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Abstract

We consider a semi-online version of the problem of scheduling a se-
quence of jobs of different lengths on two uniform machines with given
speeds 1 and s. Jobs are revealed one by one (the assignment of a job
has to be done before the next job is revealed), and the objective is to
minimize the makespan. In the considered variant the optimal offline
makespan is known in advance.

The most studied question for this online-type problem is to determine
the optimal competitive ratio, that is, the worst-case ratio of the solution
given by an algorithm in comparison to the optimal offline solution. In
this paper, we make a further step towards completing the answer to
this question by determining the optimal competitive ratio for s between
5+
√
241

12
≈ 1.7103 and

√
3 ≈ 1.7321, one of the intervals that were still

open. Namely, we present and analyze a compound algorithm achieving
the previously known lower bounds.
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1 Introduction

Combinatorial optimization problems come with various paradigms on how an
instance is revealed to a solving algorithm. The very common offline paradigm
assumes that the entire instance is known in advance. On the opposite end,
one can deal with the pure online scheme, where the instance is revealed part
by part, unpredictable to the algorithm, and no further knowledge on these
parts is assumed. In between these two extremes, and also highly relevant for
many practical applications, are semi-online paradigms, where at least some
characteristics of the instance in general are assumed to be known, for example,
the total instance size or distributions of some internal values.

As a continuation of our work [11], we consider a semi-online variant of a
scheduling problem for two uniform machines, that is defined as follows. Suppose
that two machines M1 and M2 are processing a sequence of incoming jobs of
varying lengths. Machine M1 has a speed of 1, so that a job of length ` is
processed within ` units of time, whereas machine M2 has a speed of s ≥ 1, so
that a job of length ` can be processed within `

s units of time. The load of
a machine is the total size of jobs assigned to that machine (without dividing
by the speed of the machine). This definition is non-standard, but in this way
some of our calculations become simpler. The jobs must be assigned to the
machines in an online fashion, so that the next job becomes visible only when
the previous job has already been assigned. The goal is to find a schedule that
minimizes the total makespan, that is, the point in time when the last job on
either machine is finished. We assume that the optimal value of the makespan
for the corresponding offline problem (where all jobs are known in advance),
denoted by OPT is available to the scheduler, and can be taken into account
during its assignment decisions.

We are interested in constructing an algorithm A that solves this semi-online
problem, and achieves a small makespan. Of course, for a given instance I of the
problem, the (offline) OPT = OPT(I) value is a lower bound for the semi-online

problem. Thus, we consider the competitive ratio MA(I)
OPT(I) ≥ 1, where MA(I) is

the makespan value achieved by algorithm A when applied to instance I, as a
performance measure.

The competitive ratio rA of an algorithm A is then defined as the worst case
of this ratio, that is, the supremum over all possible problem instances:

rA = sup

{
MA(I)

OPT(I)
: I is an instance

}
.

One can try to bound the value of r from below by estimating the infimum of
rA over all algorithms A, that is,

r∗ := inf{rA : A an algorithm}.

We call r∗ the optimal competitive ratio. An algorithm A is said to be r-
competitive, if for any instance I its performance is bounded by r from above:
MA(I)
OPT(I) ≤ r. An optimal algorithm in this sense is r∗-competitive.
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1.1 Survey of the literature

The problem of scheduling a set of jobs on m (possibly not identical) machines
with the objective to minimize the makespan (maximum completion time), with
the jobs being revealed one-by-one, is a classic online algorithmic problem.
Starting with results of Graham [20], much work has been done in this field
(see for example [1, 7, 14, 16, 17, 19]), although even if we restrict only to the
case of identical machines, the optimal ratio is still not known in general.

From both the theoretical and practical point of view, it may be important
to investigate semi-online models, in which some additional information or re-
laxation is available. In this work we consider the scheme in which only the
optimal offline value is known in advance (OPT version); however it is worth
mentioning a strong relation with another semi-online version of the described
scheduling problem, in which only the sum of jobs is known (SUM version)
[2, 4, 5, 13, 21, 22, 23]. Namely, for a given number m of uniform (possibly
non-identical) machines the optimal competitive ratio for the OPT version is at
most the competitive ratio of the SUM version (see Dósa et al. [13]; for equal
speeds this was first implicitly stated by Cheng et al. [10]).

For a more detailed overview of the literature on online and various semi-
online variants, we refer to the survey of Tan and Zhang [24].

Azar and Regev [6] introduced the OPT version on (two or more) identical
machines under the name of bin stretching, and this case was studied further
by Cheng et al. [10] and by Lee and Lim [22]. However, knowing the relation
between the OPT and SUM versions, the first upper bound for two equal-speed
machines follows from the work of Kellerer et al. [21] on the SUM version.

We must mention some recent papers in the case of identical machines by
Gabay et al. [18] and Böhm et al. [8, 9]. The main reason is the similarity
of attitudes by which we and those authors approach the problems: they also
use separate algorithms for certain good situations. In particular, [9] makes
this method very explicit. During the execution of some (online) algorithm,
we sometimes meet some “good situations”. This means that the schedule can
surely be finished without any bigger problem or surprise, i.e. keeping the
targeted worst-case ratio. And the more difficult cases are handled by some
other algorithm which is exactly trained to deal with the difficult situations.
We do this idea by handling the good situations by algorithm FinalCases, and
the remaining not so friendly cases by another algorithm, called InitialCases.
The separation of the final and other cases seems to be very natural for this
type of problem.

In this work we are interested in the OPT version on two uniform machines
with non-identical speeds, therefore we summarize previous results for this case.
Recall that speeds of machines are 1 and s. Known bounds on the optimal
competitive ratio r∗ are expressed in terms of s.

Studies on this version of the problem were initiated by Epstein [15]. She
provided the following bounds:
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r∗(s) :



r∗(s) ∈
[
3s+1
3s , 2s+2

2s+1

]
for s ∈ [1, qE ≈ 1.1243]

r∗(s) ∈
[
s
(
3
4 +

√
65
20 ), 2s+2

2s+1

]
for s ∈

[
qE ,

1+
√
65

8 ≈ 1.1328
]

r∗(s) = 2s+2
2s+1 for s ∈

[
1+
√
65

8 , 1+
√
17

4 ≈ 1.2808
]

r∗(s) = s for s ∈
[
1+
√
17

4 , 1+
√
3

2 ≈ 1.3660
]

r∗(s) ∈
[
2s+1
2s , s

]
for s ∈

[
1+
√
3

2 ,
√

2 ≈ 1.4142
]

r∗(s) ∈
[
2s+1
2s , s+2

s+1

]
for s ∈

[√
2, 1+

√
5

2 ≈ 1.6180
]

r∗(s) ∈
[
s+1
2 , s+2

s+1

]
for s ∈

[
1+
√
5

2 ,
√

3 ≈ 1.7321
]

r∗(s) = s+2
s+1 for s ≥

√
3

where qE is the solution of 36x4 − 135x3 + 45x2 + 60x + 10 = 0.
Ng et al. [23] studied this problem with comparison to the SUM version.

They presented algorithms giving the upper bounds

r∗(s) ≤



2s+1
2s for s ∈

[
1+
√
3

2 , 1+
√
21

4 ≈ 1.3956
]

6s+6
4s+5 for s ∈

[
1+
√
21

4 , 1+
√
13

3 ≈ 1.5352
]

12s+10
9s+7 for s ∈

[
1+
√
13

3 , 5+
√
241

12 ≈ 1.7103
]

2s+3
s+3 for s ∈

[
5+
√
241

12 ,
√

3
]

and proved the following lower bounds:

r∗(s) ≥



3s+5
2s+4 for s ∈

[√
2,
√
21
3 ≈ 1.5275

]
3s+3
3s+1 for s ∈

[√
21
3 , 5+

√
193

12 ≈ 1.5744
]

4s+2
2s+3 for s ∈

[
5+
√
193

12 , 7+
√
145

12 ≈ 1.5868
]

5s+2
4s+1 for s ∈

[
7+
√
145

19 , 9+
√
193

14 ≈ 1.6352
]

7s+4
7s for s ∈

[
9+
√
193

14 , 5
3

]
7s+4
4s+5 for s ∈

[
5
3 ,

5+
√
73

8 ≈ 1.6930
]

Dósa et al. [13] considered this version together with the SUM version. Their
results included the bounds

r∗(s) ≥

{
8s+5
5s+5 for s ∈

[
5+
√
205

18 , 1+
√
31

6 ≈ 1.0946
]

2s+2
2s+1 for s ∈

[
1+
√
31

6 , 1+
√
17

4 ≈ 1.2808
]

r∗(s) ≤

{
3s+1
3s for s ∈

[
1, qD ≈ 1.071

]
7s+6
4s+6 for s ∈

[
qD, 1+

√
145

12 ≈ 1.0868
]

where qD is the unique root of the equation 3s2(9s2−s−5) = (3s+1)(5s+5−6s2).
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Finally, the recent manuscript [11] whose results complement this work of
the present authors provided the following lower bounds:

r∗(s) ≥



6s+6
4s+5 for s ∈

[√
21+1
4 ≈ 1.3956,

√
73+3
8 ≈ 1.443

]
12s+10
9s+7 for s ∈

[
5
3 ,

13+
√
1429

30 ≈ 1.6934
]

18s+16
16s+7 , for s ∈

[
13+
√
1429

30 , 30+7
√
186

74 ≈ 1.6955
]

8s+7
3s+10 , for s ∈

[
30+7

√
186

74 , 31+
√
8305

72 ≈ 1.6963
]

12s+10
9s+7 for s ∈

[
31+
√
8305

72 , 4+
√
133

9 ≈ 1.7258
]

Here we collected only a brief summary of known bounds; for further details
about previous results we refer to Dósa et al. [11].

1.2 Our contribution

After the work of Dósa et al. [11], between 5
3 and

√
3 there are two intervals,

namely
[
13+
√
1429

30 , 31+
√
8305

72

]
≈
[
1.6934, 1.6963

]
that we call narrow interval

and [ 5+
√
241

12 ,
√

3] ≈ [1.7103, 1.7321] that we call wide interval, where the ques-
tion remained open regarding the tight value of the competitive ratio.

In the narrow interval the upper bound is very close to the lower bound
(the biggest gap is still smaller than 0.000209), so in this paper we focus on the
wide interval, for which we present an optimal compound algorithm which has
a competitive ratio that equals the previously known lower bounds.

We apply the method of “safe sets”. This idea probably first applied in [15].
The concept is used also later by Ng et al. [23] and Angelelli et al. [3] (called
“green set” in the latter), and also used by Dósa et al. [13]. Once those sets are
properly defined (cf. Figure 2), we try to assign the next job in the sequence
to a machine where its completion time will be in some safe set. In case of the
quoted papers, the safe sets are defined in such a way that the next property
holds in any case: after some initial phase when the loads of both machines are
low, a job will surely arrive that can be assigned into a safe set. In other words,
the boundaries of the safe sets are optimized in the way that the best possible
competitive ratio would be reached while the above property holds.

Now, we make a crucial modification extending the power of the method.
We realize that, keeping the above property, the algorithm cannot be optimal
in the considered interval of speeds, therefore we do not insist on this property
for defining the boundaries of the safe sets. We are less restrictive as we allow
the possibility that during the scheduling process, some relatively big job may
arrive, which cannot be assigned within a safe set. But it turns out that this
unpleasant case can be handled by another kind of algorithm. So, for any
incoming job first we try our algorithm “Final Cases” which uses the safe sets,
to assign the actual job into a safe set if possible. If this is not possible, we
apply our second algorithm “Initial Cases” to assign the job.
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Figure 1: Known and new upper and lower bounds from Epstein [15], Ng et al.
[23], and Dósa et al. [11].

We further show that our algorithm matches the best known algorithm of

Ng et al. [23] regarding the competitive ratio on the interval [ 1+
√
13

3 , 5+
√
241

12 ] ≈
[1.5352, 1.7103]. For a visual comparison of the previously known results and
our contribution we refer to Figure 1. Whenever the dotted line (that represents
an upper bound) is on an unbroken line (that represents a lower bound), the
optimal competitive ratio is known.

2 Notions and definitions

Let q0 := 1+
√
13

3 ≈ 1.5352, which is the positive solution of 6s+6
4s+5 = 12s+10

9s+7 .

Let q6 := 5+
√
241

12 ≈ 1.7103, which is the positive solution of 12s+10
9s+7 = 2s+3

s+3 .

Let q7 := 4+
√
133

9 ≈ 1.7258, which is the positive solution of 12s+10
9s+7 = s+1

2 .

We note that the values q6 and q7 were already defined in the paper [11].
Then the wide interval is [q6,

√
3]. For the remainder of this article we consider

values of s from the wide interval only. We define

r(s) :=

{
r2(s) := 12s+10

9s+7 , if q6 ≤ s ≤ q7 ≈ 1.7258, i.e., s is regular,

r5(s) := s+1
2 , if q7 ≤ s ≤

√
3, i.e., s is large.

We remark that the value r2(s) is the same as in our preceding paper Dósa
et al. [11]. The speeds to the left from the narrow interval (which are not
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considered in this paper) were called smaller regular speeds. The speeds to the
right of the narrow interval were called bigger regular speeds, now we call these
speeds simply as regular. The value r5(s) is Epstein’s lower bound from [15] on
the right side of the wide interval. Note also that the graph of r2(s) can be seen
on the figure between q6 and q7, where the dotted line touches the unbroken
line. Similarly, the graph of r5(s) appears between q7 and

√
3, where the dotted

line touches the unbroken line.
Let OPT and SUM mean, respectively, the known optimum value, and the

total size of the jobs. Note that SUM ≤ (s + 1) ·OPT , and the size of any job
is at most s ·OPT . We denote the prescribed competitive ratio (that we do not
want to violate) by r.

The optimum value is assumed to be known, and for sake of simplicity we
will assume that OPT is equal to 1. (This can be assumed without loss of
generality by normalization, i.e., dividing all of the job lengths by the optimal
makespan.) Then we define five safe sets Si := [Bi, Ti] with size Di := Ti − Bi

for i = 1, . . . , 5 as follows (see also Figure 2):

1. B1 := s + 1− r and T1 := rs, thus D1 = (s + 1) (r − 1),

2. B2 := s + 1− sr and T2 := r, thus D2 = (s + 1) (r − 1),

3. B3 := 2s− 2r − rs + 2 and T3 := s(r − 1), thus D3 = 2r − 3s + 2rs− 2,

4. B4 := 4s− 2r − 3rs + 3 and T4 := r − 1, thus D4 = (3r − 4) (s + 1),

5. B5 := 6s− 5r− 4rs+ 6 and T5 := 10s− 7r− 7rs+ 9, thus D5 = 4s− 2r−
3rs + 3.

These sets define time intervals, and they are called “safe” because if the
load of the machine is in this interval, this enables a “smart” algorithm (as
the one we introduce later) to finish the schedule by not violating the desired
competitive ratio. In other words, from the point of view of an algorithm (which
wishes to keep the competitive ratio low), we want to assign the actual job in a
way that the increased load of some machine will be inside a safe set.

3 Properties

In this section we summarize some technical properties and estimations of the
definitions and notions from the previous section, which are needed within the
computations in the subsequent sections.

Lemma 1 r5(s) ≥ r2(s) for s ≥ q7.

Proof. r5(s) − r2(s) = s+1
2 −

12s+10
9s+7 = 9s2−8s−13

2(9s+7) ≥ 0, which is true since

9s2 − 8s− 13 ≥ 0 holds if and only if s ≤ 4−
√
133

9 or s ≥ 4+
√
133

9 = q7.
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M2

M1

S5

D5
B5 T5

S3

D3
B3 T3

S1

D1
B1 T1

S4

D4
B4 T4

S2

D2
B2 T2

Figure 2: Safe sets.

Lemma 2 The following inequalities hold in the entire considered domain of
the function r, i.e., for all s ∈ [q6,

√
3].

1. 3s+2
2s+2 < 4

3 < 1.35 < r(s) < min
{

4s+3
3s+2 ,

s+2
s+1

}
< 2s+1

s+1 < 2.

2. 8s+7
6s+5 ≤ r(s).

3. s+3
s+2 < 7s+5

5s+4 < s+1
2 ≤ r(s) < 6s+6

4s+5 .

Proof. The rightmost part in Lemma 2.1, i.e. 2s+1
s+1 < 2, holds trivially. All

other claims in 2.1 and 2.2 but the ones which regard r5(s) are already proven
in [11], thus we give only this unproved part here. Moreover, we give the proof
for 2.3, whose claims were not considered before.

1. The leftmost lower bound holds as 3s+2
2s+2 < 4

3 is equivalent to 4(2s + 2) −
3(3s + 2) = 2 − s > 0, and hence to s < 2. Further, it is easy to see
that r(s) = s+1

2 > 1.35, since s > 1.7 in the domain of r5. Regarding
the upper bound, 2s+1

s+1 > s+2
s+1 holds trivially since s > 1, thus it remains

to show that r < min
{

s+2
s+1 ,

4s+3
3s+2

}
. Note that 4s+3

3s+2 ≥
s+2
s+1 for positive s

holds if and only if (4s + 3)(s + 1) − (s + 2)(3s + 2) = s2 − s − 1 ≥ 0,

i.e., s ≥ 1+
√
5

2 ≈ 1.618. Therefore, for large s we need to show only that
r < s+2

s+1 . We have s+1
2 −

s+2
s+1 < 0, which holds since s2 − 3 ≤ 0 is true.

2. For large s we get that s+1
2 ≥

8s+7
6s+5 holds if and only if (6s + 5)(s + 1)−

2(8s+7) = 6s2−5s−9 ≥ 0, i.e., s ≥ 5+
√
241

12 ≈ 1.7103 = q6 which is valid.
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3. Regarding the leftmost inequality, 7s+5
5s+4 −

s+3
s+2 = 2(s−1)(s+1)

(s+2)(5s+4) > 0 trivially

holds. The next inequality holds since s+1
2 −

7s+5
5s+4 = 5s2−5s−6

2(5s+4) > 0 holds

if s > 5+
√
145

10 ≈ 1.7042 (and this value is smaller than q6). Regarding
r(s) ≥ s+1

2 , for large speeds the inequality holds trivially (with equality)
and for regular speeds we have already seen the validity of the inequality
in Lemma 1. Thus we are done with the lower bound; let us see the upper

bound. For regular s we have 6s+6
4s+5 −

12s+10
9s+7 = 6s2−4s−8

(9s+7)(4s+5) ≥ 0, which is

true, since 6s2 − 4s − 8 ≥ 0 for s ≤ 1−
√
13

3 and s ≥ 1+
√
13

3 = q0 ≈ 1.535.

For large s we have 6s+6
4s+5 −

s+1
2 = −4s2+3s+7

2(4s+5) = (s+1)(7−4s)
2(4s+5) ≥ 0, which is

true since s ≤ 1.75.

In the next lemma we state some properties of the safe sets. Note that an
alternative option to define the safe sets would be to require these properties
below.

Lemma 3 1. D1 = D2,

2. T1 − T3 = s and T2 − T4 = 1,

3. B3 = B1 −D1,

4. B4 = B2 −D3,

5. B5 = B3 −D4,

6. T5 = B5 + B4.

Proof. Proofs of the equalities in Lemma 3.1 to 3.4 were given in Dósa et al.
[11]. Since these proofs use nothing else than the definition of the safe sets, we
do not repeat them. For proving 3.5 and 3.6 we use again the definitions of the
boundaries.

5. B5 + D4 = (6s− 5r − 4rs + 6) + (3r − 4)(s + 1) = 2s− 2r − rs + 2 = B3.

6. B5+B4 = (6s−5r−4rs+6)+(4s−2r−3rs+3) = 10s−7r−7rs+9 = T5.

The next lemma proves that the safe sets are well defined in the sense that
they are disjoint sets, and follow each other in the described order on the ma-
chines.

Lemma 4 The following inequalities hold:

1. 0 ≤ B4 < T4 < B2 < T2,

2. 0 < B5 < T5 ≤ B3 < T3 < B1 < T1.

9



Proof. We note that in the paper Dósa et al. [11] we already introduced the
first four safe sets (in the same way), with the same properties. In this paper
we need the fifth safe set as well, moreover the claims of the lemma hold also
for large values of s, thus we need to give the proof of the lemma again. In the
calculations we generally use Lemma 2, unless stated otherwise.

1. From r ≤ 4s+3
3s+2 it follows that 0 ≤ 4s + 3 − 3rs − 2r = B4. From r > 4

3
and the definition we have that 0 < (3r−4)(s+ 1) = D4 = T4−B4. From
r < s+2

s+1 it follows 0 < (s+ 1− sr)− (r− 1) = B2 − T4. By r > 1 we have
that 0 < (s + 1)(r − 1) = T2 −B2.

2. We observe that for positive s the inequality 0 < 6s − 5r − 4rs + 6 =
B5 is equivalent to r(s) < 6s+6

4s+5 , which holds. Lemma 3.6 states that
T5−B5 = B4, and thus using B4 > 0 from Lemma 4.1 we have T5−B5 > 0.
From r ≥ 8s+7

6s+5 it follows that 0 ≤ 5r − 8s + 6rs − 7 = (2s − 2r − rs +

2) − (10s − 7r − 7rs + 9) = B3 − T5. From r > 3s+2
2s+2 it follows that

0 < 2r + 2rs − 3s − 2 = D3 = T3 − B3. From r < 2s+1
s+1 it follows

that 0 < (s + 1 − r) − s(r − 1) = B1 − T3. By r > 1 we have that
0 < (s + 1)(r − 1) = D1 = T1 −B1.

We will need some further properties regarding the safe sets. These proper-
ties make the later calculations easier.

Lemma 5 1. D1 = D2 > max {B2, D3},

2. B2 < 1 and B1 < s,

3. T3 − T5 ≥ B2,

4. B2 ≥ B3,

5. T2 ≥ B1,

6. D3 > B4,

7. T4 + D3 > B2,

8. 2D1 > s,

9. T4 + D1 > 1,

10. T4 + T2 ≥ s.

Proof. We generally use Lemma 2 for the lower or upper bounds on r(s).

1. D1 = D2 holds directly by definition. For D2 > B2 we equivalently
have D2 − B2 = (s + 1)(r − 1) − (s + 1 − sr) = 2sr − 2s − 2 + r > 0,
and hence r(2s + 1) > 2s + 2, which holds. Finally, from D2 − D3 =
(rs + r − s − 1) − (2r − 3s + 2rs − 2) = −rs − r + 2s + 1 > 0 we get
2s+1
s+1 > r, which is true.

10



2. B2 = s + 1− sr < 1, and B1 = s + 1− r < s since 1 < r.

3. We have T3 − T5 −B2 = s(r − 1)− (10s− 7r − 7rs + 9)− (s + 1− sr) =
7r− 12s+ 9rs− 10 ≥ 0 if and only if r ≥ 12s+10

9s+7 . This is trivially true for
any s ≤ q7, and true for s > q7 by Lemma 1.

4. We have B2 − B3 = (s + 1− sr)− (2s− 2r − rs + 2) = 2r − s− 1 ≥ 0 if
and only if r ≥ s+1

2 , which holds.

5. T2 −B1 = r − (s + 1− r) = 2r − s− 1 ≥ 0.

6. D3−B4 = (2r−3s+ 2rs−2)− (4s−2r−3rs+ 3) = 4r−7s+ 5rs−5 > 0
if and only if r > 7s+5

5s+4 .

7. T4 + D3 −B2 > B4 + D3 −B2 = 0, by Lemmas 3.4 and 4.1.

8. 2D1 − s = 2 (s + 1) (r − 1)− s = 2r − 3s + 2rs− 2 > 0 holds if r > 3s+2
2s+2 ,

which is true.

9. T4 + D1 − 1 = (r − 1) + (s + 1) (r − 1) − 1 = 2r − s + rs − 3 > 0 if and
only if r > s+3

s+2 .

10. T4 + T2 − s = (r − 1) + r − s = 2r − s− 1 ≥ 0 since r ≥ s+1
2 .

4 Algorithm FinalCases

First the loads are zero. The actual loads of the machines will be denoted as
Lm (m = 1 or m = 2) just before assigning the next job. Thus, for example,
if L1 denotes the actual load of the first machine, then after assigning a job to
this machine, the new load will again be denoted by L1.

Here we define a subalgorithm, which works (and will be applied) only if
the next job can be assigned to a machine whose increased load will be within
some safe set. We call the algorithm FinalCases. We will say, for the sake of
simplicity, that some step is executed if the condition of this step is satisfied
and the actual job is assigned at this step. Otherwise we say that the step is
only examined. In other words, entering some step, it is examined whether the
condition of the step is fulfilled or not. If yes, the step is executed. If not, the
step is not executed. Moreover, for the sake of simplicity, if some step is not
executed, we do not write “else if” in the description of the algorithm; if it turns
out that the condition of some step is not satisfied, then the algorithm simply
proceeds with examining the next step.

Theorem 6 Suppose that some of Steps 1 to 5 of Algorithm FinalCases is
executed. Then all subsequent jobs are also scheduled by this algorithm, and the
competitive ratio is not violated.
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Algorithm 1: FinalCases

Data: current loads L1, L2 for machines M1, M2; index i of current job xi

1 if L2 + xi ∈ S1 then
L2 := L2 + xi // assign job xi to M2

L1 := L1 +
∑N

j=i+1 xj // assign all subsequent jobs to M1

stop // no more jobs, terminate

2 if L1 + xi ∈ S2 then
L1 := L1 + xi // assign job xi to M1

L2 := L2 +
∑N

j=i+1 xj // assign all subsequent jobs to M2

stop // no more jobs, terminate

3 if L2 + xi ∈ S3 and L1 < B2 then
L2 := L2 + xi // assign job xi to M2

while L1 + xi+1 < B2 do
i := i + 1 // next job

L1 := L1 + xi // assign job xi to M1

i := i + 1 // next job

goto Step 1

4 if L1 + xi ∈ S4 and L2 < B3 then
L1 := L1 + xi // assign job xi to M1

while L2 + xi+1 < B3 do
i := i + 1 // next job

L2 := L2 + xi // assign job xi to M2

i := i + 1 // next job

if L2 + xi ∈ S1 or L1 + xi ∈ S2 or L2 + xi ∈ S3 then
goto Step 1

while L2 + xi < B1 do
L2 := L2 + xi // assign job xi to M2

i := i + 1 // next job

goto Step 1

5 if L2 + xi ∈ S5 and L1 ≤ B4 then
L2 := L2 + xi // assign job xi to M2

while L1 + xi+1 < B4 do
i := i + 1 // next job

L1 := L1 + xi // assign job xi to M1

i := i + 1 // next job

if L2 + xi ∈ S1 or L1 + xi ∈ S2 or L2 + xi ∈ S3 or L1 + xi ∈ S4 then
goto Step 1

while L2 + xi < B1 do
L2 := L2 + xi // assign job xi to M2

i := i + 1 // next job

goto Step 1

return // back to the main program, if used as subroutine

12



Proof.

1. Suppose that Step 1 is executed. Then the load L2 of the fast machine
M2 will be not more than T1 = rs, thus we do not violate the competitive
ratio r by the fast machine. On the other hand, the final load of the
fast machine is at least B1 = s + 1− r, because we assigned job xi to M2.
Applying SUM ≤ s+1, the final load L1 of the slow machine M1 cannot be
more than r, since L1 = SUM−L2 ≤ (s+1)−(s+1−r) = r, which means
that the competitive ratio is not violated by the slow machine either.

2. Now suppose that Step 2 is executed. The proof is almost the same as for
Step 1. The load of M1 does not exceed T2, so the competitive ratio is not
violated by the slow machine. Moreover the final load of the slow machine
is L1 ≥ B2 = s + 1− sr, thus L2 ≤ SUM− L1 ≤ (s + 1)−B2 = sr = T1,
and we are done.

3. Suppose that Step 3 is executed. After assigning xi to M2, B3 ≤ L2 ≤ T3

holds. Then we possibly assign several jobs to M1. We claim that the
increased load of M1 cannot remain below B2. Indeed, assume that it
stays below B2. Then B2 < 1 from Lemma 5.2, and also T3

s = r − 1 < 1
from the rightmost estimation in Lemma 2.1. Hence the makespan would
be strictly less than OPT = 1; a contradiction. Thus there must arrive a
job that ends the loop, i.e. some job xj with L1 + xj ≥ B2. At this point
the algorithm goes back to Step 1. We claim that with this job xj the
condition of Step 1 or Step 2 is satisfied, so the algorithm will assign all
remaining jobs as explained above, and does not violate the competitive
ratio.

Suppose that the condition of Step 2 is not satisfied, i.e., L1+xj /∈ S2.
Together with the previously satisfied condition L1 + xj ≥ B2, we deduce
that L1 + xj > T2, from which it follows that xj > D2. We show that in
this case the condition of Step 1 is already fulfilled. Indeed, for the lower
bound we have L2 + xj > B3 + D2 = B3 + D1 = B1 (where from left to
right we applied the condition of Step 3, the definitions of D1 and D2,
and Lemma 3.3), while for the upper bound we have L2 + xj ≤ T3 + xj =
s(r − 1) + xj = sr − s + xj = T1 − s + xj ≤ T1 (where from left to right
we applied the condition of Step 3, the definitions of T3 and T1, and the
inequality xj ≤ s due to the fact that longer jobs would exceed OPT = 1
even on the fast machine). So we are entering Step 1 or Step 2.

4. Suppose that Step 4 is executed. After assigning xi to M1, B4 ≤ L1 ≤ T4

holds. Then we possibly assign several jobs to M2. We claim that the
increased load of M2 cannot remain below B3. Indeed, assume that it
stays below B3. Then L1 ≤ T4 = r − 1 < 1 from Lemma 2.1, moreover
B3

s < B1

s < 1, where we use Lemmas 4.2 and 5.2. Hence the makespan
would be strictly less than OPT = 1; a contradiction. Thus there must
arrive a job that ends the loop, i.e., some job xj with L2 + xj ≥ B3.
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If L2 + xj is in S1, or L1 + xj is in S2, or L2 + xj is in S3, we go
back to Step 1. If Step 1 or Step 2 is executed, we are done. Otherwise
the condition of Step 3 will be examined. We know that the condition
L2 + xj ∈ S3 is fulfilled. Observe that the second condition of Step 3, i.e.
L1 ≤ B2 also holds, since L1 ≤ T4 still holds and we have T4 < B2 from
Lemma 4.1. Thus Step 3 is executed, and we are done.

Now assume that none of the conditions L2 + xj ∈ S1, L1 + xj ∈ S2,
or L2 + xj ∈ S3 is satisfied. Let us consider the size of the actual job,
xj . Since L2 + xj ≥ B3 (from the choice of xj), but L2 + xj is not in
S3, we deduce that L2 + xj > T3. Hence together with L2 < B3 (also
from the choice of xj) it follows that xj > D3. Then, using L1 ≥ B4, we
get L1 + xj > B4 + D3 = B2 by Lemma 3.4. Since L1 + xj is not in S2,
we also deduce that L1 + xj > T2 holds. On the other hand, the actual
load L1 of M1 is at most T4. Thus xj > T2 − L1 ≥ T2 − T4 = 1, where
the equality comes from Lemma 3.2. Suppose that L2 + xj > T1. Then
xj > T1 − T3 = s (by the first part of Lemma 3.2) would follow, which
would violate the value of OPT, because even the faster machine M2 can
process this job within this makespan. Hence L2 + xj ≤ T1. Together
with the fact that L2 +xj /∈ S1, we have that L2 +xj < B1. At this point
xj is assigned to M2 by the algorithm.

Now several subsequent jobs may be assigned to M2, while the load
of M2 remains below B1. But, similarly to the previous steps, there must
arrive a further job xk that would exceed B1. Indeed, assume that no
such jobs exists. Then L1 ≤ T4 = r − 1 < 1 (by Lemma 2.1) and L2 ≤
B1 < s (by Lemma 5.2), so the makespan would stay below OPT = 1;
a contradiction. Thus the assignment of jobs to M2 is stopped, and the
algorithm goes back to Step 1.

We claim that one of Step 1 or Step 2 will be executed. If Step 1 is
not executed, then L2 + xk /∈ S1 and L2 + xk > B1 from the previous
loop. Together, L2 + xk > T1. Since L2 < B1, we obtain xk > T1 − L2 >
T1−B1 = D1. Then we get L1 +xk > B4 +D1 > B4 +D3 by Lemma 5.1,
and B4 + D3 = B2 by Lemma 3.4, hence L1 + xk > B2. Assume that
Step 2 is not executed either. Then L1 + xk /∈ S2. Hence L1 + xk > T2.
From this is follows that xk > T2 − L1 ≥ T2 − T4 = 1, because L1 ≤ T4 is
still true and we have T2− T4 = 1 (from Lemma 3.2). Then there are two
jobs, say xk and xj , which are both bigger than 1, thus both have to be
assigned to the fast machine in the optimal schedule. Therefore we have
OPT > 2

s , and 2
s > 1 (from 2 > s), which is a contradiction.

5. Finally, suppose that Step 5 is executed. We assign first the actual job to
the machine M2 and then we assign jobs to the machine M1 until L1 +xi <
B4. Observe that L1 cannot remain below B4. Assume the opposite.
Then L1 ≤ B4 < B2 < 1 by Lemma 5.2. Moreover, L2 ≤ T5 < B1 < s by
Lemma 2.1. Hence the makespan would be strictly less than OPT = 1; a
contradiction. Thus there must arrive a job that ends the loop, i.e., some
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job xj with L1 + xj ≥ B4.

If any of the four conditions L1 + xj ∈ S4, or L1 + xj ∈ S2, or
L2 +xj ∈ S3, or L2 +xj ∈ S1 is satisfied, we go back to Step 1. Note that
at this moment L1 < B4 < B2 and L2 ≤ T5 < B3 (applying Lemma 4).
Hence it follows that some of Step 1 – Step 4 must be executed, and we
are done. Therefore, suppose that none of the four conditions is satisfied.
Let us consider the size of xj .

Since L1 + xj ≥ B4 (from the choice of xj), but L1 + xj is not in S4,
we deduce that L1 + xj > T4. Hence together with L1 < B4 (also from
the choice of xj) it follows that xj > D4. Then L2 + xj > B5 + D4 = B3,
applying L2 ≥ B5 and Lemma 3.4. Since L2 + xj is not in S3, it follows
that L2 + xj > T3. Together with L2 ≤ T5, we get xj > T3 − T5. Then
L1 +xj > (B2−T3 +T5)+(T3−T5) = B2, applying L1 ≥ 0 ≥ B2−T3 +T5

(Lemma 5.3). On the other hand, we know that L1 +xj is not in S2, thus
it follows that L1 + xj > T2. Consequently, using Lemma 3.2, we get
y > T2 − T4 = 1.

We know that L2 + xj is not in S1. Suppose that L2 + xj > T1. Then
xj > T1 − L2 > T1 − T3 = s would follow, applying Lemma 3.1, and
L2 ≤ T5 < T3 by Lemma 4.1; a contradiction. Therefore at this point we
assign xj to machine M2, and the increased load of M2 is strictly bigger
than T3 and strictly smaller than B1.

Now several subsequent jobs may be assigned to M2, while the load
of M2 remains below B1. There must arrive a job, say xk, such that
L2 +xk ≥ B1. Indeed, assume that it stays below B1. Since we know that
L1 ≤ T4, we conclude similarly to the proof of the previous point that this
would lead to a makespan strictly less than 1 = OPT; a contradiction.

At this point the algorithm goes back to Step 1. We claim that either
Step 1 or Step 2 will be executed. If Step 1 is not executed, then L2+xk >
T1, since L2+xk ≥ B1. This together with L2 < B1 implies that xk > D1.
Therefore we get L1 + xk > D1 > B2, by Lemma 5.1. If Step 2 is not
executed either, which means that L1 + xk /∈ S2 and hence L1 + xk > T2,
then xk > T2 − L1 ≥ T2 − B4 > T2 − T4 = 1, where we applied L1 < B4,
B4 < T4 (by Lemma 4.1), and T2 − T4 = 1 (by Lemma 3.2).

Summarizing our analysis, we have two jobs, xj and xk, both greater
than 1, thus both have to be assigned to the fast machine in the optimal
schedule. Therefore we have OPT > 2

s , and 2
s > 1 (from 2 > s), which

is a contradiction. Therefore Step 1 or Step 2 has to be executed and we
are done.

We have seen that Algorithm FinalCases solves the problem (does not vi-
olate the competitive ratio) if some step of the algorithm is executed. The
problem is that it may happen — although only rarely — that no step can be
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executed because the condition of no step is satisfied. We must take care about
these remaining cases. For this we define another algorithm in the next section.

We say that Algorithm FinalCases is executable if the condition of some step
is satisfied. Summarizing our previous investigations, if Algorithm FinalCases

is executable, then doing so we obtain a schedule which does not violate the
competitive ratio.

5 Algorithm InitialCases

In order to handle the case where Algorithm FinalCases is not executable, we
now give the algorithm InitialCases that calls FinalCases as a subroutine.

Algorithm 2: InitialCases

1 L1 := 0, L2 := 0 // both machines are empty

i := 1 // start with first job

while L2 + xi < B5 do
L2 := L2 + xi // assign job xi to M2

i := i + 1 // next job

call Algorithm FinalCases

2 L2 := L2 + xi // assign job xi to M2

j := i + 1 // next job

while L2 + xj < B3 do
L2 := L2 + xj // assign job xj to M2

j := j + 1 // next job

call Algorithm FinalCases

3 L1 := L1 + xj // assign job xj to M1

k := j + 1 // next job

while L2 + xk < B3 do
L2 := L2 + xk // assign job xk to M2

k := k + 1 // next job

call Algorithm FinalCases

4 L2 := L2 + xk // assign job xk to M2

` := k + 1 // next job

while L2 + x` < B1 do
L2 := L2 + x` // assign job x` to M2

` := ` + 1 // next job

call Algorithm FinalCases

For proving that Algorithm InitialCases is r-competitive in the considered
interval, we still need one more claim as below.

Lemma 7 Suppose that machine M1 is empty (i.e., L1 = 0), and that the load
L2 of machine M2 is at most B5. If x is a job whose size satisfies x /∈ S2 and
L2 + x /∈ S1, then x ≤ T3 −B5.
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Proof. Assume that x > T3−B5. Since T3−B5 ≥ B2 (by Lemma 5.3), it follows
that x > B2. Recall that there is no job assigned to M1 so far. Since x /∈ S2, we
obtain x > T2 ≥ B1 (where the last estimation was shown in Lemma 5.5). From
x > B1 it then follows that L2+x > L2+B1 ≥ B1. Together with L2+x /∈ S1, we
deduce that L2 +x > T1. Hence x > T1−L2 ≥ T1−B5 > T1−T3 = s = s ·OPT
(by Lemma 4.2 and Lemma 3.2). This is a contradiction, since no job can be
bigger than s ·OPT.

After this, we state the next theorem.

Theorem 8 Algorithm InitialCases is r-competitive for any q6 ≤ s ≤
√

3.

Proof.

1. If Algorithm FinalCases is called in Step 1 and there all jobs are as-
signed to machines (in Step 1 and Step 2 of Algorithm FinalCases), then
FinalCases terminates and all jobs are within the safe sets, so the com-
petitive ratio of r is not exceeded.

At the end of Step 1, let us denote the actual job by xi. It holds
that L2 + xi ≥ B5, and before xi came, L2 was below B5. Algorithm
FinalCases was called at the end of Step 1, but none of the conditions
of the five Steps 1–5 in Algorithm FinalCases was actually true (i.e.,
FinalCases was not executable). In particular, Step 5 of FinalCases

was not executed. Since L1 = 0 (machine M1 is empty), and B4 > 0 (from
Lemma 4.1), it thus follows that L2 + xi > T5. Together with L2 < B5

it follows from Lemma 3.6 that xi > T5 − B5 = B4. Note that at this
point still there is no job assigned to M1. Since xi is not assigned to M1

(as FinalCases was not executable), in particular, Step 4 of FinalCases
is not executable. Since L2 < B5 < B3 (from Lemma 4.2), it means that
L1 + xi /∈ S4. From xi > B4 (see above) it then follows that xi > T4.

Suppose that xi > B3 holds (from which we derive a contradiction).
Then it follows that xi > T3 − B5, because otherwise, if xi ≤ T3 − B5,
then T3 ≥ xi + B5 > xi + L2 > xi > B3, hence L2 + xi ∈ S3. Since
L1 = 0 < B2 (from Lemma 4.1), it follows that Step 3 of Algorithm
FinalCases would be executed; a contradiction. Hence xi > T3 − B5.
Note that all assumptions of Lemma 7 are satisfied. Hence x1 ≤ T3 −B5;
a contradiction. Therefore xi ≤ B3.

Thus we conclude from the previous two paragraphs that T4 < xi <
B3.

Let us investigate how big the actual load of M2 would be, if xi was
assigned to this machine; that is, we want to estimate L2 + xi. We are
going to show that T5 < L2 +xi < B3, by excluding all other possibilities.
To prove the lower bound, note that since the algorithm terminated the
while-loop, we have L2 < B5 and L2 + xi ≥ B5. As we argued above, we
know that L2 + xi /∈ S5, hence we have L2 + xi > T5. To prove the upper
bound, we need to exclude two more cases (see also Figure 2).
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(a) Suppose that L2 + xi ∈ S3 = [B3, T3]. Since L1 = 0 ≤ B2 (by
Lemma 4.1), Step 3 of Algorithm FinalCases would have been exe-
cuted; a contradiction. Thus L2 + xi /∈ [B3, T3].

(b) Suppose that L2 + xi > T3. Then xi > T3 − L2 > T3 − B5 (since
L2 < B5, see above). Note that all assumptions of Lemma 7 are
satisfied. Hence x1 ≤ T3 −B5; a contradiction. Thus L2 + xi ≤ T3.

Consequently, T5 < L2 + xi < B3.

2. We enter Step 2. We assign xi to M2. From the analysis above we know
that the load L2 after this assignment is above T5 and below B3.

Then several jobs may come, and they are assigned to machine M2,
while the load L2 of M2 remains below B3. This termination point of the
while-loop will come for sure: otherwise we would have an empty machine
M1, and the total load of all jobs, all on machine M2, would be still below
B3. Since B3 < B1 < s = s · OPT (by Lemma 5.2 and Lemma 4.2), this
contradicts the assumption that the optimum value is OPT.

Let xj denote the job upon terminating the while-loop. Now we call
Algorithm FinalCases with this index j. Assume FinalCases is not
executable (otherwise we are done). It holds that L2 < B3 and L2 + xj ≥
B3. Furthermore, L1 = 0 ≤ B2 (by Lemma 4.1), but Step 3 of Algorithm
FinalCases was not executed, thus L2+xj /∈ S3. Consequently, L2+xj >
T3, and thus xj > D3. By Lemma 5.6 we have D3 > B4. Since no job is
assigned to M1, and Step 4 of FinalCases was not executable, moreover
L2 ≤ B3, we have that L1 +xj = xj /∈ S4. From xj > D3 > B4 we deduce
xj > T4.

The assumption of xj ≥ B2 will lead to a contradiction as follows.
Since Step 2 of FinalCases was not executable, it holds that L1 + xj =
xj /∈ S2, hence xj > T2. In Lemma 5.5 we proved that T2 > B1, hence
xj > B1. Since also Step 1 of FinalCases was not executable, it holds
that L2 +xj /∈ S1. From xj > B1 we thus deduce that L2 +xj > T1. Thus
we estimate xj > T1 − L2 > T1 − T3 = s, where the second estimation
uses L2 < B3 < T3 and the last inequality is due to Lemma 3.2. Hence
xj > s = s · OPT, so job xj would be too large for an optimum value of
OPT.

Summing up, we conclude that T4 < xj < B2 holds.

3. In Step 3 we assign xj to M1, and since this is the only job which has been
assigned to M1 ever, the load L1 of M1 is between T4 and B2.

Then again, several jobs may come, and they are assigned to machine
M2, while the load L2 of M2 remains below B3. This termination point of
the while-loop will come for sure: otherwise we would have machine M1

with a load lower than B2 < 1 = OPT by Lemma 5.2, and the load of
L2 is below B3 < B1 < s = s ·OPT by Lemma 5.2. This contradicts the
assumption that the optimum value is OPT.
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Let xk denote the job upon terminating the while-loop. Now we call
Algorithm FinalCases with this index k. Assume that FinalCases is not
executable (otherwise we are done). In particular, Step 3 of FinalCases

was not executable, and since L1 ≤ B2, it follows that L2 + xk /∈ S3.
Taking into account that L2 < B3 and L2 + xk ≥ B3, it follows that
L2 + xk > T3, hence xk > D3.

From Lemma 5.7 it follows that xj +xk−B2 > T4 +D3−B2 > 0, thus
xj + xk > B2. Since Step 2 of FinalCases was not executable, it means
that L1 + xk = xj + xk /∈ S2, hence xj + xk > T2. Since L1 = xj ≤ B2,
we have xk > D2 = D1 (by the definition of D1 and D2).

Assume that L2 + xk ≥ B1. Since Step 1 of FinalCases was not
executed, it would follow that L2 + xk ≥ T1. Thus taking into account
that L2 < B3, we obtain the estimation xk ≥ T1 − L2 > T1 − B3 >
T1−T3 = s = s ·OPT (by Lemma 4.2 and Lemma 3.2), which contradicts
the optimality of value OPT. Thus L2 + xk < B1.

4. We start Step 4 with assigning xk to M2. Then the new load L2 is between
T3 and B1.

Then for the last time, several jobs may come, and they are assigned
to machine M2, as long as the load L2 of M2 remains below B1. The
termination point of the while-loop will come for sure: otherwise we would
have a machine M1 with a load lower than B2 < 1 = OPT (by Lemma 5.2),
and the load of L2 is below B1 < s = s · OPT by Lemma 5.8. This
contradicts the assumption that the optimum value is OPT.

Let x` denote the job upon terminating the while-loop. We will show
that now FinalCases is executable, thus we are done. Assume the oppo-
site: FinalCases is not executable.

At this point we have L2 < B1 and L2 + x` ≥ B1. Since FinalCases

is not executable, in particular, Step 1 of FinalCases was not executable,
meaning L2 + x` /∈ S1. Hence L2 + x` > T1, thus x` > D1.

Using xj > T4 from Step 2 above, we can estimate xj + x` > T4 +
D1 > D1 > B2 using Lemmas 4.1 and 3.1. Since at this point only xj

is assigned to M1, and Step 2 of FinalCases is not executable, that is
L1 + x` = xj + x` /∈ S2, it also holds that xj + x` > T2.

We summarize: xi, xj > T4, xk, x` > D2 = D1, moreover xj +xk > T2

and xj + x` > T2.

Note that xk +x` > 2D1 > s = s ·OPT (by Lemma 5.8). So it follows
that xk and x` must be assigned to different machines in any optimum
schedule, because even the faster machine M2 cannot handle both jobs
within a makespan of OPT.

First, consider an optimum schedule where xk is assigned to the slower
machine M1 and x` is assigned to the faster machine M2. Assume that xi

is also assigned to M1. Then we can estimate the load of this machine:
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L1 ≥ xk + xi > D1 + T4 > 1 = OPT (by Lemma 5.9); a contradiction.
Hence xi cannot be assigned to M1. Similarly, if we assume that xj is
assigned to M1, we can deduce the very same estimation. Hence also xj

cannot be assigned to M1. So both xi and xj must be assigned to the faster
machine M2.

Second, consider an optimum schedule where x` is assigned to the
slower machine. Then by repeating the same arguments as above, we can
deduce that also in this case, both xi and xj must be assigned to the faster
machine M2.

Thus in any optimal schedule, both xi and xj are assigned to the fast
machine M2, and one of xk and x` is also assigned to the fast machine.
Thus by Lemma 5.10 we get s ·OPT ≥ min{xi +xj +xk, xi +xj +x`)} =
xi + min{xj + xk, xj + x`} > T4 + min{T2, T2} = T4 + T2 ≥ s = s ·OPT;
a contradiction.

It follows that our assumption was false, i.e., when job x` is revealed,
FinalCases is executable. This completes the proof.

6 Conclusions

We gave a compound algorithm and showed that its competitive ratio equals the

previously known lower bound for any speed s ∈ [ 5+
√
241

12 ,
√

3] ≈ [1.7103, 1.7321],
i.e. on the “wide” interval. Although the considered interval is in fact “not too
wide”, we applied new ideas, to be able to get the tight ratio here.

Our idea (as we described it also in the Introduction) in the algorithm design
is as follows. Instead of having a universal algorithm, we have two algorithms:
one for the “good cases” and another for the problematic cases. If the incoming
job is good in some sense for us, we assign it with the first algorithm. Otherwise,
if the incoming job is bad, we assign it by the second algorithm. (Of course, we
make only one common schedule, the next job is assigned by the rule of either
the first, or the second algorithm, but not both.) The good or bad status of the
incoming job depends on its size, and on the actual values of the loads of the
machines as well.

If, at any time, a good job arrives, we win against the adversary list, as
we are able to finish the schedule by the first algorithm, without violating the
prescribed competitive ratio. And it turns out that in any sequence there must
come a good job. It means that the problematic cases are intermediate cases,
and if we can “survive” these problematic cases without making a bad decision
(that would lead us to violate the competitive ratio), sooner or later a good case
must come.

Except for the narrow interval (which is approximately
[
1.6934, 1.6963

]
)

where the gap between the upper and lower bounds is very small, the question
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about the tight value of the competitive ratio for our problem remains open for

speeds between
√
73+3
8 ≈ 1.443 and 5

3 . We think that the applied ideas can be
helpful to get the tight ratio (or a ratio which is close to the tight ratio), where
the question is actually open.

We also performed computational experiments, which are consistent with
our theoretical results. Among other details, these investigations can be found
in [12].
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[2] E. Angelelli, Á. B. Nagy, M. G. Speranza, and Zs. Tuza. The On-line
Multiprocessor Scheduling Problem with Known Sum of the Tasks. Journal
of Scheduling, 7:421 – 428, 2004.

[3] E. Angelelli, M. G. Speranza, J. Szoldatics, and Zs. Tuza. Geometric repre-
sentation for semi on-line scheduling on uniform processors. Optimization
Methods & Software, 25:421 – 428, 2010.

[4] E. Angelelli, M. G. Speranza, and Zs. Tuza. Semi on-line scheduling on
three processors with known sum of the tasks. Journal of Scheduling, 10:263
– 269, 2007.

[5] E. Angelelli, M. G. Speranza, and Zs. Tuza. Semi-online scheduling on two
uniform processors. Theoretical Computer Science, 393:211 – 219, 2008.

[6] Y. Azar and O. Regev. On-line bin-stretching. Theoretical Computer Sci-
ence, 268(1):17 – 41, 2001.

[7] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for
related machines. Journal of Algorithms, 35:108 – 121, 2000.
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