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Abstract— With advances in the field of robotic manipulation,
sensing and machine learning, robotic chefs are expected to
become prevalent in our kitchens and restaurants. Robotic chefs
are envisioned to replicate human skills in order to reduce
the burden of the cooking process. However, the potential
of robots as a means to enhance the dining experience is
unrecognised. This work introduces the concept of food quality
optimization and its challenges with an automated omelette
cooking robotic system. The design and control of the robotic
system that uses general kitchen tools is presented first. Next, we
investigate new optimization strategies for improving subjective
food quality rating, a problem challenging because of the
qualitative nature of the objective and strongly constrained
number of function evaluations possible. Our results show that
through appropriate design of the optimization routine using
Batch Bayesian Optimization, improvements in the subjective
evaluation of food quality can be achieved reliably, with very
few trials and with the ability for bulk optimization. This study
paves the way towards a broader vision of personalized food
for taste-and-nutrition and transferable recipes.

I. INTRODUCTION

Robotic preparation of cooked food is a challenging
task. The progression towards a fully automated robotic
chef involves solving hard problems in robot manipulation,
computer vision, tactile sensing, and human-robot-interaction
[1]. Consequently, current demonstrations of robotic chefs
are inferior in their capabilities compared to their biological
counterparts. However, robotic technologies have the unique
ability to accurately and precisely vary their actions and store
retrievable quantitative information. This provides a frame-
work to create consistent, parameterizable and controllable
cuisines.

Automation in the food industry is a rapidly growing field.
This has introduced faster, reliable and cheaper techniques
for quality inspection [2], [3], [4], processing [5], handling
[6], [7], and packaging. Unlike industrial food handling,
kitchen robots are expected to be adaptable with the ability
to cook numerous recipes, handle multiple existing kitchen
tools and conform to the user’s subjective preferences. A
good example of this is the world’s first robotic kitchen
developed by the Moley Robotics (https://www.moley.com/).

Previous researches on robotic chefs or automated cooking
focus on different aspects of the cooking process. Bollini
et.al. investigated sensing and manipulation strategies for a
robot that bakes cookies [8] and natural-language processing
techniques for recipe interpretation [9]. A similar work on
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Fig. 1. The two optimization approaches that we investigate in this paper
for food optimization. The main difference among two is the protocol for
obtaining the qualitative data.

generating action plans from online instructions was done
using a pancake making robot [10]. Other works involve
tracking the state of the cooking ingredient for advanced
manipulation tasks, as required for a pizza making robot
[11]. All these studies strive towards the aim of replicating
the dexterity and intelligence of a human chef. Alternatively,
researchers are looking into non-traditional ways of food
manufacturing based on 3D food printing [12]. Such tech-
nologies would allow users to create food products that are
highly customizable and makes them an appealing solution
for creating nutritious and visually appealing food products
[13]. However, they are limited in the type of ingredients
they can print and does not involve the process of cooking.

Optimization of qualitative food parameters is an unex-
plored research topic. There have considerable progress in
the optimisation of processed food on quantifiable parameters
like nutrition, energy efficiency, processing time, etc [14],
[15]. Various cultures and civilisations have honed and
revised their cuisines and diet, cooking is still considered
an art based on certain heuristics and flexible recipes. This
is because the quality of food (typically represented by taste,
appearance, texture and smell), is a subjective quantity and
the control humans have over the cooking process is limited.
Robotic cooking solves the control problem by providing
the ability to parameterize the control inputs and execute
them with high repeatability. The remaining challenge is the
handling of the subjective, noisy, semi-quantitative output
data and interpreting the complex relationship between the
subjective output and the control inputs [16], [17]. Moreover,
as individuals have unique preferences, universal solutions
for the optimization problem do not exist. Hence, unlike
regular optimization problems, special tools have to be
developed for food optimization.

This work presents a robotic platform capable of precisely
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preparing an egg omelette, starting from an uncracked egg all
the way till plating the omelette. An industrial robotic manip-
ulator with a custom robotic gripper is used maintaining the
generalizability and transferability of the work. The platform
has the capability to vary several key parameters for cooking
smoothly and consistently. We investigate algorithms for
the optimization of subjective food quality measures like
taste, appearance and texture [18]. This paper shows how
minor changes in the experimental procedure arising out of
the optimization framework can lead to richer and cleaner
subjective human data and subsequently better food quality.
We also show how our method can be used for the bulk
optimization of food quality for a group of individuals with
distinct preferences.

II. FOOD QUALITY OPTIMIZATION
A. Challenges

Our goal of enhancing food quality is marred by numerous
challenges that are unique to this problem. Our proposed op-
timization solution is designed to address these challenges. 1)
Limited function evaluations and fading memory: the cook-
ing process is costly in time and ingredients. The number
of samples that can be evaluated by an individual is limited
because of finite appetite and the effects of fading memory.
Fading memory prevents us from increasing the number
of samples by testing over multiple days. 2) Individual
preferences: each individual has his/her personal heuristics
behind the evaluation of an item. Therefore, optimal solutions
obtained for one individual cannot be applied to other
individuals. 3) Grounding problem: qualitative evaluations
are based relative to the priors of the individual and his/her
expectations of the future dataset. For instance, rating of an
omelette is the outcome of a complex process resulting from
all the previous experiences the user had with omelettes and
an implicit idea of the range of omelettes expected from the
system.

B. Sequential Bayesian Optimization v/s Batch Bayesian
Optimization

In this work, Bayesian Optimization is used as it is ideal
for expensive low-dimensional stochastic functions [19]. The
underlying functions are modelled with Gaussian priors
which is a suitable fit for the human subjective taste. We
investigate two variants of Bayesian Optimization in this
paper. The key difference among the two methods is the
procedure for obtaining samples for optimization. The first
method uses standard Sequential Bayesian Optimization(BO)
framework for sequential sampling and optimization. The
second method, Batch Bayesian Optimization [20], uses
predefined sampling points and Gaussian process models for
estimating the expected optimum (See Figure 1). A Gaussian
process is fully specified by a mean function f̄(x) and the
covariance function k(x, x′)

f(x) ∼ GP
(
f̄(x), k(x, x′)

)
(1)

Sequential Bayesian Optimization is used for derivative-
free global optimization of black-box functions [21]. Based

on an initial random sampled data and the update of the
priors based on the new observations (Yi), next query points
(Xi+1) are decided. The trade-off between exploration and
exploitation is decided by the acquisition function (See
Figure 1). The algorithm terminates when the solutions
converge based on the stopping criterion. Hence, the number
of samples cannot be known a priori. Since the sampling
process is dependent on the function output (user feedback),
Sequential BO does not allow re-evaluation of previous
samples, a problem that exacerbates the grounding problem.
Bulk optimization of multiple individuals is not possible
because the samples are specific to the individual taste. The
tuning of the hyperparameters of the acquisition function is
another challenging problem given that we have limited trials
and a large control input range.

Batch BO is traditionally used when functions are ex-
pensive to evaluate but can be easily parallelized [20]. In
our case, it takes time to prepare an omelette but multiple
evaluations on the same omelette is not expensive. In Batch
Bayesian Optimization, the query points ([X1, X2...XN ])
are pre-defined and independent from the new observa-
tions ([Y1, Y2...YN ]). Like, Sequential Bayesian Optimiza-
tion, Gaussian process models for fitting the prior distribu-
tions. The expected maximum (X∗) is then estimated from
the fitted probability distribution (see Figure 1). The number
of samples are fixed in this method. Hence, a termination
criterion does not exist in this case. More importantly, now
re-evaluation of the samples can be done and user feedback
can be modified anytime during the sampling process. This
greatly affect the quality of the user feedback for statistical
analysis. Additionally, bulk optimization can now be per-
formed.

C. Experimental Setup

The experiment is conducted in a customised kitchen as
shown in Figure 2. An egg cracker, bowl, electric whisker,
salt and pepper, pan, and a whisk (used for mixing while
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Fig. 2. Experimental setup of the omelette making robot



heating), are tools that are manipulated by the robot. In
order to constrain the tools to a known location, the rig
includes holders for the egg cracker, bowl, electric whisker,
oil dispenser, and the whisk. Similarly, the initial location
for the salt and pepper dispensers are marked.

Figure 3 shows a block diagram of the robot system.
A UR5 robot arm from Universal Robotics is used as the
manipulator for the omelette cooking process. The UR5
is controlled by a python script using a provided API to
communicate with the UR5 control box. Through the API,
commands to the UR5 such as, Cartesian coordinate position
demands, individual joint angle demands, and force control
can be sent.

A simple end-effector has been designed and manufactured
to manipulate all the tools in the kitchen setup. It has two
fingers that can move parallel to each other independently
via two DC motors. The fingers are equipped with silicone
padding better grasp tools with varying shapes. A linear
potentiometer is connected to each finger which is used for
position feedback and to avoid collisions. The current input
to the motor controller is read from a shunt resistor, which
effectively indicates the grasping force. This feedback is used
to tune the strength of the grip when an object is sensed. An
Arduino Uno was used to read the sensors on the gripper
and control the motor through a dual H-bridge circuit. Serial
communication allows the Arduino to communicate with the
python script controlling the UR5, to coordinate the grasping
and arm movements.

III. ROBOTIC COOKING

A. Omelette Cooking Procedure

The omelette cooking procedure is illustrated in Figure 4,
where the robot moves through a sequence of events. The
robot is reliant on all the tools setup in the known location
to initiate the process, but can accommodate slight changes
to the tool placement via the gripper robustness and methods
such as force feedback when grasping/using the tools. The
eggs are placed in the cracker manually. On developing the
experimental setup and the sequence for omelette cooking,
a list of vital control parameters were identified as shown in
Table I. The heat-level of the hob, the time from placing the
pan to heating, and the time from pouring the contents from
the bowl until mixing are kept constant.
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IV. METHODS

A. Investigation of Control Parameters

An investigation of the control parameters was conducted
to better understand their relationship with the user feedback.
With the aim of dividing the multi-objective optimization
problem into groups of multiple single-objective optimization
problem, a sensitivity test was performed initially. In this test,
four human volunteers are first given a base omelette pre-
pared with control inputs set to their middle. Subsequently,
omelettes with one of the input parameters increased to its
maximum value while keeping the others constant, are pre-
pared and evaluated. The human subjects are informed that
the first omelette will be a baseline to be compared against,
but are not informed of the input parameters. Accounting
for effect of fading memory, each control parameter is only
varied once for our analysis.

The sensitivity of an output for a particular input is
calculated average relative change of the output (when the
input in question has been modified) with respect to the base
omelette, given as such.

Sensitivity(Yj |Xi) =

N∑
n=1

abs

(
Yn,j − Ybase

σ(Yn)

)
Here, Yn,j , refers to the feedback on the variable j by user

n, Xi is the corresponding control parameter, Ybase is the
base feedback value and σ represents the standard deviation
of the sampled variables.

The results obtained from this analysis are shown in
Figure 5. Based on this analysis, functional dependencies
are formulated based on the three most influential control
parameters. Salt, pepper, and mixing were found to affect the
taste metric, flavour, the most. The three control parameters
that affected appearance and texture were mixing, whisking
and cook-time. Hence, we reformulated the problem as two
separate optimization problems; one for flavour and another
for the combined value of appearance and texture. The
grouping has not been disclosed to any human volunteers
across the experiments.

B. User Feedback and Optimization

The human assessor evaluates a sample after the omelette
is prepared on three food taste metrics: Flavour, Appearance,

TABLE I
INPUT/OUTPUT VARIABLES

Control Input X Quantity Units Min Max
s Salt Shakes 0 10
p Pepper Shakes 0 10
m Mixing Rotations on pan 0 10
w Whisking Seconds 0 12
c Cook Time Seconds 210 510

User Feedback Y Quantity Expected Outcome
f Flavour 0 - 10
a Appearance 0 - 10
t Texture 0 - 10
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and Texture (Table I). The other commonly used metric,
Aroma, is ignored for our studies due to its weak dependence
on our control parameters. For the three taste metrics, the
assessor will score the omelette sample within a range of 0
to 10 (only integer values) independently.

The BayesianOptimization library for python3
was been used to perform the optimization process
(https://github.com/fmfn/BayesianOptimization). For all the
Sequential Bayesian Optimization tests, two optimization
routines were run in parallel, one for flavour and the
other for appearance and taste. The Gaussian Process (GP)
employed a Matern kernel (nu = 2.5). The only parameter
we tune for the optimization procedure is the exploration
parameter (κ) of the acquisition function based on the GP
Upper Confidence Bound. Four experiments were conducted
to optimize the output of four individuals, with varying
levels of exploration (Table II). Higher exploration leads
to a higher probability of finding the global optima but
with slower convergence. In our case, we have an upper
limit on the number of iterations; due to the finite number
of samples an individual can taste and the fading memory
effect. Therefore, it is impossible to ensure a global optima.
By the nature of this method, the volunteer was not allowed
to change the evaluation of the omelettes after a score
has been given, but is allowed to view/taste the previous
omelettes if necessary.

For the Batch Bayesian Optimization a GP regression
model was used with automatic relevance determination
(ARD) squared exponential kernel function. There were no
parameters to be tuned for this case. A range of control
parameters (XTotal = [X1, X2...X10]) were selected and the

TABLE II
KAPPA HYPERPARAMETER USED IN SEQUENTIAL BO

Experiment Kappa
(Flavour)

Kappa
(Appearance)

1 3 0.6
2 3 0.6
3 1 1
4 1.2 1.2

10 omelettes corresponding to each input Yi were evaluated,
resulting in output feedback (YTotal = [Y1, Y2...Y10]). YTotal

and XTotal is then fed into the Batch Bayesian Optimizer
to return the optimal set of input parameters, X∗. Two
experiments were conducted with 4 volunteers. The 10
input parameter sets were obtained by a constrained random
process. In the two search spaces, (Salt, Pepper, Mixing)
and (Mixing, Whisking, Cooktime), corresponding to the two
output groups, each input was required to be as far away
as possible (euclidean distance) from every other input set
whilst the Mixing parameter consistent between the two.
Subjects evaluating the sample omelettes were allowed to
retract and change their evaluation of the omelettes through-
out the experiment, but were left unaware of the optimization
process and the objective of the study throughout.

Two methods were investigated to obtain the optimized
control parameters, X∗. The first method was performing two
independent Batch Bayesian Optimization’s on the ”Flavour”
output and the ”Appearance and Texture” output separately.
The second method groups all of the output into one value by
summing the mean normalised output values from ”Flavour”,
”Appearance” and ”Texture”. Two optimized omelettes are
produced corresponding to the two optimization methods to
be tested with the subject.

V. RESULTS

A. Demonstration of Omelette Making

A total of 6 experiments were conducted on various days
to test the experimental setup and our optimization algo-
rithms. Four of the tests were for the Sequential BO and the
remaining two were conducted for the Batch BO. As Batch
BO allows bulk optimization, the final test was done with
three assessors and optimized products for each volunteer
was provided from the common sampling process (Table
III). Note that experiment number 2 had four assessors,



but the optimization was performed for a randomly selected
individual. A total of 73 omelettes were prepared for the
optimization study. Some samples prepared by the robotic
chef are shown in Figure 6. Omelettes prepared using the
same input parameters had good repeatability as shown by
the visual similarity through the images of the omelettes
and the RGB histogram in Figure 6. The robotic platform
is critical to obtain repeatable samples while maintaining
its generalizability to cook various recipes, which is not
achievable by humans or with an automated machine. The
robotic manipulator is used to make our approach general.
For this, we have been effortful to use available kitchen
appliances and utensils.
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Whisking: 3 
Cooktime: 314
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Fig. 6. Above: various type of Omelettes prepared by the robotic chef.
Below: repeatability of the samples achievable due to the robotic platform
(shown here by the visual similarity of same input Omelettes)

TABLE III
QUANTITY OF EXPERIMENTS AND OMELETTES

Experiment
Number

Omelettes
Prepared

Optimized
Assessors

Number of
Assessors

Sequential

1 15 1 1
2 10 1 4
3 10 1 1
4 10 1 2

Batch 5 12 1 1
6 16 3 3

B. Results of Food Optimization

The main advantage of the Batch BO is the ability to
efficiently explore the input space without fear of non-
convergence. Combined with the flexibility it provides the
assessors for re-evaluation of the omelettes, Batch BO leads
to richer user feedback for the final optimization. As the
Sequential BO was tuned to achieve convergence, the ex-
ploration of the input space was low. Whereas Batch BO
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Fig. 7. Average variance of control inputs and the human feedback during
the sampling process. Higher variance during the exploration of the control
variables leads to higher precision and reliability of the qualitative feedback.

achieved higher exploration due to the near uniform distri-
bution of the input parameters. When Sequential BO tuned
for higher exploration, it was difficult to achieve convergence
within the required iterations. This can be seen in Figure 7.
The variance of both the input parameters and feedback are
both more than twice for Batch BO compared to Sequential
BO. This shows that in Batch BO 1) a higher level of
exploration has been performed, and 2) the human assessor
experienced a higher variability in the omelettes. Both these
aspects relate to the ’reliability’ of the experiment. With little
exploration, it is more difficult to conclude if an optimum has
been reached. With low variability in the output feedback,
the effect of noise is likely to be higher. An example of the
sampling process and the user feedback is shown in Figure
8. Notice the lower ranges in the output feedback in the
Sequential BO when compared to the Batch BO. Another
interesting noise artefact that arises with low control input
variance is the unconscious effect of ’output merging’. This
can be observed vividly towards the final few samples in the
Sequential BO experiment when the three output feedback
seems to be directly correlated to each other. This effect
could possibly be reduced further by increasing the input
variance progressively over iterations.

Fig. 8. Sequential BO has a trade-off between exploration of the input
space and number of iterations for convergence. Hence, there is insufficient
input variance (exploration) as shown in this case. Batch BO is immune to
this trade-off.

Figure 9 complements the result of Figure 7 by showing
the relative improvements in subjective food quality using



the two optimization methods for all the 8 assessors. We do
not have sufficient data points to provide individual analysis
and hence all our results are ascertained from the population
data. The relative improvement(R.I) measures the subjective
improvement of optimization procedure. It is measured by
the change in the subjective feedback score with respect to
the mean score during sampling scaled the variance of the
control parameters after the end of the optimization cycle.
The scaling of scores by variance is important to indicate the
confidence of the measured subjective change. For instance,
an observed improvement in qualitative rating for a constant
input can be attributed to the noise in the system and hence
of no relevance.

R. In,j ={
Yn,K,j + Yn,K−1,j

2
− 1

K

K∑
k=0

Yn,k,j

}
×
∑
i

σ2(n,Xi)

where k represents omelettes assessed.

Compared to sequential BO, the expected improvement
in performance of the Batch BO arise because of the self-
regulating effects of higher exploration and re-evaluation.
Higher discernability among samples leads to better ’ground-
ing’ of the subjective data and hence better fitting of the
underlying objective function.
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Fig. 9. Relative food quality improvement with the two optimization
methods

VI. CONCLUSIONS

This work introduces the concept of robotic food quality
optimization and present an efficient and reliable optimiza-
tion routine for enhancement of food taste. We present a
robotic platform that can cook parameterizable and accurate
omelettes. The platform uses general kitchen appliances, a
common industrial manipulator and a custom simple gripper
for the cooking process in consideration of extending the
methodology to other dishes. Our optimization solution is
addressed to solve the main challenges of qualitative data
(See Section II-A). We present the standard Sequential
Bayesian Optimization method which is particularly suited
for expensive, noisy low-dimensional cost functions and its
variant, the Batch Bayesian Optimization as a better ex-
tension. The results indicate that quantifiable improvements
can be obtained by this methodology for food optimization.

Additionally, such an approach can be extended easily for
bulk optimization and even parallel optimization using mul-
tiple robotic chefs. Further studies have to be conducted to
investigate other optimization techniques and their viability.

Handling subjective data is difficult. With enough sample
data and proper statistical techniques, subjective data can
be reasonably quantified. The food optimization problem
is however severely restricted by the sample availability
and will always be susceptible to subjective elements. This
exactly why the problem is interesting and relevant for
human-robot interaction. To reduce the subjectiveness of the
data, we have always employed normalization techniques for
quantitative comparisons, which is still one of the common
approaches for qualitative data analysis. We believe that this
work will become more relevant in the future for Human-
Robot Interaction tasks, which typically involves qualitative
feedback along with quantitative feedback.

Food optimization is not limited to qualitative feedback.
Other methods that rely on quantitative data can also be
another direction to investigate. A straightforward problem
that can be easily solved is to use the same methodology for
optimizing food nutrient and calorie content. With the ability
to personalize diet using data from past and information from
other users, this could revolutionize the way we prepare our
food and the design of our kitchens. There are also other
methods to obtain taste feedback that are ’more’ quantitative,
like measurement of neural activity during the process of
eating [22]. Another method could be to use vision-based
feedback for appearance optimization. The problem of qual-
itative data analysis is not only restricted to food quality
optimization, but also relevant for seamless integration of
robotic assistants in various domestic tasks.
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