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Abstract
Fear is a highly adaptive emotion that has evolved to promote survival and
reproductive fitness. However, maladaptive expression of fear can lead to
debilitating stressor-related and anxiety disorders such as post-traumatic
stress disorder. Although the neural basis of fear has been extensively
researched for several decades, recent technological advances in
pharmacogenetics and optogenetics have allowed greater resolution in
understanding the neural circuits that underlie fear. Alongside conceptual
advances in the understanding of fear memory, this increased knowledge
has clarified mechanisms for some currently available therapies for
post-traumatic stress disorder and has identified new potential treatment
targets.
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Introduction
Fear is a highly adaptive set of behavioural responses that have 
evolved to allow us to survive and reproduce. As an emotion, 
fear can be separated into three coordinated domains of response, 
including behavioural and physiological changes in addition to 
the subjective ‘feelings’ that are more colloquially referred to 
when considering emotional states. The basic emotional states of  
happiness, anger, fear, sadness and disgust are highly conserved 
across mammals (and arguably across the animal kingdom) as 
they confer strong evolutionary advantage. Therefore, the study 
of fear (and emotions more generally) is not restricted to humans 
or psychology and indeed has benefited markedly from research 
conducted in animal experimental systems. This has been  
especially pronounced in the field of behavioural neuroscience, 
where our understanding of the neural basis of fear has pro-
gressed markedly over the past 30 to 40 years (see 1 for review).  
In addition to the intellectual value of understanding the fun-
damental neural mechanisms of fear, there has been great  
clinical interest in understanding these mechanisms. A number 
of highly distressing and costly mental health disorders,  
including phobia and post-traumatic stress disorder (PTSD), have 
been conceptualised as having their roots in fear learning and  
memory2,3. Consequently, an understanding of how fear is instan-
tiated in the brain may provide new avenues to treatment for  
these mental health disorders.

The study of fear in psychology and neuroscience has 
been primarily the study of fear LEARNING and MEMORY.  
Although innate fears do exist (that is, environmental cues can 
provoke a fearful response in the absence of any prior exposure, 
such as specific predator scents in rodents), the study of learned 
fears allows greater experimental control and provides insight 
into the neural mechanisms underlying learning and memory. 
Not only does this approach allow comparison of behaviour and  
neuronal responses before and after fear is learned, it also  
allows comparison with naïve control groups or, as is often the 
case in human studies, comparison with other ‘non-fearful’ cues 
in discriminative fear learning procedures. Learned fear is also  
relevant to mental health disorders – mostly obviously PTSD, 
which by definition develops following a traumatic and fearful  
experience4 – providing translational potential. Furthermore, 
because fear learning can be pavlovian (and therefore under 
the control of the experimenter) and because robust fear learn-
ing can occur with a single learning trial, the study of fear mem-
ory has been extremely influential in studying memory proc-
esses such as memory CONSOLIDATION5 and RECONSOLIDATION6. 
(See Table 1 for a definition of relevant psychological terms.) 
A further advantage is the possibility of ‘extinguishing’ fear  
through repeated cue exposure, so providing insight into how 
fear can be controlled. Indeed, fear EXTINCTION forms the basis 
for current PTSD and phobia therapies such as systematic  
desensitisation and prolonged exposure therapy, and so under-
standing the mechanisms underlying fear extinction provides  
insight into how these therapies work.

With recent technological and theoretical advances, the study 
of fear memory has advanced markedly in the past few years.  
This review will consider the recent advances that have been made 

in understanding the neural circuitry underlying the expression of 
fear and extinction memories before considering the impact that 
this research may have on the development of novel treatments for 
disorders of fear learning.

Insights into the neural circuitry of fear
Fear is not produced by any single brain region but rather as the 
result of a network of brain structures that allow coordination of 
the behavioural, physiological and subjective response domains  
(Figure 1; see 7 for review). It has been known for the past 30 
to 40 years that a key brain region in supporting fear memory 
is the amygdala8. This almond-shaped structure in the medial  
temporal lobe can be divided into multiple subnuclei, and the  
central amygdala (CeA) and basolateral amygdala (BLA) nuclei 
are critical for pavlovian fear conditioning. These amygdala 
nuclei interact with structures such as the hypothalamus and  
periaqueductal grey (PAG) nucleus in the brainstem to support 
autonomic and neuroendocrine responses to fearful cues, in  
addition to stereotyped reflexive responses such as conditioned 
freezing (the cessation of all movements except for those  
necessary for respiration) or aggressive responses, depending on 
the proximity of the threatening cue9. Another region of critical  
importance, particularly with respect to encoding the timing 
of aversive outcomes with fearful cues, is the cerebellum (see  
10,11 for review). These circuits were originally determined 
through the use of lesion and inactivation techniques, but  
technological developments in neuroscience, such as pharmaco-
genetics – for example, designer receptors exclusively activated 
by designer drugs (DREADDs)12 – and optogenetics13, have  
provided insight into the subtleties of these structures’ con-
tributions to fear behaviour. For example, it has been shown 
that the amygdala is capable of complex stimulus processing,  
including the coding of ambiguous aversive cues within the  
environment14, and pharmacogenetic manipulation of the 
ENGRAMS underlying ambiguous cues induced a generalisation 
of fear memory while leaving the original fear memory intact15. 
It has also been revealed that there are distinct projections from 
the CeA to the PAG that control active (for example, flight) and  
passive (for example, freezing) fear responses16 and that these 
projections communicate with different neurochemical signals.  
Interestingly, converging evidence from human functional  
neuroimaging studies has shown recruitment of different parts of 
the PAG during active and passive fear responses elicited by an 
approaching ‘predator’ in a video game17. Thus, far from being 
a simple ‘output nucleus’, the PAG contributes to the choice 
of appropriate fearful behaviour dependent on environmental  
conditions.

The role of the hypothalamus also appears to go beyond an ‘output 
nucleus’. It has long been known that the medial hypothalamus 
is required for the expression of defensive responses directed at  
predators18. However, recent work using techniques to label  
neurons constituting a specific memory trace has shown that 
fear engrams are present within the ventromedial hypothalamus  
(VMH) and that selectively silencing these neurons prevents 
both the acquisition and subsequent recall of a fear memory19.  
Furthermore, fear engrams in the paraventricular and supraoptic 
nuclei of the hypothalamus have been labelled, and the projection 
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Table 1. Definitions of relevant psychological terms.

Term Definition

Boundary conditions This term refers to limits on the occurrence of the memory RECONSOLIDATION process. These have been 
hypothesised to include memory strength and memory age. These boundary conditions are usually defined on 
the basis of observations of a lack of amnesia (preserved memory) following the administration of an amnestic 
agent in conjunction with a specific memory REACTIVATION procedure. The mechanistic underpinnings of these 
boundary conditions warrant further investigation, although a current view is that these can be related to synaptic 
metaplasticity mechanisms20.

Destabilisation The process by which a previously consolidated memory becomes unstable (labile) and enters a state in which it 
can be modified with new information.

Engram The representation of a memory within the brain, reflected by structural changes; a memory trace.

Explicit A subtype of long-term memory in which the content of the memory is consciously known.

Extinction This term can refer to the procedure of ‘extinction’, during which an animal or human is exposed to a previous 
learning situation but without reinforcement. This article refers predominantly to pavlovian extinction, where a 
previously reinforced conditioned stimulus is presented in the absence of the unconditioned stimulus. The term 
can also refer to the process of ‘extinction’, which has been hypothesised to require the formation of a new 
inhibitory memory trace but may also reflect some degree of unlearning (see ‘Insights into fear learning and 
memory’ section for details).

Implicit A subtype of long-term memory in which the content of the memory may not be consciously known (for example, 
emotional or procedural memories).

Learning The process of acquiring information that will lead to a persistent change in behaviour following an experience.

Memory The storage of learned information that leads to a persistent change in behaviour following an experience.

Memory consolidation The process by which a memory is initially converted into a long-lasting trace; widely thought to be associated 
with changes in synaptic plasticity and engram formation.

Memory reconsolidation The process by which a previously consolidated memory becomes DESTABILISED and enters a state in which 
it can be updated and subsequently becomes re-stabilised through mechanisms thought to be partially 
overlapping with those engaged by MEMORY CONSOLIDATION.

Occasion setter A stimulus that is differentially associated with a particular reinforcement contingency and helps to resolve 
ambiguity over whether a stimulus will be reinforced.

Prediction error A formal term for the mismatch between what is expected by an organism on the basis of previous experience 
and what actually occurs. This term is reflected in many models of learning and can be considered a signal 
that an engram requires updating. Reward prediction error has been particularly associated with dopaminergic 
signalling.

Reactivation Outside of reconsolidation research, memory ‘reactivation’ is often used almost interchangeably with memory 
‘retrieval’; but within the reconsolidation field, the term is used more specifically to refer to the procedure used 
to induce a previously consolidated memory to become unstable (that is, DESTABILISED) or to the induction of the 
destabilisation process itself.

Retrieval-extinction This is a procedure, first described by Monfils and colleagues21, in which a reminder of previous learning, 
followed by a short delay and then EXTINCTION training, leads to a stronger and more persistent reduction in 
responding than extinction training alone. There is not yet consensus as to whether retrieval-extinction depends 
upon RECONSOLIDATION mechanisms and reflects updating of the original memory or whether it is a facilitation of 
EXTINCTION  (see 22 for review).

Trauma film procedure This is a procedure used to model intrusive memories akin to flashbacks in post-traumatic stress disorder (PTSD) 
in healthy experimental participants. Participants are shown film clips depicting events listed as qualifying 
traumatic events for PTSD in the Diagnostic and Statistical Manual of Mental Disorders, which induce intrusive 
memories of the film clips for several days following exposure.

of these neurons to the CeA is critical for the expression of  
fearful behaviour23. Thus, rather than reflecting simple ‘output’  
structures of the amygdala, the brainstem and hypothalamic  
nuclei represent a more distributed circuit that can fine-tune the 
expression of fearful behaviour.

Studies of fear memory extinction have focused primarily on  
regions of the prefrontal cortex. It is important to note that  
extinction is widely considered to reflect inhibition of the  
original fear memory by a competing ‘cue-no fear’ memory 

rather than ‘unlearning’ of the original fear memory trace24.  
Consistent with the requirement for prefrontal regions in the  
regulation of other cognitive processes, studies of extinction  
have focused on prefrontal regions as regulators of structures 
such as the amygdala. Lesion and electrophysiological studies  
conducted in the 1990s and early 2000s showed that the rodent 
prelimbic cortex is required for fear memory expression, and 
that infralimbic (IL) cortex is required for the extinction of fear 
and the expression of the extinction memory25–27. As for studies 
of the hypothalamic contribution to fear, understanding of the  
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Figure 1. Illustration and schematic of key brain regions involved in fear and extinction learning. These structures form a highly 
interconnected network that produces the ultimate output of fear coordinated in the behavioural, neuroendocrine and autonomic domains. 
For a more detailed view of the subregions involved in fear learning and extinction, refer to Tovote and colleagues1.

prefrontal contribution to fear has been deepened with the advent 
of pharmacogenetic and optogenetic techniques: for example, 
optogenetic stimulation of the IL cortex has revealed that  
conditioned freezing can be reduced independently of extinc-
tion learning28. Furthermore, the functional coupling between the 
IL cortex and the amygdala can be modulated by sex hormones  
such as oestradiol in female rats, which increases the activ-
ity of the IL cortex during the retrieval of an extinction memory 
(that is, when fear is suppressed)29. This mechanism appears to  
recruit learning mechanisms as it is dependent on the N-methyl-
D-aspartate (NMDA) subtype of glutamate receptor30 (which 
is required for memory storage) and interestingly appears to 
be dependent on female reproductive experience31. These data 
provide further insight into the mechanisms underlying the  
well-documented sex differences in the prevalence of fear and 
anxiety disorders. Females are known to respond differently to 
fear learning and extinction procedures depending on circulating 
hormone levels32 (but note that males also show a dependence 
on oestradiol for fear extinction33) and to show differences in 
fear memory generalisation34 that may contribute to the higher  
prevalence of fear and anxiety disorders in women.

Once the fear and extinction memory traces have been acquired, 
the brain must have a strategy to determine which trace should  
dominate behaviour under specific circumstances. A highly  
influential view suggests that external contexts (for example,  
configurations of environmental cues) and internal contexts 

(for example, interoceptive states) can act as OCCASION  

SETTERS and arbitrators between the two engrams35. This view 
further suggests that the original fear memory is more likely to  
generalise across time and space than the extinction memory, 
which is more context-specific. In this way, it is possible to account 
for Pavlov’s findings36 of different psychological routes for the  
return of the original fear memory: spontaneous recovery (the 
return of fear following a change in internal states with time),  
reinstatement (the return of fear following a return to the fear- 
associated environment or re-exposure to the fear-eliciting  
stimulus) and renewal (a return of fear in environments other  
than the ‘safe’ extinction environment).

The hippocampus has been strongly implicated in the repre-
sentation of space and contexts and consequently has received  
great research interest both for its role in contextual fear condi-
tioning and for contributing to occasion setting during extinction.  
Different projections from the hippocampus to the amygdala 
appear to be important for these two processes. While ventral  
hippocampal projections to the basal amygdala support contex-
tual fear memory – consistent with hippocampal lesion data37 –  
projections to the CeA support the capacity of a context to act as  
an occasion setter for cued fear memory retrieval38.

The requirement for the hippocampus, in contrast to the  
amygdala39, in the storage of contextual fear memories appears 
to be time-limited40. For recent memories, it has been shown that 
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the same population of hippocampal neurons is activated dur-
ing the encoding and the retrieval of a fear-associated context, as  
shown by measures of protein kinase expression41, engram 
labelling42 and calcium imaging43. Increases in spine density –  
reflective of synaptic plasticity – have also been observed in 
the hippocampus following fear conditioning, although these  
appear to be time-limited, and remote memories are associ-
ated with spine density increases in the anterior cingulate  
cortex (ACC)44. These changes in spine density appear to be  
sequential, as preventing spine density changes in the hippoc-
ampus precludes subsequent changes in the ACC44. The time- 
limited nature of hippocampal plasticity in memory storage is 
also observed in studies of neurogenesis. Increasing hippocampal  
neurogenesis shortly after the acquisition of a fear memory leads 
to impaired retrieval of that memory, but increasing neurogenesis 
at later time points does not, most likely because the memory is 
no longer dependent on the hippocampus for its expression45. 
Consistent with a time-limited requirement for the hippocampus 
in the retrieval of fear memories, human functional imaging  
studies have shown that the strength of hippocampal connec-
tivity with neocortical regions increases following fear con-
ditioning and that the strength of this connectivity correlates 
with fear behaviour at a retention test conducted 24 hours after  
learning46.

Much of our understanding of the neural circuity underlying  
fear and anxiety disorders has been driven in a ‘bottom-up’  
manner from fundamental neuroscience studies of fear learning 
in animals. Some recent advances, however, have derived from a 
‘top-down’ approach that has attempted to provide a mechanism 
for therapies currently used to treat mental health disorders such 
as PTSD. One such therapy is eye movement desensitisation and 
reprocessing (EMDR)47, which is recommended as the second  
line of treatment for PTSD by the UK National Institute for  
Health and Care Excellence (NICE). During EMDR, patients 
and therapists work together to identify disturbing thoughts, 
mental images and feelings that become potential targets for  
‘reprocessing’ through extinction. A psychological ‘safe place’ is 
identified by the patient and used to help tolerate stress elicited 
by trigger cue re-exposure during the therapy. In the therapy 
itself, the patient is guided through the disturbing thoughts by the  
therapist while performing a visuospatial task such as visually 
tracking a moving target. This ‘reprocessing’ occurs until the  
patient reports loss of fear to the trigger stimuli. Although EMDR 
has been praised in the clinical literature for its efficacy48, the 
mechanism by which EMDR reduces fear has been a matter of  
debate49–51. Though it has been established that a visuospatial  
task performed concurrently with fear memory extinction leads 
to deactivation of the amygdala52, there remains debate as to  
whether the efficacy of EMDR depends critically upon the  
visuospatial component of the therapy or whether this is simply an 
epiphenomenon.

Recent research has supported the importance of the visuospatial 
manipulation in EMDR and identified a neural mechanism by  
which repetitive, side-alternating eye movements could lead 
to long-term reductions in fear. The superior colliculus of the  
midbrain is critically important for eye movements and has been 

shown to mediate the effects of eye movement on amygdala  
activity. With a version of EMDR backtranslated for mice, it 
was shown that alternating bilateral sensory stimulation led 
to enhanced activity in ‘extinction’ memory traces within the  
amygdala and that this enhanced activity depended on a circuit 
involving projections to the amygdala from the superior colliculus 
via the mediodorsal thalamus53. The superior colliculus has been 
further implicated in mediating defensive behaviours to fearful 
cues54, although it remains to be determined whether this recruits 
the same circuitry as the backtranslated EMDR procedure.

Insights into fear learning and memory
As noted above, the robust and rapidly learned nature of fear  
memory makes it an ideal model system for investigating  
memory processes such as learning (memory acquisition), storage 
(consolidation) and updating and persistence (reconsolidation). 
Indeed, the traction gained by research into memory recon-
solidation, which had originally been described in the 1960s55,56  
but was rediscovered at the turn of the century57, can be  
attributed in large part to the use of the psychologically and  
neurobiologically well-characterised procedure of pavlovian fear  
conditioning, as well as the use of amnestic agents with more  
readily defined mechanisms of action, such as protein synthe-
sis inhibitors. In addition to the utility of fear for studying the 
fundamental properties of memory, views of disorders such as  
specific phobia and PTSD emphasise the importance of learned 
cue-fear associations in the development and persistence of  
these disorders58. Therefore, the manipulation of pavlovian fear 
memories – whether disrupting cue-fear memories or enhancing 
the fear memory extinction – is a plausible therapeutic target for 
anxiety disorders59,60.

Much research into fear learning and memory has focused on the 
amygdala, as it has been strongly implicated in pavlovian fear  
learning and the persistence of fear memories. Several lines 
of evidence suggest that, unlike memories dependent on the  
hippocampus, cue-fear memories are permanently stored within 
the amygdala once acquired39,61,62, although this is not univer-
sally accepted (see 63–65 for review) and may depend on how 
the fear memory is tested (for example, active versus passive  
defensive responses). More recently, there has been interest 
in whether the amygdala also undergoes synaptic plasticity 
changes following fear memory extinction. Although traditionally  
extinction has not been conceptualised as ‘unlearning’24, since 
the identification of ‘fear’ and ‘extinction’ engrams in the  
amygdala66 and in light of detailed structural studies showing 
that extinction is followed by elimination of dendritic spines  
formed during fear conditioning in the amygdala67 and auditory 
cortex68, there has been increasing interest in determining the  
degree to which synaptic plasticity is required in the amygdala 
for the expression of fear extinction. Our own research has  
shown that extinction engages key molecular markers of  
synaptic plasticity within the amygdala, including protein 
kinases such as extracellular signal-regulated kinase (ERK)69 
and the protein phosphatase calcineurin70. Whereas ERK is also 
recruited for fear memory reconsolidation, calcineurin appears 
to be specific to the formation of the extinction memory, and  
knockdown of calcineurin prevents the retention of an extinc-
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tion memory without affecting the reconsolidation of the original 
fear memory70. However, a limitation of this approach is that it  
cannot determine whether the synaptic plasticity events are  
occurring in the same or a different population of neurons within 
the amygdala (although the latter is perhaps more likely given 
the previous demonstrations of separate fear and extinction  
engrams). Though there is an increase in the expression of 
the immediate early gene arc in the amygdala during both 
fear memory reconsolidation and the consolidation of a fear 
extinction memory, this appears to be in distinct amygdala  
circuits71.

Recent work has indicated that there are at least two classes 
of amygdala neurons recruited in extinction. It was recently 
found that the neurons recruited for the ‘extinction trace’ are  
parvalbumin-positive interneurons72 and that activation of these 
neurons directly suppresses the expression of the original fear 
memory. These are separate to a population of glutamatergic  
neurons expressing the antigen Thy-1, which are thought to 
overlap with the ‘extinction’ neurons originally described by  
Herry and colleagues66. The activation of Thy-1 neurons, in con-
trast to the parvalbumin-positive neurons, appears not only to  
facilitate the consolidation of an extinction trace but also to 
impair the reconsolidation of the original fear memory73. These  
different molecular mechanisms may also reflect a shift in how 
extinction is instantiated following different degrees of non-
reinforced cue exposure. It has been shown that, in the early  
stages of (massed) extinction training, the activation of both the 
amygdala and the IL cortex increases but that this activation  
returns to baseline levels with further (spaced) extinction training74. 
It has been argued that these changes in neural recruitment  
may reflect the initial formation of an inhibitory extinction  
trace, followed by erasure of the original fear memory. This is 
consistent with other studies using spaced extinction training, in  
which a hippocampal fear memory engram was observed 
to be REACTIVATED to incorporate new information during  
extinction training42. However, in the latter study, the original 
engram persisted in its updated form. Whether this reflects  
differences in the storage of fear and extinction memory engrams 
in the hippocampus, amygdala and prefrontal cortex warrants  
further investigation.

Treatments for fear and anxiety disorders: 
understanding mechanisms and identifying new 
approaches
In addition to informing scientific understanding of a fundamen-
tal memory process, studies of fear learning have the potential  
to identify how to optimise currently available treatments and 
to develop novel therapeutic approaches for fear and anxiety  
disorders. Whilst a major focus of recent work has been the study 
of neurochemical systems contributing to fear and anxiety, there 
has also been great interest in targeting the maladaptive fear  
memories that underlie fear and anxiety disorders.

Selective serotonin reuptake inhibitors (SSRIs) are widely used 
to treat anxiety and fear disorders such as PTSD75, and recent  
research has aimed to clarify how these drugs exert their effects 
in the brain. Serotonin is released by the Raphé nucleus of the  

brainstem, and recent research has characterised in detail the 
circuits by which different Raphé nuclei contribute to fear and  
anxiety. It was recently shown that serotonin from the dorsal  
Raphé activates a population of corticotropin-releasing factor 
(CRF)-expressing neurons within the bed nucleus of the stria  
terminalis (BNST), which in turn activate a microcircuit within 
the BNST that regulates anxiolytic output on to the ventral  
tegmental area (VTA) and lateral hypothalamus76. This circuitry 
appears to show sexually dimorphic baseline activity, and  
unstressed females show greater functional connectivity 
between regions such as the dorsal Raphé, amygdala and medial  
prefrontal cortices than unstressed males77. Furthermore, CRF 
administration into the lateral ventricle led to differences in the 
limbic circuitry recruited in males and females, and there was  
greater co-activation of the BNST and nucleus accumbens, the  
PAG and nucleus accumbens, and the BNST and the septum 
and hippocampus in females than in males77. This circuitry was  
modulated by oestradiol in unstressed but not stressed females, 
perhaps linking to the different prevalence of anxiety disorders 
in women, and sex differences in fear learning and extinction 
in rodents, as discussed above. In contrast to the dorsal Raphé, 
the median Raphé may be directly involved in the formation of 
fear memory, as optogenetic activation of the median Raphé in  
place of an electric shock was sufficient to generate a fear  
memory following a 7-day incubation period78. Serotonin  
transporter (SERT) expression itself appears to be related to fear 
learning, as constitutive SERT-/- and SERT+/- rats show enhanced 
acquisition of fear learning and delayed extinction learning79.

Another neurotransmitter that has been extensively investi-
gated in fear research is dopamine. The relationship between  
serotonin and dopamine is still a matter of debate80, and much 
of the evidence emphasises the importance of dopamine in 
appetitive learning and ‘reward’ PREDICTION ERROR81,82.  
However, increasing evidence indicates that dopamine can  
signal prediction error more generally and may contribute to the  
encoding of different types of prediction error in different brain 
structures83. A population of dopaminergic neurons from the  
dorsal Raphé and ventral PAG are activated by the presentation of 
unpredicted electric footshocks, enhancing dopamine-dependent 
synaptic plasticity within the amygdala84. These effects on  
synaptic plasticity likely reflect dopamine’s neuromodulatory  
function across a number of brain structures. Certainly, 
dopaminergic signalling has been shown to be necessary for the  
consolidation of fear memory in several structures involved in fear 
learning, including the hippocampus85 and the amygdala86–88.

By contrast, and consistent with their role in reward prediction 
error, a dopaminergic population within the VTA is activated 
when predicted aversive outcomes do not occur and are necessary 
for the acquisition of extinction89. However, a separate projection  
from the VTA to the medial prefrontal cortex appears to oppose 
extinction learning89. The nigrostriatal dopamine system has 
also been implicated in fear extinction, and pharmacogenetic  
activation of this projection leads to enhanced retention of  
extinction and a reduction in context-induced renewal of fear89.  
This correlated with the expression of c-Fos in the CeA and  
with activation of D

1
-expressing neurons in the dorsomedial 
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striatum. As pharmacological activation of the D
1
 subtype of  

dopamine receptor only blocked fear renewal, this may suggest 
the recruitment of habitual strategies making the expression of  
the extinction memory less sensitive to the context.

Chronic pharmacological therapy is potentially not the only  
option for the treatment of anxiety and fear disorders. Since 
the turn of the century, there has been great interest in directly  
targeting the maladaptive fear memories that contribute to  
disorders such as PTSD. Although PTSD can potentially be 
treated by administering amnestic drugs immediately following 
the trauma90, it is still advantageous to develop treatments that can 
be given even once the memory is well established. This would  
allow the treatment of PTSD in patients with remote trauma 
memories and would avoid ethical issues such as obtaining  
informed consent in acutely traumatised patients. One such  
approach is the disruption of memory reconsolidation, which 
has been extensively investigated with respect to pavlovian fear  
memories.

To disrupt reconsolidation requires two conditions: the desta-
bilisation of the memory and the administration of an amnestic  
treatment. One of the most widely used pharmacological  
treatments to induce amnesia in reconsolidation procedures 
is the beta-blocker propranolol. This drug was one of the first 
drugs targeting a neurochemical system shown to disrupt fear 
memory reconsolidation in rodents91, and it is approved for  
human use, facilitating translation to human studies. Propranolol, 
given in conjunction with memory reactivation, disrupts the  
reconsolidation of IMPLICIT (though not EXPLICIT) condi-
tioned fear memories in healthy human volunteers92 and reduces  
physiological responses to fear in patients with PTSD93–95 and  
phobia96. Although there have been some failures to replicate  
these effects97, this is likely due to difficulties in destabilis-
ing the target memory – so-called BOUNDARY CONDITIONS98.  
Recent work has begun to investigate whether memories can 
be more effectively DESTABILISED by re-exposure directly to 
the outcome rather than cues predictive of the outcome (that 
is, re-exposure to the unconditioned shock stimulus rather than  
conditioned stimulus)99. It is difficult to envisage how this  
outcome-based reactivation, though of theoretical interest, could 
be translated to a therapeutic setting, although it is possible 
that re-exposure techniques based on virtual reality100 could be  
adapted for this use.

Another approach to disrupting the reconsolidation of fear  
memories is the use of behavioural interference techniques  
rather than a pharmacological amnestic agent. This was first 
demonstrated through the use of extinction training shortly after 
the reactivation of the memory in rats6 and humans101 in what are 
now described as ‘RETRIEVAL-EXTINCTION’ procedures. This  
retrieval-extinction approach is hypothesised to update the  
original fear memory with the safety (cue-no fear) memory 
rather than creating an alternative extinction memory that com-
petes with and inhibits the original fear memory. Though poten-
tially very impactful, the phenomenon has not been universally 

observed, and there have been failures to replicate in both rats102  
and humans103. Furthermore, other studies have shown that the 
reduced recovery of fear associated with retrieval-extinction 
can be observed even when the mechanisms underlying  
memory destabilisation are blocked104. As for propranolol, the  
interaction between potential boundary conditions and the  
mechanisms engaged warrants further investigation and likely  
corroboration with alternative forms of evidence, such as  
molecular analyses22.

One final though relatively new approach aims to interfere 
with the reconsolidation of the cue representation that triggers  
intrusive thoughts and involuntary flashbacks in PTSD. It has 
been shown in healthy volunteers trained on the ‘TRAUMA FILM  

PROCEDURE’105 that it is possible to induce intrusive sensory 
memories reminiscent of flashbacks in PTSD and that the  
frequency of these intrusive memories can be reduced with the 
use of reconsolidation interference strategies. These highly visual  
sensory memories are hypothesised to depend on the same  
psychological and neurobiological substrates that are engaged by 
other highly engaging visuospatial tasks, such as the video game 
Tetris. Following demonstrations that Tetris played shortly after 
exposure to trauma films could reduce the consolidation of the 
visual sensory memories underlying flashbacks105, it was shown 
that fully consolidated visual memories could also be disrupted 
by Tetris gameplay following a brief reactivation of the trauma 
film memory106. This ‘behavioural interference’ approach has  
subsequently been shown to impair the consolidation of intrusive 
memories underlying flashbacks in clinical populations of road 
traffic accident survivors107 and mothers who have undergone 
emergency caesarean sections108. Furthermore, in a preregistered 
open-label study of patients with long-standing complex PTSD, 
visuospatial interference significantly reduced the number of  
intrusive thoughts of targeted trauma memories109. These  
non-pharmacological methods to disrupt the reconsolidation of 
trauma memories warrant testing on a larger scale60.

Conclusions
Fear is a basic and highly adaptive emotion, but maladap-
tive fear can lead to debilitating mental health disorders. Recent  
advances in fear research have provided insight into the detailed 
neural circuits that support fearful behaviour and allow its  
modulation while also allowing a better understanding of  
currently available treatments for anxiety disorders. A deeper 
understanding of fear learning has also identified some  
potential novel treatment avenues that warrant further research in 
progressively more translational models110.

Abbreviations
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PAG, periaqueductal grey region; PTSD, post-traumatic stress 
disorder; SERT, serotonin transporter; VTA, ventral tegmental  
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