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ABST RA CT  

1. Objectives 
The extraction and identification of single-unit activities in intracortically recorded electric 

signals have a key role in basic neuroscience, but also in applied fields, like in the 

development of high-accuracy brain–computer interfaces. 

The purpose of this paper is to present our current results on the detection, classification and 

prediction of neural activities based on multichannel action potential recordings. 

2. Approach 
Throughout our investigations, a deep learning approach utilizing convolutional neural 

networks and a combination of recurrent and convolutional neural networks was applied, with 

the latter in case of spike detection and the former in cases of sorting and predicting spiking 

activities. 

3. Main results 
In our experience, the algorithms applied prove to be useful in accomplishing the tasks 

mentioned above: our detector could reach an average recall of 69 %, while we achieved an 

average accuracy of 89 % in classifying activities produced by more than 20 distinct neurons. 
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4. Significance 
Our findings support the concept of creating real-time, high-accuracy action potential based 

BCIs in the future, providing a flexible and robust algorithmic background for further 

development. 

INTR ODU CTI ON  
Brain–computer interfacing (BCI) is a quickly developing multidisciplinary field aiming to bridge 

the gap between the (human) central nervous system and some environment, enabling the 

user to control actuators through an artificial medium. To establish robust connection to the 

central nervous system, high-fidelity control signals are needed [1]. 

According to our prior knowledge, control signals of the highest quality can be obtained 

through intracortical recordings. It has been proven that high-density microelectrode arrays 

(MEAs) provide measurements of high accuracy and the recorded signals can be applied for 

real-time control of an artificial arm prosthesis [2]-[3]. There is an active research aiming to 

create more flexible, biocompatible and longer-lasting probes, with results promising safe and 

robust chronic neural implants [4]-[5]. 

The waveforms recorded are a combination of action potentials of neurons in the vicinity of the 

recording site and the cumulated activity of neurons farther from the probe (local field potential 

or LFP) [6]. While the LFP activity carries relatively small amount of useful information for BCI 

purposes, the single unit activity (SUA) of the nearby cells can be used to provide robust 

control for a BCI at a high information transfer rate. Studies show that cells of the motor cortex 

are cosine-tuned to the direction of motion [7] and the direction [8] and the speed [9] of a 

movement can be calculated using the SUA from different cell groups in this region. These 

findings suggest that the key to building high-accuracy BCIs is the efficient detection of neural 

activities and the algorithmic extraction of SUAs from the recorded intracortical signal.  

The algorithmic extraction and categorization of the distinct action potentials have been 

addressed by many scientists under the name “spike sorting” [10] [11]. The usual structure of 

sorting algorithms is multi-layered. 
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Firstly, the detected wideband signal is filtered (usually between 300 and 3000 Hz) to clean 

data of the lower frequency components corresponding to the LFP and the high-frequency 

noise. In order to find the action potentials, most of the spike detection algorithms use 

thresholding [12] [13], where the threshold is given in relation to the estimated standard 

deviation of the noise [14]. Thresholding has the advantage of being simple, with the 

drawback of being sensitive to noise. More sophisticated spike detecting methods are also 

present in the field, such as non-linear energy operator thresholding [15], Teager energy 

operator thresholding [16], and wavelet decomposition [17]. 

The second phase consists of feature extraction where the most common feature 

extraction/dimension reduction method is the principal component analysis (PCA) [18]. PCA 

captures the largest variations in the data and returns it in a set of orthogonal basis. In this set, 

every vector contributes to the original data in a proportion given by its eigenvalue. PCA is 

used alone [19] [20] [21] or in conjunction with other feature extracting methods like Wavelet 

coefficient [22]. Several other advanced feature extracting methods are used as well, such as 

wavelet packet coefficient [17] or Wavelet packet decomposition, where the best basis is 

evaluated by a support vector machine [23]. 

In the next phase of spike sorting, the extracted features are assigned to a label using a 

classification algorithm. Those algorithms which assume Gaussian distribution of the feature 

map perform well only in special cases, when the presented spikes have stationary shape 

along with uncorrelated noise [11] and high signal-to-noise ratio (SNR). In contrast, methods 

that do not assume the distribution to be normal tend to cluster spike activity more accurately 

even in case of lower SNRs. The deviation of the activity distribution from the Gaussian 

originates from multiple phenomena, such as neuronal burst activity or the displacement of the 

electrodes in respect of a particular neuron [17]. A commonly used clustering method is the 

k-means clustering which is used alone [24] or combined with various other methods like 

template matching [20][12] or Independent Component Analysis [25]. Beside the methods 

mentioned above, a number of other methods have been applied, e.g. Bayesian classification 

[11], superparamagnetic clustering [17] or support vector machine classification [26]. Lately, 
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deep learning was also applied in the form of PCANet [27], however, it did not yield a better 

sorting performance than the methods mentioned above. 

As MEA development facilitates an exponential growth of the number of distinguishable single 

units, the need for fast and accurate automatic spike sorting algorithms rises [28]. Besides 

implementing complex solutions to the problem of spike sorting, most of the algorithms require 

the fine-tuning of several hyperparameters. Measures against the complex and time-

consuming hyperparameter-tuning have been taken in form of the development of a fully 

automated algorithm [29]. While adequate offline detection and classification of action 

potentials is possible with concurrent technologies [30], there are several issues yet to be 

overcome for more robust operation. Bursting neurons produce a rapid train of action 

potentials with decreasing amplitude thus complicating both the detection and the 

classification of their spikes. Complex waveforms might also appear due to the overlapping of 

separate single-unit activities. Furthermore, brain-computer interfacing requires devices 

capable of real-time operation. 

In this study we would like to introduce a novel way of spike sorting utilizing convolutional 

neural networks. Deep neural networks have been tested and shown to outperform the most 

common unsupervised methods in case of intracranial EEG recordings [31]; and both 

convolutional [32] and recurrent neural networks [33] were tested on EEG data classification 

and visualization. Machine learning was also successfully used to provide robust control of a 

deep brain stimulating device depending on real-time cortical signals [34]. An interesting 

application of convolutional networks can be found in [35]. The network presented in the paper 

(SpikeDeeptector) is used for detecting and tracing channels that actual signal can be 

recorded on, in contrast with the other ones, yielding only artifacts. This approach differs from 

ours, as our scope was detecting and sorting spikes recorded on all the channels (focusing on 

the individual spikes instead of the individual channels). Another important difference of our 

work is that we exploit the spatial information provided by the placement of the electrodes, 

while SpikeDeeptector uses convolution only for discovering time dependencies along the 

spike/artifact samples and possible dependencies between different samples. Additionally, 
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SpikeDeeptector is a convolutional/dense detector, while we use LSTM features for this 

purpose and CNNs for sorting and predicting activities produced by known units. 

Our aim was to create two separate systems: one for the detection of the spiking events and 

another one that could classify the found spikes using the raw data for input; we also wanted 

to know if activities can be foreseen (given that neural networks are usually good predictors). 

We expect that these units would be able to function as integral subsystems of a more 

complex classifier application providing one step towards future on-line solutions. 

METH ODS  
The general outline of the approach we applied is depicted in Figure 1. The steps mentioned 

in the figure are described in details throughout sections Methods and Results. 

 
Figure 1. The subsequent steps of our approach. First, data were acquired from the cortex of anesthetized 

rats using high-density neural probes. Following this, ground data were produced via automatic/manual 

clustering. These data were feed into the networks after being normed. 

1. Data acquisition 
In this study, parts of the database obtained in [36] were used (n = 9 high-density cortical 

recordings, each containing 23–46 well-isolated single units). These datasets were produced 

using silicon probes with single, 8 mm × 100 µm × 50 µm shanks (length × width × thickness) 

[37]. These high-density probes contain 128 square-shaped recording sites of dimensions 

20 µm × 20 µm with 2.5 µm spacing between the edges of the sites, forming a 32 × 4 sensor 

array. The densely packed electrodes on the probe allow the recording of the action potentials 
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(‘spikes’) of single neurons with high spatial resolution. The recording sites have an 

impedance magnitude of about 50 kΩ measured at 1 kHz [37]. From this point on, the 4 × 32 

potential values detected by the recording sites of the probe at a particular time instance 

would be referred to as a frame. 

The 128-channel probes were inserted into the trunk region of primary somatosensory cortex 

of ketamine/xylazine anesthetized Wistar rats (n = 10) to a dorsoventral depth of 1700 µm. 

This allowed us to obtain the neuronal activity from deeper layers (layers IV–VI) of the cortex, 

primarily from layer V. In the case of the database used here, the insertion process was taking 

place at a slow speed (0.002 mm/s) in order to record neuronal signals with high quality. 

According to [36], neuronal recordings obtained after using this slow insertion speed resulted 

in the highest and most stable signal-to-noise ratio, the highest single unit yield and the largest 

spike amplitudes. Additionally, the neuronal loss in the vicinity (< 50 µm) of the probe was 

found to be the lowest [36]. As reference electrode, a stainless steel needle (inserted in the 

neck muscle of the animal) was applied. 

Wideband (0.1–7500 Hz) spontaneous cortical activity was recorded continuously for 

45 minutes after implantation, using an RHD-2000 electrophysiological recording system 

(Intan Technologies, Los Angeles, CA, USA) connected to a laptop via USB 2.0 data link. The 

sampling rate on each channel was 20 kHz, with 16-bit resolution.  

Given that neural networks require labeled data for deep supervised learning, detected single 

units of the training and validation sets had to be classified. We obtained ground truth data 

using a MATLAB-based application for automatic spike sorting called KiloSort [38]. KiloSort is 

widely applied for spike sorting and benchmarking other sorting algorithms, being able to 

deliver good results within reasonable run time. Its performance, however, is affected by the 

parameter settings (i.e. detection threshold, required number of clusters to be distinguished) 

making revision (merging/splitting certain clusters) by a human expert often necessary. We 

performed the manual revision phase using a Python-based neurophysiological data analysis 

package called Phy. Note, that since multiple decisions are made during the whole process 

involving humans as well, some amount of error/bias is inevitable (e.g. spikes assigned to the 

wrong cluster, or, with their amplitudes below the threshold, being not detected at all).  
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The results of the clustering process (i.e. the ground data) were the exact time instances of 

the negative peak of the spikes (these time instances would be referred to as marks) for each 

single unit cluster in a different file. The spatiotemporal characteristics of the spike waveform 

of a representative neuron cluster are shown in Figure 2. 

 
Figure 2. The spatiotemporal profile of the average action potential waveform of a neuron recorded with 

the 32 × 4 sensor array. The insert on the right shows the spike waveform on the channel which recorded 

the spike with the highest amplitude. 

2. Environment 
All the models were written in Python, using TensorFlow, a package developed for the 

modeling of neural networks and deep learning on CPUs or GPUs. 

Sorters and the predictor were implemented utilizing Keras (a high-level API to improve 

readability and maintainability), while the detector was written using pure TensorFlow. 

3. Convolutional neural networks 
Convolutional neural networks (CNNs) [39] are neural networks containing convolutional 

layers that store the representation of the data in the form of convolutional filters. These filters 

(kernels) slide along the input of the layer, performing a template matching task. Every 

convolutional layer has its own set of filters (the number of these filters is called the depth of 

the layer). Data representation is performed in a hierarchical way. Every single kernel is able 
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to recognize a certain feature, with filters belonging to layers closer to the input detecting 

simple objects (e.g. edges), while filters in layers closer to the output are capable of extracting 

more abstract or complex patterns (e.g. faces). 

Convolutional layers are often followed by maximum or average pooling layers (usually max 

pooling applied); these layers implement downsampling (additional dimension reduction) by 

means of returning the maximum or average value in a small region. Another type of 

downsampling could be achieved by sliding the kernel along the input taking greater steps 

(calculating convolution for e.g. every second value of the input), called stride. 

CNNs apply fully connected (FC) layers as well, to perform the actual classification of the 

single instances in the feature space. They are followed by an output layer, generating a one-

hot array with as many dimensions as the number of distinct categories available. 

4. LSTM cells 
Recurrent neural networks (or RNNs) are neural networks in which each cell has an extra 

feedback loop besides the synapses from the previous layer. This input serves to let the 

neuron remember its previous output creating a one-iteration long memory. 

LSTM (Long short-term memory) cells [40] are special neurons remembering their earlier 

states by exhibiting an automatically tunable “input”, “output” and “forget” gate filtering the 

components that will determine the inner state of the cell at a given instance. Using this 

method the network is also capable to explore and remember long-term dependencies in the 

data as well thus making the network more robust against outliers in the input. 

Combining LSTM cells with convolutional layers one can create networks that are able to 

extract and classify the major spatiotemporal features of the input. This setup was used for the 

detection of the spiking activity in the acquired data. 

5. Performance metrics 
In section Results, three metrics will be used in relation to performance achieved using test 

data. Positive prediction rate (precision) and recall will be referenced in subsection Detection, 

while accuracy will be mentioned in Sorting and Prediction. 
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The positive prediction rate of a detector is defined as the quotient of the number of true 

positives (TP, the detected activities) and the number of all selected elements (all the actual 

activities and some noise erroneously labeled as activity – false positives, FP). It is given 

analytically by equation (1). 

.TPP
TP FP




 (1) 

The recall of a detector is defined as the quotient of the number of true positives and the 

number of relevant elements (all the actual activities including the ones detected and the ones 

erroneously labeled as noise – false negatives, FN). It can be calculated using equation (2). 

.TPR
TP FN




 (2) 

The accuracy of a sorter is defined as the quotient of the sum of the number of the true 

positives for each cluster and the sum of the number of the activities for each cluster (i.e. a 

generalization of recall). For its concise form, see equation (3). 

 
1
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i i
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A

TP FN











,  (3) 

where N is the number of clusters. 

RESU LT S  

1. Detection 
As it has been mentioned, our detector was implemented as a combination of a CNN and an 

RNN. The input of the system was a data matrix of 32 × 4 normalized potential values. The 

spatial feature extraction was performed by 2 consecutive convolutional layers, each having a 

kernel size of 5 × 2 and strides of 1 × 1, extracting 16 and 256 different feature maps (for the 

first and second layer, respectively). The feature extraction was followed by a max pooling 

step (kernel size: 2 × 2, stride: 2 × 2) producing a feature vector of 3072 dimensions. These 

kernel sizes were chosen accordingly to the spatial extension of the single unit activities. The 

consecutive steps and the sizes of the data structures produced are displayed in Figure 3. 
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Figure 3. Network architecture for detection. 

The LSTM cell of 512 units was trained on these vectors, being followed by a fully connected 

(FC) layer of 256 neurons. To prevent overfitting, a dropout layer switching 20 % of the 

neurons in each epoch off was added between the fully connected layers. The output was 

generated through an FC layer consisting of 2 neurons (one for each category), using a 

softmax nonlinearity and thus yielding an estimate of the likelihood of each frame containing a 

spiking event. 

For training the LSTM, truncated backpropagation through time (TBPTT) was used [41] with 

timesteps of 20 datapoints. Training of the network was preliminary tested with 3 different 

TBPTT steps: 10, 20, and 50. The preliminary tests, which were performed on the nr. 1 

dataset showed that TBPTT with 20 timesteps was the most optimal for training our network. 

According to this, a training sample of 20 datapoints was used.   

The training consisted of multiple phases: to validate our network structure and the initial 

results, a 10-fold cross-validation was performed on the first dataset. The cross-validation 

training consisted of 100 epochs, with 20 timesteps. The mean recall and positive prediction 

rate of the cross-validation was 84%, and 30% respectively. The detailed results of the cross-

validation process are displayed in Table 1. 
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K-Fold 1 2 3 4 5 6 7 8 9 10 Mean 

R 86.84 86.75 85.63 82.99 84.23 83.50 84.49 83.17 80.57 80.09 83.83 

P 18.95 22.34 25.42 23.01 24.89 31.72 33.5 34.76 38.32 43.34 29.62 

TP 4542 5468 5783 5857 6060 7376 8054 8387 8442 8786 6875 

FP 19421 19002 16960 19595 18279 15877 15984 15738 13587 11486 16592 

TN 75348 74694 76286 73347 74526 75289 74483 74177 75935 77543 75162 

FN 688 835 970 1200 1134 1457 1478 1697 2035 2184 1367 

Table 1. Results of the 10-fold cross-validation after evaluation. For evaluating the results, 10 positive 

predicted values were considered a detected spike. In the original dataset, every detected spike by 

KiloSort was labeled as positive in 5 consecutive data points. Our experience was that the network 

predicted longer positive consecutive sequences; this phenomenon was a manifestation of the great 

sensitivity of the network to spike-like events. To correctly evaluate the spike-detecting capability of the 

network, we adjusted the evaluation process accordingly in the evaluation phase of the test dataset. 

In the second phase, we trained the proposed network on each of the remaining 8 datasets; 

each instance of training consisted of 100 epochs on 10,000,000 data samples (8 minutes 20 

seconds long recordings) subdivided into training (90 %) and test data (10 %).  

The positive-negative data ratio was computed for each of the datasets. Data were divided 

into 90 batches with each consisting of 20 datapoints according to the number of timesteps 

used for TBPTT; training samples including no positive frames were treated with less 

significance, being multiplied by the positive-negative data ratio. This step was necessary 

because during the early tests the network exhibited a very strong negative bias due to the 

relatively small number of positive samples. 

However, the effectiveness of the previously mentioned method was limited, as under a 

certain positive-negative data ratio, the network started to exhibit the strong negative bias 

experienced at the initial trainings. We found that beside the positive-negative data ratio, the 

mean of the cluster quality given by KiloSort was also a determining factor of the network’s 

capability for learning. The results for all the datasets are shown in Table 2. 
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Dataset 1* 2 3 4 5 6 7 8 9 Mean 

R 83.83 80.87 49.71 81.86 43.20 56.36 73.65 84.36 72.88 69.63 

P  29.62 38.74 28.10 6.47 17.87 15.80 14.07 7.49 13.51 19.07 

TP 6875 6305 2656 1715 2749 3182 3740 2832 4374 3825 

FP 16592 9970 6795 24788 12627 16955 22828 34969 27996 19280 

TN 75162 82234 87863 73117 81010 77400 72094 61674 66003 75173 

FN 1367 1491 2686 380 3614 2463 1338 525 1627 1721 

Spike ratio 0.043 0.034 0.018 0.014 0.021 0.025 0.020 0.007 0.021 0.023 

Mean cluster quality 53.44 43.09 44.84 50.55 25.95 41.31 53.07 46.72 40.43 44.38 

Table 2. Results for the different datasets. The network performed the poorest when the spike ratio and 

the mean cluster quality were both low. We found a strong positive correlation between the product of 

recall and precision, and the product of spike ratio and mean cluster quality (Pearson coefficient: 0.79). 

* - the mean of the results of the 10-fold cross-validation was taken.  

At this point, the misclassifications arising from the partitioning of the data into batches of input 

still had to be evaluated. We needed to keep in mind that the goal was to identify the intervals 

in which positive samples were present, instead of perfectly classifying every datapoint; thus 

taking the accuracy of each interval into account instead of focusing on the classifications of 

the sample could be a more adequate measure of performance in cases when our system 

finds the spike with a small offset compared to the labels generated by the KiloSort algorithm 

or it detects for longer period than as we trained on. An offset of this kind can be seen in 

Figure 4.  
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Figure 4. 3-D visualization of an action potential and the corresponding results of the detection. The 

marked positive interval (thick green lines, marked with small circles hovering above) and the predicted 

positive datapoints (thin black lines, marked with downward pointing triangles) do not overlap 

completely, distorting the accuracy of the measurement. 

Knowing this our final system was assessed in a way that only a predetermined sequence 

(n=10) of positive instances were considered to be actual positive data, and we expected our 

labels to overlap with the ones produced by KiloSort, with this overlap spanning over a fixed 

size. Naturally this begs the question of temporal accuracy: the network has to be tuned 

further if the slight offset of the detected spikes or the longer detection time period would spoil 

the applicability of the system. 

During the tests, using the evaluation method described above, we found that the system 

performed well in case of identifying the true positive intervals, exhibiting 69.63 % mean recall 

over all datasets in case of the previously determined test data. On the other hand, a large 

proportion of the positively classified data were actually considered negative by KiloSort, as 

our mean positive prediction rates lay around 19.07 %. 

2. Sorting 
The task of spike sorting was performed on activities represented by two- and 

three-dimensional data. 

As two-dimensional data, frames taken at the time instances of spike maximum were used. 

These time instances roughly correspond to the marks produced by KiloSort, being placed 

Page 13 of 30 AUTHOR SUBMITTED MANUSCRIPT - JNE-102924.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



usually 1-2 frames after the actual voltage peaks. The exact amount of temporal displacement 

between the spike maxima and the marks is unknown and may vary from dataset to dataset 

(more precisely, from cluster to cluster). Because of this, sampling was shifted a few frames 

backwards (i.e. samples were taken a few sampling periods before the marks) in case of all 

the datasets. This shift is called time offset. 

Three-dimensional data (called timeslots) consisted of a predefined number of frames—

length—over an arbitrary time window. The difference of the mark and the time instance of the 

first frame in a particular timeslot (in sampling periods) shall be referred to as the starting point 

of the timeslot. 

A diagram explaining the terms above is shown in Figure 5. 

 
Figure 5. A detailed explanation of the terms used in relation to frames and timeslots. Here an activity is 

shown (yellow curve) accompanied by a corresponding timeslot (orange ticks). This timeslot consists of 

eight frames (with every fifth frame taken from the recording); the frame containing the maximum is 

shown in the insert. The mark is denoted by a blue tick; it follows the peak by one and the first frame of 

the timeslot by 16 sampling periods. 

Signal pre-processing was intended to be simple and fast, therefore data were not filtered. In 

order to be made tractable, samples were normed between 0 and 1 or -1 and 1 (all the tests 

were performed on data normed both ways). 

As regularization methods, early stopping with validation and batch normalization were 

applied. Only positive data (i.e. data corresponding to actual activities of some neuron) were 

used in chronological order: the first 50 % was applied for training, the first and second halves 

of the rest for validation and test, respectively. Thus, the performance of the networks in case 

of drift (slow changes in the environment of the probe) could be tested. We assume this yields 
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a more pessimistic but more realistic estimation than the one could be got using randomized 

data. To make training faster, samples were shuffled within the (training, validation, test) 

databases. 

The CNNs applied consisted of one convolutional and two dense layers (with the second as 

the output layer). The padding of the convolutional layer was chosen to be “same”, thus the 

dimensions of data did not change. The depth (i.e. the number of filters) of each layer was fit 

to the number of clusters (along with the output layer, thus the number of output categories 

and the number of clusters would be equal; since the latter was known, this could be done). 

The general structure of the network is shown in Figure 6. 

 
Figure 6. General structure of the networks used for sorting. 

The networks we built were slightly different for 2-D and 3-D data processing, with respect to 

the kernel size of the convolutional layer, the optimizer and the loss; the options chosen can 

be seen in Table 3. In our experience, these sets of hyperparameters yield the best results 

given these particular tasks. 

 2-D network 3-D network 

Kernel size 16 × 2 timeslot length × 4 × 2 

Optimizer Adadelta RMSprop 

Loss function Cosine proximity Mean squared error 

Table 3. Additional parameters of the networks used. 

2.1. Sorting with 2-D input 
Initial tests were performed on one of the datasets, containing 23 separate clusters. Different 

versions of the 2-D network were tested in the terms of nonlinearity, i.e. the activation function 

and the pooling; as possible variations, linear and rectified linear (ReLU) units and the 
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presence of 2 × 2 pooling were considered. The four combinations were tested on frames with 

offsets of 0, 1 and 2. The results are depicted in Figure 7.a). 

We found that networks applying no pooling performed slightly better; assuming that activities 

follow a rather simple pattern and linear regression can be proven sufficient to find the 

underlying trends, linear activation unit was chosen for all the sorters. 

In case of neural networks that use only linear activation functions, the question is raised 

whether the convolutional and the dense layer could be replaced by only one layer. Three 

networks were built with the first applying only one convolutional layer, the second having only 

one dense layer and third using the two type of layers together (all of these apart from the 

output layer). Only slight differences were experienced regarding the performance of the 

networks: the combined net yielded the best average accuracy, therefore this architecture was 

chosen. For details, see Figure 7.b). 

 
Figure 7. The results of the preliminary tests. a) The average accuracy of the neural network using 

different activation function/pooling combinations with respect to the offset. b) The performance (average 

accuracy) of the neural network with respect to the type of the layers applied. 

The accuracy of the sorter is strongly dependent on the temporal position of the frame within 

the spike. The classifier was trained and tested on samples taken at 20 consecutive offset 

values. 

The characteristic curve showing the accuracy with respect to the offset is depicted in 

Figure 8. 
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Figure 8. The average accuracy of the network with respect to the offset. At the first trial we used the 

frame preceding the mark by 10 instances, and in every subsequent test the succeeding frame was taken 

for training and testing. 

According to the characteristics, we found that the best results could be achieved with frames 

having an offset of 1 or 2 depending on the dataset examined, with the expected accuracy of 

0.86. 

The greatest accuracy was 0.900 (applying an offset of 2); a confusion matrix is shown in 

Table 4. 

  Predicted  
  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  

Re
al

 

0 2089 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 % 
10 % 
20 % 
30 % 
40 % 
50 % 
60 % 
70 % 
80 % 
90 % 

100 % 
 

1 0 821 0 0 0 0 1 0 4 0 0 171 0 0 0 4 0 0 0 0 0 0 0 
2 0 1 312 0 0 0 0 3 1 0 0 0 0 0 0 0 0 2 1 0 0 0 1 
3 0 0 0 3 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 523 5 0 0 
4 9 0 0 0 1053 0 2 1 0 1 0 0 0 0 1 3 0 0 0 0 0 0 0 
5 0 1 0 0 0 573 0 5 0 0 0 0 2 0 0 0 3 0 0 1 0 0 1 
6 6 0 0 0 3 0 3219 0 57 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
7 16 0 0 0 3 0 7 1652 1 3 0 0 0 0 0 0 0 3 2 0 0 2 0 
8 1 0 0 0 1 0 269 6 2086 1 0 2 2 0 1 0 0 0 0 0 0 0 0 
9 4 0 0 0 1 0 2 1 1 472 1 0 0 0 0 0 0 1 0 0 0 0 6 

10 2 0 0 0 2 0 5 5 1 0 491 0 0 2 0 5 0 1 0 0 1 1 3 
11 162 0 0 0 1 1 7 4 5 0 1 1337 6 0 0 2 0 0 2 0 0 0 1 

12 2 6 1 0 7 0 127 33 40 1 2 1 1165 1 3 25 2 6 9 0 0 7 17 
13 0 4 0 0 0 0 1 2 0 3 1 0 4 332 1 0 0 1 0 0 0 0 4 
14 3 0 0 0 1 0 6 1 0 0 0 0 0 0 520 0 25 1 0 0 0 0 0 
15 16 0 0 0 8 0 34 28 11 2 1 6 2 1 3 3096 0 6 0 0 0 0 3 
16 0 0 0 2 0 0 2 0 0 0 0 0 3 0 0 2 1171 0 0 2 231 0 0 
17 9 0 0 0 5 0 16 4 3 1 0 0 0 0 1 3 0 960 0 0 0 0 2 
18 8 0 0 0 1 0 8 25 13 3 2 0 5 0 3 10 0 3 475 0 0 7 4 
19 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 1 1 2 369 3 0 0 
20 1 299 16 0 1 0 0 11 0 0 0 0 27 8 2 5 1 2 1 5 1227 2 5 
21 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 110 0 
22 3 0 0 0 3 0 2 2 1 2 0 0 0 0 0 4 0 0 0 0 0 0 110 

Table 4. Confusion matrix displaying the results of the 2-D network. The percentage of activities 

attributed to different neurons relatively to the number of action potentials of a particular single unit is 
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denoted by shades between blue and yellow; the color coding on the right applies to each row (i.e. each 

cluster) separately. The misclassified activities exceeding the 10 % of the total number of action potentials 

of a particular neuron are marked by thick borders. 

The misclassifications arise mainly from the spatial proximity and morphological similarity of 

the particular clusters. The average frames for each neuron can be seen in Figure 9. 

Comparing the ones the classifier was not able to sort properly (1 and 11, 3 and 19, 6 and 8, 

16 and 20, 11 and 0, 20 and 1), they are not easy to distinguish visually even for the human 

eye. Note that the percentage of misclassifications is independent from the number of 

activities of the neurons, even clusters having only a few hundred activities can be sorted 

properly (assuming they are distinguishable from the others based on their spatial 

characteristics). 

 
Figure 9. Frames the classification was based on (having an offset of 1). The figures were produced 

through averaging every activity of the clusters filtered above 300 Hz and under 3 kHz. 

The sorters were tested on all datasets described in section Data acquisition, each having 23–

46 neurons. In accordance with our prior results, time offsets of 0, 1 and 2 were applied. The 

average accuracy for each dataset is displayed in Figure 10. 
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Figure 10. Average accuracy for each offset value with respect to the datasets. 

We found that the best results can be achieved with frames having an offset of 1; in this case, 

the average accuracy is above 0.8 except for dataset 5. 

2.2. Sorting with 3-D input 
Timeslots consisted of 4–8 frames, each consecutive two being five samples apart, starting at 

15–17 frames before the marks. The number of frames in the timeslots is supposed to be 

small in order to achieve reasonably short training time. Therefore, data had to be decimated 

in order to maintain the temporal diversity in the samples; we got the best results using every 

fifth frame.  

Certain clusters may contain some characteristic features preceding the spikes, e.g. a 

fragment from the activity of another neuron might indicate that a spike belonging to a 

particular cluster will be observed. To exploit this type of information, a few additional frames 

were taken from the resting phase. We got the best results using two extra samples. 

The results for data of different lengths and offsets are depicted in Figure 11. 
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Figure 11. Accuracy for timeslots having different starting points with respect to their length. 

We found that the greatest accuracy could be achieved with timeslots having the length of 6 

and the starting point of 17; the best result (0.961) was got for a timeslot of this kind. An 

appropriate confusion matrix is displayed in Table 5. 

  Predicted 
  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Re
al

 

0 2089 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 906 0 0 0 0 0 0 0 0 0 91 0 0 0 3 0 1 0 0 0 0 0 
2 0 1 316 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
3 0 0 0 512 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 18 1 0 0 
4 6 1 0 0 1056 0 2 0 0 1 1 0 0 0 1 0 0 2 0 0 0 0 0 
5 0 1 0 1 0 579 0 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 
6 9 0 0 0 2 0 3261 5 2 0 0 0 0 0 3 3 0 2 0 0 0 0 0 
7 17 1 1 0 4 0 8 1645 0 0 0 0 0 1 2 6 0 3 0 0 0 0 1 
8 3 0 1 0 0 0 25 7 2311 1 1 5 2 0 1 5 0 4 3 0 0 0 0 
9 7 1 0 0 3 0 4 1 0 469 0 0 0 1 0 0 0 2 0 0 0 0 1 

10 2 0 0 0 1 0 5 2 0 0 502 1 0 0 0 4 0 1 0 0 0 1 0 
11 66 0 0 0 1 0 7 1 2 0 1 1443 0 0 2 3 0 2 0 0 0 0 1 
12 2 6 1 0 1 0 13 0 1 0 2 1 1398 0 2 8 0 11 1 0 0 8 0 
13 0 4 0 0 0 0 1 0 0 0 1 0 2 343 0 0 0 0 0 1 0 0 1 
14 1 0 0 0 1 0 3 1 0 1 0 0 0 0 547 0 1 0 1 0 1 0 0 
15 17 0 0 0 6 0 27 15 1 1 1 4 5 2 5 3112 0 15 0 1 1 1 3 
16 0 0 0 5 0 0 2 1 0 0 0 0 0 0 0 0 1173 1 0 0 231 0 0 
17 8 0 0 0 4 0 8 1 0 0 0 0 0 0 2 2 0 978 1 0 0 0 0 
18 6 0 0 0 2 0 8 1 5 0 2 3 1 1 0 7 0 5 525 1 0 0 0 
19 0 0 0 27 1 0 0 0 0 0 0 0 1 2 0 0 0 1 2 345 0 0 0 
20 0 47 2 1 1 0 0 1 1 0 0 1 8 9 0 1 0 4 0 11 1526 0 0 
21 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0 109 0 
22 3 0 0 0 2 0 4 0 0 0 0 2 0 0 0 3 0 1 0 0 0 0 112 

Table 5. Confusion matrix displaying the results of the 3-D network (for the details on formatting, see the 

caption of Table 4.). 

Comparing the confusion matrix to the previous one, it can be seen that the majority of 

misclassifications disappeared (only exceeding the 10 % of the total number of spikes in case 
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of one neuron). This happened because separate clusters exhibit different temporal 

characteristics that makes sorting possible despite their presumable spatial similarity. 

We repeated the test for all datasets; in this case, timeslots with the starting point of 16 were 

applied. These timeslots contained the frames the best results in the 2-D case were got for, 

thus accuracies for frames and timeslots could be compared. 

We found that significant improvement can be achieved using the 3-D approach: in this case, 

the worst average accuracy (0.879) was above the best we got for 2D. We experienced the 

greatest improvement (0.12) in case of the dataset having the worst results for frames. 

Sorters were tested on entirely randomized data as well. In this case, data were shuffled 

before being divided into training/validation/test databases; the size of the databases did not 

change. The average accuracy of these sorters for each dataset is compared to the results 

have been got for data in chronological order in Figure 12. 

 
Figure 12. Average accuracy of 2-D and 3-D sorters using data in chronological and random order with 

respect to the datasets. 

We found that sorters trained and tested on randomized data outperformed the ones that used 

data in chronological order: The 3-D random sorter yielded the best results (with the highest 

accuracy of 0.977), and the accuracy of 2-D random sorters were close to the 3-D 

chronological ones. The average accuracy across each dataset was 0.827 for 2-D 

chronological, 0.895 for 2-D random, 0.901 for 3-D chronological and 0.943 for 3-D random 
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data, yielding an overall accuracy of 0.891. A confusion matrix of the 3-D random sorter can 

be seen in Table 6. 

  Predicted 
  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Re
al

 

0 2036 0 0 0 1 0 1 7 1 2 0 41 0 0 0 0 0 2 0 0 0 0 0 
1 0 990 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
3 0 0 0 489 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 39 3 0 0 
4 3 1 0 0 1054 0 2 0 0 0 0 0 1 0 0 2 0 5 0 0 0 1 1 
5 0 0 0 0 0 585 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
6 7 0 0 0 3 0 3239 10 3 3 1 3 2 0 0 6 0 6 3 0 0 0 1 
7 8 1 1 0 3 1 3 1664 2 1 1 0 1 0 0 2 1 0 0 0 0 0 0 
8 1 0 0 0 2 0 6 3 2341 0 0 3 2 0 0 5 0 3 0 0 0 0 3 
9 3 1 0 0 1 0 2 0 0 478 1 0 0 0 0 0 0 1 1 0 0 0 1 

10 2 1 0 0 1 3 3 1 0 0 506 0 1 0 0 0 0 1 0 0 0 0 0 
11 75 76 0 0 2 0 4 2 0 0 0 1363 0 0 0 3 0 1 2 0 0 0 1 
12 0 1 0 0 0 1 1 0 2 0 0 0 1437 0 0 1 0 4 6 0 2 0 0 
13 0 0 0 0 0 1 0 0 0 0 0 0 4 344 0 0 0 0 1 0 3 0 0 
14 1 0 0 0 1 1 0 1 1 0 1 0 3 0 542 1 3 0 0 0 0 0 2 
15 6 2 0 0 5 1 12 7 2 0 1 2 0 0 1 3173 0 3 1 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1410 0 0 0 2 0 0 
17 1 2 0 1 4 0 1 6 0 0 0 1 1 0 0 1 0 985 1 0 0 0 0 
18 1 1 0 0 0 3 1 1 0 0 0 0 3 0 0 0 0 0 557 0 0 0 0 
19 0 0 0 1 1 5 0 0 0 0 0 0 0 0 0 0 0 2 0 370 0 0 0 
20 0 0 0 3 0 0 0 1 0 0 1 0 4 3 1 2 11 1 1 4 1581 0 0 
21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 109 1 
22 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0 0 3 0 0 0 118 

Table 6. Confusion matrix displaying the results of the 3-D sorter using random data. 

As we can see, this confusion matrix approximates the ideal properly, having values almost 

only in the main diagonal. The average of misclassifications is 2.64 % (this value is exceeded 

in case of only five clusters). 

3. Prediction 
The distant goal of this project is to establish a stable algorithmic background for BCIs, and 

processing time proves to be a bottleneck for these systems. Given that detection, 

transmission and actuation times are approximately constant, we raised the question whether 

control signal could be generated faster by predicting the identity of each single unit activity 

right before the particular neuron fires. Theoretically, this could be achieved using the LFP 

originating from the surrounding structures that communicate with the identified cells and the 

local potential changes in the plasma membrane of the proximal neurons. 

The architecture of the network applied was identical with the base structure of the 3-D 

classifier, exhibiting one convolutional layer, followed by a fully connected and an output layer. 

The number and size of the filters remained unchanged, as well. As activation function of the 
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first two modules, rectified linear unit (ReLU) was applied while the output was formed using 

softmax nonlinearity.  

The data used were timeslots of 5 frames corresponding to a 1.05 ms long time window 

(preserving the decimation by 5), sweeping through several different starting points ranging 

from 10 (in this case, the central frame of the timeslot is the marked one) to 29. The 

characteristic image of these timeslots can be seen in Figure 13. 

 
Figure 13. The characteristic shape of the timeslots used for prediction with respect to their starting point. 

On the left, the timeslots are superimposed on a generic spike waveform for better visibility; on the right, 

only the frames taken can be seen. 

Measurement results are depicted in Figure 14. 

 
Figure 14. The accuracy of the network with respect to the starting point of the timeslots shifted 

backwards. 
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Our results show that as long as the spike peak is within the timeslot, the system performs with 

a constant accuracy (of about 80-90 %), independently from the location of the mark inside the 

timeslot. Note that for starting points greater than 21-22, the peak of the action potential is not 

included in the timeslot. As the shift approaches 24, the performance begins to drop rapidly. 

That indicates that the initial waveform (i.e. the ‘falling edge’) of the spike exhibits key 

information about the identity of the corresponding single unit, enough to let the system 

accurately label action potentials even in the absence of spike peaks. Having the starting point 

of the timeslots at 28, the accuracy falls to 50 %. 

Since the number of single units being classified is above 20 and the classification is based 

solely on the potential changes in the surrounding tissue (i.e. the action potential is entirely 

excluded), this result can be considered an early validation of the predicting capabilities of the 

network. The system proves to be worthy of further development, carrying the potential to 

predicting upcoming spikes in the range of 0.1–0.2 ms. 

DISC US SIO N  
Although Brain-Computer Interface development has seen its renaissance in the last decade, 

current technology is far from suitable for everyday use. From data acquisition through control 

signal formulation to the design and coordination of the actuators there are several issues yet 

to be tackled. 

We have successfully shown that CNNs combined with RNNs hold the potential for identifying 

the intervals corresponding to actual activities. Our capabilities for evaluating the results were 

limited by the quality of ground data, thus our research was not conclusive in regards to the 

exact accuracy of the detector. However, considering the positive prediction value an average 

of 19.07%, while in case of the recall an average of 69.63% could be reached given these 

datasets. We assume that a relatively high amount of false positive events cause little 

disturbance in a BCI system if it is equipped with a robust spike sorter. 

For the task of data classification, two architectures were applied, using 2-D and 3-D input. 

We examined these systems tuning several different parameters with respect to data (e.g. 

offset, length) and the sorters themselves (e.g. activation function, use of pooling). The 
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experiments conducted granted us very promising results: the average accuracy of the system 

resided between 81.8 and 97.7 % (with an overall average of 89.1 %), even considering 

datasets for which the number of single units exceeded 40. In general, better performance 

was achieved using 3-D networks (grasping spatiotemporal variations of the input) but at the 

cost of definitely longer training time (in contrast with the 2-D sorter exploiting only spatial 

variations in data). Another aspect was the usage of ‘chronological’ and ‘random’ data: in the 

former case, data blocks used for training, validation and test were in chronological order, i.e. 

sequential data were split into three disjoint blocks, then the samples were shuffled block-

wise; in the latter case, data were randomized first then split into parts. In our experience, 

sorters trained on random data proved to be more accurate. A possible cause of this behavior 

is the migration of the neurons: the cells are capable of movement and the insertion of a 

relatively large probe, accompanied by death, injury, or simple displacement involving multiple 

cells, can reinforce this effect. The result of the process is that the activities belonging to the 

same cluster might show up on different sets of channels at the start and at the end of the 

recording. This effect could be diminished in the cases discussed by using shuffled samples, 

or increasing the size of the training database. In practice, nevertheless, solutions that are 

more robust are needed to track these migrating clusters, enabling the network to extend its 

training phase beyond actual functioning. 

The last idea we intended to pursue was whether our classifier could be utilized for predicting 

the identity of upcoming action potentials. We shifted timeslot sampling backwards to see how 

it affects the classification accuracy. The performance of the system was very sensitive to the 

presence of the initial waveform of the action potential in the timeslot (regardless of whether 

the frame corresponding to the activity peak was actually included). The network was able to 

predict the identity of the spike based solely on the initial waveform (about 0.1 ms before the 

actual peak) but the performance dropped drastically as it was getting shifted out of the 

timeslot. In spite of this, the accuracy remained moderately high considering the vast number 

of single units and that only the LFP and activities of nearby neurons could be used.  These 

findings indicate the possibility of successful spike prediction using a more complex system in 

the future. 
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CONC LU SIO N  
In this study we proposed an alternative to current spike detection and spike sorting 

algorithms exploiting the potential convolutional and recurrent neural networks have for these 

purposes. 

Although these algorithms could provide a good basis for creating functional, real-time BCIs, 

there still are several obstacles to overcome. One of the main issues we had to face was the 

lack of adequately labeled data. We aim to create an appropriate ground truth dataset in order 

to tune these algorithms further. 

In spite of these difficulties, our detector and sorter proved usable, yielding a satisfactory 

performance in each case examined. We assume that from an ensemble algorithm composed 

from the parts implemented, even better performance could be expected. 
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