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Abstract: 1 
An improved understanding of increased human influence on ecosystems is needed for 2 
predicting ecosystem processes and sustainable ecosystem management. We studied spatial 3 
variation of human influence on grassland ecosystems at two scales across the Qinghai-Tibetan 4 
Plateau (QTP), where increased human activities may have led to ecosystem degradation. At 5 
the 10 km scale, we mapped human-influenced spatial patterns based on a hypothesis that 6 
spatial patterns of biomass that could not be attributed to environmental variables were likely 7 
correlated to human activities. In part this hypothesis could be supported via a positive 8 
correlation between biomass unexplained by environmental variables and livestock density. At 9 
the 500 m scale, using distance to settlements within a radius of 8 km as a proxy of human-10 
influence intensity, we found both negatively human-influenced areas where biomass 11 
decreased closer to settlements (regions with higher livestock density) and positively human-12 
influenced areas where biomass increased closer to settlements (regions with lower livestock 13 
density). These results suggest complex relationships between livestock grazing and biomass, 14 
varying between spatial scales and regions. Grazing may boost biomass production across the 15 
whole QTP at the 10 km scale. However, overgrazing may reduce it near settlements. Our 16 
approach of mapping and understanding human influence on ecosystems at different scales 17 
could guide pasture management to protect grassland in vulnerable regions on the QTP and 18 
beyond. 19 
 20 

Keywords —Alpine grasslands, distance to settlements, human influences, livestock 21 
density, overgrazing, remote sensing of biomass, spatial-pattern modeling 22 
1. Introduction  23 

More than three-quarters of the terrestrial biosphere has been altered by human activities 24 
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(Ellis and Ramankutty, 2008) which has also caused unprecedented changes in many Earth-25 
system processes during the last decades (Chen et al., 2013; Ellis, 2015), including regional 26 
and local ecological processes (Ellis and Haff, 2009). It is necessary to understand the 27 
consequences of human influence on ecosystems to better explain spatial patterns of 28 
ecosystems and their responses to climate and other environmental changes (Ellis, 2015). 29 
Ecosystem functioning and services have been most affected in arid and semi-arid areas, where 30 
recent degradation has taken place (Chen et al., 2014; Harris, 2010; Wessels et al., 2004). The 31 
grassland ecosystems in these areas cover a large portion of the Earths’ surface and contain 32 
substantial amounts of soil organic carbon. Grassland degradation and land-use changes, 33 
including conversion of grassland to cropland, result in a loss of grassland ecosystem carbon 34 
stocks (Conant et al., 2017; Guo and Gifford, 2002). This is also the case on the Qinghai-35 
Tibetan Plateau (QTP) (Chen et al., 2013), where vast grassland ecosystems store a large 36 
amount of carbon, thus playing a significant role in global carbon cycle (Liu et al., 2016; Ni, 37 
2002). 38 

The grassland ecosystems on the QTP also influence the local (Xu et al., 2009) and even 39 
global climate, e.g. by triggering South Asian monsoon activity (Duan and Wu, 2005). In 40 
addition, the QTP is the source region of Asia’s major rivers (Figure 1), which supply fresh 41 
water for a large part of the world’s population downstream (Foggin, 2008; Xu et al., 2008). 42 
The stability of ecosystems on the QTP is thus not only of regional importance but also of 43 
global relevance for water supply, radiation feedbacks and global climatic patterns (Meyer et 44 
al., 2013). 45 

The grassland ecosystems on the QTP, characterized by slow plant growth and recovery rate 46 
after disturbance (Shang and Long, 2007), are particularly vulnerable to and threatened by 47 
pressures from climatic changes and human activities. Degradation of alpine grasslands has 48 
indeed been observed on the QTP and led to productivity declines, land desertification and an 49 
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increase of noxious weeds (Fassnacht et al., 2015; Lehnert et al., 2014a). Such degradation not 50 
only damages the livelihoods of local people but also threatens biodiversity and the ecological 51 
services of the QTP at large (Harris, 2010). However, the causes of the grassland degradation 52 
on the QTP are still unclear and have been related to warming-caused desiccation and 53 
permafrost degradation (Harris, 2010; Lehnert et al., 2016) or to increasing human activities 54 
(Harris, 2010; P. Wang et al., 2016; Zhaoli et al., 2005).  55 

Increasing human activities may have affect grassland biomass production on the QTP, 56 
which is mostly covered by rangeland and livestock grazing as the main land-use type (Chen 57 
et al., 2013). Privatization of rangeland and semi-nomadic pastoralism have caused increasing 58 
grazing pressure (Harris, 2010; Meyer et al., 2013; Wang et al., 2017) and overgrazing of 59 
winter pastures (Harris et al., 2016, 2015; L. Li et al., 2017). Moreover, infrastructure 60 
development such as highways and townships, tourism and mining exert increasing pressure 61 
on QTP grassland ecosystems (S. Li et al., 2017). Human activities of grassland conservation 62 
programs (L. Li et al., 2017) and nature reserve programs (S. Li et al., 2018), however, have 63 
been launched to protect ecosystems and secure biodiversity and ecosystem services. All these 64 
human activities happened at different areas and scales. For example, livestock grazing is 65 
widely spread across the whole QTP whereas the grazing pressure is higher in low areas and 66 
near settlements. Construction works are site-based and ecosystem protection programs are 67 
widely located in the “Three-Rivers headwater regions” in the southern part of Qinghai 68 
province. These human activities indicate that human influences on grassland ecosystems are 69 
spatially heterogeneous and scale-dependent. 70 

The various human activities and land-use intensity on the QTP, combined with clear 71 
environmental and productivity gradients (Chen et al., 2015), imply that the grasslands respond 72 
differently to diverse human activities on the QTP. For example, the different levels of 73 
grassland productivity translate into different carrying capacities for livestock (Miehe et al., 74 
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2008), indicating different levels of resistance to grazing and different grazing effects 75 
(Milchunas et al., 1988). Previous studies involved quantifying human influence on grassland 76 
dynamics (Chen et al., 2014; Lehnert et al., 2016; L. Li et al., 2018) and mapping of human-77 
influence intensity on the QTP (S. Li et al., 2017). However, quantifying and mapping spatially 78 
heterogeneous human influence on grassland ecosystems has not been done so far, yet this 79 
would be key to understand how ecosystems respond to environmental changes and to help 80 
distinguishing climatic and anthropogenic contributions to spatial variation in grassland 81 
biomass. We aimed to map human-influenced spatial patterns of grassland biomass on the QTP 82 
at two spatial scales, i.e. at the 10 km scale across the whole QTP and at the 500 m scale near 83 
human settlements. 84 
2. Data 85 
2.1 Observed aboveground biomass  86 

Grassland aboveground biomass was assessed using an empirical model based on Landsat-8 87 
satellite data and field-measured data (C. Li et al., 2018). Vegetation with higher biomass 88 
shows stronger reflectance in near-infrared bands but lower reflectance in visible bands than 89 
grassland with lower biomass. The Normalized Difference Vegetation Index (NDVI) was 90 
developed to characterize the vegetation (Tucker, 1979) and has been extensively used to 91 
estimate aboveground grassland biomass (Jia et al., 2016; Zhang et al., 2016). The 172 biomass 92 
plots were measured in the field during peak growing season (late July to mid-August) in 2015 93 
and 2016. The closest Landsat-8 NDVI values were extracted with respect to the individual 94 
field sampling locations and dates. The field-measured biomass data were randomly split into 95 
two parts, using three-quarters of the data for model calibration and one-quarter for validation. 96 
The developed empirical model (R2 = 0.55, rRMSE = 0.23) was applied to the Landsat-8 NDVI 97 
in 2015 to map grassland biomass with the Google Earth Engine (Gorelick et al., 2017) across 98 
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the whole QTP. 99 
We rescaled the aboveground biomass map to a spatial resolution of 10 km and 500 m and 100 

further mapped human influences on biomass at 10 km and 500 m scale. 101 
2.2 Climatic variables 102 

The climatic variables used to model the contribution of environmental variables to spatial 103 
variation in grassland biomass included growing season (June–September) mean air 104 
temperature in 2015 and precipitation in 2015. These variables were extracted from the China 105 
Meteorological Forcing Dataset with a spatial resolution of 0.1° (Chen et al., 2011). The 106 
temperature variable was constructed by merging observations from 740 meteorological 107 
stations and corresponding Princeton meteorological forcing data (Sheffield et al., 2006). The 108 
precipitation variable was constructed by combining three precipitation data sets, including 109 
observations from the same 740 meteorological stations, the Tropical Rainfall Measuring 110 
Mission (TRMM) 3B42 precipitation products (Huffman et al., 2007) and the Asian 111 
Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of the 112 
Water Resources project (APHRODITE) (Yatagai et al., 2009). This climatic dataset has been 113 
widely used in soil moisture modeling and ecosystem studies (Guo and Wang, 2013; Liu and 114 
Xie, 2013; Wang et al., 2017). 115 
2.3 Soil properties 116 

Soil variables of soil organic matter, available nitrogen and total phosphorus were selected 117 
from eight soil variables (available phosphorus, available potassium, available nitrogen, total 118 
phosphorus, total potassium, total nitrogen, soil organic matter and soil PH) to estimate 119 
aboveground biomass. The selected soil variables have lowest co-linearity (Variance Inflation 120 
Factor <10) with other variables (section 3.2). The soil variables were extracted from a 121 
30 × 30 arcsec resolution gridded soil characteristics dataset (Shangguan et al., 2013). This 122 
dataset includes physical and chemical attributes of soils derived from 8979 soil profiles and 123 
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the Soil Map of China (1:1,000,000). This soil properties dataset has been widely used in soil 124 
and ecological studies (Bi et al., 2016; Maire et al., 2015; Sun et al., 2016; Wang et al., 2015). 125 
2.4 Data on eco-geographical regions 126 

The classification of the QTP into eco-geographical regions (Figure 1) was included as a 127 
further environmental explanatory variable for spatial variation in grassland biomass (Section 128 
3.1). The eco-geographical regions have been defined based on a combination of climatic 129 
factors and vegetation types (Gao et al., 2009). We included the classification of eco-130 
geographical regions as an explanatory variable because it reflects the effects of broad 131 
differences in species composition between vegetation types on biomass (Chuang et al., 2014). 132 
The eco-region data were converted from a polygon-shape file to a raster with 10 km using the 133 
statistical software R (R Core Team, 2018).  134 
2.5 Indicators of human influences 135 

Two indicators of human influence, livestock density and distance to settlements, were used 136 
to explain the potentially human-influenced spatial patterns at the 10 km and 500 m scale. The 137 
settlement locations of cities, towns, hamlets and villages in 2017 were extracted from 138 
OpenStreetMap (Haklay and Weber, 2008) as spatial points 139 
(https://download.geofabrik.de/asia/china.html). The size of settlements was considered when 140 
analyzing the correlation between biomass and distance to settlements as described below 141 
(section 3.2). The Euclidean distance to the closest of these points was calculated for each grid 142 
cell of the QTP (Figure 2).  143 

Pasture is the main land-use type on the QTP. Livestock grazing is an important human-144 
influenced activity. Livestock density can serve as an indicator of such human influence. 145 
Livestock density was assessed in terms of the number of sheep, goats and yak per square 146 
kilometer reported in the 2015 statistical yearbook from Qinghai, Xizang (National Bureau of 147 
Statistics of China, 2015). The absolute numbers of different animal species were converted to 148 
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livestock units using conversion factors of 0.6 for yak and 0.1 for sheep and goats (Lehnert et 149 
al., 2016). In the end, livestock densities of 100 counties at the county level were calculated 150 
(Figure 2) and decreased from the east to the west of the QTP. The livestock density is suitable 151 
to evaluate the human influence on grassland biomass via livestock grazing on the whole QTP 152 
scale as demonstrated in previous studies (Lehnert et al., 2016; S. Li et al., 2017). The livestock 153 
density data were converted from a polygon shape file to 10 km and 500 m raster in ESRI 154 
ArcMap software (http://desktop.arcgis.com/en/arcmap/). 155 
3. Methods 156 
3.1 Model for environmental and human-influenced spatial patterns of biomass at 10 157 

km scale 158 
We hypothesized that the human-influenced biomass could be calculated from the difference 159 

between potential biomass in the absence of human activities and actual biomass estimated 160 
from the satellite data. This hypothesis and framework is widely used to quantify human 161 
contribution on ecosystem biomass production both at the global scale (Haberl et al., 2014, 162 
2007; Krausmann et al., 2013) and at the regional scale of the QTP (Chen et al., 2014; Z. Wang 163 
et al., 2016). The potential biomass is the biomass that would be predicted solely by 164 
environmental factors without the interference of human activities. Here this potential biomass 165 
was defined based on a deterministic empirical model with environmental explanatory 166 
variables (x) with regression coefficients β (fixed effects). The actual aboveground biomass, 167 
which is influenced by both environmental variables and human activities, was measured from 168 
remote sensing NDVI data (y). The difference between potential biomass and actual biomass 169 
involves a spatial process (h) that is potentially correlated with human influences (random 170 
effects) and a residual noise component ε (Eqn 1) (de Jong et al., 2013). This analysis was 171 
conducted at the 10 km scale across the whole QTP by rescaling all environmental explanatory 172 
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variables to 10 km resolution using the projectRaster function in R with bilinear interpolation: 173 
 h = y - xT β - ε                 (Eqn 1) 174 

a. Deterministic model (xTβ) attributing biomass to environmental drivers 175 
Temperature, precipitation and soil properties are considered to be the most important 176 

variables that may explain spatial biomass variation across the whole QTP (Luo et al., 2004; 177 
Sun et al., 2013; Yang et al., 2009). In addition, elevation can account for microclimatic 178 
variation and influence grassland biomass (Fisk et al., 1998). Therefore these environmental 179 
variables were used to estimate potential biomass. 180 

We used each environmental variable’s Variance Inflation Factor (VIF) to quantify co-181 
linearity between variables. VIFs are positive values representing the overall correlation of 182 
each predictor with all others in a model. Generally, VIF >10 indicate “severe” co-linearity 183 
(Neter et al., 1996; Smith et al., 2009). In the end, six environmental variables including 184 
temperature, precipitation, available soil nitrogen, total soil phosphorus, soil organic matter, 185 
elevation (Table I) and eco-regions (multi-level factor) were used to develop a multiple linear 186 
regression model to predict potential biomass. The VIF of selected environmental variables 187 
was 2.4 showing low co-linearity.  188 

A bootstrapping method was applied when estimating model coefficients to avoid spatial 189 
dependency in the training data (de Jong et al., 2013). Five thousand samples were randomly 190 
selected from 13574 observations to estimate model coefficients. Three-quarter the samples 191 
were used for model calibration and one-quarter of samples were used for model validation. 192 
This sampling step was repeated five thousand times to include all data into the model. The 193 
relative Root-Mean-Square Errors (rRMSEs (%)), that is the ratio between RMSE and the mean 194 
of actual biomass, were averaged to estimate model accuracy. Finally, model coefficients were 195 
averaged to estimate environmental-driven biomass at the 10 km scale. In addition, to quantify 196 
the relative contribution of each variable to biomass, the relative importance of each 197 
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environmental variables in the multiple linear regressions was investigated using hierarchical 198 
variation partitioning as implemented in the R package relaimpo (Grömping, 2006) (Table I). 199 
b. Spatial process (h) and residuals (ε) 200 

We used a Gaussian random field (GRF) to model the spatial patterns of unexplained effects 201 
(de Jong et al., 2013). A GRF is described by three elements: 1) a mean function, 2) a range 202 
that determines the length scale of the spatial dependency and 3) a sill that determines the 203 
marginal variance. The estimated parameter set was used to model the spatial field h. The 204 
detailed description of the model can be found in de Jong et al. (2013). Based on our assumption, 205 
the modeled spatial patterns are correlated to human activities. We further tested the spatial 206 
patterns (h) for correlations with the human-influenced variable livestock density at the county 207 
level. 208 

The residual component ε contains the remaining spatial variation of biomass that was neither 209 
captured by the environmental variables (fixed-effects components fitted in the first step) nor 210 
by the spatial process (random-effect components fitted in the second step). In the ideal case, 211 
these residuals are spatially uncorrelated (de Jong et al., 2013). This component may contain 212 
small-scale human interventions (de Jong et al., 2013; Zhou et al., 2001). To find out whether 213 
potential small-scale human interventions could be visible, we also related the residuals to the 214 
human-influence variable livestock density (county level). 215 
3.2 Model for human-influenced variation of biomass at the 500 m scale 216 

At the 500 m scale, we used distance to settlements as a proxy of human-influence intensity. 217 
Distances to watering points or settlements have been widely used as proxies for grazing 218 
intensity in various grassland systems with long pastoral histories (Fernandez-Gimenez and 219 
Allen-Diaz, 2001; Manthey and Peper, 2010; Wang et al., 2017). On the QTP, the grazing 220 
pressure increased over the past three decades near to the settlements because pasture 221 
management was transferred from nomadic to semi-nomadic pastoralism or privatized (Meyer 222 
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et al., 2013; Wang et al., 2017). Therefore, areas closer to settlements experience more 223 
intensive human activities, including higher grazing density, construction work and tourism 224 
activities.  225 

Human influences on biomass were analyzed within 8-km neighborhoods around settlements 226 
at a spatial resolution of 500 m based on previous findings that human influence can be 227 
neglected beyond 8 km on the QTP (Liu et al., 2006; Wang et al., 2015). This limit was 228 
determined in a breakpoint analysis (see next paragraph). Human activities of grazing, 229 
trampling and infrastructure near settlements can directly influence grassland biomass by 230 
removal or disturbance, although this may be conterbalanced by compensatory regrowth. 231 
Within the range of distances from 0–8 km, a positive correlation between biomass and 232 
distance to settlements indicates that biomass is lower near settlements, which suggests a 233 
negative human influence on biomass. In contrast, a negative correlation indicates that biomass 234 
is higher near settlements, suggesting a positive human influence on biomass. If biomass stays 235 
stable along distance to settlements this indicates that human activities do not have a profound 236 
influence on biomass. However, beyond the limit distance of 8 km to settlements, the direct 237 
human influence on grassland biomass should be small (Liu et al., 2006). Nevertheless, 238 
biomass may tend to decrease beyond the limit distance because people avoid areas where 239 
potential biomass is low due to harsh environmental conditions (Figure S1). Figure 3 illustrates 240 
the above scenarios of changes of biomass along distance to settlements. A supplementary 241 
video (supplementary 2) shows examples of changes of biomass along distance to settlements, 242 
where a turning point can be observed showing the potential human influential distance and 243 
indicating a breakpoint in the relationship between biomass and distance to settlements. The 244 
influence of human activities on biomass at the 500 m scale was mapped based on these 245 
scenarios. 246 

In order to find the specific human influential distance, the breakpoints function and F 247 
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statistics test in the R package strucchange were applied (Zeileis et al., 2003), which have been 248 
widely used for detecting and monitoring structural changes in (linear) regression models 249 
(Zeileis et al., 2003). We configured the algorithm to detect the one most influential breakpoint 250 
for each pixel using a moving-window method. We assumed that the maximum human 251 
influential distance could be as large as 15 km, according to the 12 km of human influential 252 
distance reported from an area in the east of the QTP (Liu et al., 2006). The detected breakpoint 253 
distances were averaged across all pixels to get a single estimate for the entire QTP. This 254 
yielded the above-mentioned limit distance of 8 km to settlements beyond which direct human 255 
influence related to settlements could no longer be detected (Figure 4). 256 

To detect the spatial variation of human influence on biomass at the 500 m scale, a moving-257 
window method was applied between distance to settlements and biomass. Specifically, we 258 
used local Pearson moving-window regression to show positive and negative influences of 259 
human activities on biomass. The selected window size with a radius of 8 km for the local 260 
Pearson regression was based on the breakpoint analysis explained above. The area covered by 261 
settlements has no biomass value and was therefore excluded from the analysis, that is, human 262 
influential distance was calculated to the boundary of a settlement, not an inside point. We 263 
finally linked the local Pearson correlation coefficients that represent the human-influenced 264 
spatial patterns at the 500 m scale with livestock density. Figure 5 summarizes all data and 265 
processing steps as a flowchart. 266 
4. Results 267 
4.1 Spatial variation in biomass attributed to environmental drivers at the 10 km scale 268 

The biomass data derived from the Landsat-8 NDVI data showed a decreasing gradient from 269 
the east to the west of the QTP and additionally varied strongly within the gradient (Figure 6a). 270 
The overall spatial variation in biomass across the QTP was decomposed into three parts: 1) 271 
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variation explained by environmental variables (Figure 6b), 2) variation due to spatial 272 
autocorrelation unexplained by environmental variables but potentially correlated with 273 
variation in human influences (Figure 6c and Section 4.2) and 3) residual variation neither 274 
explained by environmental variables nor by spatial autocorrelation (Figure S2). 275 

The model developed from environmental variables including climatic variables, soil 276 
properties, topographical variables and eco-regions explained 70% (coefficients of 277 
determination R2 = 0.70) of the spatial biomass variation with an accuracy of 27% as measured 278 
by the rRMSE. The biomass predicted by these environmental variables clearly showed the 279 
decreasing trend towards the west described in the previous paragraph. Among different 280 
environmental variables, elevation played the most important role in explaining biomass 281 
variation, followed by precipitation and soil available nitrogen (Table I). The relatively lower 282 
importance of temperature than elevation was probably due to the higher temperature but low 283 
biomass in the Qaidam basin, which was opposite to the general trend of decreasing 284 
temperature and biomass along increasing elevation (Figure S5).  285 

The biomass predicted by environmental variables shows a sharp transition from high to low 286 
biomass along the east-to-west gradient (Figure 6b). This sharp transition was caused by eco-287 
region boundaries and showed the relevance of including eco-regions in the model. 288 
4.2 Spatial variation in biomass potentially due to human-influence at the 10 km scale 289 

The random effects component accounting for spatial autocorrelation in biomass at the 10 290 
km scale, which could not be attributed to variation in environmental variables was potentially 291 
related to variation in human influences. This spatial autocorrelation component accounts for 292 
16% of the spatial variation of biomass. Negative spatial autocorrelations in biomass values 293 
occurred on the northern part of Qinghai-lake and in the southern part of the QTP. Positive 294 
spatial autocorrelations were mainly found in the eastern part of the QTP (Figure 6c). Both the 295 
positive and the negative autocorrelations were clearer in the eastern part of the QTP where 296 
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human activities are more intense (Figure 2 and Figure 6c). A weak positive correlation (R2 = 297 
0.1) was found between the spatial autocorrelation in biomass and the human-influence 298 
variable livestock density (Figure 7). No further correlation was found between residuals and 299 
livestock density (Figure S3). 300 
4.3 Human-influenced spatial patterns of biomass at the 500 m scale 301 

The influences of human activities on biomass at the 500 m scale were mapped by analyzing 302 
biomass along distance to settlements using a moving window radius of 8 km. The map (Figure 303 
8) shows both biomass decreases and biomass increases near settlements, indicating positive 304 
and negative human influences. Strong negative signals were detected in the Yellow River–305 
Huangshui River Valley and around the southeastern part of Qinghai-lake, Xinghai and Tongde 306 
counties (Figure 8 (1)), in the Yarlung Zangbo River valley and in the central Tibetan counties 307 
of Doilungdeeqeen, Lasa and Dagze (Figure 8 (3)). In all these areas biomass decreased with 308 
proximity to settlements. Positive signals were detected for example in the southeastern part of 309 
the QTP, i.e. Baima and Jigzhi counties, where the biomass increased with proximity to 310 
settlements (Figure 8 (2)). 311 

Across the QTP, positive signals, i.e. higher biomass values closer to settlements, occurred 312 
in areas with low livestock density at the 10 km scale. In contrast, the negative signals were 313 
correlated with high livestock density, and prevailing negative signals were detected when the 314 
regional livestock density was higher than about 22 livestock units per square kilometer (Figure 315 
9), even though these regions are also the ones with more productive ecosystems (Figure S4). 316 
In general, biomass was actually larger near settlements in areas with low livestock density, 317 
whereas biomass was lower near settlements in more productive areas with higher livestock 318 
density. 319 
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5. Discussion 320 
5.1 Spatial variation in biomass attributed to environmental drivers at the 10 km scale  321 
 The model developed from environmental variables explained most of the spatial 322 
variation of biomass (70%). Uncertainties of the model might stem from the limited number of 323 
environmental variables used and uncertainties within the environmental variable data, which 324 
might affect the potential biomass estimation accuracy. The influence of environmental 325 
variables such as soil moisture, soil temperature ( X. Wang et al., 2016) and solar radiation 326 
(Piao et al., 2006) on biomass has become more important to affect biomass on the QTP under 327 
climate change, which should be considered in the future studies. Nevertheless, the 328 
environmental variables estimated the potential biomass without the inference of human 329 
activities. The difference between the potential biomass and actual biomass are here assumed 330 
to be linked with human-influenced variables (Haberl et al., 2007; Pan et al., 2017). 331 
5.2 Human-influenced spatial patterns of biomass at the 10 km scale across the whole 332 

QTP 333 
A continuing increase in intensity and diversity of human activities exerts spatially 334 

heterogeneous influences on grasslands on the QTP. The spatial patterns of human influence 335 
on grassland are unknown on the QTP, which are important to understand how different human 336 
activities are impacting the ecosystems and how these respond to environmental change. We 337 
mapped spatial patterns at two spatial scales and studied whether the patterns can be explained 338 
by livestock grazing density. 339 

At the 10 km scale, we found that livestock density was positively correlated with the human-340 
influenced spatial pattern of grassland biomass, which indicated that at large scale grazing and 341 
biomass have a positive relationship. The QTP has served as pastoral land for thousands of 342 
years (Klein et al., 2007; Lu et al., 2017). Grassland ecosystems can become adapted to grazing 343 
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(Miehe et al., 2009) and major plant species are grazing-resilient (Miehe et al., 2013, 2011). 344 
Moderate grazing intensity can promote nutrient recycling and ecosystem production (Lu et al., 345 
2017; Luo et al., 2012). Consistent with these finding, we observed that the potential biomass 346 
predicted using only environmental variables was lower than the biomass estimated from the 347 
satellite data especially in the eastern part of the QTP, where livestock grazing is the common 348 
land use. Appropriate grazing management can affect species composition and facilitate 349 
mineral uptake and hydrological processes (Schrama et al., 2013). These effects potentially 350 
boost the biomass production, especially in ecosystems that are more productive and more 351 
resilient to grazing (Milchunas and Lauenroth, 1993; Wang and Wesche, 2016), which seems 352 
to be the case in the eastern and the southeastern part of the QTP (Figure 6c). In summary, 353 
positive grazing effects might explain the positive correlation between livestock density and 354 
human-influenced spatial patterns in grassland biomass. The opposite causality, i.e. that 355 
livestock density is higher where biomass — unexplained by environmental variables — is 356 
higher, seems less plausible unless these higher biomass values were caused by unmeasured 357 
environmental variables. 358 

Except for livestock grazing effects, other human activities including ongoing ecosystem 359 
restoration projects and infrastructure development might explain potential human-influenced 360 
spatial pattern in grassland biomass (Fig. 6 (b)). This is especially the case in the eastern and 361 
central areas of the QTP because in these areas human activities of land-use changes and 362 
grazing density are more widespread and more intense (S. Li et al., 2017), whereas in the 363 
northwestern part of the QTP human activities are less widespread and less intense (Figure 2).  364 
5.3 Human-influenced spatial patterns of biomass at the 500 m scale 365 

The mobility of pastoralists has decreased and they have become more sedentary across 366 
Africa, Asia, the Middle East and the Americas (Sayre et al., 2017), which leads to increased 367 
grazing intensity near settlements (Batjargal, 1997; Vanselow et al., 2012). Distance to 368 
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settlements could potentially serve as a proxy of human-influence intensity in pastoral 369 
ecosystems (Fernandez-Gimenez and Allen-Diaz, 2001; Manthey and Peper, 2010), including 370 
the QTP (Wang et al., 2017). Thus, recent studies report that livestock-grazing pressure has 371 
been increased around settlements on the QTP (Dorji et al., 2013; Hafner et al., 2012; Lehnert 372 
et al., 2014b). Here we analyzed how distance to settlements as a proxy of human-influence 373 
intensity correlated with grassland biomass across the entire QTP. 374 

Increased biomass closer to settlements might suggest positive grazing effects, including 375 
effects of increased input of nutrients with cattle manure (Lehnert et al., 2014a). On the other 376 
hand, implemented ecosystem restoration projects may also contribute to increased biomass 377 
near settlements in some areas, for example in the area of south Sanjiangyuan Jigzhi and Baima 378 
County, where positive biomass signals close to settlements were observed (Figure 8 (4) and 379 
previous studies of Cai et al., 2015; Xu et al., 2011). However, negative biomass signals close 380 
to human settlements were observed in the Xinghai and Tongde County in spite of ecosystem 381 
restoration projects in these areas (Figure 8 (1)). 382 

Typically, reduced biomass near settlements is taken as an indication of negative human 383 
influences due to overgrazing (Hafner et al., 2012). Overgrazing can lead to the reduction of 384 
vegetative cover and soil erosion (Papanastasis, 2009; Thornes, 2007), which might be the case 385 
in the two regions of the Yarlung Zangbo River valley and the Yellow River-Huangshui River 386 
Valley, where we observed negative biomass signals close to human settlements (Figure 8). 387 
These regions are characterized by high human population density, livestock-grazing intensity, 388 
land use and infrastructure pressure (S. Li et al., 2017). That overgrazing could be one of the 389 
main reasons for negative biomass signals near settlements in our study is supported by the fact 390 
that these negative signals occurred mainly in areas with high livestock density (Figure 9). 391 

The influence of grazing on ecosystem degradation on the QTP is still a topic of debate. 392 
Some studies found that heavy grazing causes severe rangeland degradation or even 393 
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desertification (Song et al., 2009; Wang et al., 2012), whereas other studies found that grazing 394 
improved forage quality and extended the growing season (Chen et al., 2013; Harris, 2010; 395 
Klein et al., 2007). In the study, we argue that both situations occur on the QTP, depending on 396 
the study area and the study scale. Across the whole QTP, grazing is positively related to 397 
biomass production at the 10 km scale. However, because of the limited mobility of local 398 
herders (Wang et al., 2017), overgrazing occurs near settlements in areas with high livestock 399 
density. The overgrazed area might be more vulnerable and more sensitive to climate change, 400 
which requires further attention in future ecosystem protection projects. 401 

However, the changes of biomass with distance to settlements may also be influenced by 402 
other, unmeasured human-influence variables than only by grazing intensity and it may 403 
furthermore interact with other environmental variables such as soil properties (Papanastasis, 404 
2009). Therefore, the observed spatial patterns need further understanding and validation by 405 
combining detailed human activity-indicators with environmental variables. In addition, our 406 
study is a single snapshot in time, assessing the human-influenced spatial patterns in grassland 407 
biomass in 2015. Future studies should also assess changes over time in these human-408 
influenced spatial patterns. 409 
6. Conclusions  410 

Increased human-influenced activities including livestock grazing and township 411 
development exert spatially complex influences on grassland biomass on the QTP. Our study 412 
on spatial variation of human influences on grassland biomass on the QTP helps us to 413 
understand how these ecosystems may respond to environmental change. At the 10 km scale 414 
across the whole QTP we estimated spatial variation of human-influenced biomass by 415 
measuring the difference between the potential aboveground biomass without the interference 416 
of human actives and actual biomass estimated from the remote sensing data. We found both 417 
positive and negative human-influenced spatial patterns across the whole QTP. These patterns 418 
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positively linked to the livestock density at the county level. At the 500 m scale, we analyzed 419 
the human influence on grassland biomass as a function of distance to settlements, used as a 420 
proxy of human-influence intensity. This was done because the socioeconomic changes of 421 
privatization of pasture land and of sedentarization of nomadic herders was assumed to have 422 
increased livestock grazing and other pressures near settlements. We detected hotspots where 423 
the biomass decreased or increased towards settlements within a radius of 8 km, indicating 424 
both negative and positive human influences on biomass. In particular, we found that biomass 425 
decreased near settlements in areas with high livestock density at county level. Overall, our 426 
study showed both positive and negative human influences on grassland biomass at two spatial 427 
scales, demonstrating the complexity of the relationship between human-influence intensity 428 
and grassland biomass, leading to large spatial variation in the relationship across the entire 429 
QTP. As a broad generalization we conclude that livestock grazing so far had positive effects 430 
on grassland biomass across the whole QTP but overgrazing near settlements now represents 431 
a threat to the future biomass production and stability of these ecosystems. 432 
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Table I. Environmental variable’s Variance Inflation Factor (VIF) and their relative importance for explaining 718 
biomass 719 

Parameter Unit VIF Relative importance 

Elevation m 3.95 0.32 

Precipitation mm 2.59 0.23 

Available N g/100g 2.78 0.23 

Soil organic matter g/100g 2.62 0.13 

Temperature ℃ 2.30 0.06 

Total P g/100g 1.57 0.03 
 720 
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Figure 1. Distribution of main grassland vegetation types, eco-regions and major rivers (with names) on the 721 
Qinghai-Tibetan Plateau (QTP). Inset indicates elevation data of the extended area based on the NASA Shuttle 722 
Radar Topographic Mission (SRTM Version 4; Farr et al., 2007). 723 

 724 
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Figure 2. Livestock density at county level and distance to settlements at the 500 m scale on the Qinghai-725 
Tibetan Plateau. 726 
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 34

Figure 3. Three scenarios of relationships between distance to settlements and grassland biomass: 1 (orange) – 728 
biomass decreases near settlements potentially showing a negative human influence on biomass, 2 (blue) – no 729 
clear human influence on biomass and 3 (green) – biomass increases near settlements suggesting a positive human 730 
influence on biomass. All scenarios hold up to a certain distance (8 km) after which the relationship between 731 
biomass and distance tends to be negative (see Figure S1). 732 

 733 
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Figure 4. The human influential distances on the Qinghai-Tibetan Plateau (a) and their distribution (b). 734 
The distances were calculated for local areas using breakpoints analysis in R (see Methods). The histogram shows 735 
that the average human influential distance is about 8 km. 736 
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Figure 5. Flowchart displaying data and methods used to map the influence of human activities on biomass at 10 738 
km (“Regional”) and 500 m (“Local”) scales. 739 
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 37

Figure 6. Observed biomass using Landsat-8 NDVI vegetation index (a). Biomass predicted using environmental 741 
variables (b). Spatial autocorrelation of biomass that could not be explained by environmental variables but 742 
possibly human-influence variables (c). Positive hotspots of human influences are indicated with numbers. The 743 
circle represents a positive hotspot with a positive human influence at the 500 m scale (Figure 7), whereas the two 744 
squares represent positive hotspots with a negative human influence at the 500 m scale. 745 
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Figure 7. Scatterplot between human-influenced spatial pattern of grassland biomass (y) and livestock density (x). 748 
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Figure 8. Correlation coefficients between biomass and distance to settlements (within 8 km) at grid cells of 500 750 
m  500 m (top left panel). A positive correlation shows biomass decreases near settlements and indicates negative 751 
human influences and vise versa. Some hotspots of negative and positive human influences area are shown in 752 
panels (1), (2), (4).  753 
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Figure 9. Scatterplot between human-influenced spatial biomass pattern at the 500 m scale (y) and livestock 755 
density at the 10 km scale (x). Note that a positive human-influenced spatial biomass pattern reflects a negative 756 
correlation between local biomass and distance to settlements, i.e. higher biomass close to settlements, and vise 757 
versa. The human-influenced spatial biomass pattern was averaged per county and then regressed on the livestock 758 
density per county. The dashed line indicates the division between positive and negative human influences on 759 
local biomass. 760 
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