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The regular formative assessment of students’ abilities across multiple school grades

requires a reliable and valid vertical scale. A vertical scale is a precondition not only

for comparing assessment results and measuring progress over time, but also for

identifying the most informative items for each individual student within a large item bank

independent of the student’s grade to increase measurement efficiency. However, the

practical implementation of a vertical scale is psychometrically challenging. Several extant

studies point to the complex interactions between the practical context in which the scale

is used and the scaling decisions that researchers need to make during the development

of a vertical scale. As a consequence, clear general recommendations are missing for

most scaling decisions. In this study, we described the development of a vertical scale for

the formative assessment of third- through ninth-grade students’ mathematics abilities

based on item response theory methods. We evaluated the content-related validity of

this new vertical scale by contrasting the calibration procedure’s empirical outcomes (i.e.,

the item difficulty estimates) with the theoretical, content-related item difficulties reflected

by the underlying competence levels of the curriculum, which served as a content

framework for developing the scale. Besides analyzing the general match between

empirical and content-related item difficulty, we also explored, by means of correlation

and multiple regression analyses, whether the match differed for items related to

different curriculum cycles (i.e., primary vs. secondary school), domains, or competencies

within mathematics. The results showed strong correlations between the empirical and

content-related item difficulties, which emphasized the scale’s content-related validity.

Further analysis showed a higher correlation between empirical and content-related item

difficulty at the primary compared with the secondary school level. Across the different

curriculum domains and most of the curriculum competencies, we found comparable

correlations, implying that the scale is a good indicator of the math ability stated in

the curriculum.
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INTRODUCTION

Modern computer technology can be used as a tool for
providing formative feedback in classrooms on a regular
basis (e.g., Hattie and Brown, 2007; Brown, 2013). It allows
for implementing complex measurement models and item-
selection algorithms that support teachers in providing objective,
reliable, and valid feedback (e.g., Glas and Geerlings, 2009;
Wauters et al., 2010; Tomasik et al., 2018). In Northwestern
Switzerland, four cantons—Aargau, Basel-Landschaft, Basel-
Stadt, and Solothurn—joined forces to develop a computer-
based, formative feedback system for classrooms (Tomasik et al.,
2018; see also https://www.mindsteps.ch/) to serve teachers and
their nearly 100,000 third- through ninth-grade students, as
an instrument for data-based decision making (Schildkamp
et al., 2013; van der Kleij et al., 2015). The data-based
decision making approach to formative assessments (van der
Kleij et al., 2015) originates from the No Child Left Behind
Act in the United States and places a strong emphasis on
monitoring the attainment of specific learning targets through
objective data.

The specific purpose of the computer-based, formative
feedback system is to support teachers and students in collecting
objective information about students’ current abilities (i.e.,
strengths and weaknesses) as well as learning progress within
the domains and competencies stated in the curriculum for
four school subjects: German, the schools’ language; English
and French, the two foreign languages taught; and mathematics
(Tomasik et al., 2018). To provide targeted feedback (i.e.,
objective data targeted on students and teachers’ specific needs),
the system is conceptualized as an item bank with several
thousand assessment items that teachers and students can select
based on curriculum-related, as well as empirical, criteria, such as
curriculum-related competence levels or empirical item difficulty
estimates. Depending on their assessment specifications, teachers
and students receive reports about the students’ current ability
in particular domains, or their mastery of particular competence
levels or topics. In line with the data-based decision making
approach to formative assessments, teachers and students can use
the assessment outcomes to define appropriate learning goals,
evaluate progress in realizing these goals over time, and adjust
teaching, learning environments, or goals, if necessary (Hattie
and Timperley, 2007; van der Kleij et al., 2015).

Two basic prerequisites for implementing such a computer-
based system for data-based decision making are clear
content specifications, which guide the assessment items’
development for the item bank (Webb, 2006), and a vertical
measurement scale, which allows for monitoring and comparing
students’ abilities over several school grades (Young, 2006). For
Northwestern Switzerland, the competence-based curriculum
Lehrplan 21, which was made available to German-speaking
cantons in Switzerland in autumn 2014 (D-EDK, 2014), is

an obvious choice as a basis for the content specifications.

However, it is a more challenging endeavor to develop a vertical

measurement scale to represent students’ competence levels over

seven school grades (i.e., from the third to the ninth grades) as
stated in the curriculum.

As a basis for representing student abilities on a metrical
vertical scale, the system uses item response theory (IRT, Lord,
1980; de Ayala, 2009), or rather the Rasch model (Rasch,
1960), as an underlying measurement model. One advantage
of this measurement approach is that it allows for directly
comparing assessment results related to different item sets.
Thus, each student can work on a targeted selection of items
within the item bank, but still compare results with those of
other students, as well as with their own results from earlier
assessments. In addition, a vertical IRT scale does not only allow
for representing student ability across multiple school grades
but it also allows for representing item difficulty across a broad
difficulty range. Thanks to its feature of representing student
ability and item difficulty on the same scale, the IRT approach
supports targeted item selection through teachers and students
as well as algorithms for computer-adaptive testing (CAT), which
use preliminary ability estimates during assessment for selecting
the most appropriate and informative items for each individual
student (Wainer, 2000; van der Linden and Glas, 2010).

However, the development of such a vertical IRT scale is
rather complex. To establish the scale, items representative of the
underlying content specifications need to be calibrated based on
response data from students from the target grade groups. This
procedure involves various scaling decisions such as choice of
the test specifications, data collection design, number of linking
items, or linking calibration procedure. Results from previous
studies on vertical scaling indicated that the interpretation of
growth or progress on a vertical IRT scale might depend on
the concrete combination of such scaling decisions (see Harris,
2007; Briggs and Weeks, 2009; Kolen and Brennan, 2014, for a
general overview). However, the results from these studies are
mixed due to various interactions between the different scaling
decisions (Hanson and Béguin, 2002; Pomplun et al., 2004; Tong
and Kolen, 2007; Briggs and Weeks, 2009; Lei and Zhao, 2012;
see also Harris, 2007), and do not provide clear guidance for the
practical implementation of vertical scales based on IRTmethods.
Simulation studies might help investigate selected combinations
of scaling decisions systematically. However, in practice, the
best combination of decisions might depend largely on the
practical context such as the vertical scale’s specific measurement
objectives, changes in ability distribution across grades (e.g.,
Keller and Hambleton, 2013), or the extent to which the data
meet strict assumptions of unidimensionality and parameter
invariance in the underlying IRTmodel (Béguin et al., 2000; Tong
and Kolen, 2007; Pohl et al., 2015). We are not aware of any
studies that considered all these factors in order to investigate
potential interaction effects and provide guidance for particular
practical contexts. Furthermore, such an amount of different
factors goes way beyond the scope of a single simulation study.

Against this backdrop and in contrast to previous studies on
vertical scaling, in this paper, we suggest validating a new vertical
IRT scale and the related scaling decisions by contrasting the
calibrated items’ empirical difficulties with the items’ theoretical
content-related difficulties. Thus, we extend previous research on
vertical IRT scaling by using an external criterion for validating
the vertical scale; specifically, a criterion that allows for justifying
the decisions made during test development and item calibration,
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while considering the concrete, latent construct or ability to be
measured, and for verifying the item difficulty parameters and
the related growth pattern as the true ones (Harris, 2007; Tong
and Kolen, 2007; Ito et al., 2008; Briggs and Weeks, 2009; Dadey
and Briggs, 2012). We illustrate this procedure by validating the
vertical math scale for formative assessment for third- through
ninth-grade students in Northwestern Switzerland by means
of cross-sectional data from a pretest calibration sample. In
particular, we investigate the extent to which the empirical item
difficulty parameters resulting from the Rasch calibration reflect
the items’ content-related difficulties based on their assignment
to specific competence levels of the curriculum Lehrplan 21. Such
a content-related validation criterion was missing from previous
studies on vertical scaling.

Justifying a Vertical Scale
To monitor students’ abilities over time, a vertical measurement
scale is required, which refers to “an extended score scale that
spans a series of grades and allows the estimation of student
growth along a continuum” (Young, 2006, p. 469; see also Harris,
2007; Briggs, 2013; Kolen and Brennan, 2014). Such a scale is
the basis for comparing the outcomes of various consecutive
measurement occasions and, thus, for measuring progress,
analyzing students’ growth in relation to vertically moderated
standards, and computer-adaptive testing across grades (e.g.,
Cizek, 2005; Ferrara et al., 2005; Dadey and Briggs, 2012). A
precondition for justifying a vertical scale is the assumption
that the measured abilities or competencies are continuously
stimulated and that they increase over time (Young, 2006). In
contrast to horizontal scales, which represent one specific age or
grade group’s abilities, vertical scales combine test forms or item
sets that vary in their mean difficulty, reflecting the broad ability
range that must be covered when assessing ability over several
school grades. However, even though the different assessment
forms refer to different difficulty levels, the underlying latent
construct needs to remain constant from a content perspective.
Otherwise, a unidimensional vertical scale cannot be justified.

Curriculum Lehrplan 21 as Content
Framework
In line with the requirements for a vertical scale, the curriculum
Lehrplan 21 states a continuous development of students’ math
competencies throughout compulsory school (D-EDK, 2016a).
It describes the competencies that students should acquire from
kindergarten until the end of compulsory school, providing
teachers and schools with a basis for planning their teaching
and evaluating students’ progress [(D-EDK, 2014, 2016b); see
also www.lehrplan.ch]. Within the subject of mathematics,
the curriculum is structured hierarchically into 3 domains
(i.e., “number and variable,” “form and space,” and “measures,
functions, data, and probability”), 26 competencies, and various
competence levels (D-EDK, 2016a). For each competency, the
curriculum calls for a continuous development of it over
the school years, and mastery of lower competence levels
is a precondition for mastering more advanced competence
levels [see also (BIFIE, 2011; Reusser, 2014)]. Furthermore, the
curriculum delineates three different cycles—kindergarten to

second grade, the third to sixth grades, and the seventh to ninth
grades (i.e., secondary school); defines basic requirements for
each cycle (i.e., the minimal competence levels that students
need to have mastered at the end of each cycle); and states
two points of orientation at the end of the fourth and
eighth grades. The cycles, basic requirements, and points
of orientation anchor the competence levels and, thus, the
development of competencies, across the 11 compulsory school
years. However, the curriculum focuses much more on the
development of students’ competence levels across grades than
on the specific competencies within a particular school grade,
thereby following a domain definition of growth as defined by
Kolen and Brennan (2014, pp. 429–431).

Figure 1 provides an example of a mathematics competency,
namely MA.1.A.2, which covers “counting, ordering, estimating”
and is part of the domain “number and variable” (D-EDK,
2016a). Within this competency, the mathematics curriculum
distinguishes between 10 different competence levels of
increasing difficulty (i.e., levels a to j). For each competence
level, it provides detailed descriptions of what students should
know to master the level. For example, level c is described as
following: “Students can count forward up to 100 in steps of
1, 2, 5, or 10. They can order numbers up to 100 (e.g., on a
number ray or a table)” (D-EDK, 2016a). The first three levels,
a to c, belong to the curriculum’s first cycle, whereas the gray,
highlighted level c refers to this cycle’s basic requirements.
Levels d to g refer to the curriculum’s second cycle, with level g
including this cycle’s basic requirements. Levels h to j belong to
the third cycle, with level j providing the basic requirements. In
addition, two red, dotted lines serve as orientation for students’
competence levels at the end of grades 4 (i.e., level f) and 8 (i.e.,
level j, which simultaneously represents the basic requirements
of cycle 3). Thus, the curriculum contains detailed descriptions
for distinct competencies and levels, as well as references to
minimal standards for certain school grades. As such, it serves as
an ideal basis (i.e., the content framework) for developing items
to assess students’ ability formatively at various points in time
during their compulsory school years.

Test Designs for Vertical Scaling
To establish a vertical measurement scale (i.e., a vertical IRT
scale), items reflecting the content framework need to be
calibrated based on response data from students from the
target grade groups. Kolen and Brennan (2014, pp. 431–434)
distinguish between three different test designs for collecting
these data: (1) equivalent group designs, (2) common item
designs, and (3) scaling test designs. In equivalent group
designs, groups with equivalent ability distribution within a
school grade are randomly assigned to answer items related
to their own, adjacent lower, or adjacent higher grade. The
linking within each grade is based on the assumption that
all groups have comparable ability distributions. The linking
between grades is based on items administered to two adjacent
grades. Administering identical items to students from adjacent
grades is the basic idea of common item designs, the second
design type. The advantage of this design type is that it
does not require equivalent groups, only common items (i.e.,
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FIGURE 1 | Extract from the curriculum Lehrplan 21: Example of a mathematics competency and a description of its competence levels. Orange, blue, and green

frames indicate the curriculum’s three cycles: cycle 1 = kindergarten through second grade; cycle 2 = third through sixth grades; cycle 3 = seventh through ninth

grades. Gray levels refer to the basic requirements within a cycle, and red, dotted lines serve as orientations at the ends of fourth and eighth grades. From D-EDK

(2016a) Copyright 2016 by Deutschschweizer Erziehungsdirektoren-Konferenz. Reprinted with permission.

linking items), to link several item blocks. Linking items serves
not only to establish a link between two grades, but also to
align overlapping item blocks within one grade. Scaling test
designs, the third design type, is similar to common item
designs to the extent that students from different school grades
solve identical items. However, when applying a scaling test
design, common items are shared not only between adjacent

grades. Instead, one block of items, namely the scaling test,
is administered to all involved grades. Besides the scaling
test, students from each grade answer items related to their
specific grade.

Of these three designs, scaling test designs are the most
consistent with a domain definition of growth and are the
first choice in such a context from a theoretical perspective
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(Kolen and Brennan, 2014). In contrast, common item designs
are the easiest to implement in practice under the condition
that it is reasonable to administer the same items to students
from adjacent grades from a content perspective (Kolen and
Brennan, 2014). Equivalent group designs require more complex
administration procedures within one school grade to ensure
samples with equivalent ability distributions. Scaling test design
requires that identical items be administered to students from
even more school grades, which is difficult to justify from a
content perspective if the target population spans seven school
years, as in our case.

Vertical Scaling Based on IRT Methods
After administering the items to students by means of the
data collection designs described above, the items need to be
calibrated to establish a vertical measurement scale. Within the
context of the Rasch model, item calibration refers to establishing
model fit and estimating the difficulty parameter, βi, of an item
i based on response data by means of maximum likelihood
estimation procedures (Vale and Gialluca, 1988; Eggen and
Verhelst, 2011). Generally, two different procedures are used to
link IRT-based item difficulty parameters to a common vertical
scale across multiple grades: concurrent and grade-by-grade
calibration (Briggs and Weeks, 2009; Kolen and Brennan, 2014).
Under the concurrent procedure (Wingersky and Lord, 1983),
all item parameters are estimated in one single calibration run,
whereby different underlying population-ability distributions
need to be specified for each grade group (DeMars, 2002; Eggen
and Verhelst, 2011). By factoring in the groups’ differences in
ability, this procedure directly maps all item parameters onto
one common scale by means of linking items shared by two
adjacent grades.

In contrast, item parameters are estimated separately for
each grade under the grade-by-grade calibration procedure.
These parameters are then transformed onto one common scale
by means of linear transformations. Different methods allow
for determining the linking constants, of which one of the
most accurate and popular methods is the Stocking and Lord
method (Stocking and Lord, 1983; e.g., Briggs and Weeks, 2009;
Kolen and Brennan, 2014), which determines linking constants
by minimizing differences between the linking items’ item
characteristic curves between two grades. To link parameters
over more than two grades, several transformation steps are
required for grades that are placed further away from the base
grade level.

Previous research comparing concurrent and grade-by-grade
calibration procedures yielded mixed results and did not provide
clear guidance for practical implementation of vertical scales
based on IRT methods. Some studies identified concurrent
calibration as superior to grade-by-grade calibration (e.g., Kim
and Cohen, 1998; Hanson and Béguin, 1999), whereas others
reported the opposite (e.g., Béguin et al., 2000; Ito et al., 2008). In
addition, several studies point out diverse interactions between
the calibration procedure and various other decisions during
the development of the vertical scale, such as the choice of IRT
model, data collection design, number of linking items, or test
specifications (Hanson and Béguin, 2002; Pomplun et al., 2004;

Tong and Kolen, 2007; Briggs and Weeks, 2009; Lei and Zhao,
2012; see also Harris, 2007).

From a theoretical perspective, concurrent calibration might
be superior to grade-by-grade calibration. According to Kolen
and Brennan (2014, p. 444), it “is expected to producemore stable
results because it makes use of all of the available information for
parameter estimation.” Furthermore, the concurrent procedure
is less prone to errors because it does not require the estimation
of linking constants, which can elicit additional estimation
errors, and it is more efficient because it requires only one
calibration run (Briggs and Weeks, 2009). However, Kolen and
Brennan (2014) also listed several arguments that support the
use of grade-by-grade calibration in a practical context (e.g.,
Hanson and Béguin, 2002). First, grade-by-grade calibration has
the advantage of allowing for the direct comparison of item
parameter estimates between two adjacent grades and, thus,
for investigating potential deficiencies in parameter invariance
across school grades. Investigating parameter invariance is also
possible under the concurrent calibration procedure, but it
requires—depending on the calibration software—additional
calibration runs for subsamples of data. Second, separate
calibrations for each grade group are based on smaller and
simpler data matrices than in concurrent calibration, which
includes all available data at once. As a result, the estimation
procedure converges faster, so convergence problems are less
likely. Last but not least, grade-by-grade calibration might be
more robust against the violation of the unidimensionality
assumption because it only considers data from two school grades
(Béguin et al., 2000; Béguin and Hanson, 2001; Hanson and
Béguin, 2002). Thus, separate calibrationmight be the first choice
if the empirical data cannot be perfectly described through the
IRT model.

Against this backdrop, Hanson and Béguin (2002), as well
as Kolen and Brennan (2014), recommended applying both
procedures when developing a vertical scale. Differences between
the two procedures’ outcomesmight help detect serious problems
in the calibration process, such as multidimensionality and, thus,
model misfit (Hanson and Béguin, 2002). However, in the case
of differences between the outcomes of the two procedures, a
decision needs to be made about which procedure to use for the
final scale. Making this decision is very difficult in practice and
requires additional information about the purpose of the scale
or the assessment system (Kolen and Brennan, 2014). Previous
literature on vertical scaling provides limited information on how
to make this decision.

The Present Study
The aim of this study is to validate a vertical Rasch scale and
its underlying scaling decisions for the formative assessment of
students’ ability in mathematics from the third through ninth
grades by contrasting the calibrated items’ empirical difficulties
with the items’ theoretical content-related difficulties derived
from the content framework. In particular, we investigated
the scale’s validity for mapping competency development from
the third through ninth grades, as stated in the curriculum
Lehrplan 21. To this end, we aim to answer the following two
research questions:
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I. Do the item calibration’s empirical outcomes (i.e., item
difficulty estimates) reflect the increasing complexity of the
competence levels represented by the items and, thus, match
the items’ theoretical, content-related difficulties?

II. Does the match between the empirical item difficulty
estimates and the theoretical, content-related item difficulties
differ for items related to different curriculum cycles,
domains, or competencies?

The research questions were addressed by means of correlation
and multiple regression analysis based on data from a cross-
sectional calibration study with third- through ninth-grade
students from Northwestern Switzerland. We assumed a strong
positive relationship between the empirical item difficulty
estimates and content-related item difficulties. Furthermore, we
hypothesized that the relationship strength would be similar
across different curriculum cycles, domains, and competencies.

METHODS

Content-Related Item Difficulty
Our content experts identified 18 out of the 26 different
mathematics competencies from the curriculum Lehrplan 21 (D-
EDK, 2016a) as assessable through computer-based items with
clear answer formats (e.g., multiple choice, short text, drag-
and-drop items). Within these competencies, they identified
competence levels ranging from the basic requirements of cycle
1 to the penultimate or ultimate competence level of cycle 3
as relevant for students in the third through ninth grades. The
number of competence levels within this target range varies
between 5 and 10, resulting in some competence levels that
span a broader part of primary and secondary school than
others. To compare the levels’ relative difficulty over the different
competencies, we aligned the competence levels according to
the basic requirements for cycles 1, 2, and 3 and based on the
orientation lines for the end of grades 4 and 8 (cf. Figure 1).
This procedure’s outcome is a matrix presented in Table 1.
On one hand, this matrix served as a basis for the item
calibration test design, which we describe in more detail in the
next section, and for item development. Item developers were
instructed to construct items that could be clearly assigned to
one competence level each (e.g., MA.1.A.2.f) and, therefore, were
related to one single competency (MA.1.A.2), domain (MA.1.A),
and curriculum cycle (C2). On the other hand, we used thematrix
to translate each competence level into a score on a scale from
1 to 11, which served as a measure of content-related difficulty
(CRD) for our analyses (see Table 1, last row). Competence
levels spanning more than one scale unit were represented by
the underlying scale units’ mean (e.g., CRD = 4.5 for level f of
competency MA.1.A.2).

Calibration Design
Common Item Design
To establish a vertical scale for measuring students’ competence
levels in mathematics from the third through ninth grades,
we developed a common item design, which included 520
mathematics items representing the 18 competencies described

in Table 1. Table 2 provides a macro-level design overview.
Generally, we administered a combination of grade-specific
and linking items to each grade, with 240 grade-specific items
administered to one grade only (highlighted in light blue in
Table 2) and 280 linking items administered to two adjacent
grades (highlighted in dark blue in Table 2) to link the various
grades. The design contained one exception to the general
structure. Due to the broad, overlapping ability range within the
eighth and ninth grades, the design disregarded grade-specific
items for the eighth grade for the benefit of a larger amount of
linking items dedicated to both grades.

To reduce the workload for individual students, we further
divided the items dedicated to each grade over five booklets.
Most of the items were included in two booklets, whereas
grade-specific items were included in two booklets within one
grade group, and linking items were included in two booklets
of adjacent grade groups. To balance the design regarding the
number of items per competency, 40 out of the 80 linking
items between the eighth and ninth grades were included in 4
different booklets (see Table 2 for an overview of the number of
observations per item per grade and in total). An extract from
the resulting design is displayed in Table 3. In total, the design
comprised 35 linked booklets with 32 items in each booklet.

Distribution of Content Within Design
Four practical requirements guided content distribution within
the design. First, we aimed to include approximately 29 items
from each of the 18 competencies in the design (i.e., 520
divided by 18 competencies). Second, the number of items
per competence level should correspond to the width of the
competence levels as displayed in Table 1. Third, the booklets
should comprise pairs of items related to the same competency
to prevent constant switching between topics. Last but not least,
each booklet should include as many different competencies as
possible, given the other three requirements. As a result, the
35 booklets comprised, on average, M = 12.457 items of the
domain “number and variable” (SD = 1.379), M = 8.8 items of
the domain “form and space” (SD = 1.828), and M = 10.743
items related to the domain “measures, functions, data, and
probability” (SD = 1.686). Each booklet included, on average,
items related toM= 12.829 different competencies (SD= 1.361),
and each competency was represented by M = 28.889 items
(SD= 4.351).

Item Calibration
Sample
In spring 2017 and 2018, we administered the 35 mathematics
booklets to a sample of 2,733 students from schools in
Northwestern Switzerland. The mathematics booklets were
available for teachers besides other assessment templates in a first
version of the computer-based assessment system MINDSTEPS
(Tomasik et al., 2018). Teachers were invited to administer
the booklets to their students during school lessons to support
the calibration of the system’s item pool. In line with the
American Psychological Association’s Ethical Principles and
Code of Conduct, as well as with the Swiss Psychological
Society’s Ethical Guidelines, written informed consent from
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TABLE 1 | Overview of 18 mathematics competencies from curriculum Lehrplan 21 and the alignment of their competence levels with the scale for CRD.

Grades 3 4 5 6 7 8 9

Curriculum cycles 1 2 3

Domains Competencies BR Orientation BR Orientation BR

MA.1 MA.1.A.2 Counting, ordering, estimating c d e f g h i j

MA.1.A.3 Addition, subtraction, multiplication, division,

exponentiation

b c d e f g h i j

MA.1.A.4 Terms and equations, principles, and rules c d e f g h i j k l

MA.1.B.1 Numbers and operations c d e f g h i j k l

MA.1.B.2 Verification of results c d e f g h i j k

MA.1.C.1 Calculation pathways c d e f g h i

MA.1.C.2 Generalization of patterns c d e f g h i j k

MA.2 MA.2.A.2 Decomposition and composition of figures and

objects

c d e f g h i j

MA.2.A.3 Computation of lengths, surfaces, and volumes b c d e f g h i j

MA.2.B.1 Exploration of lengths, surfaces, and volumes c d e f g h i j k

MA.2.C.3 Geometric figures and objects in different

positions

c d e f g

MA.2.C.4 Coordinate systems b c d e f g h i j

MA.3 MA.3.A.2 Variables c d e f g h i j k

MA.3.A.3 Relationships b c d e f g h i j

MA.3.B.2 Statistics, combinatorics, and probability a b c d e f g

MA.3.C.1 Data collection, ordering, presentation,

analysis, and interpretation

b c d e f g h i j

MA.3.C.2 Mathematization of situations and verification of

results

b c d e f g h i

MA.3.C.3 Terms, formulas, equations, tables c d e f g

Content-related difficulty (CRD) 1 2 3 4 5 6 7 8 9 10 11

Competence levels were aligned based on the basic requirements’ (BR) definition for each cycle and the orientation lines for cycles 2 and 3 (cf. Figure 1). The description of the

competencies represents a simplification of the original descriptions, which can be found in the curriculum (D-EDK, 2016a). MA.1 = “number and variable,” MA.2 = “form and space,”

and MA.3 = “measures, functions, data, and probability”.

students and their parents was not required because this
study was based on the assessment of normal educational
practices and curricula in educational settings (i.e., solving
a computer-based mathematics assessment at school; Swiss
Psychological Society, 2003; American Psychological Association,
2017). Given that the assessments were very low-stakes for
students and teachers, we excluded students with a high
percentage of missing responses (i.e., students who did not
answer one-third or more of the items presented to them). This
yielded a calibration sample of N = 2,436 students. Table 4
displays the original sample size per grade, the percentage of
students excluded prior to the calibration due to too many
missing responses, as well as the size of the final calibration
sample per grade in total, for grade-specific items and for
linking items.

Calibration Procedures
The computer-based assessment system automatically scored
students’ responses, with wrong or omitted responses scored as
0, and correct responses scored as 1. To investigate parameter
invariance across school grades and to detect possible calibration
problems (Hanson and Béguin, 2002; Kolen and Brennan,
2014), we used both concurrent and grade-by-grade calibration
procedures to generate marginal maximum likelihood (MML)

estimates of the item parameters from the Rasch model (Rasch,
1960). For both procedures, we used the software package TAM
(Kiefer et al., 2016) within the development environment R
(R Core Team, 2016). First, the dichotomized response data
were calibrated concurrently over all school grades. Separate
ability distributions were estimated for each school grade to
ensure unbiased parameter estimation (DeMars, 2002; Eggen
and Verhelst, 2011). The mean of the sixth-grade population
(i.e., the center of the vertical scale) was constrained to 0.
Second, the response data were calibrated separately for each
school grade. All item parameters from this grade-by-grade
calibration were subsequently transformed onto the sixth-grade
scale using the characteristic curve transformation method by
Stocking and Lord (1983, see also Kolen and Brennan, 2014;
González and Wiberg, 2017). The transformation resulted in two
item difficulty parameters for each linking item. By means of the
unit-weighted average method (McKinley, 1988), we combined
the two difficulty estimates for each linking item into one
single parameter.

Outcome differences from the two calibration procedures
would indicate multidimensionality, thereby suggesting scale
instability (e.g., Béguin and Hanson, 2001). However, in
our study, the two procedures’ results were very similar
and did not indicate any technical problems regarding item
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TABLE 2 | Macro-level common item design.

Samples per grade N of obs. per item

Target grade level 3 4 5 6 7 8 9 Per grade Total

3 60 2 2

3–4 40 1 2

4 40 2 2

4–5 40 1 2

5 40 2 2

5–6 40 1 2

6 40 2 2

6–7 40 1 2

7 40 2 2

7–8 40 1 2

8–9 a 40 2 4

8–9 b 40 1 2

9 20 2 2

Grade-specific items are highlighted in light blue; linking items are highlighted in dark blue.

calibration. The item difficulty parameters resulting from the
final calibration correlated with r = 0.999 over the entire
item pool. Furthermore, Figure 2 shows the population means,
estimated by means of the weighted maximum likelihood
(WML) method proposed by Warm (1989), and the related
95% confidence interval based on the final calibration run for
the concurrent and grade-by-grade calibration for each of the
seven school grades. Both procedures resulted in similar trends
for the development of the mean ability from the third to
the ninth grades with a steep increase in mathematics ability
throughout primary school, followed by a decreased ability
progression throughout secondary school. Differences in the
groups’ mean ability between the two procedures were largest
for the third grade (i.e., Mconc = −3.439; SEconc = 0.060,
Mgrade = −3.557, SEgrade = 0.059), decreased from the fourth
to the sixth grade (i.e., both calibrations’ reference grade),
and were very small for all secondary school grades (i.e., the
seventh to ninth grades). None of the differences was statistically
significant.We concluded from these findings that the established
unidimensional vertical Rasch scale was a stable scale from a
psychometric perspective.

Item Analysis
To investigate whether the items fit a unidimensional vertical
Rasch scale, we analyzed, for each item, the number of
observations and response patterns, item discrimination, item
fit to the overall Rasch model, and parameter invariance
across school grades. We defined four criteria for identifying
problematic items, which we excluded from the final vertical
scale. First, items with equal to or less than three correct or
incorrect responses were excluded because such a low variation
within the response pattern would result in large standard errors
in the particular item’s difficulty estimate. Moreover, the low
variation might indicate a large mismatch between the item’s
target difficulty as estimated by the content experts during test
development and the item’s true difficulty. Second, we excluded

items with a discrimination of rit ≤ 0.10. Third, item fit was
analyzed based on the concurrent calibration by means of the
root mean square deviation (RMSD), a standardized index of the
difference between the expected and observed item characteristic
curve (Oliveri and von Davier, 2011). The RMSD was calculated
separately for each school grade. For linking items assigned
to two school grades, we additionally computed the weighted
root mean square deviation (WRMSD; von Davier et al., 2016;
Yamamoto et al., 2016). An RMSD value of 0 indicates a perfect
fit of the item with the model, whereas higher values indicate
a poorer fit. In this study, we rejected items with a MaxRMSD
> 0.20 (i.e., with RMSD > 0.20 in at least one school grade),
as well as linking items with a WRMSD > 0.20. Fourth, we
investigated parameter invariance (e.g., Rupp and Zumbo, 2016)
over school grades by comparing linking items’ grade-specific
item difficulty estimates with grade-by-grade calibration. For
each linking item set (e.g., linking items between the third and
fourth grades), we plotted a 99% confidence interval based on
each item pair’s mean difficulty, each pair’s mean standard error,
and the item set’s overall mean for each of the two grades (cf.
Luppescu, 1991). Items that fell outside the 99% confidence

band were excluded. In addition, we computed the Pearson
correlation coefficient between the difficulty estimates related

to the two grades. After excluding all misfit items based on
these four criteria, we recalibrated the remaining items. This
procedure was repeated until all the remaining items fulfilled our
evaluation criteria.

In total, we excluded 48 of the 520 items from the final
calibration (i.e., 9.2% of the original item pool), with 18 of
these excluded because of low variation in the response data
(i.e., number of correct or incorrect responses ≤3). These items
were either too easy or too difficult for the target population
and, thus, could not be estimated accurately. Furthermore, 10
items were excluded because they discriminated very badly
between low-ability and high-ability students (i.e., rit ≤ 0.10),
nine indicated large item misfit (i.e., WRMSD ≥ 0.20 or
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TABLE 3 | Extract of micro-level common item design.

Booklets

Grade 3 Grade 4 Grade 5…

Target grade

level

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

3–4 8 8

8 8

8 8

8 8

8 8

4 8 8

8 8

8 8

8 8

8 8

4–5 8 8

8 8

8 8

8 8

8 8

5 8 8

8 8

8 8

8 8

8 8

…

Total 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

Grade-specific items are highlighted in light blue; linking items are highlighted in dark blue.

TABLE 4 | Overview of the calibration sample per grade: total sample, percentage

of excluded students, and final calibration sample in total, for grade-specific items

and for linking items.

Grade Ntotal %excl Ncalib Ncalib grade Ncalib link

3 284 13.4% 246 98.4 49.2

4 215 21.9% 168 67.2 33.6

5 173 13.3% 150 60.0 30.0

6 392 8.7% 358 143.2 71.6

7 465 7.7% 429 171.6 85.8

8 667 10.2% 599 239.6 119.8

9 537 9.5% 486 194.4 97.2

Total 2,733 10.9% 2,436 – –

Ncalib of the grade-specific and the linking items was calculated based on the design

presented in Table 2. %excl , percentage of excluded students with a percentage of

missing responses >1/3 of the total test length; Ncalib grade, calibration sample for grade-

specific items (i.e., Ncalib/5 · 2); Ncalib link, calibration sample for linking items in the

particular grade (i.e., Ncalib/5).

MaxRMSD ≥ 0.20) in the first calibration run, and two
indicated large item misfit after recalibration in the second
and third calibration runs. The item parameters for adjacent

grade groups were generally very highly correlated, indicating
parameter invariance across grades. The lowest correlation was
found between the fourth and fifth grades (r = 0.816), and
the highest correlation was found between the eighth and
ninth grades (r = 0.962). Nine linking items were excluded
due to a large difference between the two grade-specific
difficulty parameters.

Four calibration runs were required before all remaining

items showed satisfying values in the four evaluation criteria.
Table 5 provides an overview of selected descriptive statistics

from the final item pool. As shown in Table 5’s third column,

item exclusion was rather evenly distributed over the different
curriculum cycles and domains, whereas the percentage of

excluded items varied between 7% for the domain MA.1 (i.e.,
“number and variable”) and 11% for the domainMA.2 (i.e., “form
and space”). As for competence levels, we excluded between 0
and 25% of the original items. The largest number of items
(i.e., eight) had to be excluded for competency MA.3.C.2 (i.e.,
“mathematization of situations and verification of results”). As
indicated in Table 5, the items related to competency MA.3.C.2
also had the highest mean difficulty (Mβ = −0.022), the largest
variation in difficulty (SDβ = 3.564), and the largest mean
standard error of item difficulty [MSE(β) = 0.320] of all 18
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FIGURE 2 | Estimated population means based on the final calibration run for the concurrent and grade-by-grade calibrations, including the 95% confidence interval.

competencies. Furthermore, the excluded items were related to
all seven target grades, so they varied substantially in their CRD
(MCRD = 5.083, SDCRD = 2.396, MinCRD = 1, MaxCRD = 11).
The remaining 472 items covered 117 of the 119 competence
levels across all 18 competencies. Only two competence levels,
which were represented by three items in total in the original
item pool, were no longer covered by the final item pool (i.e.,
MA.2.A.3.f and MA.3.C.1.c). We argue that the exclusion of
these two competence levels is acceptable given the large number
of competencies covered in relation to the limited size of the
item pool.

In sum, a satisfying number of items (i.e., 472) fit well into
the established vertical Rasch scale, and the scale covered all
relevant domains, competencies, and difficulty levels within the
mathematics curriculum’s two target cycles.

Data Analysis
Given that the two calibration procedures’ outcomes were very
similar, we used only the parameters from the concurrent
calibration in our analyses for validating the vertical scale from
a content perspective. First, we investigated the relationship
between the difficulty estimates from the final scale and the CRD
by means of Pearson product-moment correlation coefficients to
explore the scale’s validity from a content perspective. Because of
our study’s relatively small sample sizes, we used a simulation-
based approach to factor in the estimated difficulty parameters’
error when calculating the correlations. Namely, we followed
five steps:

1. We specified a normal distribution Ni(β̂i, SD[β̂i]) for each
item i, in which β̂i refers to the difficulty parameter of item

i from the calibration, and SD(β̂i) refers to the standard
deviation calculated based on the standard error of β̂i.

2. We randomly drew k = 10,000 samples Sik of size ni from Ni,
in which ni was equal to the number of observed responses for
item i.

3. For each Sik, we calculated the estimate β̂∗ik as the mean of Sik,
and we stored these estimates in a matrix with i× k elements.

4. For each of the estimates’ k samples, we computed the
correlation rk between the estimated difficulty parameters and
the CRD, as well as the related p value pk.

5. Finally, we calculated the estimates r∗ and p∗ as the mean
and related standard errors SE(r∗) and SE(p∗) as the standard
deviation of rk and pk over the k samples; r∗ and p∗ were
computed not only over the total item pool, but also separately
for each curriculum cycle, domain, and competency.

With this approach, we were able to reproduce β̂i and SE(β̂i).
For each item, β̂∗i (i.e., the mean over β̂

∗

ik) corresponded to β̂i,

and SE(β̂
∗

i ) (i.e., the standard deviation of β̂
∗

ik) corresponded to

SE(β̂i), resulting in correlations of r = 1.00. To compare the
resulting correlation coefficients between cycles1, domains, and
competencies, we performed omnibus tests (Paul, 1989), as well
as subsequent range tests (Levy, 1976), by means of the computer
program INCOR (Silver et al., 2008).

Second, the variation in item difficulty within each
CRD category was investigated by means of boxplots and

1For the correlation and multiple regression analyses, we combined cycles 1 and

2 that represented primary school, whereas cycle 3 alone represented secondary

school. Cycle 1 was only represented by one competence level per competency in

our study.
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TABLE 5 | Final item pool’s descriptive statistics.

N. items N. observations Item difficulty β SE of β

Curriculum level Nfinal %excl Mdn IQR M SD M SD

Overall 472 9% 127.0 81.0–192.5 −0.895 2.172 0.247 0.084

Per cycle

C1 and C2 304 10% 86.0 68.0–111.0 −1.715 1.929 0.274 0.075

C3 168 9% 208.0 170.0–228.0 0.589 1.766 0.196 0.077

Per domain

MA.1 188 7% 127.0 83.0–194.0 −1.083 2.122 0.242 0.086

MA.2 126 11% 111.0 79.0–181.0 −0.824 2.098 0.250 0.084

MA.3 158 10% 116.0 79.5–187.0 −0.729 2.283 0.249 0.083

Per competency

MA.1.A.2 29 3% 132.0 83.0–206.0 −1.760 2.027 0.246 0.084

MA.1.A.3 32 6% 149.0 86.0–213.8 −1.341 2.088 0.228 0.069

MA.1.A.4 25 11% 96.0 69.0–165.0 −0.747 2.008 0.263 0.098

MA.1.B.1 24 8% 109.5 87.0–162.8 −1.125 2.144 0.244 0.082

MA.1.B.2 27 4% 90.0 74.0–175.5 −1.036 1.633 0.239 0.064

MA.1.C.1 22 12% 127.0 82.3–175.0 −0.602 1.825 0.225 0.085

MA.1.C.2 29 6% 145.0 88.0–192.0 −0.787 2.829 0.248 0.113

MA.2.A.2 26 4% 106.0 75.3–178.3 −1.403 1.773 0.237 0.083

MA.2.A.3 27 10% 121.0 85.5–219.5 −0.491 2.967 0.257 0.083

MA.2.B.1 19 17% 96.0 76.0–152.0 −1.032 2.080 0.256 0.077

MA.2.C.3 22 15% 104.5 70.3–162.8 −0.651 1.697 0.270 0.091

MA.2.C.4 32 11% 127.0 91.0–197.8 −0.629 1.704 0.237 0.086

MA.3.A.2 33 3% 149.0 74.0–200.0 −1.124 2.193 0.236 0.086

MA.3.A.3 28 7% 144.0 84.0–180.8 −0.155 2.271 0.241 0.091

MA.3.B.2 29 9% 144.0 86.0–208.0 −0.548 1.500 0.233 0.063

MA.3.C.1 26 13% 130.0 72.5–178.3 −1.136 1.711 0.222 0.061

MA.3.C.2 24 25% 96.0 69.0–151.5 −0.022 3.564 0.320 0.083

MA.3.C.3 18 0% 90.0 81.0–105.0 −1.540 1.776 0.261 0.080

Nfinal , number of items in the final item pool; %excl , percentage of excluded items from the original item pool; Mdn/IQR, median and interquartile range of number of observations per item.

scatterplots. A boxplot was used to illustrate the general
variation in item difficulty, and several scatterplots were used
to visualize the relationship between item difficulty and CRD
at different curriculum levels (i.e., per cycle, per domain, and
per competency).

Finally, we performed three multiple linear regression
analyses to investigate possible interaction effects between CRD
and (1) curriculum cycles1, (2) domains, and (3) competencies
on the prediction of the empirical item difficulty parameters.
Similarly, for estimating correlation coefficients, we also used a
simulation-based approach to factor in the estimated difficulty
parameter errors for the regression analyses. Steps 1 to 3
were identical to the procedure described above. In step 4,
we ran the multiple linear regressions for each of the 10,000

samples of β̂
∗

ik and computed the regression parameters (i.e.,

adjusted R2k, Fk and the related p value pFk, Bk and the
related p value pBk). In step 5, we then calculated the adjusted
R2

∗
, F∗, p

∗

F , B∗, and p
∗

B as the mean and related standard
errors as the regression parameters’ standard deviation over
the k samples.

RESULTS

Overall Relationship Between Item
Difficulty and CRD
To validate the vertical math scale from a content perspective
and to address our first research question, we investigated the
correlation between the empirical item difficulty estimates from
the concurrent calibration and the CRD, as defined based on
the matrix in Table 1, at different curriculum levels. Table 6
summarizes the number of itemsN per analysis, the estimates for
the Pearson correlation coefficients r∗, and the related standard
errors SE(r∗) based on the simulation, as well as the estimated
p values p∗ for the correlation coefficients and their standard
errors SE(p∗).

In line with our hypothesis, we found a significantly strong

positive correlation of r∗
(472)

= 0.672 with p∗ < 0.001 between

the CRD and the difficulty parameters from the concurrent

calibration over the whole item pool [SE(r∗) = 0.004; SE(p∗)
= 0.000]. Overall, items related to more advanced competence

levels of the curriculum had higher difficulty estimates than items
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TABLE 6 | Estimated pearson correlation coefficients between CRD and difficulty

estimates from the concurrent calibration over all items, per cycle, per domain,

and per competency.

Curriculum level N r* SE(r*) p* SE(p*)

Overall 472 0.672 0.004 0 0

Per cycle

C1 and C2 304 0.622 0.007 0 0

C3 168 0.220 0.008 0.004 0.002

Per domain

MA.1 188 0.706 0.006 0 0

MA.2 126 0.603 0.009 0 0

MA.3 158 0.707 0.006 0 0

Per competency

MA.1.A.2 29 0.742 0.014 0 0

MA.1.A.3 32 0.741 0.013 0 0

MA.1.A.4 25 0.586 0.025 0.002 0.001

MA.1.B.1 24 0.670 0.020 0 0

MA.1.B.2 27 0.701 0.022 0 0

MA.1.C.1 22 0.823 0.016 0 0

MA.1.C.2 29 0.742 0.012 0 0

MA.2.A.2 26 0.626 0.019 0.001 0

MA.2.A.3 27 0.827 0.010 0 0

MA.2.B.1 19 0.433 0.024 0.066 0.017

MA.2.C.3 22 0.179 0.029 0.430 0.077

MA.2.C.4 32 0.636 0.022 0 0

MA.3.A.2 33 0.784 0.013 0 0

MA.3.A.3 28 0.784 0.017 0 0

MA.3.B.2 29 0.402 0.029 0.033 0.014

MA.3.C.1 26 0.746 0.017 0 0

MA.3.C.2 24 0.894 0.008 0 0

MA.3.C.3 18 0.734 0.028 0.001 0.001

r* values significant at the 5% level under consideration of SE(p* ) are printed in bold.

related to more basic competence levels. This finding is also
supported by Figure 3, which illustrates the difficulty parameters’
distribution within each CRD category over all competencies
through boxplots. At the top of Figure 3, the different colors
represent the three curriculum cycles. The boxplots show a
considerable overlap of difficulties between the different CRD
categories. Nevertheless, the boxplots for low CRD categories
are generally located lower on the difficulty scale than those
for higher ones, reflecting the positive correlation between the
empirical and theoretical difficulties reported in Table 6.

Relationship Between Item Difficulty and
CRD per Curriculum Cycle
Besides general correlation, we were also interested in the
correlation between item difficulty and CRD within the
curriculum’s different cycles, domains, and competencies (see the
second research question). Contrary to our hypothesis, Figure 3
indicates that the correlation between the difficulty estimates and
CRD was significantly stronger for cycles 1 and 2 (i.e., primary
school) than for cycle 3 (i.e., secondary school). The estimated
correlation coefficients per curriculum cycle reported in the

top part of Table 6 confirmed this assumption: The estimated
correlation coefficients were r∗(304) = 0.622 (p∗ < 0.001) and
r∗(168) = 0.220 (p∗ < 0.01) for primary school and for secondary
school, respectively. The standard errors of r∗ and p∗, estimated
based on the simulations, were small and, thus, did not affect
the interpretation of the results (see Table 6). Further analysis
indicated that the correlation between the difficulty estimates
and CRD within primary school was significantly stronger than
that within secondary school [X2

C(F) = 26.157, p > 0.001; cf.

(Paul, 1989)]. In line with this finding, the regression lines of the
difficulty estimates and each cycle’s CRD indicate an interaction
effect from CRD and the curriculum cycle on the estimated
item difficulty parameters (see the left graph of Figure 4). The
multiple regression analysis results presented in Table 7 also
strengthened this finding. We found a significant regression
equation [adjusted R2

∗
= 0.461, F∗(3, 468) = 135.064, p∗ < 0.001],

which included a significant negative interaction effect fromCRD
and the curriculum cycle on item difficulty (B∗ = −0.357, p∗ <

0.01). In addition, we found significant positive main effects from
CRD (B∗ = 0.697, p∗ < 0.001) and the curriculum cycle2 (B

∗

C3
= 2.204, p∗ < 0.05). Taken together, we concluded from these
results that the vertical scale better represented the competencies
stated in the curriculum for cycles 1 and 2 (i.e., primary school)
than for cycle 3 (i.e., secondary school).

Relationship Between Item Difficulty and
CRD per Curriculum Domain
The middle part of Table 6 includes the correlation between
CRD and item difficulty for each of the three curriculum
domains. All three correlations were statistically significant (p∗

< 0.001), and the related estimated standard errors, SE(r∗)
and SE(p∗), were negligibly small (see Table 6). The correlation
was slightly weaker for the domain MA.2 (i.e., “form and
space”) with r∗(126) = 0.603 than for the other two domains,
MA.1 (i.e., “number and variable”) and MA.3 (i.e., “measures,
functions, data, and probability”), with r∗(188) = 0.706 and r∗(158)
= 0.707, respectively. However, in line with our hypothesis,
the differences between the correlation coefficients were not
statistically significant (X2

C(F) = 3.040, p = 0.219). Similarly, the

graph on the right in Figure 4 shows that the three domains’
regression lines are rather parallel and, thus, do not indicate any
interaction effect from CRD and the domain on item difficulty.
Moreover, a significant regression equation was found for the
multiple regression analysis of CRD and the domain on item
difficulty [adjusted R2

∗
= 0.462, F∗(5, 466) = 82.059, p∗ < 0.001],

which indicated that neither the interaction effects of CRD and
the domains3 (B

∗

CRD×MA.2 = −0.079, p∗ = 0.283; B
∗

CRD×MA.3 =

0.043, p∗ = 0.521) nor the domains’ main effects were statistically
significant (B

∗

MA.2 = 0.823, p∗ = 0.061; B
∗

MA.3 = 0.367, p∗ =

0.362; see Table 7). CRD was the only significant predictor of
item difficulty in this model (B∗ = 0.581, p∗ < 0.01). Thus, we
concluded from these findings that the vertical scale represented
all three domains of the curriculum equally well.

2The combination of cycles 1 and 2, representing primary school, served as a base

level for the dummy coding.
3MA.1 served as a base level for the dummy coding.
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Relationship Between Item Difficulty and
CRD per Competency
Finally, as a third aspect within our second research question,
we investigated the correlation between CRD and item difficulty
for each of the 18 competencies represented by the vertical
scale. The correlation coefficients, which we estimated based
on our simulations, are displayed at the bottom of Table 6.
The correlations varied between r∗(22) = 0.179 (p∗ = 0.430)
for competency MA.2.C.3, referring to “geometric figures and
objects in different positions,” and r∗(24) = 0.894 (p∗ < 0.001)
for competency MA.3.C.2, referring to “mathematization of
situations and verification of results.” In total, 15 of the 18
correlation coefficients were statistically significant at the 5%
level when considering the standard errors of the p values
SE(p∗), which we estimated based on our simulations [i.e.,
p∗ + 1.96 × SE(p∗) < 0.05]. Besides competency MA.2.C.3,
we found insignificant correlations for competencies MA.2.B.1,
referring to “exploration of lengths, surfaces, and volumes” [r∗(19)
= 0.433, p∗ = 0.066], and MA.3.B.2, referring to “statistics,
combinatorics, and probability” [r∗(29) = 0.402, p∗ = 0.033,
SE(p∗) = 0.014]. The omnibus test for correlations’ equality
indicated that significant differences existed between the different
competencies’ correlation coefficients [X2

C(F) = 31.261, p < 0.05].

Subsequent range tests (Levy, 1976) showed that the correlation
within competency MA.2.C.3 was significantly lower than all the
15 significant correlations (p < 0.05). The other two insignificant
correlations of competencies MA.2.B.1 and MA.3.B.2 were
significantly lower than all correlations corresponding to r >

0.701 and r > 0.670, respectively (p < 0.05; i.e., 10 and 11
competencies, respectively, of the 18 competencies). On the other
hand, the correlation of competency MA.3.C.2 (i.e., the highest
of all the correlations) was significantly higher than correlations
corresponding to r < 0.746 (p < 0.05), which applied to 13
of the 18 competencies. Furthermore, the range tests showed
that the correlation of competency MA.1.B.1 (i.e., “numbers and
operations”), which showed an average correlation between item
difficulty and CRD [r∗(24) = 0.670, p∗ < 0.001], only significantly
differed from the correlations of competencies MA.2.C.3 and
MA.3.C.2 (i.e., the competencies with the lowest and highest
correlations; p < 0.05).

Furthermore, we regressed CRD and the competencies on

item difficulty. To facilitate the interpretation of the results
from this multiple regression analysis, we specified competency

MA.1.B.1 (i.e., the competency with an average correlation

coefficient) as the base level for the competency dummy coding.
This specification allowed us to detect competencies that deviated
from the general pattern. As reported in Table 7, the regression
equation was significant [adjusted R2

∗
= 0.528, F∗(35, 436) =

16.033, p∗ < 0.001], including significant negative main effects, as
well as significant positive interaction effects with CRD on item
difficulty for competencies MA.2.A.3, referring to “computation
of lengths, surfaces, and volumes” [B

∗

MA.2.A.3 = −2.508, p∗

< 0.05, SE(p∗) = 0.007; B
∗

CRD×MA.2.A.3 = 0.412, p∗ < 0.05,
SE(p∗) = 0.005] and MA.3.C.2, referring to “mathematization
of situations and verification of results” [i.e., the competency
with the strongest correlation between item difficulty and CRD;

B
∗

MA.3.C.2 = −2.517, p∗ < 0.05, SE(p∗) = 0.005; B
∗

CRD×MA.3.C.2 =

0.743, p∗ < 0.001]. In addition, we found a significant main effect
from CRD (B∗ = 0.510, p∗ < 0.001). All other competencies’
main and interaction effects were not significant.

Figure 5 visualizes the relationship between item difficulty
and CRD within the different competencies of the curriculum.
As a reference, each of the 18 scatterplots includes the regression
line of the “average” competency MA.1.B.1 (gray line) beside
the competency-specific regression line (blue line). The three
competencies’ scatterplots with insignificant correlations (i.e.,
MA.2.B.1, MA.2.C.3, and MA.3.B.2) are highlighted with purely
white backgrounds. All three plots showed considerable overlap
in item difficulty estimates between the different CRD categories,
and the related regression lines had lower slopes than the
regression lines of the other 15 competencies. The plots related
to competencies MA.2.B.1 and MA.2.C.3 indicate, in addition,
that these two competencies were poorly represented within cycle
3. In the curriculum (D-EDK, 2016a), these two competencies’
level descriptions—and especially those related to cycle 3—
are very abstract and complex (e.g., “students can formulate
hypotheses while exploring geometrical relationships”), and
partly refer to additional tools, such as dedicated computer
software (e.g., “students can use dynamic geometry software to
explore geometrical relationships”). Therefore, content experts
only could develop a very limited number of items representing
these levels. Furthermore, the curriculum only states five
very broad competence levels for MA.2.C.3 and only seven
competence levels, including one very broad one within cycle
2, for competency MA.3.B.2 (see Table 1). The equally low
number of CRD categories might not map the variation in
item difficulty sufficiently and, thus, probably does not reflect
the development of students’ competence levels within these
categories either.

The scatterplots of the two competencies with significantmain
and interaction effects according to the regression analysis (i.e.,
MA.2.A.3 and MA.3.C.2) are highlighted in gray in Figure 5.
The regression lines of these two competencies differed from
the general pattern in their steep slopes. On one hand, these
two competencies showed the highest variation in item difficulty
among all the competencies, as indicated by the standard
deviations of β in Table 5. On the other hand, compared
with most of the other competencies, higher CRD and, thus,
more advanced competence levels were related to clearly higher
empirical item difficulties than lower CRD within these two
competencies. This was especially true for competencyMA.3.C.2,
in which all items related to the highest competence level in the
item pool (i.e., level f) had higher item difficulty parameters than
the remaining items. At the same time, the items related to level
MA.3.C.2.f were among the most difficult items of the whole item
pool, which, in turn, explains the high mean and large standard
deviation of item difficulty within this competency compared
with the other competencies (see Table 5).

The slopes of the regression lines of the remaining 13
competencies were comparable with the slope of the regression
line of the reference competency MA.1.B.1. In conclusion, our
findings indicate that 15 of the 18 mathematics competencies
were well-reflected by our vertical scale, whereas we found a
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FIGURE 3 | Boxplots illustrating the distribution of difficulty estimates from the concurrent calibration for each CRD category. C1, C2, and C3 refer to cycles 1, 2, and

3, respectively.

FIGURE 4 | Relationship between difficulty estimates and CRD and related regression lines per cycle (left) and per domain (right).

particularly strong connection between theoretical and empirical
item difficulty for 2 of these 15 competencies.

DISCUSSION

To assess students’ abilities over the course of compulsory
schooling and to evaluate their progress over time, a vertical

measurement scale is essential, which allows for comparing
scores from different measurement occasions (Young, 2006;
Harris, 2007; Briggs, 2013; Kolen and Brennan, 2014). At the
same time, a vertical scale is an important feature for identifying
the most informative items from an item bank to assess students
over a broad ability range (Dadey and Briggs, 2012; Tomasik
et al., 2018), independent of whether the items are selected by
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TABLE 7 | Results from multiple linear regression analyses for predicting empirical item difficulty by CRD and by the curriculum levels cycle, domain, and competencies.

Main effects Interaction effects with CRD

Est* SE(Est*) p* SE(p*) Est * SE(Est*) p* SE(p*)

Model for cycles

Adjusted R2 0.461 0.006

F 135.064 3.122 0 0

Constant −4.372 0.038 0 0

CRD 0.697 0.008 0 0

Cycle (C3) 2.204 0.113 0.017 0.006 −0.357 0.015 0.003 0.001

Model for domains

Adjusted R2 0.462 0.006

F 82.059 1.812 0 0

Constant −4.307 0.051 0 0

CRD 0.581 0.007 0 0

Domain (MA.2) 0.823 0.076 0.061 0.024 −0.079 0.011 0.283 0.070

Domain (MA.3) 0.367 0.069 0.362 0.091 0.043 0.010 0.521 0.100

Model for comp.

Adjusted R2 0.528 0.006

F 16.033 0.371 0 0

Constant −3.717 0.125 0 0

CRD 0.510 0.019 0 0

Comp (MA.1.A.2) −1.558 0.194 0.113 0.046 0.229 0.032 0.205 0.064

Comp (MA.1.A.3) −1.155 0.184 0.221 0.074 0.071 0.026 0.640 0.122

Comp (MA.1.A.4) 0.414 0.202 0.673 0.144 −0.036 0.030 0.812 0.118

Comp (MA.1.B.2) 0.115 0.174 0.862 0.099 −0.025 0.026 0.858 0.097

Comp (MA.1.C.1) −1.268 0.214 0.295 0.082 0.199 0.030 0.300 0.074

Comp (MA.1.C.2) −1.006 0.171 0.261 0.082 0.144 0.024 0.316 0.081

Comp (MA.2.A.2) 0.072 0.163 0.878 0.089 −0.027 0.027 0.856 0.096

Comp (MA.2.A.3) −2.508 0.188 0.013 0.007 0.412 0.028 0.010 0.005

Comp (MA.2.B.1) 1.267 0.168 0.174 0.058 −0.206 0.025 0.211 0.056

Comp (MA.2.C.3) 2.258 0.213 0.049 0.022 −0.344 0.033 0.105 0.034

Comp (MA.2.C.4) 0.639 0.174 0.495 0.118 −0.082 0.025 0.598 0.114

Comp (MA.3.A.2) −0.606 0.158 0.483 0.115 0.077 0.023 0.597 0.110

Comp (MA.3.A.3) −0.460 0.180 0.636 0.131 0.238 0.028 0.152 0.048

Comp (MA.3.B.2) 1.789 0.177 0.065 0.027 −0.274 0.026 0.083 0.030

Comp (MA.3.C.1) −0.113 0.174 0.861 0.101 0.037 0.027 0.818 0.109

Comp (MA.3.C.2) −2.517 0.183 0.009 0.005 0.743 0.032 0 0

Comp (MA.3.C.3) 0.084 0.168 0.873 0.093 0.070 0.028 0.724 0.106

N = 472; Est*, estimate, representing R2* , F*-statistic, and B*-values; comp, competency; Est* values significant at the 5% level under consideration of SE(p*) are printed in bold; base

level for dummy coding: cycle = C1 and C2, domain = MA.1, competency = MA.1.B.1.

a CAT algorithm or manually filtered based on difficulty by
teachers or students. However, the development of a vertical scale
is psychometrically challenging. Several extant studies point to
the complex interactions between the practical context in which
the scale is used and the decisions that researchers need to make
during the development of a vertical scale (e.g., the selection
of the calibration procedure, data collection design, or linking
items; Béguin et al., 2000; Harris, 2007; Tong and Kolen, 2007;
Briggs and Weeks, 2009; Dadey and Briggs, 2012; Keller and
Hambleton, 2013). Given these complex interactions, no clear
general recommendations exist for most scaling decisions (e.g.,
Harris, 2007; Tong and Kolen, 2007; Briggs and Weeks, 2009).

In this study, we described the development of a vertical scale
for the formative assessment of students’ mathematics abilities
from the third through ninth grades based on IRT methods,
and we evaluated this scale from a content-related perspective
regarding the underlying content framework (i.e., the curriculum
Lehrplan 21; (D-EDK, 2014, 2016a,b)). Hence, compared with
most previous studies investigating the development of vertical
scales, we not only looked at the scale’s psychometric properties,
but also considered its validity for measuring the target construct
(i.e., students’ ability in mathematics as described by the
curriculum). For this purpose, we compared the empirical item
difficulties as estimated on the vertical scale with content-related
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FIGURE 5 | Relationship between difficulty estimates and CRD and related regression lines by competency. Bold blue lines = regression lines, gray lines = regression

line of competency MA.1.B.1, white background = competencies with insignificant correlations, and gray background = competencies with significant

interaction effects.

item difficulty estimates based on content experts’ knowledge.
Thanks to our theory-based external validation criterion (i.e., the
items’ content-related difficulty regarding the curriculum), we
were able to validate the specific combination of scaling decisions
that we took during the development of the vertical scale within
our specific application and context.

Results from the item analysis indicated a satisfactory fit
for more than 90% of the items from the initial item pool
with the final unidimensional vertical Rasch scale. Given
the Rasch model’s strong assumptions, it is not surprising
that we had to exclude some items during the calibration
process for establishing the scale. Nevertheless, we did not find
any systematic patterns of item exclusion across curriculum
cycles or domains, and the final scale included items from
all relevant competencies. Furthermore, we found strong
correlations between item difficulty parameters from adjacent
school grades, as well as between the item difficulty parameters
from concurrent and grade-by-grade calibration procedures.
These findings confirm the unidimensionality and, thus, the

scale’s stability across grades from a psychometric perspective
(Hanson and Béguin, 2002; Kolen and Brennan, 2014).

From a content perspective, we found a strong positive
correlation between the empirical item difficulty parameters
on our vertical Rasch scale and the content-related item
difficulties based on the mapping of the items to the curriculum’s
competence levels by the content experts who developed the
items. As intended, items related to more advanced competence
levels were generally represented by higher item difficulties on
the vertical scale. However, we also found large variations in item
difficulty within each content-related item difficulty category
and, therefore, a strong overlap in item difficulty variation
across the different content-related difficulty categories. At the
same time, the large variation in item difficulty within the
content-related item difficulty categories corresponds to the large
variation in student ability within grades. In their longitudinal
study investigating the development of mathematics and German
abilities during compulsory school, Angelone et al. (2013, p.
35) found that the standard deviation of student ability in
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mathematics within one grade corresponded to more than twice
the average learning progress per school year (see also Stevens
et al., 2015). Item developers might have mirrored this wide
variation in abilities within a grade by creating items of different
difficulty for single competence levels. However, further studies
are needed to get to the bottom of this assumption.

Further analyses demonstrated a stronger correlation between
empirical and content-related item difficulty for primary school
(i.e., the third through sixth grades, covered in the curriculum by
the end of cycle 1 and the whole of cycle 2) than for secondary
school (i.e., cycle 3), which contradicted our hypothesis and the
vertical scale’s objective. The significant difference in the strength
of the two correlation coefficients implies that the vertical scale
is more representative of the competencies described for primary
school than those related to secondary school. However, we did
not find any indication of multidimensionality in the empirical
vertical scale, nor in our item analysis, nor in the comparison
of the two calibration procedures, which were both in favor of
a unidimensional stable vertical scale. One possible conclusion
could be that the competence levels stated for cycle 3 differ
less in difficulty than those stated for cycles 1 and 2. This
assumption is in line with our finding of a steeper increase
in mathematics ability throughout primary school, followed
by a stagnation in ability progression throughout secondary
school. Extant studies have reported similar learning trajectories
(e.g., Bloom et al., 2008; Angelone et al., 2013; Stevens et al.,
2015; Moser et al., 2017). In particular, competence levels from
cycles 1 and 2 within one competency might reflect competence
development, strictly speaking, whereas competence levels of
cycle 3 might differ in terms of content and complexity, rather
than in pure difficulty (Yen, 1985; Angelone et al., 2013; Moser
et al., 2017). Apart from that, it might also be more difficult
to describe the competencies’ more complex development on
secondary school levels by means of concrete competence
descriptions and to differentiate clearly between distinct levels.
Furthermore, it might be more challenging to create items
targeted at higher competence levels and to predict their true
difficulty (cf. Sydorenko, 2011). Further studies with a stronger
focus on mathematics didactics and competence development
are required to evaluate these hypotheses and investigate
whether the competence levels described for secondary school
fulfill the basic precondition for a unidimensional vertical
scale of a continuous increase in the target competence over
time (Young, 2006).

More detailed analyses related to the curriculum domains
showed no significant differences in the correlation between
empirical and content-related item difficulty across the three
domains. The correlations within the domains were similar and
corresponded to the general overall correlation. We concluded
from these results that the vertical scale satisfactorily represented
all three domains. Similar conclusions could also be drawn
for most of the 18 competencies in our study, which revealed
comparable correlations between empirical and content-related
item difficulty. On the other hand, some findings provided
interesting input for further research. Three selected, rather
abstract and complex curriculum competencies were represented
poorly on the general vertical mathematics scale. At the

same time, 2 of the 18 competencies showed remarkably
strong relationships between empirical and content-related
item difficulty. For one thing, these results might be related
to the various competencies’ content-specific characteristics.
However, they also could be related to our finding that the
vertical scale was less representative in measuring mathematics
ability in secondary- than primary-level students. Creating
difficult items related to higher-level competencies might be
especially difficult for selected competencies, whereas other
competencies might provide better foundations. Unfortunately,
we are unable to investigate these interactions further based
on our data set, which certainly included a large item pool,
but still contained only a limited number of items representing
each competency and, in particular, each of the numerous
competence levels. Therefore, further studies are needed to
replicate our results with a larger item pool, including larger
samples of items for each competence level, thereby allowing
for drawing final conclusions about the causes of the differences
between competencies.

Limitations
Besides the limited size of the sample of items, other limitations
in the present study should be noted. First, our study’s focus
lay in the validation of the empirical, vertical Rasch scale,
whereas we did not question the validity of the competence
levels stated in the curriculum or the representativeness of
the items for their assigned competence levels. Curricula or
content standards, which serve as a theoretical basis for test-
content specifications, often lack empirical validation of the
stated domains, competencies, and competence levels and,
especially, of their development over time (Fleischer et al.,
2013). Thus, studies with a design like ours could also
contribute to the validation of theoretical assumptions about
competence development and the quality of assessment items.
For example, the comparison of empirical and content-related
item difficulty could be used to detect competence descriptions
that do not follow a continuous increase in difficulty over
time, or test items that do not reach the expected empirical
difficulty (i.e., items deviating from the general regression
line between empirical and content-related difficulty) because
they do not fit the underlying content specifications or suffer
from technical problems. Even though it limits interpretation
of the results to some extent that neither the theoretical
framework nor the empirical vertical scale is completely bias-
free, it also refers to a huge opportunity to connect the two
dimensions for reciprocal validation and for gradually improving
both dimensions.

A second limitation of our study is that we only used
limited item formats (i.e., simple dichotomous items suitable
for automated scoring). More advanced item formats, allowing
for the assessment of cognitive processes or interactions, might
contribute to better representing more complex competencies or
competence levels. However, the question arises of whether such
complex competencies are still representable by a unidimensional
vertical scale or whether they would require more complex
measurement models. Further studies are required to answer
these questions.
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Finally, it is also important to note that we developed
a unidimensional vertical scale for assessing general
mathematics ability. By excluding items with large drift
between two age groups, we also might have excluded
selected content areas that develop differently from the
average competencies over the school years (Taherbhai
and Seo, 2013). Therefore, in practice, it is important
to complement formative assessments based on such
a general scale with additional diagnostic assessments
that allow for the detection of growth in very specific
competencies, as well as differences in growth between
competencies (e.g., Betebenner, 2009).

CONCLUSION

In sum, our study emphasizes the benefits of complementing
psychometric and, thus, technical verification with content-
related and, thus, theoretical validation when developing a
vertical scale for measuring students’ abilities across multiple
school grades. Studies related to other subjects might result
in different correlation patterns across different curriculum
levels (i.e., cycles, domains, and competencies). However, the
procedure that we suggested for validating the vertical scale can
be transferred to all subjects for which the curriculum states
a continuous increase in ability or content difficulty. Technical
procedures, such as item analysis and the comparison of different
calibration procedures, helped us identify items with misfit and
underpin the scale’s stability. However, only contrasting the
empirical item difficulties with content-related ones provided
information about the adequacy of our decisions during the
scaling process for a particular practical context and the scale’s
validity in representing the underlying content framework (i.e.,
the curriculum). Therefore, our study points out the importance
of close collaboration and discussion between psychometricians
and content experts to develop valid and, thus, meaningful
vertical scales.
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