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Abstract: Essential oils (EOs) are a mixture of natural, volatile, and aromatic compounds obtained
from plants. In recent years, several studies have shown that some of their benefits can be attributed
to their antimicrobial, antioxidant, anti-inflammatory, and also immunomodulatory properties.
Therefore, EOs have been proposed as a natural alternative to antibiotics or for use in combination
with antibiotics against multidrug-resistant bacteria in animal feed and food preservation. Most of the
results come from in vitro and in vivo studies; however, very little is known about their use in clinical
studies. A systematic and comprehensive literature search was conducted in PubMed, Embase®, and
Scopus from December 2014 to April 2019 using different combinations of the following keywords:
essential oils, volatile oils, antimicrobial, antioxidant, immunomodulation, and microbiota. Some
EOs have demonstrated their efficacy against several foodborne pathogens in vitro and model food
systems; namely, the inhibition of S. aureus, V. cholerae, and C. albicans has been observed. EOs have
shown remarkable antioxidant activities when used at a dose range of 0.01 to 10 mg/mL in cell models,
which can be attributed to their richness in phenolic compounds. Moreover, selected EOs exhibit
immunomodulatory activities that have been mainly attributed to their ability to modify the secretion
of cytokines.

Keywords: essential oils; volatile oils; antimicrobial; antioxidant; immunomodulatory; food
preservation; biofilm

1. Introduction

Foodborne-related diseases are an increasingly major public health problem worldwide [1].
Microbial contamination is one of the factors in developing foodborne diseases and food spoilage [2].
Since ancient times, different methods to preserve food for a longer period have been sought. For this
reason, and thanks to the advancement of knowledge and the rapid development of new technologies,
different chemical compounds have been developed, commonly known as additives, which extend
the life of foods or are used as sweeteners or coloring agents [3]. however, the presence of pathogenic
microorganisms continues to result in large economic losses and multiple diseases in humans [4].
On the other hand, the indiscriminate use of antibiotics in both humans and animals against pathogenic
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microorganisms has contributed to the extension of resistant and even multidrug-resistant bacterial
strains [4,5]. In recent years, a tendency to use natural additives, mainly due to the increasing desire
for the consumption of minimally processed products, has emerged [4,6]. Therefore, there is a need for
alternative natural compounds that can perform the same function of common additives or can be
used as an alternative to antibiotics. One such possibility is the use of essential oils (EOs) due to their
known antimicrobial, antioxidant, immunomodulatory, and food preservative activities [7]. In line
with this, several studies have described the antibacterial activity of EOs, underlying their effective use
on multidrug-resistant strains [8,9].

EOs, also known as “volatile oils”, are complex mixtures of volatile compounds that are produced
by aromatic plants as secondary metabolites. They are responsible for the aromatic plant’s properties,
and for this reason, they are characterized by their strong smells [10]. In general, EOs are liquid,
volatile, and soluble in lipids and organic solvents. They can be present in all plant organs, including
buds, flowers, leaves, seeds, stems, flowers, fruits, roots, wood, or bark. Different extraction techniques
are widely employed for the extraction of EOs such as steam distillation, solvent extraction, and
supercritical fluid extraction [11,12]. These EOs are characterized by the presence of variable mixtures
of bioactive compounds, mainly terpenoids, especially monoterpenes and sesquiterpenes. Some
of them also contain nonterpenic compounds biogenerated by the phenylpropanoid pathway, such
as eugenol, cinnamaldehyde, and safrole [13]. These bioactive compounds are responsible for the
biological properties of EOs. Among them, terpenoids are the bioactive compounds that have a more
important role in pathogen resistance [14]. Specifically, monoterpenoids affect the multiplication and
development of microorganisms by interfering with their physiological and biochemical processes
during their development and multiplication [15]. Cinnamon bark oil is one of the most effective EOs
against common foodborne pathogens [16]. It should be noted that the effect of EOs on bacterial growth
will depend on whether they are Gram-positive or Gram-negative bacteria, since the lipopolysaccharide
(LPS) layer in Gram-negative bacteria acts as a barrier for macromolecules and hydrophobic compounds
such as those present in EOs [15]. Using EOs to extend the shelf life of fish and meat has also been
reported in previous studies. Examples include the preservative effect of lemon EOs on salted
sardines [17], the effect of chitosan coatings enriched with cinnamon oil on the quality of rainbow trout
(Oncorhynchus mykiss) during refrigerated storage [18], and the lengthening of the storage period of red
sea bass by means of clove, cumin, and peppermint oils or poultry meat in thyme oil [19].

The antioxidant activity of EOs is another biological property of great interest because they may
preserve foods from the toxic effects of oxidants [20]. It is noteworthy to mention that EOs have also been
shown to possess a wide range of immunomodulatory properties. To date, a few studies dealing with
the immunomodulatory effect of EOs have been reported [21–23]. In this regard, monoterpenes have
been shown to exert a strong immunobiological effect through their effect on tumor necrosis factor
(TNF)-α, interleukins (ILs), thromboxane, and leukotriene production [24]. This immunomodulatory
activity indicated the possibility of using EOs as ingredients in functional foods.

Most of the results of the antimicrobial, antioxidant, and immunomodulatory effects of EOs come
from in vitro and in vivo studies. however, very little is known about their use in clinical studies.
The present work aims to perform a systematic review of the scientific literature on the important
biological properties of EOs in food preservation and to describe the antimicrobial, antioxidant, and
immunomodulatory properties that render them desirable for use in functional foods.

2. Materials and Methods

2.1. Search Strategy

In this review, the specialized databases PubMed (US National Library of Medicine National
Institutes of health), Embase®, and Scopus were used for the literature search from December
2014 to April 2019, with the aim of restricting the search to the articles that make use of the most
modern techniques, using different combinations of the following keywords: essential oils, volatile
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oils, antimicrobial, antioxidant, immunomodulation, and microbiota. In PubMed, we used the
following search equation strategy: (“essential oils” [All Fields] OR “volatile oils” [All Fields]) AND
(“immunomodulation” [All Fields] OR “drug resistance, multiple, bacterial” [All Fields] OR “immune
system” [All Fields]). When we used PubMed, we included Medical Subject heading (MeSH) terms to
increase the power of the search. The search equation used in Scopus was: “essential AND oils” AND
immunomodulation AND drug resistance, multiple, bacterial.

2.2. Selection Criteria

Articles were organized by the antimicrobial and immunomodulatory effects of EOs; after that,
two members of the team (M.V.-U. and C.G.-Ll.) extracted information about the characteristics of
the studies. The information extracted from the articles included EOs, cell lines (in vitro studies),
animal models (in vivo studies), doses or concentrations, routes of administration, biochemical assays,
and the molecular mechanisms investigated. The quality assessment and selection were performed
by two authors (M.V.-U. and C.G.-Ll.) who independently worked according to the main criteria of
PICO (Population, Intervention, Comparison, Outcome) (Table 1); in case of discrepancies, a third
independent reviewer (J.P.-D.) was consulted for the final decision.

Table 1. PICO (Population, Intervention, Comparison, Outcome) criteria for inclusion of studies.

Parameter Inclusion Criteria

Population Studies performed in cells and animals, including humans
Intervention Treatment with essential oil
Comparison Essential oil vs. control

Outcome Antimicrobial, antioxidant, and immunomodulatory effects

2.3. Data handling, Analyses, and Extraction

The inclusion criteria used were the following: (1) studies with EOs with antimicrobial and
immunomodulatory properties in vitro and in vivo; (2) food and nutrition-related studies; and
(3) studies with significant results obtained through appropriate statistical analysis. The exclusion
criteria used were as follows: (1) studies written in languages other than English or Spanish; (2) the
use of plant extracts or derivatives, instead of EOs; (3) review articles, conference proceedings, and
editorials/letters; (4) studies without controls; and (5) agar diffusion method as the only assay for the
study of the antimicrobial effect. After removing duplicates, acceptability for inclusion was evaluated
based on the following: (1) reading the title and abstract; and (2) reading the full text.

We provided a narrative synthesis of the main results of the selected articles. These results were
classified according to the EOs’ properties: (i) antimicrobial activity, (ii) antioxidant activity, and
(iii) immunomodulatory effects of EOs in cells and animals.

3. Results

3.1. Study Identification and Selection

Seventy-nine relevant articles were identified, which was in agreement with our inclusion and
exclusion criteria. The selected articles were grouped into the antimicrobial and antioxidant effects of
the EOs, immunomodulatory effects of EOs in cell studies, and animal supplementation with EOs.
We only found one article in human samples that met our eligibility criteria. We did not find any
intervention studies in humans. The complete process is explained in Figure 1, which is based on a
PRISMA flow chart.
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Figure 1. PRISMA flow chart for studies related with antibacterial, antioxidant, and immunomodulatory
properties of essential oils.

3.2. Antimicrobial Activity of Esential Oils

Table 2 lists the selected publications and their main results of the antimicrobial effect of EOs.
In total, 49 articles were identified. Forty-three articles described the effects of EOs over several
bacterial strains such as E. coli, S. aureus, B. cereus, and P. aeruginosa. In six articles, the inhibition of
biofilm formation by EOs was described. The dose used for the determination of minimum inhibitory
concentration (MIC)/minimum bactericidal concentration (MBC) values ranged from 9 to 229 mg/mL,
and the incubation time varied from 18 to 24 h.

3.3. Antioxidant Activity of Essential Oils

Table 3 depicts the articles and their main results regarding the antioxidant effects
of EOs. Twenty-one studies were selected. The main methods used to evaluate the
antioxidant capacity were the following: measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH)
and 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals scavenging activity,
ferric-reducing antioxidant power (FRAP), and oxidative DNA damage protective effect induced by
Fe2+ and 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH). EOs demonstrated ability in
antioxidant assays in a concentration-dependent manner. The dose range was 0.05% to 3.2% v/w, 0.1 to
10 mg/mL, and 12.5 to 2000 µg/mL.

3.4. Immunomodulatory Activity of Essential Oils in Cells and Animals

Tables 4 and 5 describe the main effects of EOs in cellular and animal studies, respectively. Eight
of the selected studies were specifically conducted in cells, whereas five out of 14 publications selected
performed antimicrobial studies against different bacterial strains and immunomodulatory studies in a
cellular model. Most of the studies were conducted in animal cells (nine out of 13), although studies
in human cells were also performed (seven out of 14). The dose ranged from 1.25 to 1000 µg/mL, and
the incubation times varied from 1 to 72 h. In the case of animal studies, six out of 10 were performed
on poultry animals, while three out of 10 were performed on C57BL/6 mice. One article was performed
in silver catfish. The dose administrated varied from 7.5 mg/kg to 1 kg/ton in weaned piglets.
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Table 2. Main characteristics of studies related with antibacterial properties of essential oils.

Article Plant Derived EOs Main Components of EOs Bacteria MIC/MBC/IC50

Aghraz et al.
[25]

Cladanthus arabicus and
Bubonium imbricatum

Cladanthus arabicus: oxygenated monoterpenes (61.4%):
cis-chrysanthenyl acetate (31.4%) and thymolisobutyrate (3.4%);

Bubonium imbricatum: monoterpenes hydrocarbons (75.8%):
sabinene (31.1%), β-pinene (16.7%), myrcene (12.3%), and

α-pinene (5.3%)

E. coli, K. pneumoniae, E. cloacae,
P. mirabilis, Salmonella spp.

MIC 200–800 µg/mL for C. arabicus,
MIC 400–1600 µg/mL for

B. imbricatum

Alarcon et al.
[26] Ruilopezia bracteosa β-myrcene (34.2%), α-pinene (24.3%), 7-epi-α-selinene (9.1%),

and β-pinene (8.5%)
S. aureus, E. faecalis, K. pneumoniae,

E. coli, S. Typhi, P. aeruginosa MIC 10 µg/mL

Ashraf et al.
[27] Nigella sativa hymoquinone, dithymoquinone, thymohydroquinone, and

thymol S. Enterica MIC ≥1000.0 ± 322.7 µg/mL

Behbahani et al.
[28] Oliveria decumbens Thymol (28.45%) γ-terpinene (22.2%), ρ-cymene (17.90%),

myristicin (13.55%), carvacrol (8.50%), and limonene (2.60%)
P. aerogenes, E. coli, S. pyogenes,

S. epidermidis MIC, 1–8 mg/mL; MBC 1–16 mg/mL

Boonyanugomol
et al.
[29]

Zingiber cassumunar sabinene, γ-terpinene, α-terpinene, terpinene-4-ol, and
(E)-1–(3,4-dimethoxyphenyl)butadiene Acinetobacter baumannii MIC/MBC: 7.00–9.24 mg/mL

Chaib et al.
[30]

Asteriscus graveolens and
Pulicaria incisa

Asteriscus graveolens: cis-chrysanthenyl acetate (31.1%),
myrtenyl acetate (15.1%), and kessane (11.5%); Pulicaria incisa:

chrysanthenone (45.3%) and 2,6-dimethylphenol (12.6%)

K. pneumoniae, E. coli, A. baumannii,
P. aeruginosa, L. monocytogenes,

S. aureus, P. mirabilis
MIC: 19–1250 µg/mL

Chen et al.
[31]

Kunzea ericoides and
Leptospermum scoparium - T. mucoides, C. tropicalis, S. aureus,

S. mutans, S. sobrinus, E. coli MIC 0.78%–3.13%

Chiboub et al.
[32]

Foeniculum vulgare MILL,
Daucus carota L. subsp. sativus

Daucus carota: isospathulenol, caryophyllene oxide, and
δ-elemene

Foeniculum vulgare MILL: (E)-anethole p-anisaldehyde,
p-acetonylanisole, limonen, exo-fenchol acetate, and methyl

chavicol

S. aureus, B. subtilis,
B. amyloliquefaciens, S. Enterica, E. coli,

C. albicans
MIC: 6.25–50 mg/mL

Condo et al.
[33]

Pimpinella anisum L.,
Cinnamomum zeylanicum,

Syzygium aromaticum, and
Cuminum cyminum L.

Pimpinella anisum L: trans-anethole ((E)-1-methoxy-4-(1-propenyl)
benzene); Cinnamomum zeylanicum: cinnamaldehyde; Syzygium

aromaticum: eugenol; Cuminum cyminum: cuminaldehyde
(4-isopropylbenzaldehyde), and cuminyl alcohol

(4-isopropyl-benzyl-alcohol)

S. aureus, S. epidermidis, E. faecalis,
S. pyogenes, E. coli, P. aeruginosa,

A. hydrophila, P. mirabilis,
K. pneumoniae, C. albicans

De Jesus et al.
[34] Myrcia ovata Cambessedes Geranial (40%), neral (28%), citronella (9%)

P. aeruginosa, S. aureus, B. cereus,
B. subtilis, E. faecalis, S. marcescens,

E. coli, S. enteritidis
MIC: 0.78–25 µL/mL

Elshafie et al.
[35]

Verbena officinalis,
Majorana hortensis, and Salvia

officinalis

Verbena officinalis: Isobornyl formate (45.4%), (E)-citral (47.5%);
Majorana hortensis: 1,8-cineole (33.5%), β-phellandrene (9.1%),
α-pinene (9%), limonene (6.4%); Salvia officinalis: Trans-thurjone

(37.9%), canfor (13.9%), and borneol (7.6%)

B. megaterium, B. mojavensis,
C. michiganensis, E. coli, X. campestris,
P. savastanoi, P. syringae pv. phaseolicola

MIC: 1000–10,000 mg/L
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Table 2. Cont.

Article Plant Derived EOs Main Components of EOs Bacteria MIC/MBC/IC50

Fadil et al.
[36]

Mixture of Thymus vulgaris,
Rosmarinus officinalis L., and

Myrtus communis L.

T. vulgaris: Thymol (37.54%), p-cymene (14.49%), c-terpinene
(11.15%), linalool (4.71%), and carvacrol (4.62%);

R. officinalis: α-pinene (48.58%), 1,8-cineole (33.4%) and camphene
(8.69%); M. communis: borneol (27.15%), 1,8-cineole (21.33%),
α-pinene (11.09%), myrtenyl acetate (6.45%), trans-pinocarveol

(4.82%), and α -terpineol (4.83%)

S. Typhimurium
Thyme MIC: 0.25% (V/V);
myrtle MIC: 0.5% (V/V);

Rosemary MIC: 2% (V/V)

Falsafi et al.
[37] Satureja bachtiarica Bunge

Carvacrol (45.5%), thymol (27.9%), p-cymene (4.4%), γ-terpinene
(4.0%), α-pinene (1.5%), 1,8-cineole (1.3%), α-terpinene (1.2%),

and E-caryophyllene (1.1%)
H. pylori MIC: 0.035 µL/mL

Fournomiti et al.
[38]

Origanum vulgare, Salvia
officinalis, Thymus vulgaris

Origanum vulgare: Carvacrol and thymol; Salvia officinalis:
1,8-cineole, α-thujone and camphor; Thymus vulgaris: thymol and

carvacrol
E. coli, K. oxytoca, K. pneumoniae

MIC oregano: 0.9 mg/mL; 73.5 µg/mL;
MIC thyme: 8.1 µg/mL; 9.5 µg/mL;

28.6 µg/mL against K. oxytoca,
K. pneumoniae and E. coli, respectively

Gadisa et al.
[39]

Blepharis cuspidata, Boswellia
ogadensis, and Thymus schimper E. coli, K. pneumoniae and MRSA

MIC: 0.39–6.25 µL/mL/MBC
(0.78–12.5 µL/mL) against MDR E. coli

and K. pneumoniae

Igwaran et al.
[40] Tagetes minuta

β-Ocimene (14.40%), m-tert-butyl-Phenol (9.41%), 2,6-dimethyl-,
(E)-5,7-Octadien-4-one (7.14%), 1,2,

3,4,4a,5,6,7-octa hydro-4a-methyl-naphthalene (5.58%), and
spathulenol (4.56%)

S. uberis, E. cloacae, S. aureus,
M. smegmatis, L. ivanovii, Vibrio spp.,

E. coli

MIC (S. aureus, M. smegatis, and
S. uberis): 0.125 mg/mL; L. ivanovii,

Vibrio spp., E. cloacae and E. coli:
0.06 mg/mL. MBC (E. cloacae and

E. coli): 0.06 mg/mL; MBC S. uberis:
0.5 mg/mL; Vibrio spp.: 0.125 mg/mL

Jaradat et al.
[41] Thymus bovei trans-geraniol (35.38%), α-citral (20.37%), β-citral (14.76%),

cis-geraniol (7.38%), and 3-octanol (4.38%)
S. aureus, E. coli, P. aeruginosa,

C. albicans MIC: 0.25–0.5 mg/mL

Lee et al. [42] hibicuslide C - P. aeruginosa strains MIC range: 5.0–10.0 µg/mL

Linde et al.
[43] Petroselinum crispum Apiol (50.3%), myristicin (14.0%), and β-phellandrene (14.6%)

B. cereus, E. cloacae, L. monocytogenes,
E. coli, P. aeruginosa, S. Typhimurium,

S. aureus

MICs 0.04–1.0 mg/mL. MBCs
0.15–10.0 mg/mL

Mahmoudzadeh
et al.
[44]

Carum copticum thymol (36.4%), p-Cymene (31.4%),
and γ-Terpinene (21.73%) E. coli MIC 0.05%–1.75%;

MBC 0.052%–3.25%
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Table 2. Cont.

Article Plant Derived EOs Main Components of EOs Bacteria MIC/MBC/IC50

Man et al.
[45]

Boswellia sacra, Myrtus communis,
Thymus vulgaris, Citrus limon,

Origanum vulgare, and Lavandula
angustifolia

Boswellia sacra: β-pinene (25.6%), α-terpinene (18.6%); Myrtus
communis: β-pinene (25%), eucalyptol (28.7%); Thymus vulgaris:

linalool (56.5%), geranyl propionate (16.3%); Citrus limon:
limonene (36.9%), β-pinene (15%), α-pinene (19.2%); Origanum

vulgare: carvacrol (80.5%); Lavandula angustifolia: linalyl-butyrate
(26.5%), and linalool (25%)

S. aureus, E. faecalis, E. coli,
K. pneumoniae, P. aeruginosa MICs/MBCs 0.1% to >50%

Marrelli et al.
[46]

Origanum dictamnus, Origanum
libanoticum and Origanum

microphyllum

O. dictamnus: p-cymene (32.7%), γ-terpinene (12.4%), carvacrol
(14.7%), and linalool (7.8%); O. microphyllum: Terpinen-4-ol

(16.2%), carvacrol (13.3%), sabinene (7.5%), and
trans-sabinene hydrate (7.1%); Origanum libanoticum: linalool

(6.5%), thymol methyl ether (9.8%), (E)-b-caryophyllene (7.7%),
and hexadecanoic acid (11.3%)

B. cereus, B. subtilis, S. epidermidis,
S. aureus, S. faecalis, E. coli O. dictamnus MIC: 25–50 mg/mL

Meng et al.
[47] Juniperus rigida Caryophyllene (13.11%) and α-caryophyllene (11.72%) K. pneumoniae MIC/MBC: 3.125 mg/mL

Montironi et al.
[48] Minthostachys verticillata Pulegone (51.7%) and menthone (37.8%) S. uberis MIC: 14.3–114.5 mg/mL/MBC:

114.5–229 mg/mL

Mutlu-Ingok
et al.
[49]

Cardamom, cumin, and dill
weed

Cumin: p-mentha-1,3-dien-7-al (26.7%), cumin aldehyde (24.1%),
γ-terpinene (16.9%), and

β-pinene (14.4%); Cardamom: α-terpinly acetate (43.4%) and
1,8-cineole (29.2%); Dill weed: carvone (41.6%), and limonene

(27.4%)

C. jejuni, C. coli
MIC/MBC: 0.05 L/mL, cumin,
Cardamon/cumin MIC/MBC:

0.025 L/mL

Okoh et al.
[50] Peperomia pellucida Linalool, d-limonene, β-caryophyllene, and linalyl acetate were

the major compounds

S. aureus, L. ivanovii, M. smegmatis,
S. uberis, E. cloacae, E. coli, V.

paraheamolyticus
MIC: 0.15–0.20 mg/mL

Okoh et al.
[51] Jatropha gossypifolia Phytol, germacrene D, α-copaene, α-terpinene, and limonene

were the major compounds E. coli, E. faecium, and S. aureus MIC/MBC: 0.025–0.10 mg/;
MBC: 0.05–0.10 mg/mL

Oukerrou et al.
[52] Aloysia citriodora β-spathulenol (15.61%), ar-curcumene (14.15%),

trans-caryophyllene oxide (14.14%), and neral (10.02%) E. coli, S. aureus, P. aeruginosa MIC: 2.84–8.37 mg/mL

Paredes et al.
[53] Senecio nutans Methyl cinnamate (44.9%), p-cymenol (27.2%), Vibrio cholerae MIC: 0.4 mg/mL

Patra et al.
[54] Enteromorpha linza hexadecanoic acid, nonadecadiene, tetradecanoic acid, tridecanol,

and azetidine B. cereus, S. aureus MIC/MBC: 12.5–25 mg/mL

Pereira et al. [55] Baccharis dracunculifolia - Streptococcus mutans MIC: 6%

Porfirio et al. [56] Lippia alba Geranial, neral, p-cymene, geranic acid, carvone, and limonene
were the major compounds S. aureus MIC 0.5–1 mg/mL; MBC:

0.5–2 mg/mL
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Table 2. Cont.

Article Plant Derived EOs Main Components of EOs Bacteria MIC/MBC/IC50

Puškárová et al.
[57]

O. vulgare, T. vulgaris, S. sclarea,
L. angustifolia, E. Caryophyllata,

and T. plicata
-

E. coli, S. Typhimurium,
Y. enterocolitica, S. aureus,

L. monocytogenes, E. faecalis, B. cereus,
A. protophormiae, P. fragi

MIC/MBC: 0.025%–0.5%

Sakkas et al. [58]

Ocimum basilicum L.,
Matricaria chamomilla, L.Thymus

capitatus, L.,
Melaleuca alternifolia, Thymus

vulgaris, L.

Ocimum basilicum L.: estragole; Matricaria chamomilla, L.: bisabolol
and trans-b-farnesene; Thymus capitatus, L.: carvacrol and thymol;

Melaleuca alternifolia: terpinen-4-ol and p-cymene; Thymus
vulgaris, L: thymol, p-cymene, and linalool

A. baumannii, E. coli, K. pneumoniae
and P. aeruginosa

MIC/MBC values ranged from 0.12%
to 1.50% (v/v) for tea tree oil,

0.25%–4% (v/v) for origanum and
thyme oil, 0.50% to >4% for basil oil

Salem et al. [59] Cupressus macrocarpa hartw and
Corymbia citriodora (Hook.)

Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol
(17.3%), and citronellal were the major constituents of C.
macrocarpa, and α-citronellal (56%), α-citronellol (14.7%),

citronellol acetate (12.3%), isopulegol, and eucalyptol were the
primary constituents of C. citriodora

B. cereus, L. monocytogenes, M. flavus,
S. aureus, D. solani, E. coli,

P. atrosepticum, P. carotovorum subsp.
Carotovorum, P. aeruginosa

MIC C. citriodora leaves
0.06–0.20 mg/mL, MBC:

0.12–0.41 mg/mL; MIC C. macrocarpa:
0.07–0.31 mg/mL, MBC:

0.15–0.63 mg/mL

Semeniuc et al.
[60] Parsley, lovage, basil, and thyme

β-myrcene,
β-phellandrene, γ-terpinene, and α-pinene were the major

compounds

B. cereus, S. aureus, P. aeruginosa,
E. coli, S. Typhimurium

B. cereus MIC Basil: 10.8 µL/mL;
thyme: 0.56 µL/mL; S. aureus MIC

Basil: 2.45 µL/mL and thyme
0.06 µL/mL. P. aeruginosa MIC Basil
10.80 µL/mL and thyme 0.27 µL/mL.

S. Typhimurium MIC Basil:
22.68 µL/mL and thyme: 0.56 µL/mL

Sharafiti
Chaleshtori et al.

[61]

Bunium persicum,
Eucalyptus globulus, and rose

water

B. persicum, β-pinene (11.72%), p-cymene (15.47%), g-terpinene
(18.32%), cumin aldehyde (38.4%),

p-mentha-1,3-dien-7-al (5.37%), and p-mentha1,4-dien-7-al
(2.86%);

E. globulus, limonene (9.4%) and 1,8-cineole (70.3%); rose water,
linalool (6.6%), terpineol (3.3%), carvone (0.31%), citronellol

(6.85%), trans-geraniol (7.11%), phenylethanol (66.84%), eugenol
(4.53%), cytronellol, hydroxyl (1.15%), and geranic acid (1.2%)

Listeria spp. MIC: 0.351–2.812 mg/mL
MBC: 0.703–5.625 mg/mL

Sharifi et al. [62] Thymus daenensis;
Satureja hortensis

T. daenensis: carvacol (40%–69%),
followed by γ-terpinene (30%–28%) and α-terpinene (5%–52%);

S. hortensis: thymol (41%–28%), γ-terpinene (37%–63%),
p-cymene (2%–12%) and α-terpinene (3%–52%)

S. aureus
MICs of T. daenensis: 0.0625 µL/mL;

S. hortensis 0.125 µL/mL; MBC
0.125 µL/mL

Sharifi-Rad et al.
[63] Xanthium strumarium L. cis-β-guaiene (34.2%), limonene (20.3%), borneol (11.6%), and

bornyl acetate (4.5%)
K. pneumoniae, E. coli, P. aeruginosa,

S. aureus, S. epidermis, B. subtilis

MIC S. aureus: 0.5 µg/mL; MIC
B. subtilis 1.3 µg/mL; MIC
K. pneumoniae 4.8 µg/mL
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Table 2. Cont.

Article Plant Derived EOs Main Components of EOs Bacteria MIC/MBC/IC50

Smeriglio et al.
[64] Pistacia vera L. 4-Carene, α-pinene, and

δ-3-Carene were the major compounds

S. aureus, S. aureus MRSA, three
clinical isolates of S. aureus, E. coli and

P. aeruginosa

MIC/MBC: 7.11 mg/mL inhibited the
growth of all the tested strains, with

the exception of Pseudomonas

Snoussi et al. [65] Petroselinum crispum, Ocimum
basilicum

P. crispum: 1,3,8-p-menthatriene (24.2%), β-phellandrene (22.8%),
apiol (13.2%), myristicin (12.6%), and terpinolene (10.3%);

O. basilicum: linalool (42.1%), (E)-methylcinnamate (16.9%), and
1,8-cineole (7.6%)

V. alginolyticus, V. alginolyticus,
V. parahaemolyticus,

V. parahaemolyticus, Vibrio vulnificus,
V. vulnificus, V. cholerae, A. hydrophila

P. crispum: MIC: 0.011–0.044 mg/mL
MBC:2.81–11.25 mg/mL; O. basilicum

MIC 0.019–0.039 mg/mL; MBC
2.5–10 mg/mL

Soliman et al.
[66] Calligonum comosum Benzaldehyde derivative was the major compound P. aeruginosa, K. pneumoniae,

A. baumannii, and E. coli MIC: 180.0–200.0 µg/mL

Tibyangye et al.
[67] Ocimum suave Linalool and geraniol were the major compounds

E. coli, K. pneumoniae, S. aureus,
E. faecalis, M. morganii, Citrobacter spp.,

Enterobacter spp. and P. aeruginosa
MIC: 0.78–22 µg/mL

Touihri et al. [68] Allium roseum Methyl methanethiosulfinate, 3-vinyl-1,2-dithiacyclohex-5-ene,
and diallyl trisulfide were the major compounds

S. aureus, K. pneumoniae, E. coli,
E. faecalis, S. Typhimurium MIC: 0.078–2.5 mg/mL

Ušjak et al. [69] Heracleum pyrenaicum subsp.
orsinii (Guss.)

β-pinene, (Z)-β-ocimene, and α-pinene were the major
compounds

S. aureus, B. cereus, L. monocytogenes,
M. flavus, P. aeruginosa, E. coli,

S. Typhimurium, E. cloacae

B. cereus (MIC: 0.21 mg/mL, MBC:
0.53 mg/mL). S. Typhimurium, E. coli,

P. aeruginosa (MICs: 0.23 mg/mL,
MBCs: 0.47 mg/mL), S. aureus (MIC:

0.23 mg/mL, MBC: 0.47 mg/mL)

Utegenova et al.
[70] Ferula ovina (Boiss.) α-pinene (47.8%), β-pinene (7.1%), sabinene (20.5%),

β-phellandrene (6.5%), and trans-verbenol (7.4%) MRSA IC50: 19.1–22.9 µg/mL

Vieira et al. [71]

Eucalyptus globulus, Thymus
mastichina L., Mentha pulegium

L., Rosmarinus officinalis L.,
Calamintha nepeta, Cistus

ladanifer L., Foeniculum vulgare
L., Dittrichia viscosa

Lamiaceae: isopulegol, isopulegone and 1,8- Cineole; C. nepeta:
pulegone; M. pulegium: β-myrcene, camphor, 1,8-cineole; R.
officinalis: α-pinene, and 1,8-cineole; T. mastichina: α-terpinyl
acetate; C. ladanifer: α-pinene, camphene, fenchone, bornyl

acetate, and viridiflorol; E. globulus:
1,8-cineole; F. vulgare: anethol, b-myrcene and fenchone;

D. viscosa: E-nerolidol and fokienol

S. aureus, B. subtilis, E. coli,
P. aeruginosa MIC: 6–25 mg/mL

Xu et al. [72] Syringa yunnanensis Eugenol (76.23%), β-caryophyllene (11.54%), caryophyllene oxide
(4.29%), and eugenyl acetate (1.76%) S. aureus MIC: 0.625 mg/mL

Zhao et al. [73]
Fagopyrum esculentum,

Fagopyrum tataricum, Fagopyrum
Cymosum

F. esculentum: nonanoic acid (7.58%), (E)-3-hexen-1-ol (6.52%),
benzothiazole (5.08%),

2-Pentadecanone (18.61%), eugenol (17.18%); F. tataricum:
1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester (13.19%),

and (E,E)-farnesylacetone (7.15%);
F.Cymosum: eugenol (12.22%), (E)-3-hexen-1-yl acetate (8.03%),

linalool oxide (7.47%), 1-hexanol (7.07%), and benzothiazole
(6.72%)

A. tumefaciens, E. coli, P. lachrymans,
X. vesicatoria, B. subtilis, S. aureus MIC: 100.0–800.0 g/mL

Abbreviations: EO, essential oil; MIC, minimal inhibitory concentration; MBC, minimal bactericidal concentration; IC50 half-maximal inhibitory concentration; MRSA, methicillin-resistant
S. aureus.
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Table 3. Main characteristics of studies related with antioxidant properties of essential oils.

Article Plant Derived EOs Main Components of EOs Method Antioxidant Effects

Bag et al. [74]
Bay leaf, black pepper, coriander,

cumin, garlic, ginger, mustard, onion,
and turmeric

Coriander and cumin seed oil, linalool, p-coumaric
acid DPPH method Coriander 150.62 (µg/mL), cumin 163.50

(µg/mL), mustard 155.16 (µg/mL)

Djenane et al. [75]
Orange (Citrus sinensis L.), lemon
(Citrus limonum L.), and bergamot
(Citrus aurantium L.) from Algeria

Limonene (77.37%) for orange EO; linalyl acetate
(37.28%), linalool (23.36%) for bergamot EO; and

limonene
(51.39%), β-pinene (17.04%), and γ-terpinene (13.46%)

for lemon EO

Antioxidant effect in treated
sardine

A reduction of 2.50 log10 CFU/g was recorded
during the third day of storage

Ehsani et al. [76] Melissa officinalis and Deracocephalum
moldavica

M. officinalis, citronellal, thymol, and citral; D.
moldavica, geraniol, geranial, geranyl acetate, and neral DPPH, BCBT, and ABTS assay

Both EOs showed strong activity in the
maintenance of β-carotene molecules, which

was higher than that of ascorbic acid

Hu et al. [77] Cyperus rotundus L. α–pinene, cyperene, α–cyperone, and cyperotundone
were the major compounds DPPH and ABTS radicals

DPPH radicals were far lower than that of
Trolox (13.1 µg/mL); however, ABTS radicals

were significantly higher than Trolox
(84.7 µg/mL)

Jaradat et al. [78] Ruta chalepensis Linalyl acetate, β-linalool, 2-undecanone, and
2-nonanone were the major compounds DPPH method

Percentages of inhibition for R. chalepensis
collected from Jerusalem, hebron, and Jenin

were 6.9 ± 0.94 µg/mL, 69.56%; 7.8 ±
1.05 µg/mL, 61.53%; and 19.9 ± 0.68 µg/mL,

24.12%, respectively

Kazemi et al. [79] Achillea millefolium L., Anethum
graveolens L., and Carum copticum L.

A. millefolium, thymol, carvacrol, borneol, and
limonene; A. graveolens, thymol, limonene, α-pinene;

and C. copticum, thymol, sabinene, and borneol
DPPH, FRAP, and BCBT assays A. millefolium had the highest antioxidant

activity in all conducted assays

Marin et al. [80] Foeniculum vulgare, Petroselium
crispum, and Lavandula officinalis

L. officinalis, linalool, and linalyl acetate; F. Vulgare,
limonene, anethole, and fenchone; P. crispum,

myristicin, α-pinene, and β-pinene
DPPH and FRAP assays

P. crispum presented the best antioxidant
profile, given its highest % of inhibition of

DPPH radical (64.28%) and FRAP
(0.93 mmol/L Trolox)

Marrelli et al. [81] Six different populations of
Origanum heracleoticum L.

Limonene, carvacrol-methyl-ether, and carvacrol were
the major compounds DPPH and BCBT assays Samples showed a modest DPPH value of

320.9 µg/mL, and BCBT of 4.68 µg/mL.

Okoh et al. [82] Dennettia tripetala G. Baker 2-Methylphenyl formate, α–terpinene, and
caryophyllene were the major compounds

DPPH, ABTS, nitric oxide, and
lipid peroxyl

The EOs demonstrated strong ability in ABTS,
lipid peroxide, and nitric oxide radical assays

in a concentration-dependent manner

Okoh et al. [51] Jatropha gossypifolia L. Phytol, germacrene D, α-copaene, α-terpinene, and
limonene were the major compounds

DPPH, ABTS, nitric oxide, and
lipid peroxyl

The stem showed that the antiradical strength
was superior to leaf EO
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Table 3. Cont.

Article Plant Derived EOs Main Components of EOs Method Antioxidant Effects

Okoh et al. [50] Peperomia pellucida (L.) Kunth Linalool, d-limonene, β-caryophyllene, and linalyl
acetate were the major compounds

DPPH, ABTS, nitric oxide, and
lipid peroxyl

The EOs demonstrated strong ability in DPPH,
ABTS, nitric oxide and lipid peroxyl assays in a

concentration-dependent manner

Ouedrhiri et al. [83] Ormenis mixta and Pelargonium
asperum

P. asperum, citronellol,
citronellyl formate, and geraniol; O. mixta, germacrene,

1,8 cineol, and
cis-methyl isoeugenol

DPPH method
O. mixta exhibited an important antioxidant
activity, which was significantly higher than

that exhibited by P. asperum

Pirbalouti et al. [84] Ferulago angulata α-pinene, and cis-β-ocimene were the major
compounds DPPH method

The highest antioxidant activity was obtained
from the oil of the Kallar population

(488 µg/mL) and butylhydroxyanisole as a
positive control (321 µg/mL)

Poaty et al. [85]
Balsam fir, black spruce, white spruce,

tamarack, jack pine, eastern white
cedar, and Labrador tea EOs

α–pinene, β-pinene, δ-3-carene, and limonene were
the major compounds. α–thujone was the main

compound in white cedar
DPPH, FRAP assays DPPH (concentration providing 50% inhibition

≥7 mg/mL)

Semeniuc et al. [86] Parsley, lovage, basil, and thyme EOs
β-myrcene,

β-phellandrene, γ-terpinene, and α-pinene were the
major compounds

TEAC assay The highest antioxidant capacity was found in
thyme oil

Shakeri et al. [87] Glycyrrhiza triphylla Fisch. and
C.A.Mey

β-caryophyllene, limonene, and myrcene were the
major compounds

The DPPH, and
β-Carotene/linoleic acid assay

The oil was considerably active in the DPPH
assay (100.40 ± 0.03 µg/mL)

Sharafati Chaleshtori
et al. [61]

Bunium persicum,
Eucalyptus globulus, and rose water

B. persicum, β-pinene (11.72%), p-cymene (15.47%),
gterpinene (18.32%), cumin aldehyde (38.4%),

p-mentha-1,3-dien-7-al (5.37%), and
p-mentha1,4-dien-7-al (2.86%);

E. globulus, limonene (9.4%) and 1,8-cineole (70.3%);
rose water, linalool (6.6%), terpineol (3.3%), carvone

(0.31%),
citronellol (6.85%), trans-geraniol (7.11%),
phenylethanol (66.84%), eugenol (4.53%),
cytronellol, hydroxyl (1.15%), and geranic

acid (1.2%)

FRAP Bunium persicum EO showed the greatest
antioxidant activity

Smeriglio et al. [64] Pistacia vera L. 4-carene, α-pinene, and
δ-3-carene were the major compounds

Determination of total phenolic
compounds, DPPH, TEAC,
FRAP, chelating capacity on

Fe2+, BCBT assays, superoxide
anion (O2−) scavenging assay
and hydroxyl radical (−OH)

scavenging assay

The Pistacia vera L. variety Bronte showed a
strong iron-chelating activity and was found to
be markedly active against hydroxyl radical,

while little effect was found against the DPPH
method
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Table 3. Cont.

Article Plant Derived EOs Main Components of EOs Method Antioxidant Effects

Snoussi et al. [88] Mentha spicata Limonene, 1,8-cineole, and carvone were the major
compounds

DPPH method, reducing power,
chelating power, and BCBT

assays

DPPH IC50 3.08 ± 0.07, reducing power EC50,
2.49 ± 0.07, chelating power IC50, 6.33 ± 0.12,

and BCBT 6.4 ± 0.07

Salem et al.
[59]

Cupressus macrocarpa and
Corymbia citriodora

Terpinen-4-ol (23.7%), α-phellandrene (19.2%),
α-citronellol (17.3%), and citronellal were the major

constituents of C. macrocarpa, and α-citronellal (56%),
α-citronellol (14.7%), citronellol acetate (12.3%),

isopulegol, and eucalyptol were the primary
constituents of C. citriodora

Standard butylhydroxytoluene
C. citriodora was higher than that of the

positive control but lower than that of the
standard, butylhydroxytoluene

Zhao et al.
[73]

Fagopyrum esculentum, Fagopyrum
tataricum, and

Fagopyrum Cymosum

F. esculentum: Nonanoic acid (7.58%), (E)-3-hexen-1-ol
(6.52%), benzothiazole (5.08%), 2-Pentadecanone

(18.61%), and eugenol (17.18%);
F. tataricum: 1,2-benzenedicarboxylic acid,

bis(2-methylpropyl) ester (13.19%) and
(E,E)-farnesylacetone (7.15%);

F.Cymosum: Eugenol (12.22%), (E)-3-hexen-1-yl acetate
(8.03%), linalool oxide (7.47%), 1-hexanol (7.07%), and

benzothiazole (6.72%)

DPPH and BCBT assays Three EOs have a similar antioxidant capacity
in both evaluated methods

Abbreviations: EOs: essential oils; ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid); BCBT, β-carotene bleaching test; CFU, colony-forming unit; DPPH,
(2,2-diphenyl-1-picrylhydrazyl); FRAP, ferric-reducing antioxidant power; TEAC, Trolox equivalent antioxidant capacity.
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Table 4. Main characteristics of studies related with immunomodulatory properties of essential oils in cells.

Author Cell Line Plant Derived EOs EOs Concentration
Main

Components of
EOs

Exposure Time LPS Stimulation Main Results

Chen et al.
[31]

THP-1 human
monocyte/macrophage

cell line
Kanuka and manuka 0.1–0.5–1–5–10% 48 h yes (20 µg/mL)

EOs have no major toxic side effects on
THP-1 cells. Kanuka and manuka EOs

reduced the LPS-induced TNF-α secretion
but have no effect on IL-4 secretion. Kanuka

and manuka EO have no effect on
unstimulated THP-1 cells.

Chen et al. [89]
C57BL/6 mouse bone

marrow-derived
dendritic cells (DCs)

Litsea cubea L. 1–2–4 × 105- and
5 × 104-fold dilution

Terpene aldehydes
(75.09%) were the

most abundant
compounds

Cytotoxicity assay:
24 h; TNF-α assay:

6 h; IL-12 assay: 12 h
yes (100 ng/mL)

A slight cytotoxic effect was observed at
5 × 104 -fold diluted EO. Release of TNF-α

and IL-12 by LPS-induced DCs were
inhibited by EO in a dose-dependent fashion
(IC50 of 1 × 105- and 2 × 105-fold dilution for

TNF-α and IL-12, respectively).

Chen et al. [22] Murine macrophage
RAW264.7 cells Artemisia argyi 270, 90, 30, and

10 µg/mL)

Cineole, camphor,
(−)-borneol, and
α-(−)-thujone

were the major
compounds

16 h yes (1 µg/mL)

In LPS-induced cells, the EOs inhibited the
release of NO, PGE2, and ROS and TNF-α,
IL-6, IFN-β and MCP-1. In addition, EOs

downregulate the gene and protein
expression of iNOS and COX-2 without
affecting its enzymatic activity. EOs also

inhibited the phosphorylation of JAK2 and
STAT1/3 but did not affect the MAPK and

NF-κB cascades.

Cheng et al. [90] Murine macrophage
RAW264.7 cell

Oregano (Origanum
vulgare L.) ≤10 µg/mL

Carvacrol and
thymol were the

major compounds
12 h yes (1 µg/mL)

Low dose of EOs (1.25–20 µg/mL) did not
produce any toxicity. In LPS-induced

RAW264.7 cells, pretreatment with the EOs
reduced the expression and secretion of

IL-1β, IL-6, and TNF-α. Inhibition of
LPS-induced MAPK, PKB, and NF-κB was
also observed. The EOs also inhibited the

LPS-induced elevation of NADPH oxidase
and oxidative stress

Krifa et al. [91]

Splenocyte suspension
from Balb/c mice;

Murine melanoma
B16F10 cell line

Pituranthos tortuosus

Splenocyte suspension:
1.25, 2.5, 5, and

10 µg/mL. B16F10 cell
line: 25, 50, 100, 200,

and 400 µg/mL.

Sabinene,
α-pinene,

limonene, and
terpinen-4-ol were

the major
compounds

48 h yes (5 µg/mL)

EOs treatment was able to promote
LPS-stimulated splenocyte proliferation. In

B16F10 cells, incubation with the EOs
inhibited cell proliferation in a dose- and

time-dependent fashion (IC50: 80 µg/mL). In
addition, EOs treatment was also able to
increase the number of apoptotic cells.
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Table 4. Cont.

Author Cell Line Plant Derived EOs EOs Concentration
Main

Components of
EOs

Exposure Time LPS Stimulation Main Results

Ma et al. [92]

L02 cell line; human
lung adenocarcinoma
A549 cell line; Murine

macrophage RAW264.7
cell

Cirsium japonicum
DC

25, 50, 100, and
200 µg/mL

Flavonoids,
saponins,

polysaccharides
EO, coumarin, and

alkaloids

24 h yes (1 µg/mL)

EOs have no major toxic side effects on L02
cells, and even promoted cell proliferation.

In the A549 cell line, EOs promote the
proliferation of cancer cells. NO production

was inhibited in LPS-induced RAW264.7
cells treated with EOs at 50 and 100 µg/mL.

In addition, EOs treatment reduces the
secretion of IL-6, but has no effect on TNF-α

gene expression. Furthermore, EOs
decreased lipid accumulation in

ox-LDL-induced RAW264.7 cell, and
decreased the secretion of IL-6.

Marelli et al. [81] Murine macrophage
RAW264.7 cells

Origanum heracleticum
L. 25–1000 µg/mL

Limonene,
carvacrol-methyl-ether,
and carvacrol were

the major
compounds

24 h yes (1 µg/mL)

In LPS-stimulated RAW264.7 cells, all EOs
from Origanun heracleticum L. showed

anti-inflammatory activity by means of its
capacity to decrease the NO production.

Özek et al. [93]

human blood isolated
neutrophils

from healthy donors;
bone marrow leukocytes

isolated from Balb/c
mice

Ferula iliensis 1%

(E)-Propenyl sec
butyl disulfide,

(Z)-Propenyl sec
butyl disulfide,

and
10-Epi-g-eudesmol

were the major
compounds

Ca2+ flux assay:
0.06 h; ROS

production: 0.5 h
no

EOs activated human neutrophil Ca2+ flux;
this activation was dose-dependently

inhibited by capsazepine, a TRPV1 channel
antagonist. This effect was confirmed on
TRPV1 channel-transfected hEK293 cells.

Furthermore, EOs also activated
SOD-inhibitable ROS production in

both human neutrophils and mouse bone
marrow phagocytes.

Park et al. [94] Murine macrophage
RAW264.7 cells Chamaecyparis obtusa 1, 10, 50, and 100 µg/mL

α-terpinyl acetate,
β-phellandrene,

β-myrcene,
limonene, bornyl

acetate,
γ-terpinene,

β-thujaplicin, and
α-terpineol

1 h yes (1 µg/mL)

In LPS-stimulated cells, EOs treatment
reduced nitric oxide, TNF-α, and IL-6

production, and inhibited iNOS and COX-2
expression.

Puskárova et al.
[57]

human embryo
lung hEL12469 cells

Origanum vulgare;
Thymus vulgaris;

Salvia sclarea;
Lavandula

angustifolia; Eugenia
caryophyllata; and

Thuja plicata

0.0025–1.0 µL/mL - 24 h no

EOs present toxic side effects at higher
concentrations. Treatment with EOs did not

induce any significant increase in DNA
strand breaks; only Thuja plicata EO

(0.2 µL/mL) showed a negative effect on
DNA single-strand breaks in hEL 1269 cells.
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Table 4. Cont.

Author Cell Line Plant Derived EOs EOs Concentration
Main

Components of
EOs

Exposure Time LPS Stimulation Main Results

Smeriglio et al.
[64]

human blood isolated
lymphocytes

from healthy donors
Pistacia vera L. 20, 17.5, 15, 12.5, 10, 7.5,

5, and 1 µg/mL

4-Carene,
α-pinene, and
δ-3-carene were

the major
compounds

24 h no

EOs did not show any cytotoxic effects. In
tert-butyl hydroperoxide-treated

lymphocytes, incubation with EOs
(20–12.5 µg/mL) significantly increased cell

viability.

Touihri et al. [68]
human colonic

adenocarcinoma hT29-D4
and Caco-2 cell lines

Allium roseum L. 10, 20, 30, and 40 µg/mL

Methyl
methanethiosulfinate,

3-vinyl-1,
2-dithiacyclohex-5-ene,

and diallyl
trisulfide were the
major compounds

Cytotoxicity assay:
5 h; Proliferation

assay: 72 h
no

EOs did not show cytotoxic effects.
Antiproliferative assay depicted that the

number of cells was reduced by the
incubation of hT29-D4 and Caco-2 cells with

EOs in a dose-dependent fashion.

Ušjak et al. [69]

human cervix hela
cell; human colon

carcinoma LS174 cell;
non-small cell lung

carcinoma A549; human
normal fetal lung

fibroblast MRC-5 cell

Heracleum
pyrenaicum subsp.

orsinii

12.5, 25, 50, 100, and
200 µg/mL

β-pinene,
(Z)-β-ocimene,

and α-pinene were
the major

compounds

72 h no

The cytotoxic effect of EOs was prominent
against heLa, LS174, and A549 cell lines. EOs

did not show toxicity side effects against
normal MRC-5 cell (IC50 >200 µg/mL).

Wang et al. [95] Murine macrophage
RAW264.7 cells Trachydium roylei 1.25, 2.5, 5.0, 10, and

20 mg/mL

β–phellandrene,
myristicin, and

elemicine were the
major compounds

1 h yes (100 ng/mL)

In LPS-stimulated RAW264.7 cells, only
a high concentration of EOs (40 mg/mL)
showed a negative effect on cell viability.

In addition, incubation with EOs inhibited
the production of TNF-α, IL-1β, and IL-6,

whereas it increased the release of IL-10. EOs
also inhibited the secretion of NO and PGE2.

Abbreviations: EO: essential oil; LPS: lipopolysaccharide; IL: interleukin; TNF-α: tumor necrosis factor alpha; NO: nitric oxide; iNOS: inducible nitric oxide synthase; MAPK:
mitogen-activated protein kinase; PKB: protein kinase B; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; COX-2: cyclooxygenase 2; PGE2: prostaglandin E2; ox-LDL:
oxidized low-density lipoprotein.
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Table 5. Main characteristics of studies related with immunomodulatory properties of essential oils in animals.

Author Animal Plant Derived EOs EOs Concentration
Main

Components of
EOs

EOs
Administration Treatment Duration Main Results

Adaszynska-
Skwirzynska

et al. [96]
Broiler chickens Lavandula

angustifolia 0.4 mL/L Linalool and linalool acetate were
the major compounds (>80%)

Drinking water
(6 h/day)

From 1 to 42 d of age and
from 22 to 42 d of age

Broiler chickens treated with EO
weighed an average of 6.35% more
than those in the control group. No
differences were found in feed and

water intake, survival rate, or
biochemical parameters. EOs intake

also has an impact on ileum
gastrointestinal microbiota

(pathogenic microorganisms
decreased, while the number of

probiotic bacteria increased).

Altop et al. [97] Broiler chickens Liquidambar 0.0405, 0.0811, and
0.1622 g/kg

γ-Terpinen, terpinen-4-ol, and
α-terpinene were the major

compounds

Basal diet
supplemented

(ad libitum)
42 d

Treatment with EOs, mainly at
0.0811 g/kg concentration, improved

growth performance and carcass traits
while reducing blood cholesterol

levels and E. coli counts.

Cetin et al. [98] Broiler chickens

Origanum sp,
Rosmarinus officinalis

L and Foeniculum
vulgare L.

Individual EO:
100 mg/kg. EO

mixture: 100, 200
and 400 mg/kg

Rosemary oil, 1,8-cineol, α-pinene,
and camphene; oregano oil,

carvacrol; and fennel oil,
trans-anethole, and fenchone

Basal diet
supplemented

(ad libitum)
42 d

Dietary supplementation increased the
body weight of broilers at 7, 14, and 21
d of age. The blend of EO at 400 mg/kg

significantly increased Lactobacillus
spp. in feces, and also exhibited

stronger antibacterial activity against
coliform bacteria.

Chen et al [89] C57BL/6 mouse Litsea cubea L. 50- and 100-fold
diluted

Terpene aldehydes (75.09%) were
the most abundant compounds

Abdomens were
painted 5 d

Treatment with EO showed an
inhibitory effect on

contact hypersensitivity response.

Chen et al. [22] C57BL/6 mouse Artemisia argyi 750, 250, and
83 mg/kg

Cineole, camphor, (−)-borneol, and
α-(−)-thujone were the major

compounds

Oral
administration

30 minutes before
12-O-tetradeconoylphorbol

-13-acetate application

Oral administration of the EO
significantly attenuated TPA-induced
mouse ear edema and decreased the

protein level of COX-2

Gomes Cairo
et al. [99] Weaned pigs Schinus

terebinthifolius Raddi 0.5, 1.0, and 1.5 g/kg
δ-3-carene, α-phellandrene,

limonene, and α-pinene were the
major compounds

microencapsulated
product 14 d

EO treatment modulated the
gastrointestinal microbiota by

increasing Lactobacillus and reducing
enterobacteria counts. Growth

performance was not affected by EO
treatment, although EO (1.5 g/kg) can

reduce diarrhea incidence.
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Table 5. Cont.

Author Animal Plant Derived EOs EOs Concentration
Main

Components of
EOs

EOs
Administration Treatment Duration Main Results

Li et al. [100] Weaned piglets Carvacrol and
thymol

Carvacol:
62.5 mg/kg; Thymol:

7.5 mg/kg

N-(2-hydroethyl)-iminodiacetic acid
2

Basal diet
supplemented

(ad libitum)
30 d

EO treatment significantly increased
the relative abundance of Bacillli,

Lactobacillales, Streptocpccaceae and
Veillonellaceae in colonic samples.

Metabolomics analysis showed that
protein biosynthesis, amino acid

metabolism, and lipid metabolisms
were enriched in the EO group.

Park et al. [94]

Carrageenan-
induced paw
edema model
(C57BL/6) and
thioglycollate-

induced
peritonitis

model
(C57BL/6)

Chamaecyparis obtusa 5 and 10 mg/kg

α-terpinyl acetate, β-phellandrene,
β-myrcene, limonene, bornyl

acetate, γ-terpinene, β-thujaplicin,
and α-terpineol

Intraperitoneal
administration

1 h prior to
inflammation-induced

treatment

EO treatment reduced the levels of
IL-6 and IL-1β in paw homogenates

and in peritoneal fluid. In
thioglycollate-induced peritonitis

levels of TNF-α in peritoneal fluid.

Sutili et al. [101] Silver catfish

Hesperozygis ringes,
Ocimun gratissimum,

and Ocimun
americanum

Hesperozygis ringes:
20 and 40 mg/L;

Ocimun gratissimun:
5 and 10 mg/L;

Ocimum americanun:
10 and 20 mg/L

H. ringens, pulegone; O. gratissimum,
eugenol; O. americanum, 1·8-cineole,
β-linalool, eugenol, and camphor

Daily bath for 1 h during 5 d

Fish exposed to EOs showed
significant lower hematocrit values

and higher complement system
activity and plasma cortisol levels.

There was no significant difference in
the survival of fish challenged with

Aeromonas hydrophila.

Yang et al. [23] Weaned piglets

Mixture of EOs and
organic acids:

cinnamaldehyde
(15%), thymol (5%),

citric acid (10%),
sorbic acid (10%),
malic acid (6.5%)
and fumaric acid

(13.5%)

1 kg/ton
Basal diet

supplemented
(ad libitum)

28 d

Diet supplementation with the
mixture improved the final body
weight and average daily gain,

increased the concentration of serum
complement 4, and enhanced the
isovaleric acid fecal concentration.

Regarding the gastrointestinal
microbiota composition in fecal
samples, the mixture treatment

increased the beta diversity.

Abbreviations: EO, essential oil; d: days; TNF-α: tumor necrosis factor alpha; TPA: 12-O-tetradeconoylphorbol-13-acetate; COX-2: ciclooxigenase 2.
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4. Discussion

There is a huge amount of different EOs from different plants around the world. Most of
them have been shown to exert a well-characterized antimicrobial activity against Gram-positive
and Gram-negative bacteria, but also against other microorganisms, such as yeast. The irreversible
damage of the bacterial cell wall and membrane has been proposed as its main mechanisms of action.
In addition, several studies revealed how EOs can inhibit biofilm formation through the inhibition
of bacterial cell communication. Regarding their antioxidant and immunomodulatory properties,
EOs have been shown to exert a protective effect through their radicals scavenging activity, with an
inhibition percentage range of 20%–70%, and their effect against DNA oxidative damage induced by
Fe2+. Regarding their immunomodulatory effect, EOs or their main compounds can modulate the
secretion of important cytokines in a cell culture challenge with LPS. This capacity was evident in their
effect in inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB). It is important to highlight that a cytotoxic effect was not observed when EOs where used
at low concentrations. There have been a few studies in poultry animals where EOs have a positive
effect on growth parameters; however, on the gastrointestinal microbiota, EOs have a negative affect
on gastrointestinal pathogen microorganisms. Their biological properties can be attributed to their
complex composition with more than 300 different volatile compounds. These volatile compounds
include terpenes, alcohols, phenolic acids, ethers, esters, amines, amides, ketones, and aldehydes,
among other chemical components [102]. Although most of their biological actions have been related
to their main components, it is important to underpin that the aforementioned properties come over
the synergic effect of all the components. The results from this review indicate that EOs have important
biological properties that make them suitable for use in the development of functional foods. however,
in this regard, one aspect that must be considered is their strong smell, which could result in low
acceptance by the consumer or modification of the organoleptic properties of the food [8].

4.1. Antimicrobial Activity of Esential Oils

In recent years, there has been a growing interest in researching and developing new antimicrobial
agents from EOs due to drug resistance in foodborne bacterial enteric pathogens. Numerous
publications have presented data on the antimicrobial properties of EOs [29,30].

A variety of laboratory methods can be used to evaluate the in vitro antimicrobial activity of
an EO. The most well-known and basic methods are the disk diffusion and broth or agar dilution
methods [103]. The lowest concentration of antimicrobial agent that completely inhibits the growth of
the organism is called the minimum inhibitory concentration (MIC). The most appropriate assays for
the determination of the MIC value are the dilution methods, as they offer the possibility of a precise
estimation of the concentration of the tested antimicrobial agent.

The antibacterial effects based on the MIC determination of several EOs alone or in combination
against different food-associated Gram-positive and Gram-negative bacteria have been described.
Parsley, lovage, basil, and thyme are a few of the aromatic herbs commonly used in industry with
low-cost production. Different parts of these herbs (leaves, flowers, stems, fruits, and seeds) have been
used to extract EOs [60]. Parsley and lovage EOs revealed no inhibitory effects against all tested strains.
Thyme EO had the highest percentage yield and antibacterial potential from all tested formulations; its
use in combination with parsley, lovage, and basil EOs results in a reduction in its antibacterial activity;
therefore, thyme EO should be used alone [60]. EOs of cultivated oregano (Origanum vulgare), sage
(Salvia officinalis), and thyme (Thymus vulgaris) have been shown to exert a potent antimicrobial effect.
Among them, the most efficient were the EOs from thyme, followed by those of oregano. With MIC
values above 150 mg/mL, sage EOs did not show any antibacterial effect against the majority of the
bacterial strains [38]. Three Origanum species analyzed, O. dictamnus and O. microphyllum—both
endemic in Greece—and O. libanoticum, endemic in Lebanon, were evaluated, but only O. dictamnus
exerted antibacterial activity [46].
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Different bacterial and fungal strains have been used to determine the antibacterial effects
of different Eos; these microorganisms comprise strains from Staphylococcus, Bacillus, Listeria,
Helicobacter, Micrococcus, Pseudomonas, Klepsiella, Escherichia, Salmonella, Enterobacter, and Candida.
EOs from Heracleum pyrenaicum subsp. orsinii, Pistacia vera L., Myrcia ovata Cambessedes, Thymus bovei,
Minthostachys verticillata, Allium roseum, Petroselinum crispum, Satureja bachtiarica Bunge, Ocimum suave,
Jatropha gossypifolia L., and Juniperus rigida have been shown to exert antibacterial and anti-yeast
effects [34,37,41,43,47,48,51,64,67–69]. One of the proposed mechanisms for those effects is the
irreversible damage of the bacteria cell wall and membrane, which leads to not only a leakage of
proteins but also of DNA and RNA molecules [47,48].

Enteromorpha linza, Baccharis dracunculifolia, Syringa yunnanensis, Senecio nutans, basil, chamomile
blue, oregane, thyme, tea tree oil, Carum copticum, and Xanthium strumarium L. EOs have also been
described for their anti-microorganism effects against several bacteria, fungi, and even some pathogens,
such as Vibrio cholerae. Specifically, Enteromorpha linza EO is effective against B. cereus and S. aureus [54],
Baccharis dracunculifolia EO is active against S. aureus and E. coli [55], Senecio nutans EO is effective
against V. cholerae [53], Syringa yunnanensis EO is effective against S. aureus [72], Carum copticum EO is
capable of reducing the growth of E. coli O157:H7 [44], and Xanthium strumarium L. EO is also effective
against S. aureus, B. subtilis, K. pneumoniae, P. aeruginosa, C. albicans, and A. niger [63]. In contrast,
basil, chamomile blue, oregane, thyme, and tea tree oil EOs were not sufficiently effective against
A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa [58].

EOs from plants from different regions of the world have been studied. In this sense, EOs
derived from Aloysia citriodora Palau, which is harvested in different regions of Morocco, showed
significant antimicrobial activity against both Gram-negative and Gram-positive bacteria [52]. The EOs
of Peperomia pellucida, an herbaceous plant from the Amazon region, exhibited strong antibacterial
activities against six different bacteria strains [50]. Salem et al. evaluate the biological activity of
the EOs derived from Corymbia citriodora leaves and Cupressus macrocarpa from Egypt. While the
antibacterial activity of EO from C. citriodora leaves has MIC values ranging from 0.06 to 0.20 mg/mL,
EO from C. macrocarpa branchlets showed less activity against bacterial strains [59].

In recent years, there has been a dramatic increase in resistance to antimicrobial drugs against
Salmonella Enterica and Campylobacter spp. Campylobacter spp. is one of the most common causative
agents of gastroenteritis in the world, whereas salmonellosis is a major foodborne disease worldwide.
Bacteria can be transmitted to humans by the consumption of contaminated poultry, eggs, beef, milk,
juices, fruits, and vegetables. Several studies have shown that EOs could be used as alternative
therapeutics to treat antibiotic-resistant Salmonella. In this regard, Ruilopezia bracteosa EO has been
described as being effective against S. aureus and E. faecalis compared with several antibiotics [26].
Similarly, Ashraf et al. studied the effect of Nigella sativa (Black seed) oil against antibiotic-resistant
isolates by a well diffusion and microbroth dilution method, and they concluded that N. sativa had
in vitro activity against Salmonella Enterica [27]. Chiboub et al. evaluated the biological activity of
the EOs of two varieties of Foeniculum vulgare in the growth of Salmonella Enterica, and the results
showed a significant antimicrobial activity [32]. Aghraz et al. showed that EOs from Cladanthus
arabicus and Bubonium imbricatum contain a potent activity against the tested Salmonella strain, with MIC
values between 200 and 800 µg/mL for C. arabicus and from 400 to 1600 µg/mL for B. imbricatum [25].
The evaluation of the synergistic effect of mixed EOs was also investigated. To increase the sensitivity
against the Salmonella Typhimurium strain, a mixture of Thymus vulgaris L., Rosmarinus officinalis L.,
and Myrtus communis L was used. EOs were used in combined treatment using an experimental design
methodology [36]. A mixture of 55% of T. vulgaris L. and 45% of M. communis L. EOs, respectively,
can be considered for the increase of Salmonella Typhimurium sensitivity. Mutlu-Ingok et al. studied
the antibacterial activities of cardamom, cumin, and dill weed EOs against Campylobacter jejuni and
Campylobacter coli. The results indicated that EOs might be effective inhibitors by directly acting at the
bacterial membrane integrity level [49]. It is important to highlight that EOs derived from oregano,
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thyme, clove, and arborvitae also showed a very strong antibacterial activity against other bacteria
causing foodborne disease; therefore, they can be used as antimicrobial agents [57].

One important concern in the food industry is the presence of biofilms. Bacteria can be suspended
in liquid food, usually living planktonically, although they can easily adhere to the surface of
food materials and food processing equipment, forming a bacterial biofilm. Biofilms are microbial
communities that are characterized by their adhesion to solid surfaces and the production of a matrix
of exopolymeric substances; the matrix consists of polysaccharides, proteins, DNA, and lipids, which
surround the microorganisms, proffering structural integrity and a unique biochemical profile to
the biofilm [104]. Biofilms can exist on all types of surfaces in food plants ranging from plastic,
glass, metal, and wood, to food products [105], resulting in food spoilage and economic losses for
the producers [105]. Several studies revealed how EOs can inhibit biofilm formation [33,56,62,65,71].
Cinnamomum zeylanicum oil may be a useful approach to impair the biofilm produced by Gram-negative
bacteria [33]. According to Porfirio et al., Lippia Alba EOs have a strong inhibition of S. aureus biofilm
formation [56]. Likewise, EOs derived from parsley and basilic can inhibit and eradicate the mature
biofilm formed by Vibrio strains on a polystyrene surface even at low concentrations. These two EOs
could be used to prevent and eradicate the contamination of sea products by these strains [65]. It has
been described that quorum sensing (QS), the process through which bacterial cells communicate with
each other by releasing, sensing, and responding to small diffusible signal molecules [106], is involved
in biofilm formation. QS has been inhibited by the EOs of several plants, such as Thymus daenensis and
Satureja hortensis. Consequently, EOs act as anti-biofilm and QS inhibitor agents against bacteria [62].

4.2. Antioxidant Activity of Essential Oils

The excessive amounts of reactive oxygen species (ROS) can lead to the peroxidation of lipids,
glycation/oxidation/nitration of proteins, inactivation of enzymes, DNA damage, and other alterations
in the cellular organelles [107,108].

In recent years, food oxidation and food spoilage caused by microorganisms form one of the most
important issues facing the food industry and consumers. Accompanied by growing consumer interest
in natural food additives, the search for effective antioxidants and antibacterial agents from natural
resources as alternatives to suppress food deterioration is now focused on edible plants, since they
present with fewer side effects than the synthetic chemicals used in today’s foods [109]. There has
been an increasing realization in recent years that several plant-derived EOs may possess antioxidant,
antimicrobial, anticancer, and apoptosis-inducing properties [110].

Cyperus rotundus L. is a smooth and perennial weed that is widely distributed in
tropical and warmer temperate regions worldwide [77]. The antioxidant properties of the
C. rotundus rhizome were determined. In addition, 1,1-diphenyl-2-picrylhydrazyl (DPPH)
and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals scavenging activity,
ferric-reducing antioxidant power (FRAP), and oxidative DNA damage protective effect induced by
Fe2+ and 2,2′ -azobis (2-methylpropionamidine) dihydrochloride (AAPH) were also determined. C.
rotundus rhizomes possessed an excellent antioxidant activity, as evidenced by in vitro DPPH, ABTS,
and FRAP assays. In addition, EOs exhibited a protective effect against DNA oxidative damage
induced by Fe2+ and AAPH, respectively [77].

An antioxidant combination effect of bay leaf, black pepper, coriander (seed and leaf), cumin, garlic,
ginger, mustard, onion, and turmeric EOs was assessed by the DPPH free radical scavenging method.
Only the coriander/cumin seed oil combination exhibited antioxidant activity in a synergistic interaction.
Bioactive compounds responsible for this antioxidant capacity were linalool from coriander seed oil
and p-coumaric acid from cumin seed oil [74]. DPPH radical scavenging activity assay, β-carotene
bleaching test (BCBT), and ABTS assay were determined in Melissa officinalis and Dracocephalum
moldavica EOs. Both EOs showed a strong activity in terms of the maintenance of β-carotene molecules.
The ABTS radical scavenging of the EOs was dose-dependent and increased with the increase in the
EOs concentration [76]. The antioxidant activity of the EO of Ruta chalepensis was tested by DPPH



Nutrients 2019, 11, 2786 21 of 29

using Trolox as a reference compound. Percentages of inhibition for R. chalepensis collected from
Jerusalem, hebron, and Jenin were 69.56%, 61.53%, and 24.12%, respectively [78]. Achillea millefolium L.,
Anethum graveolens L., and Carum copticum L. EOs were selected to evaluate their antioxidant properties
using DPPH, FRAP, BCBT, and total phenolic content assays. A. millefolium EO had the highest
antioxidant activity in all conducted assays [79]. With a similar methodology, Foeniculum vulgare,
Petroselium crispum, and Lavandula officinalis EOs, six different populations of Origanum heracleoticum
L. from Calabria (Italy) Eos, and Pelargonium asperum and Ormenis mixta were analyzed. Petroselium
crispum had the highest phenolic content and the best antioxidant profile [80], EO samples from
Bagaladi and Longobucco were the most active in DPPH and BCBT assays [81], and only Ormenis mixta
EO displayed an effective antioxidant ability, as tested by DPPH assay [83].

The antioxidant properties of EOs from the fruits Dennettia tripetala G. Baker as ripe and unripe
fruit oil were tested. The ripe fruit EO has shown higher antioxidant strength than unripe fruit EO
and vitamin C, but a lower activity compared to BCBT. The EOs also demonstrated strong ability in
terms of scavenging three other different radicals (ABTS, lipid peroxide, and nitric oxide radicals)
in a concentration-dependent manner [82]. With a similar methodology, Jatropha gossypifolia L and
Peperomia pellucida (L.) Kunth were tested. The EOs effectively reduced oxidants to neutral molecules
in a concentration-dependent manner [50,51].

Ferulago angulata—collected from natural habitats in the alpine regions of southwestern
Iran—balsam fir (Abies balsamea (L.) Mill.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea
glauca (Moench) Voss), tamarack (Larix laricina (Du Roi) K. Koch), jack pine (Pinus banksiana Lamb.), eastern
white cedar (Thuja occidentalis L.), Labrador tea (Ledum groenlandicum L.), Mentha spicata EOs, and the EO
of the Pistacia vera L. variety Bronte were analyzed using DPPH assay. The highest antioxidant activity
was obtained from the EO of the Kallar population [84]; in contrast, balsam fir, black spruce, white
spruce, tamarack, and eastern white cedar oils again exhibited very poor antioxidant activities [85].
The antioxidant ability of the spearmint oil was 3 µg/mL, in comparison to 11.5 µg/mL for the standard
compound. This interesting biological activity can be explained by the presence of the monoterpenes
limonene, terpinolene, γ-terpinene, 1,8-cineole, and carvone in the EO [88]; the Pistacia vera L. variety
Bronte showed little affect against the DPPH test [64].

The antioxidant properties of aerial parts of Glycyrrhiza triphylla Fisch. and CA Mey and parsley,
lovage, basil, and thyme EOs were investigated with DPPH and BCBT assays. G. triphylla EO exhibited
a high antioxidant activity only in terms of the DPPH radical scavenging activity [87]. Parsley and
lovage had a weak antioxidant activity, whereas basil showed a moderate antioxidant activity. Finally,
thyme EO showed the highest antioxidant capacity [86].

Bergamot and lemon EOs extracted from the fruit peel of several citrus varieties were analyzed to
determine their antioxidant activity through a thiobarbituric acid reactive substances (TBARS) test in a
fish model (sardine). Samples of sardine treated with the bergamot EO displayed greater antioxidant
activity than lemon EO [75].

4.3. Immunomodulatory Activity Effects of Essential Oils in Cells and Animals

Inflammation is a complex immune response against different types of harmful factors. Pathogenic
microorganisms, irritants compounds, or damaged tissue induce an acute inflammatory response that
can persist for a short period of time, which is beneficial for the host. In spite of this, if resolution of the
inflammation is not adequate or the stimulus persists, then it is called chronic inflammation, which
predisposes the hosts to different diseases such as cancer, cardiovascular disease, neurological disease,
and metabolic disorders. During a chronic inflammation response, different signaling pathways
are activated, leading to the overexpression of pro-inflammatory genes and proteins such as the
NF-κB transcription factor and cytokines including IL and TNF-α. This inflammation is also related
to an increased release and accumulation of ROS and reactive nitrogen species (RNS). When ROS
production is greater than the cellular antioxidant capacity, oxidative stress can harm lipids, proteins,
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and DNA [111]. In this sense, EOs are of the greatest interest because of their anti-inflammatory and
antioxidant properties, which are a potential source for the development of functional foods.

In general, EOs did not produce any cytotoxic effect when they were used at low concentrations;
indeed, in human blood-isolated lymphocytes from healthy donors, Pistacia vera L. EOs significantly
increased cell viability [64]. however, a high dose can have a negative effect on cell viability. In the case
of malignant cells, it has been described that EOs derived from Heracleum pyrenaicum subsp. orsinii
inhibited cell growth, which is in agreement with the established criteria from the National Cancer
Institute (NCI), whereas they showed no toxic side effects on normal MRC-5 cells [69]. In line with these
results, Pituranthos tortuosus EO is able to inhibit cell proliferation in a concentration-dependent and
time-dependent manner on B16F10 melanoma cancer cells, which is likely by an increased apoptotic
pathway [91]. Likewise, in human colonic adenocarcinoma cancer cell lines (HT29-D4 and Caco-2 cell),
Allium roseum L. EO has a growth-inhibitory effect in a dose-dependent manner, without being cytotoxic.
This effect has been attributed to the presence of sulfurous compounds as the major constituents of
this EO [68]. Conversely, Cirsium japonicum DC EOs could promote cell proliferation in the human
pulmonary adenocarcinoma A549 cell line [92].

On the other hand, in LPS-stimulated murine macrophage RAW264.7 cells, treatment with EOs
derived from Trachydium roylei, Artemisia argyi, and Chmaecyparis obtusa has been shown to inhibit
the secretion of pro-inflammatory cytokines, whereas treatment with EOs derived from Trachydium
roylei also increased the secretion of IL-10, which is an anti-inflammatory cytokine. Therefore, the
regulation of cytokines in this cell model may be one of the mechanisms by which EOs have an
anti-inflammatory effect [22,90,94,95]. In the case of Artemisia argyri EOs, the regulation of NF-κB and
AP-1 translocation has been proposed as a possible mechanism for its anti-inflammatory effect. In
addition, a significant phosphorylation of JAK2 and STAT1/3 was also observed, but not the activation
of NF-κB and mitogen-activated protein kinase (MAPK) cascades [22]. Other important mediators in
inflammation are the production of nitric oxide (NO), secretion of prostaglandin E2 (PGE2), and the
production of ROS. EOs have been shown to affect the expression of inducible nitric oxide synthase
(iNOS) and cycloxygenase-2 (COX-2) expression; therefore, they might affect the secretion of NO and
PGE2. In line with this, Artemisia argyri and Trachydium roylei EOs have been described to alter iNOS and
COX-2 gene and protein expression, and to inhibit NO and PGE2 secretion and ROS production [22,95].
In immune human cells, there are studies showing that EOs exert their anti-inflammatory effects
through the regulation of cytokine secretion and ROS production [31,93].

Similarly, in C57BL/6 mice, treatment with EOs has been shown to be efficient in reducing the
levels of pro-inflammatory mediators [89,94]. In the contact hypersensitivity response, treatment with
Litsea cubea L. EOs was able to inhibit the immune response [89]. In one interesting article, Sutili
et al. described the use of Hesperozygis ringes and Ocimun americamun in silver catfish exposed to
Aeromonas hydrophila, where this EO significantly decreases the hematocrit values and increases the
plasma cortisol level and complement system activity. These results indicated a potential use of EOs in
the treatment of infected fish [101].

One possible use of EOs is in poultry production as a supplement in the diet to improve production
and to decrease the use of antibiotics. Their use in broiler chicken has been shown to improve animal
growth. One interesting point is the effect of EOs in gastrointestinal microbiota composition, where
supplementation with them has been shown to exert a positive effect—decreasing the pathogenic
microorganism while increasing the number of probiotic bacteria such as Lactobacillus spp. [96–98].
Correspondingly, in weaned piglets, EOs or their main active compounds positively modulated
gastrointestinal microbiota [23,99,100]. In addition, the use of carvacrol and thymol enriched protein
biosynthesis, amino acids, and lipid metabolism [100].

Owing to this, EOs could be useful to inhibit pathogenic bacteria without affecting gastrointestinal
commensal bacteria. Using static batch culture systems inoculated with human feces, Thapa el al. have
shown that several EO compounds selected for their effectiveness against gastrointestinal pathogen
need not have a toxic outcome on commensals bacteria at concentrations that would probably suppress
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pathogen bacterial growth. In this regard, the relative proportion of bifidobacteria was increased,
while Bacteroidetes and Clostridium clusters IV and XIVa were not significantly affected. In terms of
fermentation, except for high concentrations of thymol and geraniol, the essential oil compounds had
no effects [112].

5. Conclusions

EOs have important antimicrobial and immunomodulatory properties that make them suitable
for food preservation, alternatives to antibiotics, and ingredients in functional foods. In this regard,
antimicrobial activity was tested in several strains with a wide range of observed results; the inhibition
of S. aureus and even V. cholerae and C. albicans has been reported. Some EOs have demonstrated their
efficacy against several foodborne pathogens in vitro and model food systems, and they can be applied
in foods to improve their microbiological safety; however, these aforementioned results cannot be
always extrapolated. One important effect of EOs is their antioxidant properties, with a dose range
between 0.01 and 10 mg/mL. The EOs have demonstrated remarkable antioxidant activities, which can
also be attributed to their richness in terms of phenolic derivatives.

Concerning their immunomodulatory effect, most of the articles highlighted that EOs did not
produce a cytotoxic effect when they are used at low concentrations. Their immunomodulatory activity
can be attributed to their ability to modify the secretion of cytokines, which is probably through the
regulation of NF-κB, but also through the MAPK signaling pathway, or through their ability to affect
the cellular expression of iNOS and the secretion of prostaglandins.

Although the biological properties of EOS have been studied, there is a need for more well-designed
studies, involving a normalization of dose and incubation time in cell and animal models that will allow
gaining a better understanding of their biological activities and underlying mechanisms. Well-designed
studies in animals and humans are compulsory to evaluate the efficacy of EOs.
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and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res. 2016. [CrossRef]

44. Mahmoudzadeh, M.; hosseini, H.; Nasrollahzadeh, J.; Khaneghah, A.M.; Rismanchi, M.; Chaves, R.D.;
Shahraz, F.; Azizkhani, M.; Mahmoudzadeh, L.; haslberger, A.G. Antibacterial activity of Carum copticum
essential oil against Escherichia coli O157: h7 in meat: Stx genes expression. Curr. Microbiol. 2016, 73, 265–272.
[CrossRef]

45. Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils Against a
Group of human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jiph.2017.01.008
http://dx.doi.org/10.1002/cbdv.201700092
http://dx.doi.org/10.1016/j.jmii.2013.12.009
http://dx.doi.org/10.1002/cbdv.201800546
http://dx.doi.org/10.1080/14786419.2018.1490904
http://dx.doi.org/10.1016/j.micpath.2016.08.023
http://dx.doi.org/10.1089/jmf.2016.0066
http://www.ncbi.nlm.nih.gov/pubmed/27792456
http://dx.doi.org/10.1016/j.ejpb.2017.06.002
http://www.ncbi.nlm.nih.gov/pubmed/28583590
http://dx.doi.org/10.1016/j.phymed.2014.11.012
http://www.ncbi.nlm.nih.gov/pubmed/25636887
http://dx.doi.org/10.3402/mehd.v26.23289
http://www.ncbi.nlm.nih.gov/pubmed/25881620
http://dx.doi.org/10.1186/s12906-019-2429-4
http://dx.doi.org/10.1186/s12906-017-1861-6
http://www.ncbi.nlm.nih.gov/pubmed/28676058
http://dx.doi.org/10.1186/s12906-016-1408-2
http://dx.doi.org/10.1007/s00284-016-1092-y
http://dx.doi.org/10.4238/gmr.15038538
http://dx.doi.org/10.1007/s00284-016-1048-2
http://dx.doi.org/10.3390/pathogens8010015
http://www.ncbi.nlm.nih.gov/pubmed/30696051


Nutrients 2019, 11, 2786 26 of 29

46. Marrelli, M.; Conforti, F.; Formisano, C.; Rigano, D.; Arnold, N.A.; Menichini, F.; Senatore, F. Composition,
antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing
wild in Lebanon and Greece. Nat. Prod. Res. 2016, 30, 735–739. [CrossRef] [PubMed]

47. Meng, X.; Li, D.; Zhou, D.; Wang, D.; Liu, Q.; Fan, S. Chemical composition, antibacterial activity and related
mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae.
J. Ethnopharmacol. 2016, 194, 698–705. [CrossRef] [PubMed]

48. Montironi, I.D.; Cariddi, L.N.; Reinoso, E.B. Evaluation of the antimicrobial efficacy of Minthostachys verticillata
essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev. Argent.
Microbiol. 2016, 48, 210–216. [CrossRef] [PubMed]

49. Mutlu-Ingok, A.; Karbancioglu-Guler, F. Cardamom, Cumin, and Dill Weed Essential Oils: Chemical
Compositions, Antimicrobial Activities, and Mechanisms of Action against Campylobacter spp. Molecules
2017, 22, 1191. [CrossRef] [PubMed]

50. Okoh, S.O.; Iweriebor, B.C.; Okoh, O.O.; Okoh, A.I. Bioactive constituents, radical scavenging, and
antibacterial properties of the leaves and stem essential oils from Peperomia pellucida (L.) Kunth. Pharmacogn.
Mag. 2017, 13, S392. [CrossRef] [PubMed]

51. Okoh, S.O.; Iweriebor, B.C.; Okoh, O.O.; Nwodo, U.U.; Okoh, A.I. Antibacterial and Antioxidant Properties of
the Leaves and Stem Essential Oils of Jatropha gossypifolia L. Biomed Res. Int. 2016, 2016, 9392716. [CrossRef]

52. Oukerrou, M.A.; Tilaoui, M.; Mouse, H.A.; Leouifoudi, I.; Jaafari, A.; Zyad, A. Chemical composition
and cytotoxic and antibacterial activities of the essential oil of Aloysia citriodora palau grown in Morocco.
Adv. Pharmacol. Sci. 2017, 2017, 1–10. [CrossRef]

53. Paredes, A.; Leyton, Y.; Riquelme, C.; Morales, G. A plant from the altiplano of Northern Chile Senecio
nutans, inhibits the Vibrio cholerae pathogen. SpringerPlus 2016, 5, 1788. [CrossRef]

54. Patra, J.; Baek, K.-H. Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza
L. against foodborne pathogenic bacteria. Molecules 2016, 21, 388. [CrossRef]

55. Pereira, C.A.; Costa, A.C.; Liporoni, P.C.; Rego, M.A.; Jorge, A.O. Antibacterial activity of Baccharis
dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans. J. Infect. Public health 2016,
9, 324–330. [CrossRef] [PubMed]

56. Porfírio, E.M.; Melo, H.M.; Pereira, A.M.G.; Cavalcante, T.T.A.; Gomes, G.A.; Carvalho, M.G.D.; Costa, R.A.;
Júnior, F.E.A.C. In vitro antibacterial and antibiofilm activity of Lippia alba essential oil, citral, and carvone
against Staphylococcus aureus. Sci. World J. 2017, 2017, 1–7. [CrossRef] [PubMed]
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