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A good match between item difficulty and student ability ensures efficient measurement

and prevents students from becoming discouraged or bored by test items that are too

easy or too difficult. Targeted test designs consider ability-related background variables

to assign students to matching test forms. However, these designs do not consider

that students might significantly differ in ability within the resulting groups. In contrast,

multistage test designs consider students’ performance during test taking to route them

to the most informative modules. Yet, multistage test designs usually include one starting

module of moderate difficulty in the first stage, which does not account for differences in

ability. In this paper, we investigated whether measurement efficiency can be improved by

targeted multistage test designs that consider ability-related background information for

a targeted assignment at the beginning of the test and performance during test taking for

selecting matching test modules. By means of simulations, we compared the efficiency

of the traditional targeted test design, the multistage test (MST) design, and the targeted

multistage test (TMST) design for estimating student ability. Furthermore, we analyzed the

extent to which the efficiency of the different designs depends on the correlation between

the ability-related background variable and the true ability, students’ ability level and their

categorization into an ability group, and the length of the starting module. The results

indicated that TMST designs were generally more efficient for estimating student ability

than targeted test designs and MST designs, especially if the ability-related background

variable correlated high with and, thus, was a good indicator of, students’ true ability.

Furthermore, TMST designs were particularly efficient in estimating abilities for low- and

high-ability students within a given population. Finally, very long starting modules resulted

in less efficient estimation of low and high abilities than shorter startingmodules. However,

this finding was more prominent for MST than for TMST designs. In conclusion, TMST

designs are recommended for assessing students from a wide ability distribution if a

reliable ability-related background variable is available.
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INTRODUCTION

Understanding the purpose of a test and its target population is essential for determining an
appropriate test design. A test for classifying students or a test targeted to a very specific population
needs tomeasure ability most accurately close to specific points along the ability scale. Therefore, an
appropriate test design includes mainly items that provide a large amount of information at these
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specific points. In contrast, tests aiming to assess the ability level
of each student of a diverse target population—such as formative
assessments—require test designs that provide accurate results
over a wide ability range. Often, a single linear test, including
items of varying difficulties, is not appropriate in such a context
because each student is confronted with a relatively high number
of items that do not match his or her ability level. This in turn
results in a low measurement efficiency, and it could also impair
students’ motivation during test taking (Lord, 1980).

In general, two different approaches are used to account for
a broad variation in ability via targeted assignment of items of
varying difficulty (e.g., Mislevy and Wu, 1996). On one hand,
we can consider preliminary information about students’ ability
in order to assign students to matching test forms. In a school
context, preliminary information about the ability level of a
student is often available prior to testing. Students are assessed
in various tests by their teachers and are marked accordingly. In
addition, students are assigned to different grades in school and—
especially in the secondary school level—even to different school
types or performances groups. This information can be used to
divide the target population into ability groups and to determine
matching test forms for each group. However, the disadvantage of
this approach is that ability-related background variables are only
an approximation of the students’ true ability. As a result, some
students might differ greatly from the group mean and, hence,
from the target ability level of the test.

On the other hand, we can assign students to targeted items
or item sets step by step based on their performance during
test taking. In other words, students with a good performance
automatically receive more difficult items, which allows them
to show their full potential, whereas students with a lower
performance automatically receive easier items. This is the basic
idea of computer adaptive tests (CATs; Wainer, 2000a; van der
Linden and Glas, 2010) or multistage tests (MSTs; Yan et al.,
2014b; see also Luecht and Nungester, 1998). Whereas CATs
select each item based on the students’ performance, MSTs
select predefined sets of items (i.e., test modules). MSTs have
become more and more popular in recent years because they
combine the advantages of adaptivity with the advantages of
traditional linear tests. Compared to CATs, MSTs are easier to
develop and implement, and they allow test developers as well
as test takers to review items within a given test module (Yan
et al., 2014a). Therefore, in our paper, we focus on the MST
design as representative of a performance-based item assignment.
A disadvantage of the MST design is that performance-based
assignment is only possible after students have answered an
initial untargeted set of items. This routing or starting module
usually consists of items of moderate difficulty, and the module
is administered to all students independent of their true ability
(Hendrickson, 2007; Yan et al., 2014a; Zenisky and Hambleton,
2014). Hence, the starting module is most likely too easy for some
of the high-ability students or too difficult for some of the low-
ability students within the target population, that is, for students
whose ability largely differs from the population’s mean ability.

Taken together, neither targeted assignments based on
ability-related background variables nor assignments based
on performance ensure that all students receive items that

completely match their true ability. An inappropriate test form
or module measures the ability of the concerned students less
efficiently (Lord, 1980) and might even impair the students’
performance owing to decreased motivation or excessive
demand (e.g., Asseburg and Frey, 2013; Wise, 2014). Therefore,
we extended previous research on efficient test designs by
investigating whether measurement efficiency can be improved
by combining targeted assignment based on ability-related
background variables with performance-based assignments of
test modules of varying difficulty. To this end, we introduced
the targeted multistage test (TMST) design as a new design
type that considers both preliminary ability-related background
information for a targeted assignment at the beginning of the test
and performance during test taking for selecting matching test
modules. By means of simulations, we compared the efficiency
of traditional targeted test designs, MST designs, and TMST
designs for estimating student ability under the Rasch model
(Rasch, 1960). In this way, we not only provided new insights
on the measurement efficiency of the combination of targeted
and performance-based testing (i.e., the TMST design) but also
allowed for comparing the efficiency of targeted test designs with
those of MST designs, and, thus, for contrasting test assignment
based on ability-related background variables vs. test assignment
based on performance. In addition, we explored how different
groups of students—namely, students whose abilities differ from
the mean ability of the total population or of their performance
group—benefit from or are disadvantaged by the three different
design types. Furthermore, we investigated the extent to which
the efficiency of the different designs depends on the degree of
ability distribution overlap of the groups and the starting module
length.

Efficient Measurement Based on Item
Response Theory
As stated by Lord (1980), “an examinee is measured most
effectively when the test items are neither too difficult nor too
easy for him” (p. 150), implying that, ideally, students differing in
ability should be assessed with different test booklets or item sets
of varying difficulty to efficiently measure each student’s ability
(Weiss, 1982). Nonetheless, the resulting test scores should be
directly comparable, even though students worked on different
items included in easy, moderate, or difficult test booklets. Item
response theory (IRT) is a powerful measurement approach that
fulfills this requirement (Kolen and Brennan, 2014). IRT refers
to a family of models that express the probability of a student
solving an item correctly as a function of student ability and
item difficulty (Lord, 1980). For the Rasch model—the simplest
unidimensional IRT model—the probability of a student solving
a specific item correctly is given by

P
(

Xij = 1|θi, βj
)

=
exp(θi − βj)

1+ exp(θi − βj)
= pij , (1)

where θi represents the ability of student i, and βj represents
the difficulty of item j (Rasch, 1960; Rost, 2004). Given this
relationship, student ability and the related standard error can
be estimated by various maximum likelihood procedures.
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Generally, the standard error of the estimated ability of
student i can be approximated as Rost (2004)

SE
(

θ̂i

)

∼
√

1
∑k

j=1 pij
(

1− pij
)

, (2)

where pij corresponds to the probability that student i answers
item j correctly, as defined in equation (1). On one hand, we can
infer from equation (2) that k, which refers to the total number
of items answered by a student, is a crucial factor for estimating
ability accurately according to the Rasch model. On the other
hand, we can deduce from equation (2) that the accuracy of the
ability estimation depends on the relationship of the student’s
ability and the difficulty of the items in a given test, as discussed
earlier. Student ability can be estimatedmost accurately under the
Rasch model if the difficulty of the items in the test corresponds
to the ability of the student (Lord, 1980; Rost, 2004).

In practical settings, test length (i.e., the number of items)
is often predefined according to the available testing time. This
leaves optimization of the relationship between student ability
and item difficulty as the only option for improving the accuracy
of ability estimation and thus for enhancing the efficiency of
a test. As a consequence, the idea of targeted testing arose to
enhance measurement efficiency within a given testing time (e.g.,
Lord, 1971a,b,c, 1980; for a historical overview, see, e.g., Wainer,
2000b; Bejar, 2014).

Designs for Targeted Testing
As discussed earlier, two different approaches are used for
assigning targeted items to students of varying ability levels: (1)
assign students by means of ability-related background variables
to test booklets of varying mean difficulties as in traditional
targeted test designs (Mislevy and Wu, 1996), or (2) adaptively
assign students based on their performance in a first test part to
easy, moderate, or difficult subsequent test parts as in MSTs (Yan
et al., 2014b). In the following, we will describe both test designs
in more detail. In addition, we will elaborate on how to combine
these two approaches to further enhance the targeting and thus
measurement efficiency.

Traditional Targeted Test Designs
Targeted test designs consist of several test booklets of varying
mean difficulties, and students are assigned to the most
informative booklet via ability-related background variables,
such as school grade, exam grade, courses taken, or performance-
related school type (Mislevy and Wu, 1996). Students can
be classified based on such background variables before
test administration. The resulting ability groups are more
homogeneous in terms of abilities than the overall sample.
Subsequently, low-ability groups are assigned to easy test
booklets, whereas high-ability groups are assigned to difficult
test booklets. In an IRT framework, common items (i.e., link
items), or a joint underlying calibrated item bank, ensure that the
outcomes from the different test booklets can be represented on a
single reporting scale for direct comparison (Kolen and Brennan,
2014). Unfortunately, to our knowledge, there are no empirical
studies investigating the efficiency of targeted test designs.

A disadvantage of targeted test designs is that ability-related
background variables are only an approximation of the student’s
true ability. Depending on the reliability of the ability-related
background variable, students might still substantially differ in
ability within one ability group. For performance groups at the
secondary school level as a potential ability-related background
variable, several studies found a large overlap between the
abilities of students assigned to different secondary school types
(e.g., Baumert et al., 2006; Angelone et al., 2013). For average
exam grades, Moser et al. (2011) reported correlations of r =
0.69 and r = 0.70 between exam grade averages at the end of
primary school in language and mathematics and achievement
tests measuring abilities within the same subjects. For high
school, the technical report of the Scholastic Assessment Test
(SAT) referred to correlations around r = 0.50 between SAT
scores and high school grade point averages for both language
and mathematics (College Board, 2017). These findings support
the assumption that an overlap occurs between the ability
distributions of different groups, such that some students from
the lower ability group outperform the students with the lowest
abilities of the higher ability group. Students who largely differ
from the mean ability of the group get an inappropriate test form,
which measures their abilities less efficiently and might impair
their performance due to decreased motivation or excessive
demand (e.g., Asseburg and Frey, 2013; Wise, 2014). Pohl (2013)
raised similar concerns for longitudinal MSTs, where pretest
results serve as a basis for routing to different test forms at
later measurement occasions. In a simulation study, she showed
that correlations below r = 0.70 between the pretest results
and the ability at the later measurement occasion can result
in a significant number of heavily misallocated test forms.
Furthermore, the study showed that the efficiency gains of
longitudinal MSTs increased as the correlations increased when
compared to conventional tests, especially for low-ability and
high-ability students.

MST Designs
MST designs route students based on their performance to
the most informative modules. Usually, they rely on IRT as a
methodological framework for routing as well as for reporting
standardized scores for all possible paths within the MST design
(Weissman, 2014; Yan et al., 2014a). MSTs consist of two or
more test parts (i.e., stages), including multiple modules of
varying difficulty (Hendrickson, 2007; Zenisky et al., 2010; Yan
et al., 2014b). At the end of each stage, predefined routing rules
determine—based on the student’s preliminary performance (i.e.,
based on preliminary ability estimates)—whether a student is
assigned to an easier or more difficult module in the subsequent
stage. Hence, the module assignment is based on objective cutoff
scores and, more importantly, on a preliminary estimate of the
same latent construct as that measured by the test as a whole.
Several studies have highlighted the improved measurement
efficiency of MSTs compared to linear tests for measuring ability
over a wide range (for a general overview, see Hendrickson,
2007; Yan et al., 2014a; Zenisky and Hambleton, 2014). However,
studies that compare the efficiency of MSTs with the efficiency of
traditional targeted tests are missing to our knowledge.
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From their simulation study, (Kim and Plake, 1993) concluded
that the statistical characteristics of the starting module are
significant determinants of an accurate ability estimation in
MSTs. This results from the fact that MST designs usually do not
differ between ability groups in the first stage but start with a
single general starting module for the entire population, which
mostly includes items of moderate difficulty (Hendrickson, 2007;
Yan et al., 2014a; Zenisky and Hambleton, 2014). The purpose
of the starting module is twofold (Lord, 1971b; Verschoor and
Eggen, 2014): (1) it collects information for assigning students
to the most informative module in the subsequent stage, and
(2) it is part of the test itself with the aim to measure student
ability as accurately as possible. A general moderately difficult
starting module well fulfills the first but not necessarily the
second purpose because it measures low ability and high ability in
students less efficiently than the subsequent targeted modules. As
already elaborated on for traditional targeted designs, low-ability
and high-ability students might also be intimidated, frustrated, or
bored due to the overload or underload, respectively, through the
suboptimal MST modules (e.g., Asseburg and Frey, 2013; Wise,
2014).

The degree of discrimination through a suboptimal starting
module depends on the length of the starting module in relation
to the total test length (Verschoor and Eggen, 2014). The
shorter the starting module is, the fewer mismatched items
are administered to low-ability and high-ability students in the
first stage and the more items remain for targeted testing in
subsequent stages. At the same time, a short starting module
involves the risk of routing errors due to low measurement
precision, which, in turn, results in higher estimation errors of the
overall ability estimates (Kim and Plake, 1993). Thus, the length
of the starting module is an important factor that needs to be
considered when analyzing the efficiency of MST designs.

TMST Designs
TMST designs refer to MST designs with more than one
starting module, meaning they are a hybrid of targeted and
MST designs. As in traditional targeted tests, based on ability-
related background variables, students are assigned in stage 1
to the most informative of multiple starting modules of varying
difficulty. Due to the lack of performance-based ability estimates,
ability-related background variables are the best approximation
of student ability at this stage of the test. In stage 2 and all
subsequent stages, students are routed based on preliminary
ability estimates to the most informative module as in traditional
MSTs. By combining ability-related background variables and
preliminary ability estimates for module selection, the TMST
design aims to improve the match between student ability and
item or module difficulty in the first stage compared to the MST
design for all students whose abilities are well represented by
the ability-related background variable. The performance-based
routing after stage 1 aims to homogenize the ability groups
further and correct possible misallocations of students whose
abilities are poorly represented by the ability-related background
variable.

TMST designs or MST designs with more than one starting
module are very rare in practice (Hendrickson, 2007; Zenisky and

Hambleton, 2014). Practical examples include the Massachusetts
Adult Proficiency Tests (MAPT) for reading and mathematics
(Sireci et al., 2008; Zenisky et al., 2009). In both tests, students
are assigned based on the teachers’ judgement of their so-called
“Educational Functioning Levels” or based on previous test
outcomes to the most informative module in stage 1. The MAPT
for reading has also been evaluated in a research paper by Crotts
et al. (2013). However, neither the technical manuals nor the
related research paper have explicitly discussed or empirically
analyzed the added value of having more than one starting
module. In addition, we are not aware of any previous research
that investigated the efficiency of TMSTs based on simulations.

The Present Study
The purpose of this study is to investigate whether TMST designs
achieve more accurate and, therefore, more efficient ability
estimates than traditional targeted test designs or MST designs
with one starting module. We hypothesize that TMST designs
enhance the accuracy of ability estimates compared to targeted
test designs—similar to MST designs—through performance-
based routing after stage 1 and that TMST designs outperform
MST designs due to the targeted assignment of modules to
different ability groups in stage 1.

In addition to this general research question, we explore
the efficiency of TMST designs in more detail from three
different perspectives. First, we investigate the extent to which the
efficiency gain through TMST designs depends on the correlation
between the ability-related background variable and students’
true ability. Following Pohl (2013), we hypothesize that the
efficiency gain is more prominent if the correlation between the
ability-related background variable and the true ability is high,
or, in other words, if the distance in mean ability between the
resulting groups is large, and the overlap between their ability
distributions is small.

Second, we examine the extent to which different ability
groups profit or are disadvantaged by TMST designs compared
to targeted and MST designs. In comparison with targeted
designs, we expect an efficiency gain through TMST designs
for students whose abilities are poorly described by the ability-
related background variable (i.e., students with abilities that
are deviant from the target ability group mean) because the
performance-based routing after stage 1 allows for correcting the
misallocation of these students to suboptimal starting modules.
In comparison with MST designs, we expect an efficiency gain
through TMST designs for students whose abilities differ from
the mean of the total population (i.e., low-ability and high-
ability students) and whose abilities are well described by the
ability-related background variable (i.e., students with abilities
close to the target ability group mean). In contrast, we expect an
efficiency loss through TMST designs compared to MST designs
for students with medium abilities who are classified by mistake
into a low-ability or high-ability group because their ability is
poorly described by the background variable.

Third, we explore the extent to which the efficiency gain
through TMST designs depends on the length of the starting
module compared to the total test length. As elaborated by
Verschoor and Eggen (2014), the length of the starting module
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is an important factor in optimizing MST designs. However,
clear general recommendations for distributing items between
the starting and follow-up modules are missing for MST designs.
Furthermore, the relationship between efficiency gain and
startingmodule length becomes evenmore complex in the TMST
design due to module assignment based on a combination of
ability-related background variables and performance. Therefore,
we explore this relationship in our study without stating a priori
hypotheses.

To address these research questions and hypotheses, we
conducted a simulation study, in which we varied the test design,
the correlation between ability and the ability-related background
variable, and the length of the starting module in relation to the
total test length.

METHODS

Ability Distributions and Population
Distribution Conditions
For each simulation run, we drew three samples of 10,000
simulees randomly from three normal distributions to simulate
students from three overlapping ability groups, where each group
represented one of three levels of the ability-related background
variable. To vary the correlation between the ability-related
background variable and students’ true ability, we manipulated
the degree of overlap between the three groups through three
population distribution conditions, as described in Table 1. In
particular, we varied the difference d between the mean abilities
of the groups. For the narrow condition, which reflected a low
correlation between the ability-related background variable and
students’ true ability, the difference between the mean abilities
was set to d = 0.5; for the medium condition to d = 1.0;
and for the wide condition, which reflected a high correlation
between the ability-related background variable and students’
true ability, to d = 1.5. For all three distribution conditions,
we assumed a standard deviation (SD) of 1 for each group.
Besides the distribution parameters of the ability groups, Table 1
also includes the distribution parameters µ and σ of the related
mixture populations given by

µ =
n

∑

i

wiµi and σ =

√

√

√

√

n
∑

i

wi

(

µi
2 + σ 2

i

)

− µ2 (3)

where µi and σi refer to the mean and the SD of the n= 3 ability
groups, respectively, and wi refers to the relative weight of the
distributions with

∑n
i wi = 1 (e.g., Frühwirth-Schnatter, 2006, p.

11). Furthermore, Table 1 displays Spearman’s rank correlation
ρ between the students’ group classification (i.e., the grouping
based on the ability-related background variable) and their true
ability θ for each distribution condition. Following Pohl (2013),
the narrow condition represented a low correlation between the
ability-related background variable and the true ability (ρ= 0.38)
that is clearly below the recommended minimal correlation of r
= 0.70, the medium condition represented a medium correlation
(ρ = 0.65) similar to the recommended minimal correlation, and
the wide condition represented a high correlation (ρ = 0.79).

Test Designs
The simulation study included four different test designs: (1)
a linear design, which served as the baseline condition; (2) a
targeted design; (3) an MST design; and (4) a TMST design. For
all four design conditions, test length was constrained to 30 items,
which refers to the number of items that we expect students to
answer within one school lesson (i.e., 45min). We treated item
difficulty parameters as known and did not specify any overlap
between the different modules within a test design.

Linear Design
In the linear design condition, all simulees were assigned to the
same 30 items. To accommodate for the different ability groups,
we combined items targeted to themean ability of all three groups
in this test (i.e., 10 easy, 10 moderate, and 10 difficult items).

Targeted Design
In the targeted test design condition, we distinguished three
different linear modules with 30 items each, which were targeted
to the mean ability of the three ability groups. Thus, simulees
from each group were assigned to their dedicated test module as
indicated on the left in Figure 1.

MST Design
The MST was a 1-3-3 design consisting of three stages and
seven modules as indicated in the middle of Figure 1. Simulees
from all three ability groups were assigned to a single starting
module of moderate difficulty in stage 1. In stage 2 and stage 3,
simulees were assigned to an easy, moderate, or difficult module
depending on their performance in the preceding stage. The two
routing cutoff scores, c1 and c2, as indicated in Table 2, were
defined at the percentiles P33 and P66 of the mixture population
to guide an equal number of simulees to each module of stages 2
and 3. The difficulties of the items within the different modules
were varied depending on the target difficulty of the module (i.e.,
easy, moderate, difficult) and the ability distribution condition
(i.e., narrow, medium, wide), as described in more detail in the
next section of this paper.

TMST Design
The TMSTwas a 3-3-3 design consisting of three stages with three
modules each. In the first stage, simulees from each ability group
were assigned to their dedicated starting module, as shown on
the right in Figure 1. Simulees from the low-ability group were
assigned to the easy module, simulees from the medium-ability
group were assigned to the moderate module, and simulees from
the high-ability group were assigned to the difficult module. As
in the MST design, the routing cutoff scores in the TMST design
were defined based on the percentiles P33 and P66 of the mixture
population (see Table 2), and simulees were guided to the easy,
moderate, or difficult modules in stages 2 and 3 based on their
performance in the preceding stage. The difficulties of the items
within the different modules were varied depending on the target
ability group (i.e., low-, medium-, high-ability) for modules in
stage 1, the target difficulty of the module (i.e., easy, moderate,
difficult) formodules in stages 2 and 3, and the ability distribution
condition (i.e., narrow, medium, wide).
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TABLE 1 | Parameters of the normal distributions per ability distribution condition.

Distribution Low AG Medium AG High AG Mixture population Correlation AG and θ

µ1 σ1 µ2 σ2 µ3 σ3 µ σ ρ

Narrow −0.5 1.0 0.0 1.0 0.5 1.0 0.0 1.08 0.38

Medium −1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.29 0.65

Wide −1.5 1.0 0.0 1.0 1.5 1.0 0.0 1.58 0.79

AG, ability group.

FIGURE 1 | Illustration of the targeted, MST, and TMST designs. y, ability-related background variable (e.g., grades in school); E, easy module, M, moderate module,

D, difficult module; E1, M1, and D1, starting modules in stage 1; E23, M23, and D23, modules of stages 2 and 3.

TABLE 2 | Routing cutoff scores and item difficulty parameters of easy and

difficult modules in stage 1 and in stage 2/3 per ability distribution condition.

Distributions Routing Item difficulty S1a Item difficulty S2/S3

c1 c2 βE1 βD1 βE23 βD23

Narrow −0.47 0.47 −0.50 0.50 −1.20 1.20

Medium −0.56 0.56 −1.00 1.00 −1.40 1.40

Wide −0.68 0.68 −1.50 1.50 −1.70 1.70

c1, cutoff score 1 for routing between the easy and moderate modules; c2, cutoff score

2 for routing between the moderate and difficult modules; βE1, difficulty parameters in the

easy modules in stage 1; βD1, difficulty parameters in the difficult modules in stage 1; βE23,

difficulty parameters in the easy modules in stages 2 and 3; βD23, difficulty parameters in

the difficult modules in stages 2 and 3.
aOnly applicable to the targeted and TMST designs.

Starting Module Length
For the MST and TMST conditions, we distinguished four
different variations of starting module lengths corresponding to
1
5 ,

1
4 ,

1
3 , and

1
2 of the total test length. In all four conditions, the

starting modules contained an even number of items to allow
for dividing the remaining items equally over the two subsequent
stages. The shortest starting modules consisted of 6 items with a
remaining 12 items each for stages 2 and 3, the second condition
consisted of 8 items in stage 1 with a remaining 11 items each for
stages 2 and 3, the third condition consisted of 10 items in each
of the three stages and represented the main condition regarding
starting module length, and the fourth condition consisted of
16 items in stage 1 with a remaining 7 items each for stages 2
and 3. The length of the starting modules was only varied in
combination with the medium ability distribution condition. The
narrow and the wide ability distribution conditions were only

combined with the main length condition, which included 10
items in each of the three stages (i.e., 13 of the total test length).

Item Pools
For each simulation condition, we generated a dedicated set of
dichotomous Rasch items targeted to the specific characteristics
of the test design and the ability distributions. To simplifymatters
and to facilitate comparing different conditions, we specified
homogeneous item difficulty parameters within each module
according to the following rules: The difficulty parameters of the
items of all modules of moderate difficulty were set to β = 0 for
all stages and all conditions. For stage 1 and for the modules of
the targeted design, we specified the item difficulty parameters of
the easy and difficult modules based on the mean of the target
population. For the easy and difficult modules in stages 2 and 3,
we specified the item difficulty parameters based on the expected
mean ability of the assigned subgroup created by the routing
under the assumption of no routing errors, that is, based on
the rounded mean of the three truncated normal distributions
resulting from the two cutoff scores (Barr and Sherrill, 1999).
Table 2 provides an overview of the resulting item difficulties
for the three stages combined with the three ability distribution
conditions.

Item Response Generation and Ability
Estimation
Altogether, the simulation study included 18 different conditions,
which are summarized in Table 3. Of these conditions,
12 resulted from the combination of the three population
distributions (i.e., narrow, medium, and wide) with the four test
designs (i.e., linear, targeted, MST, and TMST). Furthermore,
for the MST and TMST designs under the medium distribution
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TABLE 3 | Overview of the 18 simulation conditions.

Distribution Linear Targeted MST TMST

1/5 1/4 1/3 1/2 1/5 1/4 1/3 1/2

Narrow x x x x

Medium x x x x x x x x x x

Wide x x x x

condition, we investigated three additional variations of module
length (i.e., starting module length equal to 1

5 ,
1
4 , and

1
2 of the

total test length), which resulted in six additional conditions. For
each condition, we generated 1,000 data sets with data related to
30,000 simulees1. For each simulee i, each data set included the
true ability θi, the assigned items, the estimated ability θ̂i, and

its standard error SE
(

θ̂i

)

. To estimate student ability, we used

the weighted maximum likelihood (WML) method proposed by
Warm (1989).

Evaluation Criteria
Root Mean Square Error
To determine the accuracy of ability estimation based on the
different test designs, the root mean square error (RMSE) of the
ability estimates was computed for each simulation run l as

RMSE
(

θ̂

)

l
=

√

√

√

√

∑ml
il=1 (θ̂il − θil )

2

ml
, (4)

where i represents the simulees within one run l; m represents
the total number of aggregated simulees within this run; and θ̂

denotes the estimate of the student ability θ. For each simulation

condition, RMSE(θ̂) was calculated on three different levels: (1)
over the total mixture population for each simulation run (m
= 30,000), (2) for each ability group within each simulation
run (m = 10,000), and (3) for intervals of 0.1 on the theta
scale to investigate measurement accuracy in relation to student
ability. On this level, the number of aggregated simulees m
depended on the frequency distribution of the simulees over the
theta scale as defined for the three distribution conditions. In
addition, the overall mean RMSE(θ̂) over the 1,000 simulation
runs was calculated for each simulation condition for the mixture
population as well as for each ability group as

M
RMSE

(

θ̂

) =

∑1000
l=1 RMSE

(

θ̂

)

l

1000
. (5)

Efficiency Gain Over the Targeted and the MST

Designs
To facilitate comparing the efficiency of the different designs with
the efficiency of the targeted and the MST designs, we translated

the differences in mean RMSE(θ̂) between each design D and the
related targeted or MST designs into numbers of items required

1For producing smooth graphs at the extremes, we generated additional data sets,

such that each data point within the graphs was based on 1,000,000 observations.

to compensate for these differences. Under the constraint that the
properties of the sample and of the item pool remain constant,
we can conclude from equation (2) that the standard error SE(θ̂i)
is inversely proportional to the square root of the number of
items k:

SE
(

θ̂i

)

∼ 1√
k
. (6)

Based on this relationship and following the definition of relative
efficiency by Lord (1980), we calculated the efficiency gain of
design D over the targeted design, GainT, and over the MST
design, GainMST, as

GainT = 30 − 30 ×







M
RMSE

(

θ̂

)

T

M
RMSE

(

θ̂

)

D







2

and GainMST = 30 − 30 ×







M
RMSE

(

θ̂

)

MST

M
RMSE

(

θ̂

)

D







2

. (7)

GainT and GainMST refer to the relative efficiency of the designs
compared to the targeted and the MST designs expressed in
numbers of items, and, therefore, serve as indicators of the
practical meaning of the differences in mean RMSE(θ̂) between
the designs (i.e., “how many extra items do we need?”).

Analysis of Variance and Effect Sizes
Variation of RMSE(θ̂) over the simulation runs between the
different simulation conditions was further analyzed by two-way
analyses of variance (ANOVAs). In the first set of ANOVAs, we

compared RMSE(θ̂) over the four design conditions combined
with the three ability distribution conditions within the mixture
population as well as within the three ability groups. In the

second set of ANOVAs, we compared RMSE(θ̂) over the MST
and the TMST design conditions combined with the four starting
module length conditions within the mixture population as well
as within each ability group. To facilitate comparing the effects
and interactions among the manipulated factors (i.e., population
distribution, test design, and starting module length), effect size
η2 was calculated as

η2 = SSbetween

SStotal
, (8)

where SSbetween is the sum of squares between effects, and SStotal
is the total sum of squares of the model (Richardson, 2011).

Match Between True Ability and Module Difficulty
We investigated the match between students’ true ability θ

and module difficulty as a potential source for differences in
the efficiency of the different designs, the different distribution
conditions, and the different student abilities. To this end,
we calculated the percentage of correctly allocated, slightly
misallocated, and heavily misallocated simulees per ability group
and stage under the three distribution conditions by following
Pohl (2013). In stage 1, simulees were classified as correctly
allocated to the easy, moderate, and difficult modules if their
ability θ was below the mean of µ1 and µ2, between the mean
of µ1 and µ2 and the mean of µ2 and µ3, and above the mean
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of µ2 and µ3, respectively (see Table 1 for the mean ability of
each group under the three distribution conditions). In stages
2 and 3, simulees were classified as correctly allocated to the
easy, moderate, and difficult modules, if their ability θ was below
the routing cutoff score c1, between the two cutoff scores c1
and c2, and above the cutoff score c2, respectively (see Table 2

for the routing cutoff scores under each distribution condition).
Independent of the stage, simulees were classified as slightly
misallocated if they were assigned to amodule that was either one
level too high or one level too low; they were classified as heavily
misallocated if they were assigned to a difficult instead of an easy
module or vice versa.

RESULTS

RMSE(θ̂) of the Mixture Population Per
Design and Distribution Condition
Mean RMSE(θ̂) and Efficiency Gain Over the Targeted

and MST Designs
As an indicator of overall efficiency,Table 4 provides an overview

of the mean RMSE(θ̂) over the 1,000 simulation runs under
each of the different distribution-by-design combinations for
the mixture population and the three ability groups. Results for
the low-ability and high-ability groups are displayed together
because they were identical given the symmetrical distributions
of student ability and module difficulty. To indicate the relative
overall efficiency of the different designs, Table 4 reports on
the relative efficiency gain (or loss) compared to the targeted
design and theMST design within the corresponding distribution
condition. Furthermore, Table 5 provides information about the
relative effects of the different factors of the simulations on
RMSE(θ̂).

With regard to the total (i.e., mixture) population, the TMST

design reached—as hypothesized—the lowest mean RMSE(θ̂)
of all four design conditions within all three distribution
conditions. Furthermore, the MST design outperformed the
targeted design, which, in turn, outperformed the linear design.
The overall efficiency gain of the TMST design over the targeted
design was larger within the narrow design condition (i.e.,
when the correlation between the ability-related background
variable and the ability was low) than within the medium

and wide distribution conditions. While the mean RMSE(θ̂) of
the targeted design was equal for all distribution conditions

[MRMSE(θ) = 0.425], the mean RMSE(θ̂) of the TMST design
was lowest in the narrow distribution condition and highest
in the wide distribution condition [MRMSE(θ) Narrow = 0.394;
MRMSE(θ) Medium= 0.398; MRMSE(θ) Wide= 0.403]. In terms of
numbers of items, the efficiency gain within the narrow condition
corresponded to GainT = 4 additional items, or an increase of the
total test length by 13%, to achieve the same accuracy with the
targeted design as with the TMST design.Within themedium and
the wide conditions, the efficiency gain corresponded to GainT =
3 additional items (i.e., 10% of the total test length).

The results of the overall efficiency gain of the TMST

design compared to the MST design were also in line with our
hypothesis: the highest efficiency gain was achieved in the wide

condition, whereas no observable efficiency gain occurred in the

narrow condition. As for the TMST design, the mean RMSE(θ̂)
of the MST design was lowest in the narrow and highest in the

wide distribution condition [MRMSE(θ) Narrow= 0.395;MRMSE(θ)

Medium= 0.406; MRMSE(θ) Wide= 0.419]. However, differences
between the distribution conditions were larger for the MST than
for the TMST design. In the narrow condition, the MST and

TMST designs resulted in similar mean RMSE(θ̂) such that no

TABLE 4 | Mean RMSE(θ̂) and relative gain over targeted and MST designs per distribution condition and ability group.

Condition Mixture population Medium-ability group Low-ability/High-ability group

MRMSE(θ) GainT (%) GainMST (%) MRMSE(θ) GainT (%) GainMST (%) MRMSE(θ) GainT (%) Gain MST (%)

NARROW

L 0.436 −2 (−7) −7 (−23) 0.427 0 (0) −6 (−20) 0.441 −2 (−7) −8 (−27)

T 0.425 −5 (−17) 0.425 0 (0) −6 (−20) 0.425 −5 (−17)

MST 0.395 4 (13) 0.391 4 (13) 0.397 4 (13)

TMST 0.394 4 (13) 0 (0) 0.391 4 (13) 0 (0) 0.395 4 (13) 0 (0)

MEDIUM

L 0.465 −7 (−23) −11 (−37) 0.435 −1 (−3) −8 (−27) 0.479 −9 (−30) −13 (−43)

T 0.425 −3 (−10) 0.425 −6 (−20) 0.425 −2 (−7)

MST 0.406 3 (10) 0.393 4 (13) 0.412 2 (7)

TMST 0.398 3 (10) 1 (3) 0.393 4 (13) 0 (0) 0.401 3 (10) 2 (7)

WIDE

L 0.501 −14 (−47) −16 (−53) 0.452 −4 (−13) −11 (−37) 0.524 −21 (−70) −21(−70)

T 0.425 −1 (−3) 0.425 −5 (−17) 0.425 0 (0)

MST 0.419 1 (3) 0.396 4 (13) 0.429 −1 (−3)

TMST 0.403 3 (10) 2 (7) 0.396 4 (13) 0 (0) 0.406 3 (10) 3 (10)

SERMSE(θ ) < 0.0002 for all conditions and ability groups. GainT (%), relative gain over targeted design in numbers of items and percent (100% = 30 items); GainMST (%), relative gain over

MST design in numbers of items and percent (100% = 30 items); L, linear design (i.e., baseline); T, targeted design.
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TABLE 5 | Effect sizes (η2) for main effects and interactions of the factors

distribution and design on RMSE(θ̂).

Source of

variation

Mixture

population

Medium-ability

group

Low-ability/High-ability

group

Distribution 0.108 0.031 0.128

Design 0.776 0.902 0.732

Distribution ×
Design

0.111 0.038 0.128

Residual 0.005 0.028 0.011

efficiency gain in terms of number of items was found. In the

medium condition, the difference in mean RMSE(θ̂) between the
MST and TMST designs corresponded to an efficiency gain of
GainMST = 1 additional item (i.e., 3% of the total test length), and
the difference in the wide condition corresponded to an efficiency
gain of GainMST = 2 additional items (i.e., 7% of the total test
length).

These results were also reflected by effect sizes calculated based
on the two-way ANOVA for the mixture population for the
two factors distribution and design (see the second column of

Table 5). The design showed by far the largest effect on RMSE(θ̂)
with η2 = 0.776, meaning that the design explained 77.6%

of the variance in RMSE(θ̂) between the different simulation
conditions. The main effect of the distribution was η2 = 0.108,
and the interaction of the distribution and the design was η2 =
0.111. All effects were statistically significant.

RMSE(θ̂) in Relation to Ability
Figure 2 shows the distribution of RMSE(θ̂) in relation to the
true ability θ over a range from −2.6 to 2.6 (i.e., ±two SDs
of the mixture population under the medium condition) for
the different designs and the different distribution conditions.
Furthermore, Figure 2 illustrates the number of students in
relation to θ for each ability group and for the mixture population

for all three distribution conditions. In general, RMSE(θ̂) was
similar for all four designs close to the mean of the mixture

population (i.e., θ = 0), and differences in RMSE(θ̂) increased
as expected toward more extreme abilities. Independent of
the design condition, RMSE(θ̂) was generally higher for more
extreme abilities because all designs included items targeted to
the mixture population mean, the ability groups, or the routing
groups.

As hypothesized, we found the smallest differences in

RMSE(θ̂) between the different designs under the narrow
condition, where the correlation between the group
categorization (i.e., the ability-related background variable)
and the true ability was small (see the top-left graph in Figure 2).

Close to θ = 0, RMSE(θ̂) was slightly lower for the linear and
targeted designs than for the MST and TMST designs. The

minimum of the RMSE(θ̂) distribution was at θ = 0 for the linear
and targeted designs, whereas RMSE(θ̂) increased toward θ = 0

for the MST and TMST designs. However, RMSE(θ̂) was clearly
lower for the MST and TMST designs than for the other two

designs for low and high abilities. In line with the mean RMSE(θ̂)

reported in Table 4, differences in RMSE(θ̂) between the MST
and TMST designs were very small, whereas the TMST design

reached slightly lower RMSE(θ̂) for low and high abilities.
Under the medium distribution condition displayed in the

center graph of Figure 2, differences in RMSE(θ̂) between the
designs were again small for average abilities close to θ = 0.

RMSE(θ̂) decreased from θ = 0 toward low and high abilities
for the MST and TMST designs before it increased toward the

extremes. For the linear and the targeted designs, RMSE(θ̂)
directly increased from average abilities toward the extremes. The
TMST design provided the most accurate ability estimates for
low and high abilities. The MST design, in turn, provided more
accurate estimates than the targeted design, and the linear design
provided the least accurate estimates for low and high abilities.

Under the wide distribution conditions, where the correlation
between the group categorization and the true ability was large,

the MST design achieved lower RMSE(θ̂) for abilities close to
θ = 0 than the other three designs (see the top-right graph in

Figure 2). From θ = 0 toward low and high abilities, RMSE(θ̂)
decreased for the targeted, the MST, and TMST designs before it
increased toward the extremes. Only the linear design reached

its lowest RMSE(θ̂) at θ = 0. The decrease in RMSE(θ̂) was
more prominent for the TMST design than for the targeted and

MST designs, and the MST design reached its lowest RMSE(θ̂)
closer to θ = 0 than the two targeted designs. Consequently,

the TMST design achieved lower RMSE(θ̂) values for low and
high abilities than the other three designs. Similarly, the targeted

design resulted in low RMSE(θ̂) for low and high abilities, and it
even slightly outperformed the MST design at the extremes.

In sum, the results were consistent with our hypotheses.

The combination of targeted and performance-based module

assignment in the TMST design resulted in low RMSE(θ̂) values,

especially for low and high abilities. By far, the variation of the

design showed a larger effect on RMSE(θ̂) than the variation of
the population distribution. Nevertheless, the efficiency gain of

the TMST design over the other designs was larger under the wide
condition than under the narrow condition. Under the narrow

condition, differences were small not only between the mean
abilities of the groups but also between the mean difficulties of

the starting modules targeted to the different group means. Thus,
all starting modules provided a similar amount of information
close to θ = 0 under the narrow condition but provided limited
information for more extreme abilities. In contrast, differences

were large between the groups’ mean abilities and the modules’

mean difficulties under the wide condition. As a consequence,

targeted module assignment in stage 1 was much more crucial

and effective under the wide condition than under the narrow

condition, especially for low and high abilities. For medium
abilities, however, the MST design was the safest option because
it prevented misallocation to a too-easy or too-difficult starting

module. The increase of RMSE(θ̂) of the MST and TMST designs
close to θ = 0, which was also observed for the targeted design
under the wide condition, indicates that some simulees were
either assigned or routed to suboptimal modules, which resulted
in less efficient ability estimates. As the distributions widen,
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FIGURE 2 | RMSE(θ̂) in relation to ability for the different designs under the three distribution conditions and related frequency distributions of the ability groups.

the modules differ more, and the consequences of possible
misallocations increase.

RMSE(θ̂) of the Ability Groups Per Design
and Distribution Condition
Mean RMSE(θ̂) and Efficiency Gain Over the Targeted

and MST Designs
Results for the overall efficiency of the different designs per
ability group are displayed in Table 4. In addition, Table 5

includes the η2-values for the main effects and interactions of
the factors population distribution and design on RMSE(θ̂) for
the different ability groups. For the medium-ability group, the

MST, and TMST designs resulted in identical mean RMSE(θ̂)
values independent of the distribution condition. This result
is given by the fact that the medium starting module of the
TMST design corresponded to the general starting module of
the MST design. The MST and TMST designs (i.e., the two
designs with performance-based module assignments) clearly
outperformed the targeted and the linear design under all three
distribution conditions. Four additional items, or an increase of
the total test length by 13%, would be required to achieve the
same accuracy with the targeted design as with the MST and
TMST designs. According to the ANOVA for the medium-ability

group, the factor design showed the largest effect on RMSE(θ̂)
with η2 = 0.902. Thus, even though the MST and the TMST
designs did not differ, the design explained 90.2% of the variance

in RMSE(θ̂) between the different simulation conditions in the

medium-ability group [distribution: η2 = 0.031; interaction: η2

= 0.038], which underlines the advantage of performance-based
routing for the medium-ability group.

For the low-ability and high-ability groups, the TMST

design provided—as expected—the lowest mean RMSE(θ̂) values.

As reported for the mixture population, differences in mean

RMSE(θ̂) between the different designs increased from the

narrow to the wide distribution condition. Under the narrow

condition, the MST and TMST designs achieved comparable

mean RMSE(θ̂) values for the low-ability and high-ability groups

[MRMSE(θ) MST= 0.397; MRMSE(θ) TMST= 0.395]. These values

were clearly lower than the mean RMSE(θ̂) of the targeted
[MRMSE(θ) = 0.425] and the linear designs [MRMSE(θ) = 0.441].
In contrast, the targeted design slightly outperformed the MST
design for the low-ability and high-ability groups under the wide
condition [MRMSE(θ) Targeted = 0.425; MRMSE(θ) MST = 0.429],
whereas the TMST design reached the lowest mean [MRMSE(θ) =
0.406] again. The efficiency gain of the TMST design over the
MST and targeted designs corresponded to GainT = GainMST

= 3 additional items or an increase of the total test length by
10%. In line with these results, the main effect of the population
distribution on RMSE(θ̂) was η2 = 0.128 and, therefore, was
higher for the low-ability and high-ability groups than the effect
reported above for the medium-ability group. The main effect
of the design and the effect of the interaction were η2 = 0.732
and η2 = 0.128, respectively. Thus, the design also explained

the largest percentage of the variance in RMSE(θ̂) between the
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different simulation conditions for the low-ability and high-
ability groups.

In sum, the overall results for the different ability groups

demonstrate that the reported difference in mean RMSE(θ̂)
between the MST and TMST designs for the mixture population
originates from the differing efficiency of these two designs with
regard to the low-ability and high-ability groups. In line with our
hypothesis, simulees of the low-ability, and high-ability groups
profited from the targeted module assignment in the first stage of
the TMST, especially under the wide distribution condition. For
all simulees of the medium-ability group, it made no difference
whether their ability was estimated based on an MST design or a
TMST design. In both designs, the medium-ability group clearly
profited from the performance-based routing.

RMSE(θ̂) in Relation to Ability
Figure 3 shows the distribution of RMSE(θ̂) in relation to
the true ability θ per ability group for the targeted and
TMST designs, as well as for the different distribution
conditions. In addition, it includes the number of students
in relation to θ for each ability group and for the mixture
population for each distribution condition. For the MST design,

RMSE(θ̂) did not differ for the three ability groups within a
distribution condition because the ability-related background
variable had no influence on the module selection in this
design condition. The results for the MST design corresponded
again to the results for the medium-ability group of the
TMST design because both conditions included identical starting
modules.

In general, Figure 3 displays similar results patterns for all
three distribution conditions. Differences between the designs
and the ability groups were again more prominent for the wide
than for the narrow distribution condition. As hypothesized,

the targeted and TMST designs resulted in the lowest RMSE(θ̂)
values for abilities close to the mean ability of the low-ability and
high-ability groups. Both targeted designs outperformed theMST
design for these ability ranges. The TMST design outperformed
the targeted design for abilities that differed from themean ability
of their group and thus were poorly represented by the ability-
related background variable (i.e., high-ability simulees in the low-
ability group and vice versa). Hence, the TMST design allowed
for compensating for possible suboptimal module assignment
in the first stage through performance-based routing to the
modules of the second and third stages. However, theMST design

again provided lower RMSE(θ̂) values than the TMST design
for abilities that clearly differed from the group mean, such as
high-ability simulees in the low-ability group and low-ability
simulees in the high-ability group. Nevertheless, it is important
to contrast these results with the frequency distributions of the
different ability groups and the mixture population displayed at
the bottom of Figure 3. The number of simulees with abilities
close to the group mean was high by design, meaning that,
overall, the number of simulees who benefited from the targeted
assignment in the first stage of the TMST was larger than the
number of simulees who were disadvantaged because the ability-
related background variable did not correspond to their abilities.

As a consequence, mean RMSE(θ̂) was generally lower for the
TMST design than for the MST design (see Table 4).

For the medium-ability group, results of the TMST design
differed from our expectations. As shown by the central row

of graphs in Figure 3, the minimum RMSE(θ̂) distribution did
not coincide with the mean ability of the medium-ability group.

Instead, RMSE(θ̂) was lowest between the mean of the low-
ability group and the mean of the medium-ability group or
between the mean of the medium-ability group and the mean
of the high-ability group, and it slightly increased toward θ =
0. This result corresponds to the RMSE(θ̂) distributions of the
MST and TMST designs for the mixture population as displayed
in Figure 2. Given that the starting module was targeted to
the mean ability of the medium-ability group, the increase of

RMSE(θ̂) within the group cannot be explained by assignment
errors but must be a result of routing errors based on inaccurate
preliminary ability estimates after stage 1. The risk of routing
errors increases the closer the abilities are to the two routing
cutoff scores (Weissman, 2014). The medium-ability group was
located in between the two routing cutoff scores, such that the
abilities of a vast majority of simulees within this group were
relatively close to one of the two cutoff scores. Hence, they
were more likely to be misallocated to a too-easy or too-difficult
module than simulees from the low-ability or high-ability groups.
Furthermore, routing errors had a larger impact on intermediate
abilities, which clearly differed from the target difficulty of the
easy and difficult modules. As a consequence, the abilities of
average simulees within the medium group were estimated most
efficiently with the traditional targeted design, which does not
include any performance-based routing, making it resistant to
routing errors.

Match Between True Ability and Module Difficulty Per

Ability Group
Figure 4 displays the percentage of correctly allocated, slightly
misallocated, and heavily misallocated simulees for the MST and
TMST designs2 for the medium-ability and low-ability or high-
ability groups and for each stage under the different distribution
conditions. In general, the percentage of correctly allocated
simulees was higher under the wide distribution condition
than under the narrow condition. This result confirmed our
hypothesis that TMST designs are more efficient if the correlation
between the ability-related background variable and the true
ability is high. A clearer distinction between the three ability
groups as under the wide condition not only resulted in better
targeting in stage 1 of the TMST design but also seemed to
result in fewer routing errors. Furthermore, the percentage of
correctly allocated simulees strongly increased from stage 1 to
stage 2 and slightly increased from stage 2 to stage 3. Thus, the
performance-based routing after stage 1 considerably increased
the match between ability and module difficulty independent of
the design and the ability group. In stages 2 and 3, the percentage
of correctly allocated simulees was slightly higher in the low-
ability and high-ability groups than in the medium-ability group.

2Results for the targeted design correspond to results of the TMST design of stage 1.
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FIGURE 3 | RMSE(θ̂) in relation to ability per ability group for the different designs under the three distribution conditions, and related frequency distributions of the

ability groups. Targ., targeted test design; LA, low-ability group; MA, medium-ability group; HA, high-ability group.

This finding strengthens our argument that simulees from the
medium-ability group are more likely to be misrouted to a too-
easy or too-difficult module than simulees from the low-ability
or high-ability groups because a large proportion of simulees in
the medium-ability group have abilities close to one of the two
routing cutoff scores.

Results for the MST and TMST designs were comparable for
the medium-ability group in stage 1 as well as for all comparisons
within stages 2 and 3. However, the targeted module assignment
in stage 1 of the TMST design allowed for increasing the
percentage of correctly allocated simulees within the low-ability
and high-ability groups from ∼20% to over 60% compared to
the MST design. This finding is consistent with our hypothesis
that the TMST design is especially efficient for students whose

abilities differ from the mean ability of the total population.
On the downside, the TMST design resulted in 22% of heavily
misallocated simulees under the narrow distribution condition,
whereas heavy misallocation was not possible in the MST
design given one single starting module of moderate difficulty.
Nevertheless, the percentage of heavily misallocated simulees in
stage 1 of the TMST design considerably decreased as the distance
between the ability groups increased, such that only 1% of the
simulees of the low-ability or high-ability groups were heavily
misallocated under the wide condition. Because the MST and
TMST designs showed very similar patterns for the match of
ability and module difficulty for stages 2 and 3, we combined
the results of both designs for these stages in Figure 4. The
corresponding percentages of correctly and incorrectly allocated
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simulees suggest that the accuracy of the routing to stages 2
and 3 was not impaired by either differences in the number
and difficulty of starting modules or by differences in the match
between ability and module difficulty between the MST design
and the TMST design.

RMSE(θ̂) in Relation to the Starting Module
Length
Mean RMSE(θ̂) and Efficiency Gain Over the MST

Design
The length of the starting modules of theMST and TMST designs
(i.e., the number of items in stage 1 compared to stages 2 and
3) was varied under the medium distribution condition. Table 6
displays themean RMSE(θ̂) of theMST and TMST designs as well

as the efficiency gain of the TMST design over the MST design
(GainMST) for starting modules with a length that corresponded
to 1

5 ,
1
4 ,

1
3 , and

1
2 of the total test length. In addition, Table 7

displays the effect sizes for the main effects and the interaction

of the factors design and starting module length on RMSE(θ̂) for
the mixture population as well as for the ability groups.

For the mixture population, we found that longer starting

modules resulted in higher mean RMSE(θ̂) values for both
designs. If the starting module length corresponded to 1

5 ,
1
4 , or

1
3 of the total test length, the TMST design was slightly more
efficient than the MST design. In all three conditions, we would
need to extend theMST design by one item, or 3% of the total test
length, to achieve the same accuracy as with the TMST design.
When starting modules of 1

2 of the total test length were used,

FIGURE 4 | Match between θ and module assignment per ability group and stage for the MST and TMST designs under the three distribution conditions.

TABLE 6 | Mean RMSE(θ̂) and gain of TMST over MST design for MST and TMST designs with different starting module lengths per ability group.

Mixture population Medium-ability group Low-ability/High-ability group

Starting MST TMST GainMST MST TMST GainMST MST TMST GainMST

module length MRMSE(θ) MRMSE(θ) (%) MRMSE(θ) MRMSE(θ) (%) MRMSE(θ) MRMSE(θ) (%)

1/5 TTL 0.403 0.398 1 (3) 0.394 0.394 0 (0) 0.407 0.399 1 (3)

1/4 TTL 0.402 0.398 1 (3) 0.390 0.390 0 (0) 0.408 0.402 1 (3)

1/3 TTLa 0.406 0.398 1 (3) 0.393 0.393 0 (0) 0.412 0.401 2 (7)

1/2 TTL 0.417 0.402 2 (7) 0.397 0.398 0 (0) 0.426 0.405 3 (10)

SERMSE(θ ) < 0.0002 for all conditions and ability groups. GainMST (%), relative gain over MST design condition in numbers of items and percent (100% = 30 items); TTL, total test length;

1/5, 1/4, 1/3, and 1/2 TTL corresponds to 6, 8, 10, and 16 items, respectively.
aMain condition.
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TABLE 7 | Effect sizes (η2) for main effects and interactions of the factors design

(MST vs. TMST) and starting module length on RMSE(θ̂).

Source of

variation

Mixture

population

Medium-ability

group

Low-ability/High-ability

group

Design 0.409 0.000 0.445

Starting module

length

0.389 0.424 0.279

Design × Starting

module length

0.101 0.000 0.112

Residual 0.101 0.576 0.164

differences in mean RMSE(θ̂) between the two designs increased.

For this condition, the mean RMSE(θ̂) of the MST design was

MRMSE(θ) = 0.417, and the RMSE(θ̂) of the TMST design was

MRMSE(θ) = 0.402. The difference in RMSE(θ̂) between the two
designs, or, rather, the efficiency gain of the TMST design over the
MST design, corresponded to GainMST = 2 items or an increase
of the total test length by 7%. The effect of the starting module

length on RMSE(θ̂) was η2 = 0.389; thus, it was almost as large as

the effect of the design on RMSE(θ̂) with η2 = 0.409 (seeTable 7).
The interaction of the design and the starting module length

explained the additional 10.1% of the total variance of RMSE(θ̂)
between the different simulation conditions.

For the medium-ability group, the MST and TMST designs

resulted again in identical mean RMSE(θ̂) values. Accordingly,
we found nomain effect of the design and no interaction effect for

the medium-ability group [i.e., η2 = 0.000]. Mean RMSE(θ̂) was
lowest for this group if the starting module length corresponded
to 1

4 of the total test length [MRMSE(θ) = 0.390], whereas it
increased for shorter as well as for longer starting modules. The
starting module length accounted for 40.4% of the total variance

in RMSE(θ̂) between the different simulation conditions for the
medium-ability group.

For the low-ability and high-ability groups, mean RMSE(θ̂)
was lowest for the TMST design with starting modules of 1

5
of the total test length [MRMSE(θ) = 0.399] and highest for the
MST design with a starting module of 1

2 of the total test length
[MRMSE(θ) = 0.426]. The main effect of the design [η2 = 0.445]
was larger than that of the starting module length [η2 = 0.279].

Differences in mean RMSE(θ̂) between the two designs were
larger for longer starting modules than for shorter ones. The
related interaction effect was η2 = 0.112. If the starting module
length corresponded to 1

3 of the total test length, we would need
to extend the MST design by two items, or 7%, to achieve the
same accuracy as with the TMST design. If the starting module
length corresponded to 1

2 of the total test length, we would even
need to extend the MST design by three items, or 10%, to achieve
the same accuracy as with the TMST design.

In summary, the starting module length was much more
relevant for the MST design than for the TMST design, and it was
especially relevant for the medium-ability group. The longer the
starting module of the MST design, the more disadvantaged were
simulees of the high-ability and low-ability groups by the general
starting module of moderate difficulty. In contrast, the starting

modules of the TMST design were generally more efficient thanks
to their targeting to each ability group, causing the length of the
starting module to be less relevant under this design condition.

RMSE(θ̂) in Relation to Ability
Figure 5 shows the distribution of RMSE(θ̂) in relation to the true
ability θ for the MST and TMST designs and the different starting
module length conditions. As a reference, the two graphs include

the distribution of RMSE(θ̂) for the linear and traditional targeted

designs. In line with the reported differences in mean RMSE(θ̂),
we found larger differences between the length conditions for the
MST design than for the TMST design. Especially noteworthy
were the results related to the longest starting modules (i.e., 1

2 of
the total test length). The graph on the right in Figure 5 indicates

that the distribution of RMSE(θ̂) of the TMST design with
such long starting modules was similar to those of the shorter

conditions, and it achieved clearly lower RMSE(θ̂) values for high
and low abilities than the traditional targeted design. However,

as displayed on the left in Figure 5, the distribution of RMSE(θ̂)
of the MST design with the longest starting module showed a

stronger increase of RMSE(θ̂) toward low and high abilities than

the other three length conditions and, thereby, reached RMSE(θ̂)
values comparable to that of the targeted design. Thus, the
performance-based routing of the MST design was comparably
efficient as the sole a priori assignment of modules based on an
ability-related background variable in the targeted design if the
first stage included half of the total test.

Finally, Figure 6 shows RMSE(θ̂) in relation to ability for the
different designs by ability group for each length condition. The
general curve for the MST design was again overlapping with
the curve of the TMST design for the medium-ability group. For
the TMST design, Figure 6 indicates that as the starting module
length increased, so did the differences between the ability groups

at a given ability. Nevertheless, RMSE(θ̂) was low for simulees
close to the mean of the target ability group and, thus, for
the broad majority of simulees under all four length conditions
(cf. the distributions displayed in Figures 2, 3). Only a limited
number of simulees with abilities deviant from the mean ability
of their ability group were disadvantaged by long, misallocated
starting modules.

DISCUSSION

A good match between item difficulty and student ability is
crucial from both measurement and motivational perspectives
(Lord, 1980). In this paper, we investigated whether a
combination of targeted and performance-based module
assignments could increase the efficiency for estimating student
ability under the Rasch model over a wide ability range. By
means of simulations, we compared the efficiency of TMST
designs—an extension of MST designs by targeted starting
modules—with that of linear, traditional targeted, and MST
designs. As hypothesized, the TMST design achieved the
highest overall efficiency of all four designs, independent of
the strength of the correlation between ability and the ability-
related background variable. The TMST design also achieved
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FIGURE 5 | RMSE(θ̂) in relation to ability for the MST and TMST designs with different lengths of starting modules.

FIGURE 6 | RMSE(θ̂) in relation to ability for the MST and TMST designs with different lengths of starting modules per ability group. LA, low-ability group; MA,

medium-ability group; HA, high-ability group.

higher overall efficiency than the MST design under all four
starting module length conditions. The efficiency gain of the
TMST design over the targeted design corresponded to up
to 13% of the total test length, and the efficiency gain of the
TMST design over the MST design corresponded to up to 7%
of the total test length. Furthermore, our study allowed for
comparing the efficiency of the MST and traditional targeted
designs. Results showed that the MST design outperformed the
targeted design in overall efficiency. These findings indicate
that step-by-step module assignment based on performance
is generally more efficient than one-time module assignment

based on ability-related background variables. Finally, our results
were in line with previous research by showing that the MST
design and, therefore, performance-based module assignment,
considerably increased measurement efficiency compared to a
simple linear test (e.g., Lord, 1971b; Patsula, 1999; Reese et al.,
1999; Pohl, 2013).

To get further insights into the efficiency of TMST designs, we
varied the correlation between ability and background variable
by manipulating the distance in mean ability between three
ability groups. In line with our expectations and with previous
results from Pohl (2013), the TMST design achieved the highest
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efficiency gain over the MST design when the background
variable was a strong indicator of students’ true ability. Under this
condition, the TMST design achieved a considerably better match
between ability andmodule difficulty within the starting modules
than theMST design with its general, untargeted startingmodule.
At the same time, the MST and TMST designs were comparably
efficient under the condition of strongly overlapping ability
distributions of the groups.

The overall efficiency gain of the TMST design over
the targeted design was smaller under the wide distribution
than under the medium and narrow distribution conditions.
Furthermore, the efficiency gain of the MST design over the
targeted design increased with decreasing distance between the
ability groups. Analyses of the match between ability and module
difficulty illustrated that as the strength of the overlap between
the ability groups increased, so did the percentage of misallocated
simulees in stage 1 of the TMST and, thus, also in the targeted
design as a whole. This finding was in line with results reported
by Pohl (2013) for the second wave of a longitudinal MST.
However, the TMST design allowed for considerably decreasing
the percentage of misallocations through performance-based
routing to stages 2 and 3 under all three distribution conditions.
Such a compensation was not available in the targeted design.
In contrast, a good indicator of ability could partly compensate
for the lack of performance-based routing in the targeted design
compared to the MST design.

The difference in efficiency between the designs varied
considerably along the ability scale. As hypothesized and in line
with previous research (Pohl, 2013), the TMST design achieved
a higher efficiency than the other designs for low-ability and
high-ability students, particularly if the ability-related variable
was a strong indicator of ability. For medium abilities, the MST
design was the most efficient because the single starting module
was targeted to this ability range and prevented misallocations to
easy or difficult starting modules. The analysis of measurement
efficiency by ability group showed comparable results. The TMST
design was generally more efficient than the other designs for
the low-ability and high-ability groups. For the medium-ability
group, the TMST design corresponded to the MST design, and
they both outperformed the targeted design, which does not
compensate for possible misallocations, in overall efficiency.
Furthermore, results confirmed our hypothesis that the TMST
design outperformed the targeted design for students whose
abilities are poorly described by the background variable (i.e.,
high-ability students in the low-ability group and vice versa).
In turn, the MST design outperformed the TMST design for
these students because the module assignment in the MST design
solely depended on performance and, therefore, was independent
of the background variable. Nonetheless, the TMST design
achieved the highest overall efficiency for the mixture population
as well as within each ability group because the number of
students who profited from the targeted assignment in the first
stage was larger than the number of disadvantaged students.
Interestingly, the targeted design achieved the highest efficiency
of all designs for medium abilities within the medium group,
which were partly affected by routing errors in the MST and
TMST designs. However, this strength of the targeted design

was clearly overshadowed by its low efficiency for students with
abilities deviant from the group mean.

Finally, we explored the extent to which the efficiency of
the MST and TMST designs depended on the length of the
starting module. Based on their simulations, (Kim and Plake,
1993) suggested that longer starting modules should be preferred
to shorter ones. However, the length of the starting module was
confounded with the total test length in their study. We found
that the MST design was most efficient if the starting module
length corresponded from 1

5 up to 1
4 of the total test length.

These results corresponded to those of previous simulations by
Verschoor and Eggen (2014). Longer startingmodules resulted in
an efficiency loss (see also Lord, 1971b). A decrease in efficiency
for longer starting modules was also found for the TMST design.
However, the efficiency loss was much stronger for the MST
design, which included only one general starting module, than
for the TMST design, which included three targeted starting
modules. The two TMST designs with long starting modules
were disadvantageous particularly for students with abilities
that strongly deviated from the mean of their ability group.
Nevertheless, the vast majority of students, especially those in the
low-ability and high-ability groups, profited from the targeted
modules in stage 1, independent of the length of the starting
module. Hence, the length of the starting modules seems to be
a negligible factor when developing TMST designs.

Limitations and Future Research
As in any simulation study, our study included a restricted set
of conditions that constrains the generalizability of the results
to some extent (Davey et al., 1997; Feinberg and Rubright,
2016). First, we included only a limited item pool with Rasch
items targeted to the mean abilities of the ability groups or the
subpopulations resulting from the routing. A strong variation
of item difficulty within a module as well as the use of more
complex IRT models could result in different module or test
information. This in turn would affect both the accuracy and
efficiency of ability estimation (e.g., Lord, 1980; Luecht, 2014).
For example, we expect that more peaked module information
would further increase the efficiency for abilities close to the
target ability, whereas it would decrease the efficiency for abilities
deviant from the target ability. At the same time, peaked module
information could increase the number of routing errors due to
lower information close to the routing cutoff scores (Weissman,
2014). Hence, differences inmodule information could enlarge or
reduce the differences in efficiency between the different designs.
It would be interesting to investigate the relationship between
module information and efficiency of TMST designs compared to
MST designs in more detail to identify the optimal TMST design
for a given target population (cf. Verschoor and Eggen, 2014).

Second, we used a fixed test length as well as a fixed number
of stages and modules in our simulation study. For longer tests,
we hypothesize that the efficiency gain of the TMST design
compared to the MST design would be reduced due to the
increase in overall measurement accuracy given by the higher
number of items, as stated in equation (2) (Rost, 2004; see also
Stark and Chernyshenko, 2006). In addition, we expect that
the efficiency gain of the TMST design compared to the MST

Frontiers in Education | www.frontiersin.org 16 January 2019 | Volume 4 | Article 1

https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


Berger et al. Targeted Multistage Tests

design would decrease with increasing adaptivity within the two
designs (i.e., more stages or more modules per stage for a given
test length). However, increasing the adaptivity of the designs
would also increase the test complexity and the effort required to
assemble the modules. Previous studies indicated that the limited
increase of measurement accuracy does not necessarily justify
the increase in complexity for assembling more complex MST
designs (e.g., Jodoin et al., 2006; for an overview, see Luecht, 2014;
Yan et al., 2014b). Based on these findings and our simulations,
we expect a similar relationship for TMST designs. However, the
hypothesized relationship between the efficiency of the TMST
design and test length, as well as between efficiency and design
complexity, should be verified in further studies (cf. Dallas, 2014).

Conclusion and Practical Implications
In conclusion, TMST designs refer to an innovative and efficient
design type that combines traditional targeted testing with
modern computer-based adaptive testing in the form of an MST.
With our simulation study, we extended previous research on
the efficiency of different test designs in various ways. We not
only introduced the TMST design as a new design type and
analyzed its efficiency, but we also provided insights on the
relative efficiency of targeted and MST designs. In particular,
the efficiency of targeted test designs was not systematically
studied in the past. As a consequence, our study allows for
comparing the efficiency of module assignment based on ability-
related background variables to those of performance-based
module assignment. Our results indicated that the performance-
based module assignment in the MST and TMST designs could
substantially increase measurement efficiency compared to pure
targeted module assignment based on ability-related background
variables. When the target population spanned a narrow ability
range, and the ability-related background variable was a poor
indicator of students’ true ability, the MST and TMST designs
achieved comparable measurement efficiency. Hence, MST
designs might be the better choice under this condition because
they require fewer items in the starting modules than TMST
designs, making them easier and cheaper to implement. However,
TMST designs are a good option if the target population spans
a wide ability range and a reliable ability-related background
variable is available. Thanks to the targeted starting modules,
TMST designs allow for taking low and high abilities into account
from the first stage onward. As a result, TMST designs not only
ensured efficient measurement of high-ability and low-ability

students but also prevented underload and overload due to too-
easy or too-difficult items.

In practice, the development and application of a TMST
design brings about similar challenges and requirements as the
development of an MST design. Given the limited research on
TMST, we suggest practitioners follow the literature on MST
(Hendrickson, 2007; Zenisky et al., 2010; Yan et al., 2014b) to
clarify questions on the structure of the design (e.g., number
of stages, number of segments per stage, routing rules, etc.).
A crucial additional complexity of TMST compared to MST is
the selection of a suitable ability-related background variable
for the targeted assignment in the first stage. This variable
must both provide reliable information about the students’
true ability and be perceived as a fair criterion by the test
takers, especially in the context of high-stakes testing. Objective
criteria, such as school grade, exam grade, or performance-
related school type, might be more acceptable to determine
the starting module than, for example, teacher ratings. School
grade as an indicator of number of years of education might
be an especially well-accepted criterion for low-stakes as well
as for high-stakes TMSTs. Exam grades or performance-related
school types might be more difficult to justify in a high-
stakes context and, thus, are rather recommended for low-
stakes formative assessments. Consequently, TMST designs are
a valuable extension of traditional MST designs to increase
measurement efficiency in assessments for populations with a
wide ability range, and they are particularly suitable for formative
assessments.
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