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Abstract 29 

Monitoring and evaluating forest restoration projects is a challenge especially in large-30 

scale, but the remote monitoring of indicators with the use of synoptic, multispectral 31 

and multitemporal data allows us to gauge the restoration success with more accurately 32 

                                            
1
Permanet address: Eötvös Loránd University, Department of Plant Taxonomy, Ecology 

and Theoretical Biology, Pázmány P. stny. 1/C, 1117 Budapest, Hungary 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/286189986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ecoleng.2018.11.022
mailto:brunapaolinelli@gmail.com


 

2 
 

and in small time. The objective of this study was to elaborate and compare methods of 33 

remote monitoring of forest restoration using Light Detection and Ranging (LIDAR) 34 

data and multispectral imaging from Unmanned Aerial Vehicle (UAV) camera, in 35 

addition to comparing the efficiency of supervised classification algorithms Maximum 36 

Likelihood (ML) and Random Forest (RF). The study was carried out in a restoration 37 

area with about 74 hectares and five years of implementation, owned by Fibria Celulose 38 

S.A., in the southern region of Bahia State, Brazil. We used images from Canon S110 39 

NIR (green, red, Near Infrared) on UAV and LIDAR data composition (intensity image, 40 

Digital Surface Model, Digital Terrain Model, normalized Digital Surface Model). The 41 

monitored restoration indicator was the land cover separated in three classes: canopy 42 

cover, bare soil and grass cover. The images were classified using the ML and RF 43 

algorithms. To evaluate the accuracy of the classifications, the Overall Accuracy (OA) 44 

and the Kappa index were used, and the last was compared by Z test. The area occupied 45 

by different land cover classes was calculated using ArcGIS and R. The results of OA, 46 

Kappa and visual evaluation of the images were excellent in all combinations of the 47 

imaging methods and algorithms analyzed. When Kappa values for the two algorithms 48 

were compared, RF presented better performance than ML with significant difference, 49 

but when sensors (UAV camera and LIDAR) were compared, there were no significant 50 

differences. There was little difference between the area occupied by each land cover 51 

classes generated by UAV and LIDAR images. The highest cover was generated for 52 

canopy cover followed by grass cover and bare soil in all classified images, indicating 53 

the need of adaptive management interventions to correct the area trajectory towards the 54 

restoration success. The methods employed in this study are efficient to monitor 55 

restoration areas, especially on a large scale, allowing us to save time, fieldwork and 56 

invested resources. 57 

 58 

Keywords: Light Detection and Ranging (LIDAR), Unmanned Aerial Vehicle (UAV), 59 

Random Forest (RF), Maximum Likelihood Algorithm, Recovery of Degraded Areas, 60 

forest restoration 61 

 62 



 

3 
 

1. Introduction 63 

Due to the high demand for environmental regularization of big companies and 64 

farmers and the need to mitigate environmental impacts generated by human activities, 65 

restoration projects have been increased across the globe (Li et al., 2017). The 66 

expansion of works and techniques used in restoration initiatives and successive 67 

evaluations of what was done in the past made it possible to correct and to adapt the 68 

previously used methods to favor functional ecosystem reestablishment (Rodrigues et 69 

al., 2009). 70 

 Long-term follow-up of large-scale restoration projects is critical because it 71 

allows us to evaluate their success or to correct their trajectory through the generation of 72 

ecological management recommendations (enrichment, invasive species control, and 73 

othres). Therefore, the application of these corrective actions can guarantee the success 74 

of the project already in the first years of the planting (Ruiz-Jaen and Aide, 2005; Melo 75 

et al., 2013; Zahawi et al., 2015). However, monitoring restoration is a challenge 76 

especially in large-scale projects (Viani et al., 2017, Ockendon et al, 2018), mainly 77 

because the field assessment of several indicators can be time consuming, costly, and 78 

require trained technicians (Zahawi et al., 2015; Reif and Theel, 2017). Additionally, a 79 

clear definition of which indicator should be measured and the frequency of assessment 80 

still lack (Rodrigues et al., 2009). Alternative approaches to evaluating and monitoring 81 

different restoration parameters using remote sensing and digital image processing 82 

techniques are considered promising to reduce the need for field measurement methods 83 

(Reif and Theel, 2017; Viani et al., 2017), especially for large scale restoration projects 84 

and for areas that are difficult to access (Mascaro et al., 2014; Zahawi et al., 2015). 85 

Additionally, with the use of remote monitoring it is possible to evaluate restoration in 86 

landscape scale, not only in selected samples, as it is usually done in field monitoring 87 

(Zahawi et al., 2015).  88 

Land cover composition is an important indicator to evaluate landscape 89 

condition and to monitor status and trends of ecosystem change over a specific time 90 

(Xian et al., 2009). In our study, land cover indicator was separated in three classes: 91 

canopy cover, grass cover and bare soil. According to Harris et al. (2012), canopy cover 92 

https://www.sciencedirect.com/science/article/pii/S0006320717321420#bb0270
https://www.sciencedirect.com/science/article/pii/S0006320717321420#bb0270
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influences forest structure, amount of light entering the forest, water 93 

infiltration, facilitates the growth of understory native seedlings and controls of 94 

undesirable grasses, among others. The evaluation of invasive grass cover is considered 95 

of high importance in the early stages of the forest restoration process, because these 96 

species are spreading rapidly and compete with native species impeding or hindering 97 

their growth (Rocha-Nicoleite et al, 2017). Bare soil should be monitored because when 98 

it occurs in large spots also compromises the seedlings survival preventing the water 99 

infiltration and inducing soil erosion and nutrient loss, among others (Muñoz-Rojas et 100 

al., 2016). 101 

Out of the new remote sensing techniques that have been widespread Light 102 

Detection and Ranging (LIDAR) enables to determine the distance between the sensor 103 

and the target surface using laser pulses (Lefsky et al., 2002). Additionally, this sensor 104 

is able to generate the pulse return intensity image, which can be useful to classify land 105 

cover (Song et al., 2002). According to Giongo et al. (2010) this sensor has proved to be 106 

efficient for different forestry applications, since it allows the measurement of canopy 107 

topography (Dubayah and Drake, 2000), biomass (Bortolot and Wynne, 2005), volume 108 

(Ioki et al., 2010), species identification (Kim et al., 2007; Holmgren et al., 2008) and 109 

several other applications. Another remote sensing technique that has been widely used 110 

is high-resolution imagery acquired from Unmanned Aerial Vehicle (UAV) camera. 111 

Several studies have demonstrated the efficiency of these image processing, e.g. in the 112 

mapping of invasive species (Michez et al., 2016), land use and cover planning (Silva 113 

et. al., 2016), to monitor tropical forest recovery (Zahawi et al., 2015) and biodiversity 114 

(Koh and Wich, 2012; Getzin et al. 2012; Paneque-Galves et al., 2014). 115 

Supervised classification is a process of image information extraction where the 116 

user selects representative samples of different classes found in the image (Campbell, 117 
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1996). A widely used algorithm for image classification is the Maximum Likelihood 118 

(ML), which considers the classes involved in a Gaussian probability density function 119 

(Hagner and Reese, 2007). Another more robust algorithm that has been shown to be 120 

very efficient in the classification of satellite images is the Random Forest (RF) 121 

(Gislason et al., 2006; Lawrence et al., 2006; Puissant et al., 2014). This algorithm is 122 

based on the generation of multiple decision trees that vote for the most popular class 123 

(Breiman, 2001) to produce more accurate classification (Cutler et al., 2007; Puissant, 124 

2014).  125 

The aim of the present study was 1) to elaborate and compare methods of remote 126 

monitoring of forest restoration using images from LIDAR data and UAV camera, 2) to 127 

compare the efficiency of supervised classification algorithms ML and RF and 3) to 128 

obtain land cover composition by classified images. 129 

 130 

 131 

 132 

2. Materials and methods 133 

2.1. Study site 134 

The present study was carried out in conservation areas under restoration process 135 

owned by Fibria Celulose S.A., on a farm named “Project Maria Mirreis T734”, 39.68° 136 

S, 17.71° W, located in the municipality of Caravelas, extreme south of Bahia state, 137 

Brazil (Figure 1). 138 
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 139 

Fig. 1. Location and Land Use of the study site called "Project T734 Maria Mirreis", in 140 
south of Bahia state, Brazil. 141 
 142 

According to the classification of Köppen, the region is in the transition between 143 

Tropical rainforest climate, hot and humid tropical climate on the coast and seazonal 144 

climate, with dry winter in the interior (Zonete et al., 2010). The average annual rainfall 145 

is around 1,100 mm (Almeida et al., 2008) and the average temperature is 25°C, without 146 

defined dry season (Costa et al., 2009). The predominant soils in the region are the 147 

kaolinitic Latosols and Yellow or Red-Yellow Argisols, presenting low fertility, and, in 148 
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case of Argisols, presence of a dense layer in the subsurface (Moreau et al., 2006).  The 149 

natural vegetation in the region includes Atlantic forests (Dense Ombrophilous Forest 150 

and Seasonal Semideciduous Lowland Forests) (Saporetti, 2012).  151 

The farm that included our study area has a total area of 664.42 ha, where 152 

432.09 ha are planted with eucalyptus, 207.17 ha is conservation areas, 15.78 ha of 153 

roads and 9.38 ha for various uses. Among the conservation areas, there are natural 154 

forests in different successional stages and degraded pastures dominated by the exotic 155 

grass Urochloa decumbens (Stapf) R.D.Webste (74 ha). Restoration projects are being 156 

carried out mainly in these degraded pastures, which were originally occupied by Dense 157 

Ombrofilous forest, and native grasses do not occur (Veloso, 1991; Ivanauskas and 158 

Assis, 2012). Aiming to achieve the restoration success, interventions were 159 

implemented in 2010 through the methodologies of natural regeneration or planting 160 

native species seedling.  161 

2.2. Image gathering from UAV and LIDAR  162 

Aerial images of the study area were obtained from Canon S110 NIR cameras, 163 

coupled to UAV in the spring season. The resolution of the images captured by the 164 

cameras is 4000 x 3000 pixels, and the spatial resolution is 0.08 meters. The camera 165 

captures images in the spectral region of green, red, and near infrared (NIR). The 166 

Normalized Difference Vegetation Index (NDVI) (Rouse et al, 1973) (Equation 1) and 167 

Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) (Equation 2) were calculated. 168 

Then, three spectral bands and two spectral transformations were combined. 169 

 170 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                               (Equation 1) 171 

where: NIR = Near Infrared band and Red = Red band 172 

 173 
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 174 

𝑆𝐴𝑉𝐼 =
(1+𝐿𝑠)∗(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝐿𝑠+𝑁𝐼𝑅+𝑅𝑒𝑑)
                          (Equation 2) 175 

where: Ls is a constant denominated factor of adjustment of the SAVI index, being able 176 

to assume values from 0.25 to 1 depending on the land cover. In this case, the value of 177 

0.5 was considered, representing vegetation with intermediate density (Huete, 1988) 178 

 179 

Images were also obtained through a RIEGL LMS - Q680I Airborne Laser 180 

system denominated LIDAR, which works on Near Infrared region with a wavelength 181 

of 1,036 nm. The images were taken in spring season. From LIDAR point clouds, it was 182 

possible to generate the pulse return intensity image, Digital Surface Model (DSM), 183 

Digital Terrain Model (DTM) and normalized Digital Surface Model (nDSM) using 184 

ArcGIS 10.2 (ESRI, 2015). nDSM stores information of the objects height, obtained 185 

through the difference between DSM and DTM. According to Song et al. (2002), the 186 

intensity is defined as the ratio of strength of reflected light to the emitted light and can 187 

be useful to classify the land cover. By using the obtained data, a 0.5 m spatial 188 

resolution image composed of four bands (Intensity, nDSM, DTM, DSM) was 189 

generated. Thus, in addition to the information of the vegetation height, there is also the 190 

spectral information related to the pulse return intensity. 191 

2.3.Land cover monitoring  192 

The monitored restoration indicator was the land cover separated in three 193 

classes: canopy cover, bare soil and grass cover. These classes were chosen due to the 194 

feasibility for obtaining results from aerial images classification. All these classes are 195 

easily identified by visual image interpretation and digital image processing due to clear 196 

differences between their spectral signatures. They also have ecological importance in 197 

early stages of restoration process and relevance for generating adaptive management 198 
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recommendations, which aim to correct the trajectory of a restoration area allowing its 199 

ecological succession (Atlantic Forest Restoration Pact, 2013; Viani et al., 2017). 200 

UAV camera is a passive sensor, which requires sunlight as an illumination 201 

source for obtaining images. Therefore, the presence of clouds and shadows modifies 202 

the reflectance of the objects and can reduce the classification accuracy. For this reason, 203 

besides the three mentioned classes, it was necessary to establish another class 204 

representing objects in shadows, which was called “shadow”.  205 

 206 

2.4. Sample selection, classification, accuracy, comparison and class area 207 

quantification  208 

Fifty representative samples of each class (canopy cover, bare soil and grass 209 

cover, shadow) were selected over UAV camera images. The same number of samples 210 

per class (canopy cover, bare soil and grass cover) were chosen over LIDAR return 211 

intensity channel. These samples were polygons with the same size, 450 pixels on 212 

average for the UAV camera images and 55 pixels for LIDAR images due to the 213 

different spatial resolution between both sensors. The software ArcGIS 10.2 (ESRI, 214 

2015) was used for sample acquisition. Seventy percent of the samples polygons were 215 

randomly selected for training and thirty percent them was left for validation of both 216 

algorithms (ML and RF). 217 

The supervised classification using ML algorithm was done with ArcGIS 10.2 218 

software, whereas the RF algorithm was done with R 3.3.2 software (R Core Team, 219 

2016). The fifty samples used for classification were randomly divided into training and 220 

validation samples ten times, and for each division classification models were fitted. RF 221 

algorithm also permitted to generate the variable importance, which represents the most 222 
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important variables for creating algorithm’s decision trees, through two methods: 223 

randomization and Gini Index, described by Hastie et al. (2009). 224 

Thirty percent of the selected samples from UAV and LIDAR images were used 225 

for the validation phase to verify the accuracy of the methods. The classification 226 

accuracy was assessed with the confusion matrix approach. From this matrix, 227 

classification accuracy indicators, such as Producer’s accuracy, User’s accuracy, 228 

Overall classification accuracy, and Kappa coefficient, were calculated. Additionally, 229 

ten samples of each class were collected in the field, totaling 30 validation samples, and 230 

the coordinates of each sampling point was obtained with GPS. This sampling was done 231 

to evaluate whether the sampling on UAV and LIDAR images may have some bias that 232 

leads to over or underestimated accuracy. After obtaining the Kappa Index, it was 233 

possible to classify its value according to the literature (Landis and Kock, 1977). 234 

As it was mentioned before 10 classifications were performed by each 235 

combination between imaging method and algorithm, therefore we calculate the average 236 

of Producer’s accuracy, User’s accuracy, Overall classification accuracy, and Kappa 237 

coefficient, in each situation. The Z test was used to compare Kappa values among all 238 

different classified images with a 95% confidence level, Z> 1.96 (Foody, 2004; 239 

Congalton and Green, 2009).  240 

We calculated the land cover composition based on percentage class area 241 

(canopy cover, grass cover, bare soil and shadow) generated by the most accurate 242 

classification (from the 10 classifications), for each classified image using ArcGIS 243 

software (ESRI, 2015) and R software (R Core Team, 2016) for ML and RF, 244 

respectively.  245 
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The complete procedure that we used to classify UAV and LIDAR images with 246 

different classifying algorithms and the validation performed to verify the classifiers 247 

accuracy is presented in Figure 2. 248 

    249 
 250 
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Fig 2. Flowchart representing the methodology used to classify LIDAR and UAV 251 
images, using the ML and RF algorithms, and the accuracy of the classifications. DTM: 252 
Digital Terrain Model, DSM: Digital Surface Model, LIDAR: Light Detection and 253 
Ranging, ML: Maximum Likelihood, nDSM: normalized Digital Surface Model, NDVI: 254 
Normalized Difference Vegetation Index, RF: Random Forest, SAVI: Soil Adjusted 255 
Vegetation Index, UAV: Unmanned Aerial Vehicle. 256 
3. Results 257 

3.1. Classification by the Maximum Likelihood and Random Forest algorithms from 258 

UAV camera images  259 

The images obtained by UAV camera classified using ML and RF algorithms is 260 

presented in Figure 3, and it represents part of the restoration project. 261 

 262 

Fig. 3. a) UAV camera images (Red, Green, Near Infrared, NDVI, SAVI), which 263 
represent part of the study area; b) Image classified by Maximum Likelihood algorithm; 264 
c) Image classified by Random Forest algorithm.  265 
 266 

It is noticed that all the classes were well delimited on UAV classified images by 267 

both algorithms and they were quite similar (Fig.3). 268 

The Tables 1 and 2 represents the mean values generated from the ten confusion 269 

matrices for both classifiers. It was observed that Kappa and Overall Accuracy were 270 
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high and ranked as excellent (Landis and Kock, 1977) for both algorithms. The classes 271 

separation was also assessed through user’s and producer’s accuracy. The values of 272 

these indices were high in both classifications, indicating a good level of discrimination 273 

between classes. Additionally, “shadow” was the class that most generates confusion, 274 

especially with “bare soil” and “grass cover” for both classifiers.  275 

Table 1 276 
Mean values generated from the ten confusion matrices, with the Maximum Likelihood 277 
classifier, for UAV camera images 278 

CLASS Bare Soil Canopy cover Grass cover Shadow Total PA (%) 

Bare soil 6463 3 91 388 6945 93.17 

Canopy cover 0 8097 184 94 8375 96.75 

Grass cover 21 65 7929 440 8455 94.02 

Shadow 376 282 114 3858 4630 81.55 

Total 6860 8447 8318 4779 28404   

UA (%) 96.21 96.45 95.63 90.00 
 

  

Average Kappa          0.90   

Average OA         0.93   

OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy. 279 

 280 

Table 2  281 
Mean values generated from the ten confusion matrices, with the Random Forest 282 
classifier, for UAV camera images 283 

CLASS Bare Soil Canopy cover Grass cover Shadow Total PA (%) 

Bare soil 6408 3 43 0 6454 99.34 

Canopy cover 1 6992 109 1 7103 98.65 

Grass cover 186 244 5836 172 6438 89.43 

Shadow 1 80 63 2493 2637 93.88 

Total 6596 7319 6051 2666 22632   

UA (%) 96.46 95.35 96.84 93.12     

Average Kappa          0.94   

Average OA         0.96   

OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy. 284 

 285 

From the ten generated confusion matrices, the minimum Kappa value found 286 

with ML algorithm was 0.69, and the maximum value was 0.99, with a mean of 0.90 287 
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and a standard deviation of 0.094. For RF, the minimum Kappa value found was 0.85 288 

and the maximum was 0.99, with a mean of 0.94 and a standard deviation of 0.043.  289 

A significant difference was verified by the Z test (Z > 1.96 at 95% of 290 

confidence level) (Table 5) among Kappa values for each classifier. In addition, RF 291 

algorithm presented the best Kappa and OA results, being considered the best 292 

alternative for image processing. 293 

When validation was performed using the field samples, the Kappa indexes 294 

remained in the excellent range for both algorithms, 0.97 for ML and RF. The OA was 295 

also considered high (0.98 for both algorithms), proving that the field data are consistent 296 

with the results obtained through training and validation when using samples selected in 297 

the image itself. 298 

The variables importance generated by the RF for UAV image, in decreasing 299 

order, were red band, green, SAVI, NDVI and near infrared. 300 

 301 

3.2. Classification using Maximum Likelihood and RF algorithms from LIDAR data 302 

composition images 303 

The images obtained by LIDAR data composition, classified using ML and RF 304 

algorithms is presented in Figure 4, and it represents part of the restoration project. 305 

 306 

 307 
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 308 

Fig. 4.  a) LIDAR data composition images (Intensity, nDSM, DSM, DTM); b) Image 309 
classified by Maximum Likelihood algorithm; c) Image classified by Random Forest 310 
algorithm. 311 
 312 

It is noticed that all the classes were well delimited on classified LIDAR images 313 

by both algorithms and they were quite similar (Fig.4). 314 

According to Tables 3 and 4, Kappa and Overall Accuracy were high and ranked 315 

as excellent (Landis and Kock, 1977). User’s and producer’s accuracy values were also 316 

considered high for both algorithms indicating few confusions among classes. The 317 

greatest confusion was between “bare soil” and “grass cover” for both classifiers.  318 

 319 

 320 

 321 

 322 
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Table 3 323 
Mean values generated from the ten confusion matrices, with the Maximum Likelihood 324 
classifier, for LIDAR data images 325 

CLASS Bare soil Grass cover Canopy cover Total PA (%) 

Bare soil 817 0 1 817 99.38 

Grass cover 62 557 31 649 86.16 

Canopy cover 72 8 678 758 89.50 

Total 950 565 710 2225 
 

UA (%) 89.24 98.32 96.12 
  

Average Kappa  
   

0.88  

Average OA 
   

0.92  

OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy. 326 

 327 

Table 4 328 
Mean values generated from the ten confusion matrices, with the Random Forest 329 
classifier, for LIDAR data images 330 

CLASS Bare soil Grass cover Canopy cover Total PA (%) 

Bare soil 493 14 0 507 97.29 

Grass cover 53 595 1 649 92.13 

Canopy cover 0 0 642 642 100 

Total 547 608 643 1798 
 

UA (%) 91.80 97.77 99.85 
  

Average Kappa  
   

0.94  

Average OA 
   

0.96  

OA: Overall Accuracy, PA: Producer’s Accuracy, UA: User’s Accuracy. 331 

 332 

The minimum Kappa value found with ML was 0.61, and the maximum value 333 

was 0.98, with a mean of 0.88 and a standard deviation of 0.14. For RF, the minimum 334 

Kappa was 0.76, and the maximum was 0.98, with a mean of 0.94 and a standard 335 

deviation of 0.07. 336 

A significant difference was verified by the Z test (Z > 1.96 at 95% of 337 

confidence level) (Table 5) among the Kappa values for each classifier.  RF algorithm 338 

presented the best Kappa and OA results, then this algorithm was considered the best 339 

alternative for LIDAR images processing. 340 

When field samples were used to validate the classifications, the Kappa Index 341 

remained in the excellent range, 0.86 for ML algorithm and 0.95 for RF. The OA was 342 
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also considered high, with 0.91 and 0.97 for ML and RF, respectively, proving that field 343 

data are consistent with the results obtained through training and validation, using 344 

samples collected in the image itself. 345 

The variables importance generated by RF for LIDAR image, in decreasing 346 

order, were intensity band, nDMS, DSM and DTM. 347 

 348 

3.3 Comparison between imaging methods:  LIDAR and UAV camera 349 

Considering that the best classification result was obtained using RF algorithm, 350 

LIDAR and UAV methods were compared first for that algorithm. The difference 351 

between LIDAR and UAV methods was nonsignificant (Z < 1.96 at 95% of confidence 352 

level) (Table 5), demonstrating that method selection does not significantly affect the 353 

results. On the other hand, when using ML, a significant difference (Z > 1.96 at 95% of 354 

confidence level) (Table 5) was found between LIDAR and UAV images 355 

classifications. In this case, the image from UAV camera produced a higher accuracy 356 

classification. 357 

Table 5 is a summary of Kappa and Z test values for each method evaluated on 358 

this study. 359 

Table 5.  Kappa Index found for UAV and LIDAR images classified by Maximum 360 
Likelihood and Random Forest algorithms. The Table also presents the Z values for 361 
comparison among the algorithm (RF and ML) for each imaging methods (UAV and 362 
LIDAR), and the comparison between imaging methods (LIDAR and UAV) for each 363 
algorithm (RF and ML) 364 

Kappa Values ML RF Z test ML x RF 

UAV 0.90 0.94 14.55* 

LIDAR 0.88 0.94 5.74* 

Z test UAV x LIDAR 2.58* 0.06 

  365 

* Significant difference (Z >1.96 at 95% of confidence level). LIDAR: Light Detection 366 
and Ranging, ML: Maximum Likelihood; RF: Random Forest; UAV: Unmanned Aerial 367 
Vehicle. 368 
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 369 

3.4 Land cover composition obtained by classified images 370 

The area covered by canopy, grass and bare soil in the studied project 371 

generated through different image classification methods is represented in Figure 5. 372 

The highest percentage cover was generated for canopy cover followed by grass 373 

cover and bare soil in all classified images.  374 

375 
Fig. 5. Percentage area for canopy cover, grass cover and bare soil found through 376 
different image classification methods: UAV camera images classified with ML and RF 377 
algorithms, LIDAR images classified with ML and RF algorithms. LIDAR: Light 378 
Detection and Ranging, ML: Maximum Likelihood; RF: Random Forest; UAV: 379 
Unmanned Aerial Vehicle. 380 

 381 

4. Discussion 382 

We elaborated and compared methods of remote monitoring of forest restoration 383 

using LIDAR data and multispectral imaging of UAV camera and compared the 384 

efficiency of supervised classification algorithms ML and RF that proved to be reliable 385 

tools for assessing land cover composition. Field monitoring and evaluation of 386 

restoration requires a great deal of efforts mainly in large-scale projects (Zahawi et al., 387 

2015; Reif and Theel, 2017; Ockendon et al, 2018), but the use of remote monitoring of 388 
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land cover indicators with synoptic, multispectral and multitemporal data (Paneque-389 

Galves et al., 2014; Reif and Theel, 2017) allow us to save time, fieldwork and 390 

resources (Zahawi et al., 2015).  391 

 392 

4.1 Comparison between algorithms:  Maximum Likelihood and Random Forest 393 

As previously mentioned, Kappa index and OA were chosen to evaluate the 394 

accuracy of the classification since those measures are still the most used in image 395 

classification, although they have recently been questioned (Lyons et al., 2018). Similar 396 

values of Kappa and OA were found in all classifications and these values were also 397 

high, denoting the classifier precision. 398 

Although Kappa values were similar and ranked as excellent in all combinations 399 

of images and algorithms, RF presented higher values of accuracy than the ML. This is 400 

in accordance with studies carried out by Gislason et al. (2006), which RF efficiency 401 

(Overall Accuracy = 82.8%) proved to be better when compared with other classifiers 402 

(ensemble methods and CART - decision trees) for land cover classification with an 403 

image composition (Landsat satellite images, elevation, slope and aspect) in Colorado. 404 

RF algorithm has been widely used by ecologists because of its simple interpretation, 405 

high accuracy, rapid processing, robustness to outliers and noises and ability to 406 

characterize complex interactions between variables (Breiman, 2011; Cutler et al., 407 

2007).  408 

An interesting feature of RF classification is the possibility of obtaining the 409 

variables importance, especially in situations where it is necessary to classify 410 

hiperspectral images (Gislason et al., 2006). In our study with multispectral images, 411 

intensity band and nDSM were the most important variables of LIDAR image 412 

classification. This can be justified by the fact that intensity band has spectral 413 

https://www.sciencedirect.com/science/article/pii/S0006320717321420#bb0270
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information and nDSM has height information, in other words, they are poorly 414 

correlated, providing less redundant data for the classifier (Lu and Weng, 2007). For 415 

UAV images, the most important variables were the red and green bands, followed by 416 

SAVI index, which also are the less correlated variables of the composition. 417 

Although the ML algorithm was slightly less assertive than the RF, it also 418 

presented results ranked as excellent, which makes it eligible for this type of 419 

monitoring. This classifier is widely used for remote sensing, displaying good results 420 

when the data have a normal distribution and when sample selection represents well the 421 

spectral diversity of the class to be mapped (de Oliveira et al., 2013). ML has already 422 

proved efficient in several studies, such as the study by Silva et al. (2016), who tested 423 

the efficiency of this classifier, after segmentation, for monitoring Brazilian Savanna 424 

(Cerrado) land cover with UAV image, and obtained high values of similarity (0.94) 425 

with the visual interpretation. In the case of de Oliveira et al. (2013), who mapped forest 426 

fragments with monodominant aroeira (Myracrodruon urundeuva), ML classifier 427 

presented the best performance (Kappa = 80) in RapidEye images classification when 428 

compared to Neural Networks. 429 

 430 

4.2 Comparison between imaging methods:  LIDAR and UAV camera 431 

No significant difference was found when comparing the sensors (LIDAR or 432 

UAV camera) using RF algorithm. Therefore, regardless the method choice, good 433 

results are expected to be obtained when RF is used. In case of ML, there was 434 

significant difference between the methods, so UAV images presented better results 435 

than LIDAR. 436 

 The “shadow” class was the one that mostly generated confusion in UAV 437 

camera images for both classifiers. This confusion can be justified by the fact that 438 
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shadows cause partial or total loss of radiometric signature in the analyzed areas thus 439 

this can affect the performance of image classification process, object identification and 440 

consequently the land-cover mapping (Adeline et al., 2013; Movia et al., 2016). Shadow 441 

in images can be considered as a disadvantage of the use of UAV camera images when 442 

compared to LIDAR. The latter is considered an active sensor that have their own light 443 

source and does not require sunlight, so shadow interference does not occur in images 444 

(Song et al, 2002; Giongo et al., 2010) reducing the probability of class confusions in 445 

classification. 446 

Little confusion was found between the classes when LIDAR data were 447 

evaluated. In this case, the greatest confusion was between bare soil and grass cover. In 448 

a study conducted by Song et al. (2002) using LIDAR, it was found that only with 449 

intensity band it would be difficult to separate grass cover from canopy cover, but with 450 

the addition of nDSM band, this becomes possible. According to Thenkabail et al. 2004, 451 

an increase in spectral bands quantity may improve the accuracy of classification, but 452 

only when these bands are useful for discriminating the classes. The low spectral 453 

information of the analyzed images does not show an adverse influence on the 454 

classifications since both Kappa and OA values were high, with few confusing errors. 455 

However, selecting samples within LIDAR images was more difficult since the small 456 

number of spectral bands hinder the visual differentiation among classes.  457 

The use of LIDAR has been shown to be efficient for forest applications because 458 

it mobilizes many points with high precision, low cost and high speed of data 459 

acquisition (Giongo et al., 2010). Additionally, LIDAR data has already been proved to 460 

be successful (Overall Accuracy = 75%) for grassland habitats classification with RF 461 

algorithm as showed on the study developed by Zlinszky et al. (2014) in Hungary. 462 

According to data provided by Fibria and to Zahawi et al., 2015, the use of LIDAR is 463 
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more financially feasible for large areas. On the other hand, UAV is feasible for small 464 

area imaging (Paneque-Galves et al., 2014; Zahawi et al., 2015).  465 

To achieve better results on remote monitoring and make the evaluation of a 466 

greater number of indicators possible, such as arboreal individual density, species 467 

richness, invasive tree cover and vegetation strata, it is suggested the use of aerial 468 

cameras with high resolution and LIDAR sensor coupled, or Ecosynth (new aerial 469 

remote sensing system with similar properties to LIDAR, but with RGB spectral 470 

attributes for each point, e.g. Zahawi et al., 2015). In this case, in addition to increase 471 

spectral information, there will be geometry data (Persson et al., 2004). Additionally, 472 

the use of region-based image classification, through segmentation of images it is 473 

suggested to improve accuracy values. In the study carried out by Holmgren et al. 474 

(2008) in Scandinavia to identify local occurrence of species, higher value of OA (96%) 475 

was found when segmentation was used before the classification of aerial camera 476 

images combined with LIDAR data by the ML algorithm. The combination of both 477 

devices allows us to evaluate a greater number of indications with high accuracy, but it 478 

makes the monitoring process more expensive. 479 

 480 

4.3 Land cover composition by classified images 481 

Slight variations in the area occupied by different classes were observed between 482 

the image classification methods. These little variations may be associated with the 483 

presence of shaded areas in UAV camera images (cf. Adeline et al., 2013; Movia et al., 484 

2016), that probably consist of bare soil or grass in the field or, additionally, by wrongly 485 

classified pixels in the digital image processing.  486 

The highest cover was generated for canopy cover by all methods, followed by 487 

grass cover and then bare soil. According to the Atlantic Forest Restoration Pact (2013) 488 
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and Viani et al. (2017), after four years of restoration implementation the canopy cover 489 

should achieve at least 70% to be capable to reduce invasive grass cover and to facilitate 490 

tree establishment. Our study area has not reached the desired value yet, probably due to 491 

the planting methodology, which used lines of early seral tree species interspersed with 492 

late seral species that have slower development and higher mortality. The high grass 493 

cover found in this study can be explained by the fact that the project area was covered 494 

by degraded pastures dominated by Urochloa decumbens before restoration activities 495 

and by the short time period since the restoration process has started. The invasive grass 496 

cover also competes with native tree seedlings species impeding or hindering their 497 

growth (Rocha-Nicoleite et al, 2017), and this can be seen in our restoration area. Bare 498 

soil cover was not high, but when it occurs in large areas, it induces soil erosion and 499 

nutrient loss (Muñoz-Rojas et al., 2016) that call for further restoration interventions.  500 

According to the Atlantic Forest Restoration Pact (2013) and Viani et al. (2017), 501 

after checking the land cover indicators, a field ecological monitoring (phase II) has to 502 

be done in areas where canopy cover is greater than 70%. This monitoring is to verify 503 

species composition indicators (e.g. richness, density, regeneration) based on field 504 

sampling and it will guide adaptive management techniques aiming to correct the 505 

restoration trajectory of the areas if necessary. This two-step evaluation (remote sensing 506 

and field monitoring) should reduce the costs associated with monitoring, since it will 507 

not be necessary to measure field indicators in all areas. The field study related to this 508 

monitoring will be presented in a future paper.  509 

 510 

5. Conclusions 511 

The methods employed in this study are efficient to monitor restoration areas, 512 

bringing gains in quality and precision, synoptic analysis and reduction of field efforts, 513 
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especially on a large scale. RF algorithm presented the greatest assertiveness in the 514 

image classification by UAV camera and LIDAR. The land cover composition found on 515 

this research suggests that the study area has not achieved the restoration success yet, 516 

therefore adaptive management strategies must be adopted to correct their trajectory 517 

towards the desired target state for restoration projects. 518 
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