargantini, M. Guarnieri, and E. Magri, "Evolutionary
testing of PHP web applications with WETT," in Search Based
Software Engineering, ed: Springer, 2012, pp. 285-291.

[19] A. Avancini and M. Ceccato, "Security testing of web applications: A
search-based approach for cross-site scripting vulnerabilities," in 11th
IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM), 2011, pp. 85-94.

[20] I. K. El‐Far and J. A. Whittaker, "Model‐Based Software Testing,"
Encyclopedia of Software Engineering.

[21] A. A. Andrews, J. Offutt, and R. T. Alexander, "Testing web
applications by modeling with FSMs," Software & Systems Modeling,
vol. 4, pp. 326-345, 2005.

[22] J. Ernits, R. Roo, J. Jacky, and M. Veanes, "Model-based testing of
web applications using NModel," in Testing of Software and
Communication Systems, ed: Springer, 2009, pp. 211-216.

[23] J. Offutt and Y. Wu, "Modeling presentation layers of web
applications for testing," Software & Systems Modeling, vol. 9, pp.
257-280, 2010.

[24] OMG. (Last Accessed, 10 January 2014). IFML Specification Beta
version (OMG document ptc/2013-03-08). Available:
http://www.omg.org/spec/IFML/

[25] F. Ricca and P. Tonella, "Understanding and restructuring web sites
with Reweb," IEEE Multimedia, vol. 8, pp. 40-51, 2001.

[26] J. M. Wright, "A Modelling Language for Interactive Web
Applications," in 24th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2009, pp. 689-692.

[27] Y. Guo and S. Sampath, "Web application fault classification - An
exploratory study," in Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement, 2008, pp. 303-305.

[28] S. Pertet and P. Narasimhan, "Causes of failure in web applications
(cmu-pdl-05-109)," Parallel Data Laboratory, p. 48, 2005.

[29] N. Mansour and M. Houri, "Testing web applications," Information
and Software Technology, vol. 48, pp. 31-42, 2006.

[30] B. D. S. Inc. (Last Accessed, 20 November 2013). The OpenBiblio
Open Source Project on Ohloh. Available:
http://www.ohloh.net/p/openbiblio

[31] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon, "Genes and
bacteria for automatic test cases optimization in the. net
environment," in Proceedings of the 13th International Symposium on
Software Reliability Engineering (ISSRE), 2002, pp. 195-206.

[32] WebRatio. (Last Accessed, 23 November 2013). IFML Editor.
Available:
http://www.webratio.com/portal/content/en/ifml-editor

[33] G. Fraser and A. Arcuri, "Evolutionary generation of whole test
suites," in 2011 11th International Conference on Quality Software
(QSIC), 2011, pp. 31-40.

