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Background: Interstitial lung disease (ILD) is a common and severe complication

in rheumatic diseases. Folate receptor-β is expressed on activated, but not resting

macrophages which play a key role in dysregulated tissue repair including ILD. We

therefore aimed to pre-clinically evaluate the potential of 18F-AzaFol-based PET/CT

(positron emission computed tomography/computed tomography) for the specific

detection of macrophage-driven pathophysiologic processes in experimental ILD.

Methods: The pulmonary expression of folate receptor-β was analyzed in patients with

different subtypes of ILD as well as in bleomycin (BLM)-treated mice and respective

controls using immunohistochemistry. PET/CT was performed at days 3, 7, and 14

after BLM instillation using the 18F-based folate radiotracer 18F-AzaFol. The specific

pulmonary accumulation of the radiotracer was assessed by ex vivo PET/CT scans and

quantified by ex vivo biodistribution studies.

Results: Folate receptor-β expression was 3- to 4-fold increased in patients with

fibrotic ILD, including idiopathic pulmonary fibrosis and connective tissue disease-related

ILD, and significantly correlated with the degree of lung remodeling. A similar increase

in the expression of folate receptor-β was observed in experimental lung fibrosis,

where it also correlated with disease extent. In the mouse model of BLM-induced

ILD, pulmonary accumulation of 18F-AzaFol reflected macrophage-related disease

development with good correlation of folate receptor-β positivity with radiotracer uptake.

In the ex vivo imaging and biodistribution studies, the maximum lung accumulation was

observed at day 7 with a mean accumulation of 1.01 ± 0.30% injected activity/lung

in BLM-treated vs. control animals (0.31 ± 0.06% % injected activity/lung; p < 0.01).
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Conclusion: Our preclinical proof-of-concept study demonstrated the potential of
18F-AzaFol as a novel imaging tool for the visualization of macrophage-driven fibrotic

lung diseases.

Keywords: interstitial lung disease, imaging biomarkers, animal model of lung fibrosis, macrophages, folate

receptor, positron emission tomography, inflammation, folate-based 18F-PET tracer

INTRODUCTION

In the US, 45% of deaths can be attributed to fibrotic disorders
including pulmonary fibrosis (1), for which a global rise in
mortality is observed (2). This large and heterogeneous group
of parenchymal lung disorders, termed interstitial lung disease
(ILD) shares the common feature of pulmonary fibrosis resulting
in impaired respiratory function and often failure. The most
prevalent forms of ILD are idiopathic pulmonary fibrosis (IPF)
and ILD associated with connective tissue diseases (CTD-
ILD). CTDs commonly complicated by ILD include systemic
sclerosis (SSc) (3), idiopathic inflammatory myopathies (4),
rheumatoid arthritis (5), systemic lupus erythematous (6),
Sjögren’s syndrome (7), mixed connective tissue disease (8),
and undifferentiated connective tissue disease (9). Among the
different CTD-ILDs, ILD is most prevalent in SSc with 70–90% of
SSc patients developing ILD (10). The life expectancy is markedly
reduced, especially in IPF and SSc-ILD, with a median survival of
2–3 years from diagnosis (2, 10).

Despite their clinical heterogeneity, increasing data suggest
that in ILD fibrosis develops due to the same dysregulation
of wound-healing mechanisms (11, 12).Whereas cell death of
alveolar epithelial cells is considered the key trigger of ILD
(13, 14), a growing body of (pre-)clinical data point to a
similarly crucial pathogenic role of pulmonary macrophages and
macrophage-released factors (15, 16). Macrophage activation was
shown throughout different stages of ILD including early/mild
(17), intermediate (18) as well as end-stage/severe stages (19),
and also in different ILD etiologies (20). These observations argue
either for a persistent role of macrophages throughout the disease
process or for the existence of “inflammatory” or “macrophage-
driven” subtypes of ILD (21, 22). Importantly, the persistence
of macrophages seems to correlate with poor prognosis and

Abbreviations: ILD, Interstitial lung disease; PET/CT, Positron emission

computed tomography/computed tomography; BLM, Bleomycin; IPF,

Idiopathic pulmonary fibrosis; CTD-ILD, Connective tissue disease-

associated interstitial lung disease; SSc, Systemic sclerosis; HRCT,

High resolution computed tomography; MRI, Magnetic resonance

imaging; [18F]FDG, [18F]fluorodeoxyglucose; FR-β, Folate receptor-β;

GPI, Glycosylphosphatidylinositol; 18F-AzaFol, 3′-Aza-2′-[18F]-fluoro-

folic acid; RT, Room temperature; HE, Hematoxylin and eosin; IHC,

Immunohistochemistry; DAB, Diaminobenzidine; AEC, 3-Amino-9-

ethylcarbazole; IF, Immunofluorescence; DAPI, 4′,6-Diamidino-2-phenylindole;

RT-qPCR, Quantitative reverse transcription polymerase chain reaction; mRNA,

Messenger RNA; Rplp0, 60S acidic ribosomal protein P0; p.i., Post injection; %

IA/g, Percentage of the injected activity per gram of tissue mass; % IA/organ,

Percentage of the injected activity per organ; MLEM, Maximum-likelihood

expectation maximization IQR, Interquartile range; S.D., Standard deviation;

UIP, Usual interstitial pneumonia; NSIP, Non-specific interstitial pneumonia;

HP, Hydroxyproline.

reduced overall survival (17, 23). Thus, the development of
macrophage-targeted imaging techniques for prognostic and
treatment purposes in ILD might represent a valuable approach
to improve the deleterious disease outcome (15).

Molecular imaging, including nuclear imaging approaches

such as positron emission tomography (PET) are sensitive
and allow the non-invasive visualization of pathophysiologic
processes in real-time. This is a unique advantage over

conventional morphological imaging modalities such as high

resolution computed tomography (HRCT) scans or magnetic

resonance imaging (MRI) (24). These conventional imaging
techniques depict anatomical changes in organ architecture

with high spatial resolution. They can, however, neither

provide information on whether the observed changes are
signs of inactive or active tissue remodeling, nor discriminate

inflammatory from fibrotic processes, a crucial information for

informed clinical decision making (12, 25). An example is

the presence of ground glass opacities, which commonly are
considered to reflect alveolitis. However, the notion of alveolitis
being synonymous to inflammation has been abandoned in

fibrosing ILD, since early fibrotic interstitial changes have the

same appearance on HRCT (26).
In recent years, several studies have investigated the

potential of 2-deoxy-2-[18F]fluoro-D-glucose [18F]FDG-PET/CT
for diagnosis of ILD. [18F]FDG is an unspecific, metabolic
radiotracer for the assessment of cellular glucose metabolism,
which has been shown to be elevated in ILD (27, 28). A
disadvantage for its use in diagnosis and monitoring of ILD is
that [18F]FDG signals reflect metabolic activity, which can arise
from both inflammatory and fibrotic cell types and can occur
during different disease stages including those of stabilization
or repair. This lacking discrimination of pathophysiologic
stages of ILD diminishes the value of [18F]FDG-PET/CT for
informed treatment decisions and monitoring of therapeutic
responses (29, 30).

In contrast, imaging approaches using target-specific
radiotracers ideally aiming at a single key cell type in ILD may
overcome this limitation of [18F]FDG-PET/CT. So far, only
few approaches have been successfully applied pre-clinically in
ILD (31–36).

Activated macrophages express folate receptor-β (FR-β)
in various pathological conditions including cancer and
inflammatory diseases (37–39), whereas the number of FR-
β-expressing macrophages is very low under physiological
conditions (37, 40).

FR-β is a glycosylphosphatidylinositol (GPI)-anchored
protein, which binds folic acid and folate-linked molecules with
high affinity and internalizes them via endocytosis. Imaging
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of FR-β can be realized with folate radiotracers. A number
of folic acid-based radiotracers have been used pre-clinically
for the imaging of activated macrophages in non-pulmonary,
inflammatory conditions including e.g., rheumatoid arthritis,
activated osteoarthritis, or atherosclerosis (41–47), FR-targeted
radiopharmaceuticals have, however, not been evaluated yet
in the context of ILD. Furthermore, the number of clinical
studies making use of FR-targeting nuclear imaging strategies is
limited including one exploratory trial in rheumatoid arthritis
patients (48), since no folate-based radiotracer for PET imaging
is currently available for clinical application.

A novel 18F-based folate PET radiotracer 3′-Aza-2′-[18F]-
fluoro-folic acid, herein referred to as 18F-AzaFol), has recently
been developed at the Center for Radiopharmaceutical Sciences
ETH-PSI-USZ for FR imaging. The rationale to test this
radiotracer instead of previously investigated macrophage
imaging markers such as translocator protein (TSPO) was based
on several disadvantages compared with 18F-AzaFol: TSPO
(a) is mainly expressed in the outer mitochondrial membrane
(49), thus it is not a cell surface receptor, (b) exhibits a
high multicellular, basal expression in the lungs (50), and
(c) TSPO-targeting PET tracers are still facing difficulties for
clinical implementation. While the first generation of TSPO PET
tracers showed high non-specific binding due to their lipophilic
character (51), newer TSPO targeted radiotracers with improved
binding specificity and affinity have still limitations due to the
allelic dependency of the binding capability resulting from TSPO
polymorphisms (52–54).

In this preclinical proof-of-concept study, we aimed to
evaluate the potential of 18F-AzaFol-PET/CT for the specific
visualization of macrophage-driven pathophysiologic processes
in experimental ILD.

METHODS

Human Subjects
Surgical lung biopsies from patients with IPF (n = 39) and
CTD-ILD (n = 14), who underwent lung transplantation,
were analyzed for the expression of FR-β. Lung sections from
excess tissue from lung organ donors served as controls (n
= 26). The patients’ characteristics including demographic
and clinical data are summarized in the data supplement
(Supplementary Table 1).

The local ethics committee approved the study (BASEC-
No. 2017-01298), and informed consent was obtained from
all patients.

Murine Model of Bleomycin-Induced Lung
Fibrosis
As a representative animal model for experimental ILD, we
used the well-established mouse model of BLM-induced lung
fibrosis in this study. In the BLM model, inflammation peaks
around day 7, whereas fibrosis reaches its maximum between
days 14-21 (33, 35, 55). M1-like macrophages dominate the early
inflammatory phase, whereas M2-like macrophages are most
abundant in the pro-fibrotic phase, although they might appear
as early as day 7 (56, 57).

Female C57BL/6J-rj mice (5–7 weeks old) were purchased
from Janvier (Le Genest-Saint-Isle, France) and housed at
the institutional animal facilities under defined temperature,
humidity, and light conditions, and received ad libitum a
standard rodent diet. After an acclimatization period of at least
7 days, lung fibrosis was induced in 8-week-old mice by instilling
intratracheally a single dose of bleomycin sulfate (4 U/kg of body
weight, Baxter, cantonal pharmacy Zurich, Switzerland) dissolved
in sterile saline solution under isoflurane anesthesia (33–35).
Control mice received equivalent volumes of 0.9% NaCl (50 µl).
At days 3, 7, and 14 after the BLM instillation, biodistribution,
and imaging studies were performed. Perfused lungs of separate
animals were harvested for immunostainings, histological, and
molecular analyses.

All animal experiments performed in this study were
approved by the cantonal veterinary offices and conducted in
strict compliance with the Swiss animal welfare guidelines. For
all experiments, mice were randomized into the different study
groups in a non-blinded manner.

Histology
For histology, perfused middle, caudal, and accessory lobes of
the right mouse lung were inflated with 10% neutral-buffered
formalin solution and fixed overnight at room temperature (RT).
After embedding in paraffin, lung sections were cut at a thickness
of 4µmand stained with hematoxylin and eosin (HE) for analysis
of the lung architecture and the presence of cellular infiltrates,
and with Picrosirius Red to detect collagen deposition using
standard protocols.

Immunohistochemistry on Murine Lung
Tissues
For immunohistochemistry (IHC) on murine tissues, lung
sections were deparaffinized and rehydrated, and then subjected
to heat-mediated antigen retrieval with 10mM sodium citrate
buffer (pH = 6.0) at 95◦C for 15min. After blocking of
endogenous peroxidase activity with 3% hydrogen peroxide
(15min, RT), sections were blocked with 10% normal goat serum
(1 h, RT) followed by blocking of endogenous biotin using an
Avidin/Biotin blocking kit (Vector Laboratories, Burlingame,
CA, United States). Afterwards, primary antibodies for F4/80
(rat anti-mouse F4/80, clone Cl:A3-1, 1:100, AbD Serotec;
Kidlington, United Kingdom), and FR-β (rabbit anti-mouse FR-
β, 1:400, Genetex, Irvine, CA, United States) were applied on
the specimens and incubated overnight at 4◦C. Isotype- and
concentration-matched IgGs served as negative controls. Next,
biotin-labeled goat anti-rat or anti-rabbit secondary antibodies
(all from Vector Laboratories) were applied (30min, RT). This
was followed by incubation with the Vectastain ABC Elite HRP
kit for 30min at RT (Vector Laboratories). Finally, stainings
were visualized using 3,3′-diaminobenzidine (DAB) in case of
F4/80, or 3-amino-9-ethylcarbazole (AEC) (all from Vector
Laboratories) in case of FR-β, and sections were counterstained
with Mayer’s hematoxylin (J.T. Baker, Deventer, Netherlands).
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Immunohistochemistry on Human Lung
Tissues
Immunohistochemistry was performed using an automated
single-staining procedure (Benchmark Ultra; Ventana Medical
Systems). Briefly, 4µm thick sections were stained using mouse
monoclonal anti-human antibodies directed against CD68 (clone
PG-M1, Dako, 1:50) and FR-β (clone OTI8G1, Origen, 1:50).
Detection was completed with respective secondary antibodies
and the OptiView DAB Kit (Ventana Medical Systems).

Immunofluorescence
Immunofluorescence (IF) stainings were performed using the
MaxDouble IF staining kits for rat and rabbit primary antibodies
(MaxVision Biosciences Inc., Bothell, WA, United States). In
brief, after blocking of auto-fluorescence for 5min at RT, heat-
mediated antigen retrieval with 10mM sodium citrate buffer was
performed for 15min at 95◦C. After antigen retrieval, primary
antibodies for FR-β (rabbit anti-mouse FR-β, 1:800, Genetex),
and F4/80 (rat anti-mouse F4/80, clone Cl:A3-1, 1:800, AbD
Serotec), or concentration matched IgG isotype controls were
applied and incubated overnight at 4◦C. Next, specimens were
incubated with rat and rabbit signal amplifier for 30min at RT
followed by washing and linkage to the respective fluorophores
for 60min at RT in the dark (anti-rat MaxFluor488 and anti-
rabbit MaxFlour594). Cell nuclei were counterstained with 4′,6-
diamidino-2-phenylindole (DAPI).

Microscopy and Image Analysis
Histological and immunohistochemical stainings were recorded
automatically with the AxioScan.Z1. slidescanner (Carl Zeiss,
Feldbach, Switzerland) using a Plan-Apochromat 20×/0.8
M27 objective. For semi-quantitative expression analyses, per
sample, six randomly selected high power fields were extracted
with a 10× objective using the Zen 2.0 lite (blue edition)
software. The percentage of positively stained pixels was
automatically quantified using an in-house designed MATLAB
script (Mathworks, MATLAB R2016b) to avoid observer bias.
This script quantified the target-positive (=brown or red)
pixels and cell nuclei-positive (=blue) pixels and calculated
the percentage of positively stained pixels in relation to the
total number of image pixels. To account for increased cell
numbers and tissue consolidations, also the percentage of
positively stained pixels in relation to the total number of
colored image (brown or red + blue) pixels was calculated
(Supplementary Figure 1).

For semi-quantitative assessment of murine and human lung
fibrosis, the Ashcroft Score was applied on Picrosirius Red
stained lung sections as described previously (58). Two blinded
examiners performed the scorings in duplicates. If deviations
of more than 1 score were observed, the respective slides were
re-assessed to reach consensus.

Immunofluorescent pictures were recorded at 630×
magnification (oil immersion) using the Olympus
BX53 microscope in fluorescence mode (Olympus,
Volketswil, Switzerland).

The total number of double positive (FR-β+/F4/80+) cells
was quantified by both automated and manual image analyses

using Orbit image analyses software version 3.15 (Objection
Detection and Object Classification Module) (59) or manual
counting by two blinded examiners, respectively.

RNA Extraction and Quantitative Reverse
Transcription PCR
For RNA extraction from mouse lungs, perfused cranial lobes
were homogenized using the Qiagen TissueLyser and total
RNA was isolated with the RNeasy Fibrous Tissue Mini Kit
from Qiagen (Hombrechtikon, Switzerland). For quantitative
reverse transcription PCR (RT-qPCR), 120 ng RNAwere reverse-
transcribed into complementary DNAwith the Transcriptor First
Strand cDNA Synthesis Kit from Roche (Basel, Switzerland)
using anchored-oligo(dT)18 primer. Messenger RNA (mRNA)
expressions were analyzed by SYBR Green qPCR on a Stratagene
Mx3005P qPCR System (Agilent Technologies, Santa Clara,
California, USA) using the SYBRGreen GoTaq qPCRMaster mix
from Promega (Dübendorf, Switzerland) and specific primers
for murine Folr2 (forward primer: 5′-CCAGCAAGTGGACCA
GAGTT-3′, reverse primer: 5′-CAGTCCCAGCCTTTATGCCA-
3′; Microsynth, Balgach, Switzerland). As a housekeeping gene
60S acidic ribosomal protein P0 (Rplp0; forward primer: 5′-
GCAGGTGTTTGACAACGGCAG-3′, reverse primer: 5′-GAT
GATGGAGTGTGGCACCGA-3;Microsynth) was used. The fold
change of mRNA expression was calculated using the 2−11Ct

method. False positive results due to primer dimers or genomic
contamination were excluded by dissociation curve analysis
and non-template controls, or by minus-reverse transcriptase
controls, respectively.

Hydroxyproline Assay
Collagen contents in lungs of BLM-treated mice and saline
controls were quantified by hydroxyproline assay as described
previously (60). Briefly, after homogenization, left lung lobes
were digested in 6M HCl for 3 h at 120◦C and subsequently
neutralized with 6M NaOH. Next, samples were mixed with
a 60mM chloramine T solution and incubated for 20min at
RT. After addition of 3.15M perchloric acid (5min, RT), p-
Dimethylaminobenzaldehyd (20% w/v) was added and samples
were incubated for 20min at 60◦C. The absorbance wasmeasured
at 560 nm with a spectrophotometer (GloMax-Multi Detection
System, Promega, Dübendorf, Switzerland).

Radiosynthesis of 18F-AzaFol
3′-Aza-2′-[18F]-fluoro-folic acid (18F-AzaFol) was produced on
an automated synthesis module at the ETH Zurich (Switzerland)
according to a previously reported method (61). 18F-AzaFol
was applied at ∼5 MBq (in 100 µL, 0.25–0.5 pmol/mouse)
for biodistribution studies and at ∼10 MBq (in 100 µL, 0.5–1
pmol/mouse) for in vivo and ex vivo PET/CT imaging. The in
vivo stability of the tracer has been demonstrated in previous
studies, in which only the intact parent radiotracer was detected.
No downstream radiometabolites in blood plasma, urine, or liver
samples were detectable (61, 62).
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TABLE 1 | Scan parameters for in vivo and ex vivo PET scans using G8

bench-top PET/CT scanner.

Energy window 150–650 keV

Isotope Fluorine 18

Framing sequence Static

Duration of static PET scans

In vivo (chest region) 10 min

Ex vivo (isolated whole lungs) 20 min

Normalization Yes

Dead time correction Yes

Decay correction Yes

Scatter correction No

Image reconstruction

Number of iterations 60

Attenuation correction Yes

In vivo and ex vivo scans were performed 1 h after the injection of 18F-AzaFol (∼10 MBq

in 100 µL, 0.5–1 pmol/per mouse).

Biodistribution Studies
As an accurate means to quantify radiotracer uptake (31),
biodistribution studies were performed. 18F-AzaFol was
administrated via the lateral tail vein of mice. Receptor-
blocking studies were performed by pre-injection of folinic acid
(leucovorin; 300 nmol, 100 µL) ∼30min before the injection of
18F-AzaFol. Mice were sacrificed 1 h post injection (p.i.) of 18F-
Azafol. Tissues and organs of interest were collected, weighed
and counted for activity using a γ-counter (Wallac Wizard
1480, Perkin Elmer, Germany). The results were calculated as a
percentage of the injected activity per gram of tissue mass (%
IA/g) or expressed as a percentage of the injected activity per
organ (% IA/organ). Thereafter, the already counted lungs were
subjected to ex vivo PET/CT scans as described below.

Ex vivo and in vivo PET/CT Scans
The ex vivo PET/CT scans of collected lungs (obtained from
mice used for the biodistribution study) were performed using
a small-animal bench-top PET/CT scanner (G8, Perkin Elmer,
Massachusetts, USA; Table 1). Static PET scans of 20min
duration were acquired using the G8 acquisiton software
(version 2.0.0.10) followed by CT scans of 1.5min duration.
The energy window ranged from 150 to 650 keV. The PET
data were corrected for random coincidences, decay, and dead
time and reconstructed with maximum-likelihood expectation
maximization (MLEM). A correction for scatter was not made.
The images were prepared using VivoQuant post-processing
software (version 3.0, inviCRO Imaging Services and Software,
Boston, USA). A Gauss post-reconstruction filter (FWHM =

1mm) was applied to the PET images. The ex vivo PET/CT
scans and biodistribution studies were performed in a separate
experiment as the in vivo PET/CT scans. For in vivo imaging,
static PET scans were performed 1 h p.i. of the radiotracer and
lasted for 10min followed by a CT of 1.5min duration. During
the in vivo PET/CT scans, the mice were anesthetized with
a mixture of isoflurane and oxygen. The in vivo images were
visualized using a dedicated 3D-rendering software (Ziostation2,
Ziosoft, Tokyo, Japan).

For both, biodistribution studies/ex vivo scans and the in
vivo scans per each time point the following numbers of mice
have been used: n = 3–4 for saline-treated mice, n = 3–4 for
BLM-treated mice and n = 2–4 for BLM-treated mice receiving
leucovorin for FR blockade.

Statistics
Statistical analysis was performed using GraphPad Prism 7
software (version 7.04). Unless otherwise indicated, non-
parametric data were expressed as median ± interquartile
range (IQR) and parametric data were expressed as mean
± standard deviation (S.D.). For non-parametric non-related
data, the Mann–Whitney U-test for comparison of two
groups, or the Kruskal–Wallis test followed by Dunn’s multiple
correction for comparison of multiple groups was employed.
For parametric non-related data, an unpaired t-test was applied
for comparison between two groups, or a One-Way ANOVA
with Tukey’s post-hoc test for comparison between multiple
groups was performed. For correlation analysis, Spearman rank
correlation was performed. P-values < 0.05 were considered
statistically significant.

RESULTS

FR-β Expression Is Upregulated in Human
ILD and Correlates With Disease Severity
To assess the presence of FR-β-positive macrophages in human
ILD, we performed IHC for FR-β on lung explants derived
from patients with IPF (n = 39) and CTD-ILD (n = 14),
who underwent lung transplantation. Lung sections from excess
tissue from lung organ donors served as controls (n = 26)
(Supplementary Table 1).

As anticipated, the histopathological analysis of lung tissues
from both patients with IPF and CTD-ILD revealed severe
damage of the normal tissue architecture with increased numbers
of mononuclear inflammatory infiltrates and excessive interstitial
collagen deposition as assessed by HE or Picrosirius Red staining
(Figure 1A), respectively. This was also reflected in the semi-
quantitative Ashcroft score of pulmonary fibrosis with a median
score of 6.125 (Q1, Q3 = 5.625, 6.5; p < 0.0001) for IPF and
a median score of 5 (Q1, Q3 = 4.219, 6.531; p < 0.0001) for
CTD-ILD patients (Figure 1B). In most cases, lung remodeling
in IPF and CTD-ILD patients had histological features of usual
interstitial pneumonia (UIP) characterized by patchy fibrosis
and areas of honeycombing, whereas only the minority of
patients displayed patterns of non-specific interstitial pneumonia
(NSIP), characterized by a more uniformly spread fibrosis and
better preserved lung architecture (Supplementary Table 1). In
these highly inflammatory and fibrotic lung sections, presence
of FR-β was significantly increased (Figure 1A) with median
increases of ∼ 3- to 4-fold in both IPF and CTD-ILD patients
(Figure 1C, Supplementary Figure 2A; p < 0.0001). To confirm
the expression of FR-β on macrophages (40, 63), we additionally
performed IHC for CD68, a human pan-macrophage marker, on
sequential lung sections from healthy controls, IPF and CTD-
ILD patients. In accordance with the increased FR-β expression,
we also found increased CD68 expression in lung sections
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FIGURE 1 | FR-β expression is increased in human ILD and correlates with the severity of lung remodeling. (A) Representative images of lung sections from healthy

controls (HC) and patients with IPF and CTD-ILD stained with hematoxylin and eosin (HE, first panel), Picrosirius Red (collagen = red, second panel), FR-β (brown,

third panel) and CD68 (brown, fourth panel). Representative pictures at 100× magnification (scale bars: 100µm) and at higher magnification (400×, scale bars:

20µm) are shown. (B) Semi-quantification of pulmonary fibrosis by Ashcroft score. (C) Semi-quantification of FR-β tissue expression by automatic image analysis.

(D) Semi-quantification of CD68 tissue expression by automatic image analysis. (E) Spearman correlation of FR-β expression with the CD68 expression. (F) Analysis of

(Continued)
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FIGURE 1 | FR-β expression according to the severity of lung remodeling as defined by the Ashcroft score (score 0–1: no fibrosis, scores >1–3: mild fibrosis, scores

>3–5: moderate fibrosis, scores >5–8: severe fibrosis). (G) Spearman correlation of FR-β expression with the Ashcroft score. For (B–D,F) data are displayed as box

plots with min/max values. For statistical analysis, the Kruskal–Wallis test with Dunn’s multiple correction was applied (*p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001). For all experiments: n = 26 for healthy controls, n = 39 for IPF patients, and n = 14 for CTD-ILD patients.

from both IPF and CTD-ILD patients with median increases
of 1.69-fold (Q1, Q3 = 1.37, 2.29; p < 0.0001) and 1.89-
fold (Q1, Q3 = 1.09, 2.8; p < 0.01), respectively (Figure 1D,
Supplementary Figure 2B). Consistently, FR-β expression also
strongly correlated with the CD68 expression (r = 0.70, p <

0.0001; Figure 1E). Whereas, a strong expression of CD68 was
observed onmacrophages in the alveolar spaces, FR-βwas mostly
expressed in the lung interstitium (Figure 2). Furthermore,
while the upregulation of CD68 and FR-β in IPF and CTD-
ILD patients was independent of the histological subtype
(Supplementary Figure 3), the expression of FR-β significantly
increased with the severity of lung remodeling (Figure 1F) and
positively correlated with the Ashcroft score as measure of lung
remodeling (r = 0.84, p < 0.0001; Figure 1G).

FR-β Expression Is Also Upregulated in
Experimental ILD and Changes With
Disease Development
Next, we assessed whether the expression of FR-βwasmirrored in
a representative mouse model of human ILD, the BLM-induced
lung fibrosis model.

Upon a single intratracheal BLM administration, mice
progressively developed lung remodeling with inflammation
(days 3–7) preceding the development of pulmonary fibrosis (day
14). As early as day 3, the histopathological examination of lung
sections from BLM-treated mice vs. saline controls revealed the
presence of mononuclear cell infiltrates (Figure 3A) around the
vessels and bronchi with increased numbers of macrophages as
assessed by IHC with the murine macrophage marker F4/80
(Figure 3B). In contrast, only minimal fibrous thickening of the
alveolar and bronchial walls (Figure 3C) was detected, which was
also reflected by a low median Ashcroft score of 2.5 (Q1, Q3 =

2, 3; p < 0.01; Figure 3D). With disease progression, the number
of macrophages increased in BLM-treated lungs and peaked at
day 7 with a median 4.11-fold increase (Q1, Q3 = 2.38, 10.65;
p < 0.001; Figure 3E, Supplementary Figure 2D) and subsided
thereafter. Consistently, pulmonary fibrosis gradually increased
with extensive interstitial collagen deposition characterized by
the formation of fibrous bands and larger fibrous masses
in subpleural as well as perivascular and peribronchial areas
(Figure 3C). Maximally established fibrosis was detected at
day 14 as demonstrated by a high median Ashcroft score
of 5 (Q1, Q3 = 4.25, 5.5; p < 0.001). The lung collagen
content as assessed by hydroxyproline (HP) assay increased
over time in BLM-treated mice with a median 1.32-fold
(Q1, Q3 = 1.17, 1.42; p < 0.05) increase at day 14
(Figure 3F).

In accordance with the expression in human ILD and the
time course of the appearance of pulmonary macrophages
in this animal model, FR-β expression significantly increased

over time in lungs of BLM-treated mice (Figure 4A). While
FR-β was only weakly expressed in the lungs of saline-treated
controls, FR-β expression was significantly upregulated in lungs
of BLM-treated mice with peak at day 3 at the mRNA level
(Figure 4B) and at day 7 at the protein level (Figures 4A,C,
Supplementary Figure 2C) and thus in the inflammatory phase
in this animal model with a median increase of 1.98-fold (Q1,
Q3 = 1.61, 2.19; p < 0.001) and 4.41-fold (Q1, Q3 = 2.4,
6.83; p < 0.01), respectively. The expression of FR-β on murine
lung macrophages was confirmed by immunofluorescent double
staining using an antibody for murine macrophages, F4/80
(Figure 4D, Supplementary Figure 4).

As in human ILD patients, the expression of FR-β also
positively correlated with the Ashcroft score (r = 0.64,
p < 0.0001; Figure 4E) and, hence, with the degree of lung
remodeling (Figure 4F).

Pulmonary Accumulation of 18F-AzaFol, a
Surrogate Marker for FR-β-Positive
Macrophages, Reflects
Macrophage-Related Disease
Development in Experimental ILD
Having established the time course of FR-β expression in this
mouse model, we next performed nuclear imaging experiments
to assess whether macrophage-related disease development could
be visualized by 18F-AzaFol.

In strong correlation with the expression changes of FR-β at
the tissue level, BLM-treated mice showed increased pulmonary
accumulation of 18F-AzaFol from days 3 to 14, as assessed
by ex vivo biodistribution studies at 1 h p.i. of 18F-AzaFol
(Figures 5A,B). The maximum lung accumulation was observed
at day 7 with a mean total uptake of 1.01 ± 0.30% injected
activity per lung (% IA/lung) and 3.33 ± 0.77% injected activity
per tissue mass (% IA/g) in BLM-treated vs. control animals
(0.31 ± 0.06% IA/lung and 1.78 ± 0.15% IA/g; p < 0.01 and
p < 0.05, respectively). The specificity of the pulmonary tissue
uptake of 18F-AzaFol was validated by receptor blockade using
folinic acid (leucovorin) administrated to mice 30min prior to
the injection of the radiotracer. This significantly reduced the
lung accumulation of 18F-AzaFol in BLM-treated mice, resulting
in pulmonary radioactivity accumulation comparable to saline-
treated controls. Ex vivo PET/CT scans of isolated lungs also
clearly distinguished diseased from healthy lungs and confirmed
the successful receptor blockade (Figure 5C). In vivo PET/CT
scans of the chest region of the animal showed a generally low
pulmonary accumulation of 18F-AzaFol with background signals
in bone and muscles in both NaCl-treated controls and BLM-
treated mice. A slightly increased signal intensity compared with
control mice was observed in lungs of BLM-treated mice at the
maximum of inflammation at day 7 (Supplementary Figure 5).
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FIGURE 2 | FR-β is mostly expressed in the lung interstitium in human ILD. Representative images of sequential lung sections from healthy controls (HC, n = 26) and

patients with IPF (n = 39) and CTD-ILD (n = 14) that were stained with FR-β and the human macrophage marker CD68. (A) Overview images at 100× magnification

are shown (scale bars: 100µm). Colored squares indicate regions of interest for the higher magnification images depicted in (B,C). (B) Higher magnification images at

400× magnification (scale bars: 20µm) indicating the only weak to undetectable expression of FR-β on macrophages located in alveolar spaces (arrows). (C) Higher

magnification images at 400× magnification (scale bars: 20µm) indicating the strong expression of FR-β on macrophages located in the lung interstitium.

The distribution of 18F-AzaFol in other organs besides
the lungs was comparable between BLM-treated mice
and saline-treated control animals at day 7 (Figure 5D,
Supplementary Tables 2, 3). The slightly increased uptake in
both experimental groups in lymphoid organs (e.g., thymus,
lymph nodes), which may have been also affected by the
BLM treatment (64), is most likely caused by the presence of
activated macrophages expressing FR–β (65, 66), a phenomenon,
previously observed in lymph nodes of tumor-bearing mice
(61). The high basal liver uptake of 18F-AzaFol observed in
both controls and BLM-treated mice can be explained by the
fact that folate vitamins are physiologically stored in the liver.
Since 18F-AzaFol is not a conjugate of folic acid, as this is the
case with other folate radioligands, 18F-AzaFol may also be
transported through carrier systems such as the proton-coupled
folate transporter. A relatively high liver uptake and potential
signs of metabolism were also shown in our previous studies, in
which we evaluated 18F-AzaFol for the first time (61).

The distinct drop in activity after treatment with the
FR blocking agent in both liver and lymph nodes further
argues for a folate-specific effect rather than an unspecific
accumulation mechanism.

DISCUSSION

In different types of ILD, an increased lung uptake of
[18F]FDG was observed in pathologically changed areas of
reticulation/honeycombing and ground-glass opacities, but also

in radiologically normal-appearing lung areas (28, 29, 67–
71). [18F]FDG uptake, especially in normal appearing lung
parenchyma, was shown to be of prognostic value and to
correlate with overall disease severity in IPF patients (28, 68, 70).
However, [18F]FDG-PET/CT has also important limitations for
the diagnosis and monitoring of ILD since it visualizes changes
in glucose metabolism in a non-specific, cell-type-independent
manner (25, 26, 67), and does not allow to draw conclusions on
the pathophysiological disease stage (30, 72). In our study, 18F-
AzaFol visualized macrophage-related ILD development in the
mouse model of BLM-induced lung fibrosis in ex vivo PET/CT
scans and tissue expression of FR-β showed good correlation with
the pulmonary radiotracer uptake in the biodistribution studies.
This has important clinical implications.

As ILDs are highly heterogeneous on molecular level,
such a targeted molecular imaging approach could be used
in the future for a molecular stratification of ILD patients,
i.e., the identification of subgroups of patients, who are likely
to benefit from macrophage-oriented therapies and who
will be eligible for subsequent monitoring of therapeutic
responses. This is of particular interest due to the recent
or imminent approval of such therapies for ILD (73–75).
These include pirfenidone and nintedanib, which have pre-
clinically shown to exert their anti-fibrotic effects at least
partially by targeting pulmonary macrophages and/or their
products (75–77) as well as tocilizumab, which was assessed
in recent phase II and III randomized controlled studies
(78). In addition, the ability to identify ILD patients based
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FIGURE 3 | Intratracheal instillation of bleomycin in mice induces progressive lung remodeling characterized by increased numbers of macrophages.

(A) Representative images of lung sections from saline-treated controls and BLM-treated mice at days 3, 7, and 14 stained with hematoxylin and eosin (HE), (B) the

murine macrophage marker F4/80 (brown), and (C) Picrosirius Red (collagen = red). (D) Semi-quantitative assessment of lung fibrosis by Ashcroft score.

(E) Semi-quantification of pulmonary macrophages by automatic image analysis of F4/80 expression. (F) Quantification of left lung collagen content by hydroxyproline

(HP) assay. For (A–C) representative pictures at 100× magnification (scale bars: 100µm) and at higher magnification (400×, scale bars: 20µm) are shown. For (D–F)

data are presented as medians ± IQR. For statistical analysis, the Mann–Whitney U-test was applied (*p < 0.05, **p < 0.01, ***p < 0.001). For all experiments: n =

4–6 for saline controls and n = 6–10 for BLM-treated mice.

on their underlying molecular and cellular subtype without
the need of lung biopsies might also have relevance for
clinical trial design by allowing the definition of (more)
homogenous patients’ subgroups and by serving as a
primary/secondary readout for macrophage-orientated

treatment studies. To this end, additional preclinical studies
to confirm the suitability for 18F-AzaFol for predicting and
monitoring therapeutic efficacy will have to be performed.
The alterations of tissue uptake of 18F-AzaFol throughout the
development of experimental ILD were in strong accordance
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FIGURE 4 | FR-β expression is increased in experimental ILD and correlates with the severity of lung remodeling. (A) Representative images of lung sections from

saline-treated controls and BLM-treated mice at days 3, 7, and 14 stained for FR-β (red). Representative pictures at 100× magnification (scale bars: 100µm) and at

higher magnification (400×, scale bars: 20µm) are shown. (B) Fold change of mRNA expression of Folr2 in BLM-treated mice vs. saline-treated controls at days 3, 7,

and 14. (C) Semi-quantification of FR-β tissue expression by automatic image analysis. (D) Representative images of immunofluorescent double staining of FR-β (red)

with the murine macrophage marker F4/80 (green) performed on lung sections from saline-treated controls and BLM-treated mice at day 7. For (D) representative

images from three mice each at 630× magnification are shown (scale bars: 10µm). (E) Spearman correlation of FR-β expression with the Ashcroft score. (F) Analysis

of FR-β expression according to the severity of lung remodeling as defined by the Ashcroft score (score 0–1: no fibrosis, scores >1–3: mild fibrosis, scores >3–5:

moderate fibrosis, scores >5–8: severe fibrosis). For (B,C,F) data are presented as medians ± IQR. For statistical analysis the Kruskal–Wallis test with Dunn’s multiple

correction or the Mann–Whitney U-test was applied (*p < 0.05, **p < 0.01, ***p < 0.001). For all experiments: n = 6 for saline-treated controls, n = 9–10 for

BLM-treated mice.

with the time course of macrophage presence on tissue
level, which documents a good sensitivity to change. This
quality is an important prerequisite for the monitoring of
macrophage-targeted treatment responses, which we have not
yet tested pre-clinically.

Another important finding of this study was that the
numbers of (FR-β-positive) macrophages were substantially
increased in human ILD patients, irrespective of the underlying
etiology. This observation has some interesting implications.
Firstly, it supports the re-evaluation of the pathophysiology
of fibrotic ILD as immune-mediated and thus, as potentially
amenable to immune-targeted therapies (12). Secondly, the
persistence of macrophages throughout different stages of
experimental ILD and their presence in late disease stages in
the human disease points to an important role in the whole
process of tissue remodeling (79). Thus, the characterization
of macrophage subpopulations, particularly of FR-β-positive
macrophages, might further elucidate the mechanisms of fibrosis
in ILD and identify novel macrophage- or macrophage-related
therapeutic targets (15) including FR-β-targeted molecular
therapies (40, 80–82).

The exploratory character of our study accounts for some of its
limitations. The model of BLM-induced lung fibrosis, although
extensively used and widely acknowledged as a valuable model
of experimental ILD, does not reflect the chronic disease course
in human patients, since following the single instillation of BLM,
fibrosis gradually resolves over 4–8 weeks (55). Furthermore, the
imaging analyses have been limited to the stages of active disease
and later time points of resolution of fibrosis (days 21–28) have
not been investigated. For pathophysiologic studies to elucidate
the whole process of macrophage-related tissue remodeling in
ILD in detail, FR-β-targeted nuclear imaging would have to be
performed (a) in the phase of tissue repair in the acute BLM
model and (b) in non-resolving, chronic disease models of ILD
(83). Numerous studies, however, are now focusing on the acute,
pro-inflammatory phase and the role of macrophages in fibrosis
development in this model (15, 56, 57), which support the
importance and comparability of its early stages to certain aspects
of human ILD.

Another important limitation of our proof-of-concept study
is that our nuclear imaging experiments are largely based on ex
vivo analyses and quantifications. Furthermore, the performance
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FIGURE 5 | Pulmonary accumulation of 18F-AzaFol reflects macrophage-related disease development in experimental ILD. (A) Ex vivo lung uptake of 18F-AzaFol (1 h

p.i.) shown as percentage of injected activity per lung (% IA/lung) or (B) shown as percentage of injected activity per lung mass (% IA/g) in lungs from saline-treated

controls and BLM-treated mice with and without receptor blockade at days 3, 7, and 14. (C) Ex vivo PET/CT scans of lungs from saline controls and BLM-treated

mice with and without receptor blockade at days 3, 7, and 14 that were collected 1 h after injection of 18F-AzaFol. Scans are shown as maximum intensity projections.

(D) Representative tissue distribution of 18F-AzaFol (1 h p.i.) in organs of interest of saline-treated controls and BLM-treated mice. Biodistribution data are shown for

day 7, when the strongest pulmonary accumulation of 18F-AzaFol was observed. Data are expressed as percentage of injected activity per gram of tissue (% IA/g). For

(A,B,D) data are presented as means ± S.D. For statistical analysis, the One Way ANOVA test with Tukey’s multiple correction was applied (*p < 0.05, **p < 0.01,

***p < 0.001, vs. saline; #p < 0.05, ##p < 0.01, ###p < 0.001, vs. BLM). For all experiments: n = 3–4 for saline-treated controls, n = 3–4 for BLM-treated mice,

and n = 2–4 for BLM-treated mice receiving receptor blockade.

of static PET scans did not allow the correction for changes
in pulmonary blood flow. Elevated blood flow and increased
vascular leakage are cardinal features of lung inflammation and
fibrosis (34, 84). These phenomena could have contributed non-
specifically to the pulmonary accumulation of 18F-AzaFol in
BLM-treated mice. The fact that receptor blockade with folinic
acid lowered the radiotracer uptake to the level of control mice,
however, points to a receptor-specific rather than a non-specific
pulmonary uptake of 18F-AzaFol.

In future preclinical experiments to further support the
specificity of 18F-AzaFol-PET/CT, (a) the quality of the in
vivo imaging should be improved by using gated respiration
during the acquisition of the nuclear images to reduce motion
artifacts, which could affect tissue density, (b) dynamic PET
scans should be performed to account for blood flow-related
changes, and (c) signal intensities should be also quantified
in vivo e.g., by calculating the standardized uptake values
(84, 85). These additional studies would allow to better
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estimate the clinical applicability of 18F-AzaFol-PET/CT. For the
extrapolation of our preclinical data to humans, it is further
important to note that the endogenous folate levels largely
differ between rodents and humans (∼15–40 fold higher in
mice). In our study, this could have led to an underestimation
of the actual 18F-AzaFol tissue uptake since endogenous
folate might also compete with 18F-AzaFol for binding to the
FR (86).

In general, the transferability of results from animal models,
which, even though representative of certain aspects, never
cover the whole complexity of a human disease, is always a
matter of debate. However, previous studies using the murine
BLM-induced lung fibrosis model provided evidence for its
suitability for both imaging (33, 87) and molecular analyses
(88) and our own data showed similarly high pulmonary
expression levels of FR-β in experimental and (end-stage)
human ILD.

In conclusion, our proof-of-concept study showed that
nuclear imaging using 18F-AzaFol can visualize macrophage-
related experimental ILD. The fact that FR-β—apart from being
a cellular rather than a metabolic marker—is only expressed on
activated macrophages in disease states such as inflammatory
disorders or malignancies, supports 18F-AzaFol as a more specific
alternative to [18F]FDG in ILD. Since 18F-AzaFol-PET/CT has
been tested for targeting FR-positive tumors in a Swiss multi-
center trial (NCT03242993; www.clinicaltrials.gov), its clinical
availability, including first-in-human clinical trials for imaging of
ILD, is impending.
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