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Summary

Author: Kristina Tenna Klein

Title: High-Throughput Operant Conditioning in Drosophila Larvae

Operant conditioning is the process by which animals learn to associate their own be-

haviour with positive or negative outcomes, biasing future action selection in order to

maximise reward and avoid punishment. It is an important strategy to ensure survival in

an ever-changing environment. Although operant conditioning has been observed across

vertebrate and invertebrate species, the underlying neural mechanisms are still not fully

understood.

The Drosophila larva is an excellent model system to study neural circuits, since it is

genetically tractable, with a variety of tools available. Although it is quite small, it is capable

of a diverse range of behaviours and can achieve complex learning tasks. However,

while the mechanisms underlying classical conditioning, where animals learn about the

appetitive or aversive qualities of an external sensory cue, have been extensively studied in

larvae, it has remained an open question whether they are capable of operant conditioning.

This is in part due to the challenges which arise during the training process: in order to

train an animal to associate its own actions with their outcomes, the experimenter needs

to be able to deliver rewarding or punishing stimuli directly in response to behaviour.

In this thesis, I introduce a novel high-throughput tracker suitable for training up to 16

larvae simultaneously. I have developed a customised software for real-time detection

of various actions that larvae perform: left and right bend, forward crawl, roll and back-

up. Light and heat stimuli can be administered at individual animals with minimal delay,

enabling optogenetic or thermogenetic activation of circuits encoding reward or punishment

in response to behaviour. Using this system, I show that Drosophila larvae are capable



of operant conditioning. Pairing bends to one direction, e. g. the left, with optogenetic

activation of a large group of reward-encoding dopaminergic and serotonergic neurons

is sufficient to induce a learned preference for bending towards this side after training. I

explore whether there are other types of actions which larvae can learn to associate with

valence, and introduce a second operant conditioning paradigm, in which larvae modify

their behaviour following pairing of the stimulus with forward crawls.

To identify new candidate neurons signalling valence in a learning context, I also

conduct a classical conditioning screen, in which I pair an odour with optogenetic activation

of distinct neuron types covered by different driver lines. While activation of many types of

gustatory sensory neurons paired with the odour was insufficient for memory formation, I

find that the serotonergic neurons of the brain and the subesophageal zone (SEZ) can

induce strong appetitive learning. Finally, I show that activity of serotonergic rather than

dopaminergic neurons is sufficient for memory formation in the operant bend direction

paradigm, and that operant conditioning is impaired when restricting activation to the

serotonergic neurons of the brain and the SEZ.

My results suggest a novel role of serotonergic neurons for learning in insects as well

as the existence of learning circuits outside of the mushroom body. Different subsets

of serotonergic neurons mediate classical and operant conditioning. This works lays a

foundation for future studies of the function of serotonin and the mechanisms underlying

operant conditioning at both circuit level and cellular level.







Quidquid agis, prudenter agas et respice finem.

Whatever you do, choose your actions wisely and consider their

outcomes.

—Gesta Romanorum





凡事预则立，不预则废。

Success depends upon previous preparation, and without such

preparation there will be failure.

—Confucius
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1 Introduction

Animals need to be able to rapidly alter their behaviour in response to changes in their

environment. An important strategy of adaptation to novel circumstances is by forming

associations between events through a process called associative learning (Dickinson,

1981; Rescorla, 1988). As a result, an animal learns to predict an unconditioned stimulus

(US) by the occurrence of a conditioned stimulus (CS) (Fig. 1.1a). The US often takes

the form of a punishing or rewarding event, such as pain or the discovery of a new food

source (Pavlov, 1927). Based on the nature of the CS, one can distinguish between two

major types of associative learning: classical conditioning (Pavlov, 1927) and operant

conditioning (Skinner, 1938; Thorndike, 1911).

For classical conditioning, the CS is an external stimulus from the environment, such

as a sound, an odour or a visual cue. Pairing with an appetitive or aversive US leads

to approach or avoidance of the CS in the future (Fig. 1.1b). Perhaps the most famous

example is the experiment by Ivan Pavlov (1927), in which he conditioned dogs to predict

food by the sound of a tone. However, classical conditioning is not limited to dogs. Many

different species, including humans (Andreatta and Pauli, 2015; Austin and Duka, 2010;

Kershaw and Running, 2018), are able to associate a previously neutral stimulus with

reward or punishment, resulting in approach or avoidance. Rodents can learn to predict

a food reward by the occurrence of an acoustic (Bouton and Peck, 1989; Holland and

Rescorla, 1975) or a visual cue (Holland and Rescorla, 1975; McDannald et al., 2011).

They are also capable of aversive classical conditioning as induced by a punishing US

such as an electric shock (Brown et al., 1951; Jones et al., 2005). Zebrafish can form

associations between a variety of sensory stimuli and subsequent food reward (Braubach

et al., 2009; Mueller and Neuhauss, 2012; Sison and Gerlai, 2010).

1



2 1 Introduction

Figure 1.1: Associative learning. a. Associative learning is the process in which an animal learns to predict a previously

neutral conditioned stimulus (CS) by the occurrence of an unconditioned stimulus (US). One can distinguish between two

major forms of associative learning, classical conditioning and operant conditioning. b. For classical conditioning, the CS

is an external sensory cue. Association with a rewarding or punishing US results in learned approach or avoidance of

the sensory cue. c. In the case of operant conditioning, the CS is one of the animal’s own actions. Resulting reward or

punishment leads to reinforcement or suppression of the action in the future.
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Invertebrates are often more accessible to investigating neural circuits due to the

relative simplicity of their nervous system. They are also capable of classical conditioning,

which makes them a powerful model system to study learning (Hawkins and Byrne, 2015).

There are many examples of classical conditioning in insects. For example, honeybees

show enhanced proboscis extension when presented with an odour after it was paired

with sucrose reward (Bitterman et al., 1983; Takeda, 1961). Similarly, they exhibit the sting

extension reflex as an aversive response to a previously neutral odour after training with

electric shock as a US (Giurfa et al., 2009). Mosquitoes are able to form long-term olfactory

memory when the odour is followed by a blood reward (Vinauger et al., 2014). The fruit fly

Drosophila is capable of associating olfactory (Cognigni et al., 2018; Davis, 2005; Scherer

et al., 2003; Tully and Quinn, 1985), visual (Gerber et al., 2004; Menne and Spatz, 1977;

Schnaitmann et al., 2010; Vogt et al., 2014; von Essen et al., 2011) and gustatory (Masek

and Scott, 2010) cues with reward or punishment. The pond snail Lymnaea provides an

example of a mollusc which shows classical conditioning by reward (Alexander et al., 1984).

Even the nematode Caenorhabditis elegans, whose nervous system only comprises 302

neurons (White et al., 1986), is capable of forming both long-term and short-term memory

(Amano and Maruyama, 2011; Kauffman et al., 2010; Nishijima and Maruyama, 2017;

Wen et al., 1997). In many species across the animal kingdom, specific circuits have been

identified as the sites of conversion and association of the external CS and the rewarding

or punishing US (Caroni, 2015; Gründemann and Lüthi, 2015; Hawkins and Byrne, 2015;

Heisenberg et al., 1985; Owald and Waddell, 2015; Tonegawa et al., 2015).

On the other hand, in the case of operant conditioning, the CS is one of the animal’s

own actions (Skinner, 1938; Thorndike, 1911). As a result of memory formation, the

animal learns to predict the outcomes of its behaviour and biases future action selection

accordingly, usually in order to maximise reward and avoid punishment (Skinner, 1938;

Fig. 1.1c). This is a phenomenon which can be observed in many species. Mice learn

to press a lever at very high frequencies to obtain a sugar reward (Jin and Costa, 2010).

Both rats (Corbett and Wise, 1980; Olds and Milner, 1954) and monkeys (Lovell et al.,

2015; Mora et al., 1979) can be conditioned to perform simple actions at a high rate

to self-stimulate reward areas in their brain through an implanted electrode. Operant

conditioning can also lead to the generation of novel action sequences. For example, dogs

can be trained to imitate a series of complex actions presented to them by a human, using
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access to their favourite toy as a reinforcer (Topál et al., 2006). Juvenile songbirds learn to

produce stereotyped vocalizations highly similar to a tutor song which they hear early in

development (Fee and Goldberg, 2011; Nottebohm, 1991). These examples demonstrate

the relevance of operant conditioning to a variety of diseases, such as impaired language

acquisition, obsessive-compulsive disorders and addiction (Balleine et al., 2015; Drash

and Leibowitz, 1973; Everitt et al., 2018; Joel, 2006; Pickett et al., 2009; Sturdy and

Nicoladis, 2017).

The ability to adapt one’s behaviour in response to reward or punishment is not

limited to vertebrate species but has also been demonstrated in invertebrates (Brembs,

2003; Hawkins and Byrne, 2015). For example, locusts are able to associate their leg

position with relief of an aversive tone or with the provision of a food reward (Hoyle, 1979).

Honeybees can be trained to enhance the activity of antennal muscles to obtain a sucrose

reward (Erber et al., 2000; Kisch and Erber, 1999), and they are also capable of learning

new actions in order to reach a food source (Abramson et al., 2016).

In adult Drosophila, operant conditioning by punishment or reward has been demon-

strated in various experimental settings. In a reward learning paradigm by Nuwal et al.

(2012), flies walking on a rotating ball were conditioned to develop a directional preference

for turning movements to one side. They can also learn to adjust their leg position to

avoid an electric shock (Booker and Quinn, 1981). They can further be trained to bias

yaw torque in stationary flight to evade punishment by noxious heat (Wolf and Heisenberg,

1991).

Although there are countless examples of operant conditioning, using a variety of

CS–US combinations, the underlying mechanisms are still not fully understood. During

some operant conditioning tasks, classical conditioning takes place as well. Colomb and

Brembs (2010) hence distinguish between the terms “world-learning” and “self-learning”

to describe the processes of assigning value to a sensory cue or an action, respectively.

For example, consider an operant conditioning paradigm in which mice learn to repeatedly

press a lever to reach a reward source (Jin and Costa, 2010). While the animals associate

the action of lever-pressing with its rewarding outcome (self-learning), they also learn

about the reward-predicting properties of the lever (world-learning). By contrast, classical

conditioning purely relies on world-learning (Colomb and Brembs, 2010). Therefore, to fully
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understand the neural mechanisms driving operant conditioning, one needs to dissociate

the self-learning component from the world-learning component.

In order for an animal to form an association between an action and its outcome,

information about the action needs to converge with circuits encoding positive or negative

valence. In vertebrates, basal ganglia-like structures constitute an example of such a

convergence site in the brain, as they receive inputs from both motor efference copy and

dopaminergic neurons conveying valence (Balleine et al., 2009; Fee and Goldberg, 2011;

Redgrave et al., 2011). However, there are cases of learned associations between actions

and outcomes in which the brain has turned out to be dispensable. For example, there is

evidence for successful conditioning of leg position in decapitated flies, cockroaches and

locusts (Booker and Quinn, 1981; Horridge, 1962). Analogous observations have been

made in spinalised rats (Grau et al., 1998), suggesting that there may be more than just a

single area in the central nervous system (CNS) where operant conditioning takes place.

It is unclear to what extent learning at these convergence sites is mediated by plasticity

at the synaptic connections between neurons as opposed to by modulating intrinsic

excitability of individual neurons. In mammals, there is evidence that dopamine signalling

can modulate the synaptic strength of efference copy input to the basal ganglia (Lovinger,

2010; Reynolds and Wickens, 2002; Surmeier et al., 2007). Operant conditioning of

leg position in rats involves spinal cord synaptic plasticity (Gómez-Pinilla et al., 2007;

Joynes et al., 2004). However, molecular mechanisms for increased excitability of basal

ganglia spiny neurons have been proposed as well (Dong et al., 2006; Shen et al., 2005).

Furthermore, in the mollusc Aplysia, operant conditioning in a feeding circuit (Nargeot

et al., 1997) leads to enhanced intrinsic excitability of neurons involved in action selection

(Brembs et al., 2002) and initiation (Nargeot et al., 2009).

A few highly conserved genes have been linked to the memory formation process.

The protein kinase C (PKC) is essential for operant conditioning in Aplysia (Lorenzetti

et al., 2008), Lymnaea (Rosenegger and Lukowiak, 2010) and Drosophila (Brembs and

Plendl, 2008), where it is specifically needed in motor neurons (Colomb and Brembs,

2016). Mutations in the Drosophila gene FoxP result in impaired operant self-learning in

a flight simulator paradigm (Mendoza et al., 2014). Its vertebrate homologue FOXP2 is

associated with deficits in human speech acquisition (Lai et al., 2001), song learning in

birds (Haesler et al., 2007) and motor learning in mice (Groszer et al., 2008).
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These examples suggest that the principles of operant conditioning are conserved

across species. To fully understand the underlying neural mechanisms at a circuit level,

there is the need for a simple learning paradigm in a model system which offers a variety

of easily accessible neurobiological tools. In this thesis, I will investigate the neural circuits

of operant conditioning in the Drosophila larva, a small model organism which combines

substantial advantages, such as complex behaviour, the ability to learn, a wide range of

genetic tools and an emerging connectome.

1.1 The Drosophila larva as a model system for learning

The larva of the fruit fly Drosophila melanogaster is a particularly well-suited model

organism to study the neural circuits underlying learning and memory. Despite being

small in size, larvae are capable of a wide range of different actions. This becomes

most apparent when they leave their natural food source and navigate their environment

on a two-dimensional surface. Larvae move around their substrate through peristaltic

forward crawling (Heckscher et al., 2012; Fig. 1.2a). Occasionally, they stop to explore

their environment by bending their head to the left or right one or more times, usually

resulting in a change of crawling direction (Gomez-Marin et al., 2011; Kane et al., 2013;

Luo et al., 2010; Fig. 1.2b).

In the presence of an unpleasant stimulus, larvae exhibit a variety of escape behaviours.

Most commonly, they increase their bend rate to navigate away from undesirable conditions

such as extreme temperature (Lahiri et al., 2011; Luo et al., 2010), light (Kane et al., 2013)

or wind (Jovanic et al., 2019). Another typical avoidance response is by moving away

from the aversive source with one or more backward peristaltic waves (back-up; Fig. 1.2c)

(Heckscher et al., 2012; Jovanic et al., 2017; Kernan et al., 1994; Vogelstein et al., 2014).

In response to mechanical stimuli such as touch (Kernan et al., 1994; Tsubouchi et al.,

2012) or an air current (Jovanic et al., 2017, 2016), larvae often show head retraction

behaviour (hunch; Fig. 1.2d). Perhaps the most drastic escape response is rolling, where

the animal curls into a C-like shape and turns around its own body axis with a fast sideways

movement (Hwang et al., 2007; Ohyama et al., 2013; Robertson et al., 2013; Fig. 1.2e).

Under natural conditions, rolling is only observed in the presence of a strong noxious

stimulus, such as heat or a predator attack (Ohyama et al., 2015; Robertson et al., 2013;
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Figure 1.2: Behavioural repertoire of Drosophila larvae. Schematics of the five most prominent actions displayed by

Drosophila larvae are shown. The contour of the larva is displayed as a black outline, the green dot marks the head.

a. crawl, b. left and right bend, c. back-up, d. hunch, e. roll.

Tracey et al., 2003). This variety of actions facilitates studying the neural mechanisms of

behaviour in the larva.

Furthermore, the large number of genetic tools which are available in adult Drosophila

can be accessed in the larva as well. The GAL4-UAS system allows for targeted expression

of a protein in any tissue of interest. To achieve this, the transcription factor GAL4 is

expressed under a tissue-specific promoter. Expression of the gene controlled by the UAS

promoter is then activated in those cells where GAL4 is present (Brand and Perrimon,

1993; Fischer et al., 1988; Fig. 1.3). The power of this toolkit lies in its design as a binary

system: a variety of GAL4 driver and UAS effector constructs can each be maintained in

separate, homozygous fly strains, which makes it possible to obtain any driver–effector

combination in the offspring through a single cross.

The GAL4-UAS system has become especially useful in neuroscience. In Drosophila,

individual neurons are uniquely identifiable and identical in morphology and function across

animals (Bate et al., 1981; Jefferis et al., 2007; Marin et al., 2002; Skeath and Thor, 2003;

Wong et al., 2002). Therefore, neuron-specific GAL4 drivers reproducibly target the same

group of cells in each individual. Jenett et al. (2012) have developed a large collection of

GAL4 driver lines, each specific to a distinctive subset of neurons. The split-GAL4 system

allows to narrow down GAL4 expression to an even sparser subset of neurons (Luan et al.,

2006; Pfeiffer et al., 2010).

There are a variety of effectors which can be expressed under control of the UAS

promoter to investigate the function of individual neurons in the nervous system. To assess
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Figure 1.3: GAL4-UAS system. Parents are homozygous for either the GAL4 construct (expression of GAL4 under

promoter X) or the UAS construct (expression of protein Y under the UAS promoter). The UAS promoter is inactive, since

no GAL4 is present in the same flies. Therefore, protein Y is not expressed. The offspring contains genetic copies of

both the GAL4 construct and the UAS construct. GAL4 activates the UAS promoter in the cells controlled by promoter X,

leading to expression of protein Y. Figure inspired by St Johnston (2002).
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the location and anatomical features of the neurons targeted by the GAL4 driver, one can

use the Green Fluorescent Protein (GFP) (Lee and Luo, 1999) as a marker.

An especially powerful technique is optogenetics, by which neurons can be activ-

ated with light at high temporal resolution (Lima and Miesenböck, 2005; Zemelman

et al., 2002). Klapoetke et al. (2014) have developed the red-shifted channelrhodopsin

CsChrimson, which can be expressed under control of a GAL4 driver. Neurons expressing

CsChrimson cannot only be activated with blue light, as is the case for many traditional

channelrhodopsins (Boyden et al., 2005; Dawydow et al., 2014), but also with red light.

Since Drosophila larvae can sense and will innately avoid blue light, but not red light (Xiang

et al., 2010), CsChrimson is currently one of the most widely used channelrhodopsins for

optogenetic activation of neurons in this model system.

Neural activity can also be modulated with heat through an approach called thermo-

genetics. The warmth-sensing ion channel dTrpA1 (Hamada et al., 2008) can be used for

targeted activation of neurons by exposing the animals to higher temperatures. It is also

possible to use heat to silence a set of neurons expressing Shits, a temperature-sensitive

Shibire allele, through the GAL4-UAS system (Kitamoto, 2001).

This broad availability of tools has made the Drosophila larva a powerful model organ-

ism for studying the neural basis of learning and memory. There is overwhelming evidence

that larvae are capable of classical conditioning. For example, they can be trained to

approach an odour which is paired with gustatory reward such as sugar (Hendel et al.,

2005; Neuser et al., 2005; Rohwedder et al., 2012; Schipanski et al., 2008; Schleyer et al.,

2011) or amino acids (Kudow et al., 2017). Salt can serve as both a positive and a negative

reinforcer in olfactory conditioning in a concentration-dependent manner (Niewalda et al.,

2008; Schleyer et al., 2011). In addition, electric shock (Aceves-Piña and Quinn, 1979;

Khurana et al., 2009; Pauls et al., 2010; Tully et al., 1994), heat (Khurana et al., 2012),

vibration (Eschbach et al., 2011) and the bitter compound quinine (Apostolopoulou et al.,

2014; Gerber and Hendel, 2006) can be used as a punishing US in aversive olfactory

conditioning.

Not just an odour, but also light can serve as a CS for classical conditioning. Larvae

innately avoid light and prefer darkness (Sawin-McCormack et al., 1995). This negative

phototaxis can be modulated when light or darkness are paired with reward or punishment
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(Gerber et al., 2004; von Essen et al., 2011). Similarly, light can act as a negatively

reinforcing US in learning paradigms where the CS is an odour (von Essen et al., 2011).

Many studies have addressed the neural mechanisms underlying classical conditioning

in Drosophila. In both larval and adult flies, the CS and the US converge in a brain area

called mushroom body (Cognigni et al., 2018; Heisenberg, 2003; Heisenberg et al., 1985;

Owald and Waddell, 2015; Rohwedder et al., 2016; Saumweber et al., 2018; Vogt et al.,

2014). In each hemisphere, the CS is encoded by a subset of the approximately 110

Kenyon cells (KCs) (Aso et al., 2014a; Berck et al., 2016; Campbell et al., 2013; Eichler

et al., 2017; Honegger et al., 2011; Lin et al., 2014; Owald and Waddell, 2015; Turner

et al., 2008), which converge onto 24 mushroom body output neurons (MBONs) driving

approach or avoidance (Aso et al., 2014b; Eichler et al., 2017; Owald et al., 2015; Perisse

et al., 2016; Plaçais et al., 2013; Saumweber et al., 2018; Séjourné et al., 2011; Shyu

et al., 2017).

The strength of the connection between individual KCs and MBONs is modulated by

dopaminergic and octopaminergic neurons, which represent the rewarding or punishing

US (Honjo and Furukubo-Tokunaga, 2009; Saumweber et al., 2018; Schroll et al., 2006;

Schwaerzel et al., 2003; Vogt et al., 2014; Waddell, 2013). The four dopaminergic neurons

of the PAM cluster, which innervate the mushroom body, are both necessary and suffi-

cient to signal reward for classical conditioning (Cognigni et al., 2018; Liu et al., 2012;

Rohwedder et al., 2016; Vogt et al., 2014; Waddell, 2013).

The compactness of the larval CNS has made it feasible to manually reconstruct

neurons and their synaptic partners from an electron microscopy (EM) volume (Berck

et al., 2016; Eichler et al., 2017; Fushiki et al., 2016; Jovanic et al., 2016, 2019; Larderet

et al., 2017; Ohyama et al., 2015; Schlegel et al., 2016). This technique has given rise to

a full wiring diagram of the larval mushroom body (Eichler et al., 2017).

Despite the abundance of studies addressing learning in the Drosophila larva, it has

remained an open question whether it is capable of operant conditioning. If larvae are

indeed able to associate their own actions with the respective outcomes, this would bring

up the question where in the CNS the memory is formed. Previous work in adult flies

suggests that the association of behaviour with punishment does not require the mushroom

body (Booker and Quinn, 1981; Colomb and Brembs, 2010, 2016; Wolf et al., 1998) and
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may instead involve plasticity in motor neurons (Colomb and Brembs, 2016). However, the

neural correlates of operant conditioning in Drosophila are still not fully understood.

1.2 Automated high-throughput operant conditioning in mul-

tiple animals

To potentially induce operant conditioning in the larva, one needs to be able to pair one of

its actions with reward or punishment. This requires detecting its behaviour in real time,

such that the US can be administered with minimal delay. Such an experimental set-up

would be most efficient if it could deliver reward or punishment in a fully automated way,

and if it operated at high throughput, allowing to condition multiple animals simultaneously.

Automated operant conditioning in freely behaving animals often relies on an external

read-out of behaviour, such as a lever (Corbett and Wise, 1980; Fernando et al., 2015;

Jin and Costa, 2010) or a touch sensor (He et al., 2015). Due to the stereotypic nature

of behaviour and limited visual sensation in Drosophila larvae, it would be challenging

to design such a sensor in a way that would allow to unambiguously induce operant

conditioning.

An alternative approach is to use immobilised animals in a virtual environment. For

example, walking direction in adult Drosophila can be conditioned in a set-up where a

single fly is walking on a rotating ball (Nuwal et al., 2012). To condition yaw torque in

stationary flight, flies are usually tethered in a flight simulator (Brembs, 2011; Wolf and

Heisenberg, 1991; Wolf et al., 1998). Such designs have limitations, since they require

restricting the animal in its freedom to move.

A third option would be to detect actions in freely behaving animals using computer

vision. Such a behaviour detection would have to operate in real time and would need to

control the delivery of the US in closed loop, i. e. directly in response to behaviour.

Several algorithms for real-time animal tracking already exist. For example, the position

and orientation of single dragonflies in three-dimensional space can be tracked at high

speed (Mischiati et al., 2015). Stowers et al. (2017) have developed software for tracking

the head position of freely behaving mice in a virtual reality in real time. There are

numerous tracking frameworks for adult Drosophila, some of which require the flies to

be moving within a two-dimensional plane (Donelson et al., 2012; Straw and Dickinson,
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2009), while others can detect the position of single (Fry et al., 2008) or multiple (Grover

et al., 2008; Straw et al., 2011) flies in a three-dimensional environment. The Multi-Worm

Tracker (MWT) software developed by Swierczek et al. (2011) is suitable for simultaneously

tracking a large number of C. elegans. It has been adopted for use in Drosophila larvae,

where it has become a powerful tool for analysing the reaction in response to a variety of

stimuli (Jovanic et al., 2019; Ohyama et al., 2013; Vogelstein et al., 2014).

However, the above techniques can only provide limited online analysis of animal

behaviour, such as position, orientation and sometimes velocity. The targeted delivery of

reward or punishment in response to an action, as would be needed to induce operant con-

ditioning, requires a more advanced behaviour detection. Offline classification algorithms

exist for a small number of behaviours in bees (Veeraraghavan et al., 2008), C. elegans

(Huang et al., 2006) and zebrafish larvae (Mirat et al., 2013). By contrast, much more

detailed behaviour detection methods have been developed for Drosophila. There are a

variety of approaches for detecting a wide range of actions in adult flies (Branson et al.,

2009; Katsov and Clandinin, 2008; Robie et al., 2017). More targeted frameworks exist for

studying behaviours such as courtship or aggression, which involve several interacting flies

(Dankert et al., 2009; Hoyer et al., 2008). In the larva, offline behaviour detection pipelines

cover the majority of distinguishable actions and have become increasingly sophisticated

over time (Denisov et al., 2013; Gershow et al., 2012; Gomez-Marin et al., 2011; Jovanic

et al., 2017; Luo et al., 2010; Ohyama et al., 2013, 2015; Vogelstein et al., 2014).

An important limitation of these behaviour detection frameworks is run time. Many

approaches require complicated mathematical models, which are too costly to be executed

online. Furthermore, detection of certain actions has turned out to be much more reliable

when it is based on the integration of both past and future information (Gomez-Marin et al.,

2011; Jovanic et al., 2017). There are hence only a few examples in which both tracking

and behaviour detection have been achieved in real time, which are usually limited to

detecting simple actions in single animals (Schulze et al., 2015; Zabala et al., 2012).

In order to study operant conditioning in freely behaving Drosophila larvae at high

throughput, a novel computer vision-based real-time behaviour detection software for

multiple animals is needed. Optimising execution time is crucial when designing such

a system. Field-programmable gate arrays (FPGAs) can reach high processing speeds

because of their large potential for parallelisation (Li et al., 2011; Soares dos Santos and
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Figure 1.4: Automated operant conditioning. To induce operant conditioning in a fully automated way, one can detect an

animal’s behaviour in real time and reinforce an action of interest by optogenetically activating reward circuits in response

to this action (light bulb).

Ferreira, 2014), up to an extent where they outperform other processor types such as

CPUs or GPUs (Asano et al., 2009; Draper et al., 2003; Nurvitadhi et al., 2016). This has

led to many implementations for image processing (Li et al., 2011; Zhang et al., 2017), with

real-time applications becoming increasingly popular (Chiuchisan, 2013; Shirvaikar and

Bushnaq, 2009; Uzun et al., 2005; Yasukawa et al., 2016). In neuroscience, FPGAs have

been adopted for real-time tracking of zebrafish larvae (Cong et al., 2017) and rats (Chen

et al., 2005). Karagyozov et al. (2018) have used an FPGA for updating the position of a

real-time calcium imaging objective by tracking fluorescent neurons in a freely behaving

Drosophila larva. An FPGA could therefore provide a solution for high-speed real-time

behaviour detection of multiple Drosophila larvae.

To pair an action with reward or punishment, one needs to be able to administer the

US to each larva individually, depending on its behaviour. A possible US for automated

operant conditioning is the optogenetic activation of reward circuits in response to detection

of an action of interest (Fig. 1.4). In single-larva experiments, closed-loop optogenetic

stimulation is not hard to achieve: one only needs to use the output of the behaviour

detection to control an LED (Schulze et al., 2015) which illuminates the animal. However,

existing optogenetic set-ups for multiple larvae have been restricted to illuminating the

entire arena (Klein et al., 2015; Ohyama et al., 2015; Vogelstein et al., 2014), and thus

cannot be used to deliver the stimulus to only a subset of larvae which are performing the

conditioned behaviour at a given point in time. Similar limitations apply to the control of a

thermogenetic stimulus (Honda et al., 2016; Tastekin et al., 2015).

Bath et al. (2014) have used a two-axis galvanometer set-up to rapidly direct an infrared

(IR) laser beam at a walking adult fly, which is sufficient to heat it up for thermogenetic
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stimulation. In an experiment involving two freely behaving flies, a similar approach was

used by Wu et al. (2014) to achieve optogenetic stimulation of one, but not the other fly.

Since galvanometers can be used to move around a light beam at very high velocities, they

may provide a perspective for individually targeting a US at multiple animals simultaneously.

If combined with behaviour detection, such a set-up would fulfil the requirements of a

high-throughput operant conditioning paradigm.

1.3 Aim of this thesis

The aim of this thesis is to establish the Drosophila larva as a powerful model system to

study the neural mechanisms underlying operant conditioning, and to identify neurons

involved in the learning process.

In Chapter 3, I will lay the technical foundations which are necessary to study operant

conditioning at high throughput. I will introduce a novel experimental set-up which can

track multiple larvae using an FPGA and detect their behaviour in real time. Optogenetic

and thermogenetic stimuli can be independently administered at subsets of larvae with

minimal delay directly in response to their behaviour. In Chapter 4, I will use this set-up to

introduce a first operant conditioning paradigm, in which larvae learn to associate bend

direction with reward. In Chapter 5, I will then explore whether other behaviours can be

associated with the US.

Chapters 6 and 8 will be dedicated to investigating the neural circuits underlying

operant conditioning in the bend direction paradigm. In Chapter 6, I will assess the role of

the brain and the mushroom body in the learning process. In Chapter 7, I will perform a

classical conditioning screen to identify novel candidate neurons for signalling reward or

punishment in a learning context. Finally, I will test whether the newly identified candidate

neurons can drive the formation of operant memory in Chapter 8.
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2.1 Fly strains and handling

Fly stocks were maintained in vials filled with standard cornmeal food (Wirtz and Semey,

1982; 49.2 ml of molasses, 19.9 g of yeast, 82.2 g of cornmeal, 7.4 g of agarose, 9.8 ml of

20% Tegosept solution in 95% ethanol and 5.2 ml of propionic acid in 1 litre of water).

Larvae were reared on standard cornmeal food plates at 25°C and 65% humidity using

similar conditions as in previous studies (Eschbach et al., 2019; Jovanic et al., 2016,

2019; Ohyama et al., 2013, 2015). For learning and behaviour experiments, eggs were

collected overnight for approximately 12–18 hours. A small amount of dry yeast was

added to the food plates to increase egg laying. Learning experiments were performed

using foraging-stage third-instar larvae (72–96 hours after egg laying). For immunohisto-

chemistry, eggs were collected at daytime on food plates with yeast for approximately four

hours. Dissections were performed using wandering-stage third-instar larvae (118–122

hours after egg laying). For experiments involving optogenetics, larvae were raised in

the dark and 1:200 retinal solution, obtained by diluting 1 g of powdered all-trans-retinal

(Toronto Research Chemicals, #R240000) in 35.2 ml of 95% ethanol, was added to the

food unless indicated otherwise.

A full list of fly strains used in this thesis is shown in Table 2.1. Some of the crosses

were set up with the help of Monti Mercer and Dr Brandi Sharp.

Table 2.1: Fly strains. For each fly strain, the short genotype (used as an alias in this thesis), the full genotype and the

source of the stock are provided.

Short genotype Detailed genotype Source

30A08-Gal4 w1118; P{y+t7.7 w+mC=GMR30A08-

Gal4}@attP2

Bloomington #49513

15
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Table 2.1: Fly strains (continued).

Short genotype Detailed genotype Source

58E02-Gal4 w1118; P{y+t7.7 w+mC=GMR58E02-

Gal4}@attP2

Bloomington #41347

69F06-Gal4 w1118; P{y+t7.7 w+mC=GMR69F06-

Gal4}@attP2

Bloomington #39497

72F11-Gal4 w1118; P{y+t7.7 w+mC=GMR72F11-

Gal4}@attP2

Bloomington #39786

attP2 w1118; ; attP2 Pfeiffer et al. (2008)

C1-Gal4 w1118; Sp/CyO; C1-Gal4 Dr Simon Sprecher

c346-Gal4 P{w+mW.hs=GawB}c346, w1118 Bloomington #30831

C5-Gal4 w1118; wgSp-1/CyO; C5-Gal4 Dr Simon Sprecher

C6-Gal4 w1118; ; C6-Gal4 Dr Simon Sprecher

Ddc-Gal4 w1118; ; Ddc-Gal4-HL8-3D Li et al. (2000)

dp2-Gal4 w1118; dp2-Gal4 Dr Simon Sprecher

egMz360-Gal4 w1118; P{w+mW.hs=GawB}egMz360 Bloomington #8758

Gr2a-Gal4 w1118; Gr2a-Gal4; D2/TM3 Dr Simon Sprecher

Gr43a-Gal4 line 1 w1118; wgSp-1/CyO; P{w+mC=Gr43a-

Gal4.5.3}17

Bloomington #57637

Gr43a-Gal4 line 2 Gr43a-Gal4 (II, knock-in) Miyamoto et al. (2012)

Gr5a-Gal4 w1118; wgSp-1/CyO; P{w+mC=Gr5a-

Gal4.8.5}2/TM3,Sb1

Bloomington #57591

Gr64a-Gal4 w1118; wgSp-1/CyO; P{w+mC=Gr64a-

Gal4.1.6}4

Bloomington #57662

Gr64f-Gal4 w1118; UAS-mCD8::GFP; Gr64f-

Gal4/TM3, Sb1

Bloomington #57668

Ir25a-Gal4 w1118; P{w+mC=Ir25a-Gal4.A}236.1;

TM2/TM6B, Tb1

Bloomington #41728

Ir76b-Gal4 w1118; Ir76b-Gal4; TM2/TM6B, Tb+ Bloomington #41730

Ir94e-Gal4 w1118; ; Ir94e-Gal4 Dr Simon Sprecher

NPF-Gal4 y1w76c23; NPF-Gal4 Wen et al. (2005)
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Table 2.1: Fly strains (continued).

Short genotype Detailed genotype Source

ppk11-Gal4 w1118; ; ppk11-Gal4 Liu et al. (2003)

ppk19-Gal4 w1118; ppk19-Gal4 Liu et al. (2003)

SS01989 GMR_SS01989 Dr Marta Zlatic

Tdc2-Gal4 w1118; P{Tdc2-Gal4.C}2 Cole et al. (2005)

TH-Gal4 TH-Gal4 Friggi-Grelin et al.

(2003)

Tph-Gal4 +; Tph-Gal4; + Park et al. (2006)

Trh-Gal4 Trh-Gal4 Alekseyenko et al.

(2010)

UAS-CsChrimson 20xUAS-CsChrimson-

mVenus@attP18

Bloomington #55134

UAS-CsChrimson;

tsh-LexA, LexAop-

Gal80

20xUAS-CsChrimson-

mVenus@attP18; tsh-LexA,

pJFRC20-8xLexAop2-IVS-Gal80-

WPRE (su(Hw)attP5)/CyO, 2xTB-

RFP; +

Dr Stefan Pulver,

Dr Yoshinori Aso

UAS-dTrpA1 UAS-dTrpA1 Dr Paul Garrity

UAS-GFP 10XUAS-IVS-myr::smGFP-

HA@attP18, 13XLexAop2-IVS-

myr::smGFP-V5@su(Hw)attP8

Nern et al. (2015)

VT57358-Gal4 w1118; ; VT057358-Gal4@attP2 VDRC #203226

w1118 w1118 Hazelrigg et al. (1984)
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2.2 Immunohistochemistry and confocal imaging

2.2.1 Experimental procedures

All dissections, immunohistochemical stainings and confocal imaging presented in this

thesis were performed by the HHMI Janelia FlyLight team using a procedure adapted from

Jenett et al. (2012) and Li et al. (2014).

Larval CNSs were dissected in cold 1x phosphate buffer saline (PBS, Corning Cellgro,

#21-040) and transferred to tubes filled with cold 4% paraformaldehyde (Electron Mi-

croscopy Sciences, #15713-S) in 1x PBS. Tubes were incubated for one hour at room

temperature. The tissue was washed four times in 1x PBS with 1% Triton X-100 (Sigma

Aldrich, #X100) (PBT) and incubated in 1:20 donkey serum (Jackson Immuno Research,

#017-000-121) in PBT for two hours at room temperature.

A primary antibody solution was prepared, consisting of mouse anti-Neuroglian (1:50,

Developmental Studies Hybridoma Bank, #BP104 anti-Neuroglian), rabbit anti-GFP (1:500,

Life Technologies, #A11122) and rat anti-N-Cadherin (1:50, Developmental Studies Hy-

bridoma Bank, #DN-Ex #8) in PBT. The tissue was incubated with the primary antibody

solution, first for four hours at room temperature and then for two nights at 4°C. The

primary antibodies were removed and the tissue was washed four times in PBT. A sec-

ondary antibody solution was prepared, consisting of Alexa Fluor 568 donkey anti-mouse

(1:500, Invitrogen, #A10037), FITC donkey anti-rabbit (1:500, Jackson Immuno Research,

#711-095-152) and Alexa Fluor 647 donkey anti-rat (1:500, Jackson Immuno Research,

#712-605-153) in PBT. The tissue was incubated with the secondary antibody solution,

first for four hours at room temperature and then for two nights at 4°C. After removal of the

secondary antibody, the tissue was washed again four times and mounted on a coverslip

coated with poly-L-lysine (Sigma Aldrich, #P1524-25MG).

The coverslip with the CNSs was dehydrated by moving it through a series of jars

containing ethanol at increasing concentrations (30%, 50%, 75%, 95%, 100%, 100%,

100%) for ten minutes each. The tissue was then cleared by soaking the coverslip with

xylene (Fisher Scientific, #X5-500) three times for five minutes each. Finally, the coverslips

were mounted in dibutyl phthalate in xylene (DPX, Electron Microscopy Sciences, #13512)

with the tissue facing down on a microscope slide with spacers. At least two days were
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allowed for the DPX to dry prior to confocal imaging with an LSM 710 microscope (Zeiss).

Further details on the confocal imaging settings are provided in the respective figure

captions.

2.2.2 Data analysis

Confocal images were analysed using Fiji (ImageJ). Neurons were counted by specifying

regions of interest around the cell bodies using raw image stacks. All figures showing

confocal images were derived from maximum intensity projections.

2.3 Single-larva operant conditioning

2.3.1 Experimental set-up

For single-larva operant conditioning experiments, I have used a closed-loop tracker with

hardware identical to the one presented in Schulze et al. (2015) (Fig. 2.1a). A 617 nm

red LED (Mightex Systems, #PLS-0617-030-S) was added for optogenetic excitation of

CsChrimson (Klapoetke et al., 2014).

In this set-up, a single larva was freely moving on a 40 cm x 40 cm 1% agarose plate,

which is prepared daily to ensure a high moisture level of the substrate. In praxis, the

arena size was 34 cm x 38 cm, due to a limited range of movement of the moving stages

on which the camera, the LED and the IR backlight are mounted.

All hardware was controlled by a customised software written by Dr Peter Polidoro

using the Robot Operating System (ROS). A camera image was acquired and processed

at 20 Hz. The contour of the larva was extracted by inverse binary thresholding and head,

tail and spine were calculated and features were extracted as described in Chapter 3. The

positions of the moving stages with the camera, the LED and the backlight were updated

at 4 Hz to track the centroid of the larva. I have implemented all protocols which determine

the delivery of the closed-loop optogenetic stimulus in a Python script connected with the

ROS framework to control the LED at 10 Hz (Fig. 2.1b).

In collaboration with Elise Croteau-Chonka and Dr Jean-Baptiste Masson, I have

developed a classifier for detecting left and right bends in real time on this tracker. This

classifier was obtained by combining a two-layer neural network with input features s,
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s_filtered, eig_reduced and eig_reduced_filtered, a single hidden layer (five neurons,

hyperbolic tangent activation function) and an output layer (one neuron, sigmoid activation

function) with a linear threshold on asymmetry (for details on the features see Section 3.2.5).

The classifier output was exponentially smoothed and post-processed as described in

Section 3.2.6. The error rates were quantified using 60 minutes of video data containing

a total number of 741 bends from ten larvae. The bend classifier has a precision of

97.6% and a recall of 100.0%. The bend direction was accurately detected in 99.2% of

true-positive bends.

2.3.2 Data acquisition

A small number of larvae were washed out of the food using 15% sucrose solution. For

any given larva, the time outside the food did not exceed 30 minutes prior to the start of

the experiment. A single larva was gently picked up from the sucrose solution with a brush,

rinsed with water to remove residual sucrose and placed in the centre of the agarose plate

inside the single-larva tracker. The tracker door was shut and the larva was given at least

one minute to accustom to its new environment before the experiment was started. All

handling of larvae and all experiments were performed in the dark to avoid unintended

optogenetic stimulation.

Optogenetic stimulation was performed following protocols specified in the respective

results sections of the text. There was a delay of up to 100 ms between detection of a

behaviour and closed-loop stimulation in response to this behaviour. The light intensity of

the red light stimulus was 385 µW/cm2.

2.3.3 Data analysis

Only data from larvae which did not reach the edge of the arena during the experiment

was kept for analysis, since otherwise tracking was permanently interrupted. Data analysis

was conducted using custom MATLAB (MathWorks) scripts.

The experiment time was equally split into bins with a duration of 60 s. To analyse data

for operant conditioning of a directional preference for bend, the numbers of left and right

bends initiated within each bin were counted to obtain the bend rate towards the respective

direction. The probability of the larva to bend towards the side which was associated with
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Figure 2.1: Single-larva closed-loop tracker with real-time behaviour detection. a. Schematic of the single-larva

closed-loop tracker designed after Schulze et al. (2015). A single larva is freely crawling on an agarose plate. It is

illuminated by an 880 nm backlight and tracked by a camera. An LED (617 nm) can be controlled to deliver optogenetic

stimuli. The backlight, the camera and the LED are all mounted onto moving stages, which are following the larva. b. Data

flow diagram of the behaviour detection software. A camera image is acquired at 20 Hz. The contour of the larva is

extracted from the raw image, head and tail are detected and the spine is calculated. Features describing body shape,

velocity and direction of movement are extracted and behaviours are detected in real time (see the text and Chapter 3 for

details). Behaviour detection output is used to control the LED at 10 Hz for closed-loop stimulation. The stage positions

are updated at 4 Hz according to the position of the larva within the camera image.
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the optogenetic stimulus was calculated as the ratio of the number of bends towards the

stimulated side over the total number of bends initiated in this bin.

Data of all larvae was pooled and it was accounted for the fact that bends to the left

and to the right were each paired with the optogenetic stimulus for approximately half of

the larvae. For each bin, mean and standard error were calculated for the bend rate to

the stimulated side, the bend rate to the unstimulated side and the probability for bending

towards the stimulated side. In the case of the control condition in which larvae received

random stimulation during 50% of bends regardless of their direction, mean and standard

error of the bend rates to the left and right and the probability for bending towards the

left were calculated. Bend rates to the two sides were compared to each other using

a two-sided Wilcoxon signed-rank test. The probability for bending to a given side was

compared to chance level (0.5) using a two-sided Wilcoxon signed-rank test.

2.4 High-throughput operant conditioning

2.4.1 Experimental set-up

High-throughput operant conditioning experiments were performed using a multi-larva

closed-loop tracker, which is described in detail in Chapter 3. Briefly, larvae were placed

onto a 23 cm x 23 cm 4% agarose plate which was illuminated by a 30 cm x 30 cm 850 nm

LED backlight (Smart Vision Lights, #SOBL-300x300-850) with intensity control (Smart

Vision Lights, #IVP-C1). The larvae were recorded at 20 Hz by a high-resolution cam-

era (Teledyne DALSA, #TEL-G3-CM10-M5105) with an 800 nm longpass filter (Midwest

Optical Systems, #LP800-40.5) and the image was processed by an image acquisition

FPGA device (National Instruments, #PCIe-1473R-LX110), which was programmed by

Dr Lakshmi Narayan and is connected to a computer (Dell, #T7920) with a Windows 10

operating system (Microsoft Corporation).

In a custom software written in C++ by myself and in LabVIEW 2017 (National Instru-

ments) by Dr Lakshmi Narayan, the contours of the larvae were extracted from the raw

image and behaviour was detected in real time. Optogenetic and thermogenetic stimuli

could be controlled in closed loop in response to behaviour.
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Optogenetic stimulation was achieved using two digital micromirror devices (DMDs),

one with 613 nm LED input (Digital Light Innovations, #CEL-5500-LED) and one with

optic fibre input (Digital Light Innovations, #CEL-5500-FIBER) with a 625 nm LED source

(Mightex Systems, #BLS-GCS-0625-38-A0710) controlled by a BioLED light source control

module (Mightex Systems, #BLS-13000-1).

Thermogenetic stimulation was achieved by heating up the larvae with a custom IR

laser set-up developed by Dr Christopher McRaven and Dr Michael Winding. The beam of

a 1490 nm laser diode (SemiNex, #2CM-101) was fed into a two-axis galvanometer system

(Thorlabs, #GVSM002), with which it could be targeted onto any spot on the agarose plate.

The laser diode and the galvanometers were controlled by an analogue output device

(National Instruments, #PCIe-6738). The system could be used to heat up four larvae

simultaneously by alternating between the different locations at 80 Hz.

2.4.2 Data acquisition

Approximately 10–12 larvae were washed out of the food with water and immediately

placed into the centre of the agarose plate with a brush, in such a way that they were not

touching each other. The tracker door was shut and the larvae were given at least 30 s

to accustom to their new environment before the experiment was started. All handling of

larvae and all experiments were performed in the dark to avoid unintended optogenetic

stimulation.

Stimuli were given following the protocols specified in the respective results sections

of the text. The delay between detection of a behaviour and closed-loop stimulation in

response to this behaviour did not exceed 50 ms for optogenetic stimuli and 100 ms for

thermogenetic stimuli. The light intensity of the red light stimulus was 285 µW/cm2.

For experiments including a control group which received stimulation uncorrelated

from behaviour (yoked control), the experiment was split into 60 s time bins, and during

each bin each larva was randomly allocated the stimulus train which a valid object (see

Section 2.4.3) from a previous experiment with contingent stimulation had received in this

respective time bin.
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2.4.3 Data analysis

Data analysis was conducted using custom MATLAB (MathWorks) scripts. Since identity

of detected objects is lost upon restarting an experiment, whenever a larva temporarily

reaches the edge of the plate or when two or more larvae touch each other, individual

objects are usually only detected for part of the experiment. Furthermore, the software

sometimes recognises corrupted objects, such as scratches on the plate or residual food,

as larvae.

The experiment time was equally split into bins with a duration of 60 s. To ensure

high quality of the data, objects included into analysis for a given bin had to fulfil a

number of criteria: i) the object must have been detected in every frame of the bin; ii) the

initial detection of the object must have happened at least 20 s prior to the start of the

bin; iii) at no point during the bin, v_centroid_long_time (the smoothed velocity of the

centroid of the larval contour, see Section 3.2.5) exceeded 1.5 mm/s; and iv) the mean

of v_centroid_long_time across the overall detection period of the object, excluding the

first 20 s after initial detection, was at least 0.5 mm/s. 350 videos of objects flagged as

valid for a given 60 s bin in this process were manually assessed to quantify the accuracy

of this method. No severely corrupted objects could be detected. In one case (0.3%), a

larva was briefly touching another larva. In another case (0.3%), head and tail of the larva

were falsely detected for the majority of the time, leading to flipped detection of left and

right bends (Table 3.2).

To analyse data for operant conditioning of a directional preference for bend, the

numbers of left and right bends initiated within each valid bin were counted for each object

to obtain the bend rate towards the respective direction. The probability of the larva to

bend towards the side which was associated with the optogenetic stimulus was calculated

as the ratio of the number of bends towards the stimulated side over the total number of

bends initiated in this bin. For each bin, data of all larvae was pooled and it was accounted

for the fact that bends to the left and to the right were each paired with the optogenetic

stimulus for approximately half of the larvae. Mean and standard error were calculated

for the bend rate to the stimulated side, the bend rate to the unstimulated side and the

probability for bending towards the stimulated side. In the case of the control condition in

which larvae received random stimulation during 50% of bends regardless of their direction,
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mean and standard error of the bend rates to the left and right and the probability for

bending towards the left were calculated. Bend rates to the two sides were compared to

each other using a two-sided Wilcoxon signed-rank test. The probability for bending to a

given side was compared to chance level (0.5) using a two-sided Wilcoxon signed-rank

test.

To analyse data for operant conditioning of the frequency of bends or forward crawls,

the number of left or right bends or crawl periods (using the forward classifier) initiated

within each valid bin were counted for each object. Furthermore, the mean velocity and the

mean duration of all bends and of all crawl periods initiated during the bin was calculated

for each larva. Data from all valid objects was pooled and the mean and standard error

were calculated for each bin. The behaviour characteristics of experimental animals were

compared to the yoked control group using a two-sided Mann-Whitney U test.

2.5 Classical conditioning

2.5.1 Experimental procedures

CsChrimson (Klapoetke et al., 2014) was expressed under the control of driver lines

targeting candidate valence-conveying neurons. Optogenetic activation of these neurons

(US) was paired with an odour (CS) to induce olfactory memory (Fig. 2.2). For each driver

line, data was acquired from at least two separate crosses.

Classical conditioning was performed using a procedure similar to the ones described

in Gerber and Hendel (2006), Saumweber et al. (2011) and Eschbach et al. (2019).

Approximately 40 third-instar larvae were transferred onto a petri dish filled with 4%

agarose. Larvae were presented with an odour (1:104 ethyl acetate in ddH2O) pipetted

onto filter papers attached to the lid of the dish, and the dish was exposed to red light

(630 nm, 350 µW/cm2) for three minutes. Larvae were then transferred to a fresh petri dish

and placed in the dark for three minutes without the odour (“air”). This training procedure

was repeated three times, with alternating presentation of odour/light and air/dark (paired

group).

An unpaired group receiving reciprocal stimulus presentation (odour paired with dark,

air paired with light) was trained simultaneously to ensure that any observed effects
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are due to learning as opposed to innate odour preference or avoidance. In half of the

experiments, the order of training trials was reversed, starting with air presentation instead

of odour presentation.

After training, larvae of both groups were immediately transferred to fresh agarose-filled

petri dishes and lined up along a 1 cm middle zone in the centre of the dish, and the odour

was presented on one side of the lid (odour side), but not on the other side (air side). After

a three-minute test period in the dark, the number of larvae on the odour side, on the air

side and in the middle zone were counted and stored in an Excel spreadsheet (Microsoft).

2.5.2 Data analysis

All data was manually entered into MATLAB (MathWorks) and analysed using customs

scripts. For each experiment, a performance index (PI) was calculated as follows:

Prefpaired =
#(larvae on odour side) – #(larvae on air side)

#(larvae on plate)
(paired dish)

Prefunpaired =
#(larvae on odour side) – #(larvae on air side)

#(larvae on plate)
(unpaired dish)

PI =
Prefpaired – Prefunpaired

2
(combined)

PIs take values between -1 and +1, where a positive PI reflects appetitive learning,

whereas a negative PI represents aversive learning. For each condition, mean and

standard error were calculated. Statistical differences between two groups were tested

using a two-sided Mann-Whitney U test with Bonferroni correction. Significances compared

to zero were tested with a two-sided Wilcoxon signed-rank test with Bonferroni correction.

2.6 Software availability

All software which I have developed as part of this project is available in private repositories

on GitHub (https://www.github.com), which can be shared upon request.

https://www.github.com
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Figure 2.2: Schematic and timeline of the experimental protocol for olfactory conditioning. For training, two groups

of larvae are each alternatingly presented with an odour (white cloud) and no odour (“air”, no cloud). The paired group

receives optogenetic stimulation with red light (solid red circles) paired with the odour and is placed in darkness (solid

white circles) when presented air. The unpaired group receives reciprocal stimulus presentation (odour paired with dark,

air paired with light). This procedure is repeated three times. In half of the experiments, the order of training trials

is reversed, starting with air presentation instead of odour presentation. Both groups are then tested for learned odour

preference in the dark with odour presentation on one side and no odour on the other side of the plate. The two preference

indices are combined to calculate a performance index for olfactory conditioning (see text for details).





3 High-Throughput Tracker with Real-Time

Behaviour Detection and Stimulation

3.1 Introduction

The first step towards establishing a fully automated high-throughput operant conditioning

paradigm for Drosophila larvae is to lay the technical foundations. In this chapter, I will

introduce a novel high-throughput tracker. This system combines three important features

which distinguish it from existing experimental set-ups: first, it can detect complex actions

for up to 16 freely behaving larvae simultaneously in real time and at high accuracy.

Second, optogenetic stimuli can be administered to any subset of larvae in response to be-

haviour detection output with full intensity control and minimal delay. Third, thermogenetic

stimuli can be targeted at individual animals in closed loop. At the moment, thermogenetic

stimulation is available for up to four larvae at a time. However, the system could easily be

upgraded to work for 16 larvae by adding more lasers.

3.2 Results

3.2.1 Hardware design

I have selected and tested all hardware components used for this set-up in collabora-

tion with Dr Lakshmi Narayan (Fig. 3.1). All hardware is contained within an optically

opaque enclosure to ensure that optogenetic experiments are performed in the absence

of environmental light.

Up to 16 larvae are placed on a 23 cm x 23 cm agarose plate, where they can freely

move. They are illuminated by a 30 cm x 30 cm 850 nm LED backlight. A high-resolution

29
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Figure 3.1: Hardware architecture of the high-throughput tracker. a. Schematic of the high-throughput tracker. Up to

16 freely moving larvae on an agarose plate are illuminated by an 850 nm backlight and monitored by a high-resolution

camera. Two digital micromirror devices (DMDs) are used for optogenetic stimulation of individual larvae at 613 and

625 nm. For thermogenetic stimulation, four two-axis galvanometers can be used to heat up larvae with a 1490 nm

infrared (IR) beam. b. Block diagram of hardware components. AO: analogue output, FPGA: field-programmable gate

array.
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camera (3072 x 3200 pixels) obtains an 8-bit greyscale image at 20 Hz. The camera

is positioned such that the arena comprises most of the camera image. Each camera

pixel corresponds to a section of the arena with a diameter of 72.92 µm, allowing for easy

transformation between camera coordinates (in pixels) and world coordinates at plate

level (in mm). An 800 nm longpass filter is installed within the camera to block all visible

wavelengths, especially those used for optogenetic stimulation.

The camera is connected to an FPGA through a Camera Link interface. The FPGA

interacts with a computer through a PCIe slot. Image processing, behaviour detection and

stimulus calculation are performed on the FPGA and the host computer (see Section 3.2.2).

Optogenetic stimulation of individual larvae is achieved using two DMDs. One DMD

operates with an integrated 613 nm LED input, whereas the other one is illuminated by

a 625 nm LED source through an optic fibre. Both DMDs each cover the entire agarose

plate and are used together in order to maximise the achievable light intensity. They are

connected to the host computer through an HDMI output.

Thermogenetic stimulation is achieved using four two-axis galvanometers. Currently,

one of the galvanometers receives IR input from a laser source (1490 nm). For future

expansion, the remaining three galvanometers can easily be connected to additional laser

sources. Both the galvanometers and the laser are controlled by an analogue output

device, which is connected to the host computer through a PCIe slot.

3.2.2 Software architecture

Up to 16 larvae can be tracked simultaneously using a real-time adaptation of the MWT

software (Swierczek et al., 2011). Some of the algorithms have been implemented on

FPGA using LabVIEW, whereas other parts of the framework are executed on the host

computer. The software package on the host computer consists of three interconnected

components: a user interface written in LabVIEW, a LabVIEW application responsible

for object detection and hardware control and a dynamic link library (DLL) written in C++

(Fig. 3.2). I was actively involved in the design and testing of all parts of this framework.

All LabVIEW implementations have been carried out by Dr Lakshmi Narayan, while I have

written all C++ code. A rough outline of the software architecture is given in this section.

For details, please refer to Sections 3.2.3–3.2.6.
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Figure 3.2: Data flow diagram of the high-throughput tracker software. The raw camera image is read by a field-

programmable gate array (FPGA) at 20 Hz. Eligible objects are detected in a LabVIEW process on the host computer

(highlighted in yellow) based on parameters specified on the multi-worm tracker (MWT) user interface. Object contouring,

an initial head and tail detection and the generation of a raw spine are then performed on the FPGA. Up to 16 contours and

spines are sent to a dynamic link library (DLL) on the host computer. Inside the DLL, post-processing of contour, spine,

head and tail, feature extraction and behaviour detection are performed. In addition, data files are written to the hard drive.

For each larva, a stimulus is calculated based on experiment parameters specified on the user interface. The stimulus

information is sent back to a LabVIEW process which controls the digital micromirror devices (DMDs), galvanometers and

lasers for optogenetic (red light bulb) and thermogenetic (red thermometer) stimulation.
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Raw camera images are read by the FPGA at 20 Hz. They are then sent to the host

computer. The LabVIEW application on the host computer detects larvae by finding eligible

objects based on parameters defined on the user interface. Each object is assigned an ID

to enable tracking of larvae over time. Up to 16 boxes containing eligible objects are sent

back to the FPGA for processing. Since this LabVIEW process is slow, it is not executed

in every frame.

In a parallel process, each raw image is also processed by the FPGA. Using the most

recent set of up to 16 eligible objects obtained by the LabVIEW application on the host

computer, contouring, an initial head and tail detection and the computation of a raw spine

are performed. Contour and spine data is sent back to the host computer, where it is

received by the LabVIEW application and sent to the DLL for further processing.

Inside the DLL, contour and spine are smoothed and the head and tail detection is

improved for robustness over time. For each larva, a variety of features describing body

shape, velocity and direction of movement are extracted. These features are used to detect

behaviours in real time. Using experiment parameters specified on the user interface,

closed-loop stimuli can be calculated for individual larvae based on their behaviour. All

experiment parameters, contour, spine, behaviour and stimulation data are written to

output files by the DLL. These output files can be processed for post-acquisition analysis

by a framework written by myself in MATLAB but are also compatible with existing scripts

written by Dr Jean-Baptiste Masson (Jovanic et al., 2017, 2016).

For each larva, the parameters for optogenetic and thermogenetic stimulation are sent

back to the LabVIEW application, which controls the DMDs, galvanometers and lasers.

3.2.3 Multi-animal tracking

For tracking of multiple larvae, the raw image, which is acquired by the camera at 20 Hz,

is processed in parallel on both the host computer and the FPGA. I have designed and

tested these algorithms in collaboration with Dr Lakshmi Narayan, who has implemented

the code in LabVIEW.
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Detection of eligible objects on the host computer

On the host computer, eligible objects are detected using background subtraction and

binary thresholding as well as the following parameters specified on the user interface:

• Pixel intensity range: specifies the range (minimum and maximum) of the brightness

values for pixels which are selected by binary thresholding (between 0 and 255 for an

8-bit image). For each object, a rectangular box of minimal size with edges parallel

to the image axes is constructed around the object.

• Box side length (pixels): specifies the range (minimum and maximum) of eligible

values for width and height of the box.

• Box width + height (pixels): specifies the range (minimum and maximum) of eligible

values for the sum of box width and height.

• Box area (pixels): specifies the range (minimum and maximum) of eligible values for

the area of the box in pixels.

In addition to the background subtraction, which eliminates all motionless objects,

these parameters are sufficient for filtering out most non-larval objects. The values to be

chosen for pixel intensity range depend on the level of background illumination. Parameters

characterising the box size are specific to larval stage. The default values for detecting

third-instar larvae under the standard lighting conditions are a pixel intensity range of

25–170, a box side length of 6–100 pixels, a box width + height of 12–200 pixels and a

box area of 300–900 pixels.

The eligible objects are sorted by object area in descending order, and up to 16 objects

and their location (defined as the centre of the box) are sent to the FPGA. Since object

detection on the host computer requires more than 50 ms of run time, this part of the code

is not executed every frame. On average, the FPGA receives an updated set of object

locations every three frames.

Assignment of larva IDs on the host computer

A larva ID is assigned on the host computer for each eligible object whose location is

sent to the FPGA in a given frame. If in the previous frame an object has been detected
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within the squared box with a radius of 40 pixels around the centroid of a given object

in the current frame, the current object is assigned the same ID as the previous object.

Otherwise, a new ID is assigned to the object.

This process ensures that larvae can be tracked over time. However, in the case of

any ambiguity, e. g. when two or more larvae are touching or when a larva reaches the

edge of the arena, larval identity is lost and the animal will be treated like a new object

when it reappears.

Calculation of the contour on FPGA

This thread is only executed after the first set of object locations is received from the host

computer. Contours of up to 16 eligible objects are extracted based on the most up-to-date

list of object locations.

For each object, a 256 x 256 pixel box is considered around the object centre. Since

the camera image has a size of 3072 x 3200 pixels, which contains an arena with a size

of approximately 23 cm x 23 cm, the box covers an image section of about 2 cm x 2 cm.

Due to the small size of the larvae and the rapid update cycle of the object locations, each

larval object will always be fully contained inside its respective box.

First, a binary threshold is applied to all pixels inside the box using the pixel intensity

range specified on the user interface. For edge detection, both a vertical and a horizontal

convolution with a 2 x 1 XOR kernel are applied to the resulting binary image. The edge

is obtained by overlaying the two convoluted images using a pixelwise OR operation

(Fig. 3.3a).

Next, the contour is constructed using an iterative process. The algorithm starts with

the edge pixel which is located closest to the centre of the box by selecting it as the

first point of the raw contour and removing it from the edge. In each step, the eight

neighbouring pixels of the most recently added contour point are considered one at a time

by moving clockwise around this contour point, starting with the pixel directly above. For

each neighbouring pixel, the algorithm checks whether it is part of the edge. If this is the

case, the pixel is appended to the contour and removed from the edge. The process is

then repeated on the neighbouring points of this pixel. If none of the neighbouring eight

pixels are part of the remaining edge, the contour has been completely reconstructed

(Fig. 3.3b).
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Figure 3.3: Calculation of the contour on FPGA. A simplified example is shown using a 10 x 10 pixel box containing

a small object. a. The object (black) is detected against the background (white) using binary thresholding. The edge is

detected by combining the results of a vertical and a horizontal image convolution with a 2 x 1 XOR kernel using an OR

operator. b. The contour points are reconstructed in an iterative process. Starting with the closest edge pixel to the centre

of the box, the next contour point is found by checking for each neighbouring pixel whether it is part of the edge, starting

from the pixel directly above and going clockwise until an edge pixel is found. The process ends when no eligible edge

pixels can be found.
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It is possible that this process yields a contour which ends prematurely or contains

small loops. If this happens, the construction process can be reversed by up to 16

contour points to find an alternative contour. The maximum time span allowed for contour

construction is 10,000 FPGA clock cycles, where each pixel comparison has a run time of

one clock cycle. In the rare event that this time span is exceeded, the algorithm returns

the contour points which have been reconstructed up to this point.

Only contours with a minimum number of 63 points are considered as valid and

processed further. If less than 63 contour points are found, the FPGA returns the last valid

contour which was detected for a given larva ID.

3.2.4 Contour processing and landmark detection

Detection of head and tail

The initial detection of head and tail was implemented on FPGA by Dr Lakshmi Narayan

using an algorithm originally developed for use on the single-larva closed-loop tracker

(Schulze et al., 2015) by Dr Jean-Baptiste Masson, Elise Croteau-Chonka and myself. I

have designed some necessary adaptations for this high-throughput implementation and

conducted all testing and validation.

The idea underlying this algorithm is that head and tail are the contour points with

the sharpest and second-sharpest curvature, respectively. To find these points, let Craw

denote the raw contour as obtained from the FPGA and let nCraw be the number of contour

points. Let Craw
i denote the ith point on Craw. If i ≤ 0 or i > nCraw , then Craw

i := Craw
j with

i ≡ j mod nCraw and 1 ≤ j ≤ nCraw .

First, for i = 1, ..., nCraw , let ϑi denote the angle between the contour points Craw
i–
⌊ nCraw

8

⌋,

Craw
i and Craw

i+
⌊ nCraw

8

⌋, i. e.

ϑi = ∠Craw
i–
⌊ nCraw

8

⌋Craw
i Craw

i+
⌊ nCraw

8

⌋.

The preliminary head head_initial is defined as the contour point Craw
ihead

with the sharpest

angle, i. e.

ihead = argmin
i

ϑi.
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Figure 3.4: Detection of head and tail. The contour of the larva (black outline) and head and tail (green) are shown.

a. Initial detection of head and tail. The head is the contour point with the sharpest curvature. The tail is the contour point

with the next-sharpest curvature which does not lie in close proximity to the head. b. The initial detection of head and tail

is not correct in all cases. False detections can be corrected by swapping head and tail to minimise the distances of head

and tail in the current frame (solid contour) to head and tail in the previous frame (transparent contour). c. The correction

described in b fails if larvae curl together such that the contour appears to be circular ("ball"). To eliminate this source of

false detection, these events need to be detected using a ball classifier.

The preliminary tail tail_initial is defined as the contour point Craw
itail

with the sharpest

angle among those remaining contour points which are separated by the head by at least
⌊

nCraw
8

⌋

contour points (Fig. 3.4a):

itail = argmin
i 6∈
[

ihead–
⌊ nCraw

8

⌋

, ihead+
⌊ nCraw

8

⌋]

ϑi

This initial detection of head_initial and tail_initial is correct in most cases but

leads to a flipped detection of the two body ends in some cases. I identify and correct

these false detection events at run time in the DLL code. To ensure correct detection of

head and tail in all frames, the locations of head_initial and tail_initial are compared
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to the locations head_prev and tail_prev of the final smooth head and tail detection in

the previous image frame. The following four distances are calculated:

head_initial_to_head_prev = |head_initial – head_prev|

head_initial_to_tail_prev = |head_initial – tail_prev|

tail_initial_to_head_prev = |tail_initial – head_prev|

tail_initial_to_tail_prev = |tail_initial – tail_prev|

Next, the smallest of these four distances is found. Since head and tail do not move very far

from one frame to the next frame, a flipped detection has occurred if this smallest distance

is either head_initial_to_tail_prev or tail_initial_to_head_prev (Fig. 3.4b).

This comparison cannot be drawn in the first frame in which a larva is detected. There-

fore, the final head_raw and tail_raw have to be set to head_initial and tail_initial

for this frame. Since it is possible that the initial detection fails in this frame, there needs to

be a mechanism to correct head and tail over time. For this purpose, I have employed

a vote system which measures whether the detection in the first frame was likely to be

correct and which I have improved based on an algorithm by Dr Jean-Baptiste Masson.

The underlying idea is that if head_initial and tail_initial are flagged as flipped

more often than they are flagged as correct, it is likely that the detection in the first frame

of that larva was false. Two votes, vote_correct and vote_flipped, are both initialised to

zero when a larva is first detected. At the end of the first frame, vote_correct is incremen-

ted by one. In all following frames, vote_correct is incremented by one and vote_flipped

remains unchanged if the smallest distance is either head_initial_to_head_prev or

tail_initial_to_tail_prev. vote_flipped is incremented by one and vote_correct

remains unchanged otherwise.

If the Boolean the comparison vote_correct ≥ vote_flipped remains unchanged

between two consecutive frames, then the final positions for head and tail are chosen

as head_raw = head_initial and tail_raw = tail_initial if the smallest of the

four distances is head_initial_to_head_prev or tail_initial_to_tail_prev, and as

head_raw = tail_initial and tail_raw = head_initial otherwise.

Whenever the Boolean value of vote_correct ≥ vote_flipped changes between two

frames, the data suggests that the final head and tail detection in the previous frame

was false, such that the final positions of head and tail in the current frame are defined
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as head_raw = tail_initial and tail_raw = head_initial if the smallest of the four

distances is either head_initial_to_head_prev or tail_initial_to_tail_prev, and to

head_raw = head_initial and tail_raw = tail_initial otherwise.

This correction using the vote system fails if the assumption that head and tail do not

move far from one frame to the next frame is not met. This is the case when a larva

bends very strongly in one direction, such that parts of its body wall are touching and the

contour appears to take a circular shape. This causes the curvature to be almost identical

across all contour points, and head_initial and tail_initial are detected in arbitrary

locations. When the larva evolves from this "ball"-like shape, there is a high chance that

head and tail are detected incorrectly (Fig. 3.4c). The solution to this problem is to detect

these ball events (see Section 3.2.6) and to reset vote_correct and vote_flipped to

zero whenever they occur.

Generation of a smooth spine

Next, nS = 11 spine points are generated from the contour points. The spine defines a

body axis which runs from head to tail. Initially, a raw spine Sraw is calculated. Let Sraw
i

denote the ith point of Sraw with i = 1, ..., nS. To generate the remaining spine points, the

contour is split into a left and a right body half as defined by head_raw and tail_raw. Let

L1, ..., LnS and R1, ..., RnS be contour point on the left and right halves, respectively, such

that L1 = R1 = head_raw and LnS = RnS = tail_raw. The remaining points Li and Ri

are chosen as contour points Craw
j with j equally spaced out among the indices of Craw

between L1 and LnS on the left half and R1 and RnS on the right half, respectively. Then

each raw spine point Sraw
i is defined as the centre between Li and Ri as given by

Sraw
i =

Li + Ri

2

for i = 1, ..., nS (Fig. 3.5a).

Craw and Sraw are transformed from camera coordinates (in pixels) to world coordinates

(in mm) inside the DLL. If a given larva has already been detected in the past, the Boolean

value of vote_correct ≥ vote_flipped has not changed from the previous to the current

frame and no ball has been detected within the past 1.5 s, all spine points are temporally

smoothed using exponential smoothing (Fig. 3.5b). Let Sprev be the smooth spine of the
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Figure 3.5: Calculation of a smooth spine and landmark points. The contour of the larva is shown (black outline).

The spine is composed of eleven points (black), including head and tail (green). a. The points of the raw spine Sraw are

obtained by finding the centres between equally spaced contour points on either half of the contour as defined by head

and tail. The first spine point is the head, the last spine point is the tail. b. The smooth spine S is obtained by exponential

smoothing of Sraw. c. Four landmark points, neck_top, neck and neck_down (blue) and the centroid of the contour (grey),

are calculated.

previous frame. Let further Si and Sprev
i denote the ith points of S and Sprev, respectively.

Then

Si = γ · Sraw
i + (1 – γ) · Sprev

i

with γ = 0.8. The final smooth head and tail are given by head = S1 and tail = S11.

Obtaining a smooth contour with a fixed number of points

The number nCraw of raw contour points obtained by the original contouring algorithm

implemented on the FPGA varies across larvae and frames. For behaviour detection, it

is desirable to work with a smooth contour with a fixed number of contour points. This

is achieved inside the DLL by applying Fourier decomposition to the raw contour Craw to

obtain a small number of coefficients Fi,j, and by then reconstructing a smooth contour C

with nC = 100 contour points from these coefficients.
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Fourier decomposition is performed as follows:

Fi,1 =
2

nCraw

nCraw

∑
k=1

(

xraw
k · cos

i · 2π · (k – 1)
nCraw

)

Fi,2 =
2

nCraw

nCraw

∑
k=1

(

xraw
k · sin

i · 2π · (k – 1)
nCraw

)

Fi,3 =
2

nCraw

nCraw

∑
k=1

(

yraw
k · cos

i · 2π · (k – 1)
nCraw

)

Fi,4 =
2

nCraw

nCraw

∑
k=1

(

yraw
k · sin

i · 2π · (k – 1)
nCraw

)

with i = 0, ..., 6. Here, xraw
k and yraw

k denote the x and y coordinates, respectively, of the

kth point of Craw. A deviating definition is used for F0,1 and F0,3, which correspond to the

coordinates of the centroid:

F0,1 =
1

nCraw

nCraw

∑
k=1

xraw
k

F0,3 =
1

nCraw

nCraw

∑
k=1

yraw
k

Next, C is obtained by Fourier reconstruction:

xk =
6

∑
i=0

(

Fi,1 · cos
(

i ·
(

–π +
(k – 1) · 2π

nC

))

+ Fi,2 · sin
(

i ·
(

–π +
(k – 1) · 2π

nC

)))

yk =
6

∑
i=0

(

Fi,3 · cos
(

i ·
(

–π +
(k – 1) · 2π

nC

))

+ Fi,4 · sin
(

i ·
(

–π +
(k – 1) · 2π

nC

)))

where xk and yk denote the x and y coordinates, respectively, of the kth point of C.

Calculation of landmark points

In addition to head and tail, four landmark points are extracted inside the DLL, which are

used for feature extraction and for defining the position of a larva on the plate (Fig. 3.5c):

• centroid

This is the centroid of the contour, describing the position of the larva. Let Ci denote

the ith point of the contour. Then

centroid =
1

nC

nC

∑
i=1

Ci.
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• neck

Let kneck be the minimum k such that 3 ≤ k ≤ nS – 2 and

k

∑
i=2

|Si – Si–1| >
1
2

nS

∑
i=2

|Si – Si–1|,

then

neck = Skneck .

If no integer k fulfils the above conditions, then

neck = S
⌊

nS
2 ⌋

(i. e. neck = S5 in the case nS = 11).

• neck_top

Let kneck_top be the minimum k such that 2 ≤ kneck_top ≤ kneck – 1 and

k

∑
i=2

|Si – Si–1| >
1
4

nS

∑
i=2

|Si – Si–1|,

then

neck_top = Skneck_top .

If no integer k fulfils the above conditions, then

neck_top = S
⌊ kneck+1

2 ⌋
.

• neck_down

Let kneck_down be the minimum k such that kneck + 1 ≤ kneck_down ≤ nS – 1 and

k

∑
i=2

|Si – Si–1| >
3
4

nS

∑
i=2

|Si – Si–1|,

then

neck_down = Skneck_down .

If no integer k fulfils the above conditions, then

neck_down = S
⌊

kneck+nS
2 ⌋

.
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3.2.5 Feature extraction

Training behaviour classifiers directly on the contour and spine data with a supervised

learning approach would cause several problems. A complex model would be necessary

to successfully process the large amount of raw data. For example, when using a neural

network classifier, a large number of hidden layers would be needed in order for the

network to extract meaningful features. This, in turn, requires a large tagged dataset for

training the classifier. The quality of the tagged data would need to be very high, such that

behaviours would need to be annotated manually. This approach is very time-consuming.

Furthermore, the larger the network architecture, the more computations would have to be

performed at inference time, making it infeasible to detect behaviour in real time.

To circumvent this problem, a number of meaningful features describing body shape,

velocity and direction of movement are extracted from the contour and spine data inside

the DLL using explicit calculations. I have designed these features inspired by Jovanic et al.

(2017) as well as previous work on the behaviour detection software for the single-larva

closed-loop tracker, which I have carried out in collaboration with Dr Jean-Baptiste Masson

and Elise Croteau-Chonka. Not all of these features are currently used to obtain behaviour

classifiers on the high-throughput tracker, but I have already implemented their calculations

since they may become important for the development of future behaviour classifiers.

Direction vectors

• direction_vector

This is the normalised vector describing the main body axis spanning from neck_down

to neck, defined by direction_vector = neck–neck_down
|neck–neck_down| (Fig. 3.6a).

• direction_head_vector

This is the normalised vector describing the head axis spanning from neck_top to

head, defined by direction_head_vector = head–neck_top
|head–neck_top| (Fig. 3.6b).

• direction_tail_vector

This is the normalised vector describing the tail axis spanning from tail to neck_down,

defined by direction_tail_vector = neck_down–tail
|neck_down–tail| (Fig. 3.6c).
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Figure 3.6: Direction vectors. Three direction vectors are calculated based on head, tail and the landmark points.

a. direction_vector is the normalised vector from neck_down to neck, b. direction_head_vector is the normalised

vector from neck_top to head, and c. direction_tail_vector is the normalised vector from tail to neck_down.

Features describing body shape

• skeleton_length

This feature describes the total length of the spine as defined by the sum of the

distances between consecutive spine points:

skeleton_length =
nS

∑
i=2

|Si – Si–1|

• perimeter

The perimeter of the contour is calculated as the sum of the distances between

neighbouring contour points:

perimeter =
nC

∑
i=1

|Ci – Ci–1|,

where C0 ≡ CnC .

• larva_arc_ratio

This feature uses the convex hull H of the contour C (Fig. 3.7a). It is defined as the

ratio between the perimeter of the contour and the perimeter of the convex hull.

larva_arc_ratio =

nC

∑
i=1

|Ci – Ci–1|

nH

∑
i=1

|Hi – Hi–1|

,

where nH denotes the number of points of the convex hull. Because of the properties

of the convex hull, larva_arc_ratio ≥ 1. The value is close to 1 when the larva is

either in a straight or in a ball-like body shape.
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Figure 3.7: Schematics for features describing body shape. a. Outline of a larva with contour C (black) and its convex

hull H (blue). b. The eigenvectors (blue) of the structure tensor of the larval contour (black) with respect to the neck and

their corresponding eigenvalues λ1 and λ2 are shown. c. ϑi is defined as the angle between direction_vector (blue) and

the vector~ai passing through spine points Si and Si+1 (black). d. ϑhead is defined as the angle between direction_vector

and direction_head_vector. head and tail are shown in green.
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• larva_area_ratio

The areas AC and AH enclosed by the contour and its convex hull, respectively, are

calculated using the shoelace formula (Zwillinger, 2003). Briefly, the area A of a

polygon with vertices (xi, yi), i = 1, ..., n, is obtained by

A =
1
2

n

∑
i=1

xiyi+1 – xi+1yi,

where (xn+1, yn+1) ≡ (x1, y1). larva_area_ratio is defined as the ratio of AC and

AH:

larva_area_ratio =
AC

AH

Because of the properties of the convex hull, 0 ≤ larva_area_ratio ≤ 1. The value

is close to 1 when the larva is either in a straight or in a heavily curved or ball-like

body shape.

• eig_reduced

Let λ1, λ2 be the eigenvalues of the structure tensor of the larval contour with respect

to the neck (Fig. 3.7b). Then eig_reduced is defined as the normalised difference

between the two eigenvalues: eig_reduced = |λ1–λ2|
λ1+λ2

. The structure tensor S is

given by the matrix

S =







momx2

momx2+momy2

momxy
momx2+momy2

momxy
momx2+momy2

momy2

momx2+momy2






,

where

momx2 =
1

nC

nC

∑
i=1

(xi – xneck)2
,

momy2 =
1

nC

nC

∑
i=1

(yi – yneck)
2

and

momxy =
1

nC

nC

∑
i=1

(xi – xneck)(yi – yneck).

Here, xi and yi denote the x and y coordinates, respectively, of contour point Ci. Note

that 0 ≤ eig_reduced ≤ 1 is always satisfied. Typically, eig_reduced will decrease

as the bend amplitude of the larva increases.
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• s

To calculate this feature, the spine is partitioned into nS – 1 segments~a1, ...,~anS–1 as

defined by the nS spine points, such that ~a1 points from S2 to the head, whereas

~anS–1 originates at the tail. For each i = 1, ..., nS – 1, the angle between ~ai and

direction_vector is denoted by ϑi (Fig. 3.7c). The nematic spine s is defined as

follows:

s =
1

nS – 1

nS–1

∑
i=1

3 cos2ϑi – 1
2

s can take values between –0.5 and 1. Values are typically close to 1 when the larva

is in a straight body shape (ϑi ≃ 0◦) and become significantly smaller with increasing

bend amplitude.

• asymmetry

This is the sine of the angle ϑhead between direction_vector and direction_

head_vector (Fig. 3.7d). It takes positive values when the larva is bending its head

to the left and negative values when it is bending its head to the right.

asymmetry = sin(ϑhead)

= xdirection_vector · ydirection_head_vector

– ydirection_vector · xdirection_head_vector

This identity is derived from the subtraction formula for the sine function, making use

of the fact that direction_vector and direction_head_vector are normalised.

• angle_upper_lower

This is the absolute angle between direction_vector and direction_head_vector

(Fig. 3.7d).

angle_upper_lower = |ϑhead|

= cos–1(direction_vector · direction_head_vector)

asymmetry and angle_upper_lower are very similar, since they both directly depend

on ϑhead. Nevertheless, they can develop very different dynamics after temporal

smoothing, which is valuable for a stable detection of left and right bends.
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Features describing velocity

Velocities are calculated using information from previous frames, which is stored in buffers.

When a larva ID first occurs during the experiment, all buffers for previous landmark

locations are initialised to 0.

• head_speed

This is the velocity of the head, measured in mm/s over a time interval of dt = 0.2 s

(four frames).

• tail_speed

This is the velocity of the tail, measured in mm/s over a time interval of dt = 0.2 s

(four frames).

• neck_speed

This is the velocity of the neck, measured in mm/s over a time interval of dt = 0.2 s

(four frames).

• neck_top_speed

This is the velocity of neck_top, measured in mm/s over a time interval of dt = 0.2 s

(four frames).

• neck_down_speed

This is the velocity of neck_down, measured in mm/s over a time interval of dt = 0.2 s

(four frames).

• v_centroid

This is the velocity of the centroid, measured in mm/s over a time interval of

dt = 0.2 s (four frames).

• v_norm

This feature is calculated as the arithmetic mean of neck_down_speed, neck_speed

and neck_top_speed, passed through a hyperbolic tangent activation function to

suppress excessively large values.

v_norm = 15 tanh
(

1
15

·
neck_down_speed+ neck_speed+ neck_top_speed

3

)
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• speed_reduced

This feature describes the relative contribution of neck_top_speed to v_norm, passed

through a hyperbolic tangent activation function to suppress excessively large values.

A small positive number, 0.001, is added to both the enumerator and the denominator

in order to avoid potential division by zero. The value of speed_reduced increases

when the front part of the larval body is moving fast compared to the rest of the body,

e. g. when a bend is initiated.

speed_reduced = tanh
(

neck_top_speed+ 0.001
3 · v_norm+ 0.001

)

• damped_distance

This feature reflects the distance in mm travelled by the neck, giving more weight to

recent events compared to past events (γ < 1; here: γ = 0.9). For any given frame i,

the distance di is calculated as

di = necki – necki–1.

Then we define

damped_distancet =
t

∑
i=1

γt–idi,

where t denotes the current frame. Algorithmically, damped_distance can be ob-

tained through a recursion:

damped_distancet = dt + γ · damped_distancet–1

Features related to direction of movement

• crab_speed

This is the sideways velocity of the larva measured in mm/s, calculated as the

component of neck_velocity which is orthogonal to direction_vector_filtered,

the smoothed normalised vector from neck_down to neck (Fig. 3.8a):

crab_speed = |neck_velocity× direction_vector_filtered|

• parallel_speed

This describes the forward velocity of the larva measured in mm/s, defined as
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Figure 3.8: Schematics for features related to direction of movement. The larval contour is shown in

black, head and tail are shown in green. a. crab_speed (blue) is defined as the component of neck_velocity

(grey) which is orthogonal to direction_vector_filtered (black). b. parallel_speed (blue) is defined as

the component of neck_velocity_filtered (grey) which is parallel to direction_vector_filtered (black).

c. parallel_speed_tail_raw (blue) is defined as the component of tail_velocity_filtered (grey) which is parallel

to direction_tail_vector_filtered (black). d. ϑtail is defined as the angle between tail_velocity_filtered (grey)

and direction_tail_vector_filtered (black).
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the component of the smoothed neck velocity, neck_velocity_filtered, which is

parallel to direction_vector_filtered (Fig. 3.8b):

parallel_speed = neck_velocity_filtered · direction_vector_filtered

• parallel_speed_tail_raw

This is the forward velocity of the tail measured in mm/s, defined as the compon-

ent of the smoothed tail velocity, tail_velocity_filtered, which is parallel to

direction_tail_vector_filtered (Fig. 3.8c):

parallel_speed_tail_raw = tail_velocity_filtered

· direction_tail_vector_filtered

• parallel_speed_tail

This feature is similar to parallel_speed_tail_raw, with the difference that the

smoothed tail velocity, tail_velocity_filtered, is normalised prior to calculating

the dot product. parallel_speed_tail is hence purely a measure of direction of tail

movement, since it is the cosine of the angle ϑtail between tail_velocity_filtered

and direction_tail_vector_filtered (Fig. 3.8d). It can take values between -1

(corresponding to backward movement of the tail) and +1 (corresponding to forward

movement of the tail).

parallel_speed_tail_raw =
tail_velocity_filtered

|tail_velocity_filtered|

· direction_tail_vector_filtered

= cos(ϑtail)

Temporal smoothing

For each feature, a filtered version is calculated using exponential smoothing over time.

In the first frame in which a certain larva ID occurs during the experiment, all buffers for

previous filtered feature values are initialised to 0.

For a given feature f, the smoothed feature f_filtered is calculated as follows:

f_filteredt = (1 – α) · f_filteredt–∆t + α · ft

where t is unitless, but derived from the experiment time in seconds, ∆t = 0.05 and α = ∆t
τ

with τ = 0.25 (Fig. 3.9a, b).
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Figure 3.9: Temporal smoothing of features. a–b. Raw (dark blue) and filtered (mid blue) example graphs of asymmetry

(a) and eig_reduced (b) over time. c–d. Raw (dark blue), filtered (mid blue) and long-time filtered (light blue) example

graphs of v_norm over a short (c) and a long (d) period of time.

An exception is v_norm_filtered, which uses a different formula. This is necessary

because when a larva ID is initialised, v_norm can take very high values, which can be

bounded using a hyperbolic tangent activation function:

v_norm_filteredt = (1 – α) · v_norm_filteredt–∆t + α · σ · tanh
(v_normt

σ

)

where σ = 5.

In addition, v_norm_long_time and v_centroid_long_time are calculated as versions

of v_norm and v_centroid which are smoothed over a longer time window using the

general formula for exponential smoothing:

v_norm_long_timet = (1 – αlong) · v_norm_long_timet–∆t + αlong · v_normt

v_centroid_long_timet = (1 – αlong) · v_centroid_long_timet–∆t + αlong · v_centroidt

where αlong = ∆t
τlong

with τlong = 5 (Fig. 3.9c, d).
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Table 3.1: Value of k by feature.

Feature k

angle_upper_lower 1,000

asymmetry 1,000

crab_speed 500

damped_distance 1,000

eig_reduced 100,000

parallel_speed 1,000

parallel_speed_tail 1,000

perimeter 1,000

s 1,000

skeleton_length 1,000

speed_reduced 1,000

v_norm 50

Differentiation by convolution

A convolution is used to approximate a smoothed squared derivative for each feature. The

underlying mathematical concepts are motivated by Masson et al. (2012). Calculating

these convolved_squared versions of features is a useful way to integrate information

over time without the need for a larger expansion of the feature space.

In the first frame in which a certain larva ID occurs during the experiment, all buffers

for previous feature values are initialised to 0. For a given feature f at a point in time t,

f_convolved_squared is calculated as follows:

f1t = (1 – λ∆t) · f1t–∆t +
1
2

∆t · (ft–∆t + ft)

f2t = λ∆t · f1t–∆t + (1 – λ∆t) · f2t–n∆t

f_convolved_squaredt = k · (f1t – f2t)
2
,

where t is unitless, but derived from the experiment time in seconds, ∆t = 0.05, λ = 1
τ
,

τ = 0.25 and n = 5. Values for k are empirically chosen for each feature (Table 3.1).

Example trajectories of the convolved_squared version of several features are shown in

Fig. 3.10.
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Figure 3.10: Differentiation by convolution. Raw (dark blue) and convolved squared (green) example graphs of

a. asymmetry, b. eig_reduced and c. v_norm over time.

3.2.6 Behaviour classifiers

The behaviour classifiers described below were developed using a modified version of

JAABA (Kabra et al., 2013). I have developed the user interface with functions for manual

annotation, data visualisation and machine learning using the Neural Network Toolbox,

the Deep Learning Toolbox and the Statistics and Machine Learning Toolbox in MATLAB.

A combination of trained neural networks and empirically determined linear thresholds is

used for behaviour detection.

Ball

As described in Section 3.2.4, the votes for head and tail detection need to be reset when

a larva is curling up such that the contour takes a circular shape. I have developed the

ball classifier, which detects these events.

The classifier uses a feed-forward neural network with a single fully connected hid-

den layer, which receives normalised values of eig_reduced, larva_arc_ratio and

larva_area_ratio as inputs. The hidden layer consists of five neurons with a hyper-

bolic tangent activation function. The output layer contains a single neuron and uses a

sigmoid activation function (Fig. 3.11). The neural network was trained on a manually

annotated dataset for 500 epochs in MATLAB using a cross-entropy loss function and

scaled conjugate gradient backpropagation. ball is set to true if the network output is

greater than 0.8.
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Figure 3.11: Neural network architecture for ball detection. Three input features (eig_reduced, larva_arc_ratio

and larva_area_ratio) are processed by a feed-forward neural network consisting of a fully connected hidden layer (five

neurons) with hyperbolic tangent activation function and an output layer (one neuron) with sigmoid activation function. A

ball is detected if the output is greater than 0.8. Schematics of the activation functions have been obtained using the

view function of the MATLAB R2018b Deep Learning Toolbox (MathWorks).

Left and right bend

The initial bend classifier is set to true if all of the following criteria are met:

• s_filtered < 0.85

• eig_reduced_filtered < 0.85

• angle_upper_lower_filtered > 0.4

bend_smooth is then obtained by exponential smoothing of bend over time. bend_smooth

is set to true if

bend_filteredt > 0.7

for

bend_filteredt = (1 – α) · bend_filteredt–∆t + α · int(bendt),

where t is unitless, but derived from the experiment time in seconds, ∆t = 0.05, α = ∆t
τ

with τ = 0.06, int(true) ≡ 1 and int(false) ≡ 0.

Independent classifiers are used for an initial detection of bending direction. left is

set to true if all of the following criteria are met:

• angle_upper_lower_filtered > 0.4

• asymmetry ≥ 0.4

right is set to true if all of the following criteria are met:
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• angle_upper_lower_filtered > 0.4

• asymmetry ≤ –0.4

If for a larva ball == true at any point during the previous 1.5 s, the left and right

classifiers are overwritten to match the last detected bend direction prior to the beginning

of the ball event.

Left and right bends are detected by combining bend_smooth with left or right,

respectively, using an AND conjunction. The raw time series of left and right bends is

further smoothed post acquisition using a custom MATLAB script. First, whenever two

bends to the same side were separated by a break of less than 200 ms, they are combined

into a single long bend. Next, short bends with a duration of less than 200 ms are removed

from analysis.

I have manually validated the performance of the final classifier (Table 3.2).

Forward crawl and forward peristaltic waves

Two different classifiers are used for detection of crawl. forward is designed to detect

longer forward crawl periods. It is set to true if all of the following conditions are met:

• parallel_speed_tail_filtered > 0.6

• parallel_speed_tail_raw_filtered > 0.6

• ball == false for all frames in the previous 1.5 s

The second classifier, forward_peristaltic, is designed to detect individual forward

peristaltic waves. It is set to true if all of the following conditions are met:

• forward == true

• parallel_speed_tail_raw > 0.8

I have manually validated the performance of the forward and forward_peristaltic

classifiers (Table 3.2).
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Table 3.2: Accuracy of behaviour detection based on manual quantification.

Contour (350 valid objects, each with 60 s video data)

Severely corrupted objects 100.0%

Two touching larvae detected as one object 0.3%

Long period of flipped head and tail detection 0.3%

bend (714 events from 24 larvae in 60 minutes of video data)

Precision 95.6%

Recall 96.4%

Correct left and right detection (true-positive bends) 97.3%

forward (425 events from 24 larvae in 60 minutes of video data)

Precision 97.8%

Recall 94.1%

forward_peristaltic (2954 events from 24 larvae in 60 minutes of video data)

Precision 99.5%

Recall 93.6%

Events which are falsely combined with another event 10.7%

Events which are detected as more than one event 1.2%

back (268 events from 24 larvae in 60 minutes of video data)

Precision 86.5%

Recall 88.4%

roll (240 events from 24 larvae in 60 minutes of video data)

Precision (rolls and roll-like events) 96.6%

Recall (rolls) 86.7%

Recall (roll-like events) 25.8%
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Back-up

The back classifier is designed to detect individual backward peristaltic waves during

back-up. It is set to true if all of the following conditions are met:

• parallel_speed_tail_filtered < –0.6

• parallel_speed_tail_raw_filtered < –0.45

• ball == false for all frames in the previous 1.5 s

I have manually validated the performance of the classifier (Table 3.2).

Roll

In order for the preliminary roll classifier to be set to true, all of the following criteria

have to be met:

• 1 < angle_upper_lower_filtered < 1.8

• crab_speed_filtered > 1

• damped_distance_filtered > 0.64

• v_norm_filtered > 1.2

• |asymmetry_filtered| > 0.65

• s < 0.8

• s_filtered > 0.2

• eig_reduced_filtered < 0.7

• eig_reduced_filtered > –1.5 · s_filtered+ 0.45

• v_norm_long_time > 0.5

• parallel_speed_tail_filtered > –0.6

• parallel_speed_tail_filtered > –0.4

or asymmetry_convolved_squared > 10
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• speed_reduced_filtered < 0.38

• ball == false

If for a larva roll == true at any point during the previous 1.5 s, the values of the

classifiers for forward, forward_peristaltic and back are overwritten and set to false.

This serves to reduce the number of false-positive detections for these classifiers.

In addition, a smooth classifier roll_smooth is obtained by exponential smoothing of

roll over time. roll_smooth is set to true if

roll_filteredt > 0.6

for

roll_filteredt = (1 – α) · roll_filteredt–∆t + α · int(rollt),

where t is unitless, but derived from the experiment time in seconds, ∆t = 0.05, α = ∆t
τ

with τ = 0.1, int(true) ≡ 1 and int(false) ≡ 0. back is overwritten to false when

roll_smooth == true to further reduce false-positive back-up detection.

I have manually validated the performance of the classifier (Table 3.2). When larvae

are rolling, unusual behaviour patterns such as rapid bending or twitching can be observed

in addition to true rolls. I call these behaviours "roll-like behaviours".

3.2.7 Optogenetic stimulation

Optogenetic stimulation is controlled for each larva individually based on a custom protocol

which can be defined by the user inside the DLL and which operates on the output of the

behaviour detection. DMDs are used to project light patterns onto a subset of larvae on

the agarose plate. The DMDs operate like monochrome red light projectors with an image

size of 768 x 1024 pixels, in which a large number of individually rotatable micromirrors

are used to each modulate the intensity of a single image pixel.

During the process of hardware design, two different DMD models were tested. The

first DMD is illuminated by an integrated LED (613 nm), whereas the second DMD receives

input from an external LED source (625 nm) through an optic fibre. The two DMDs achieve

similar light intensities, which based on empirical values are on their own insufficient

for optogenetic stimulation of larvae. Both devices were installed on the final system,
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such that they each cover the entire agarose plate. With this set-up, the sum of the light

intensities of the two DMDs can be reached at each location on the agarose plate.

Optogenetic stimulation of individual larvae is achieved by commanding both DMDs

to project a square with a size of 1 cm2 at the location of the larval centroid (Fig. 3.12a).

The light intensity can be controlled for each larva independently at a resolution of 8 bits,

which is constrained by the normalisation step performed to achieve uniform light intensity

across the plate (see below). If two or more larvae are located close enough to each

other such that the corresponding squares overlap, the light intensity in the overlapping

region is set to the smallest value to avoid undesired stimulation. Since the DMD images

are updated at 20 Hz, the delay between behaviour detection and optogenetic stimulation

does not exceed 50 ms.

In collaboration with Dr Lakshmi Narayan, I have developed two necessary calibration

methods. To aim light stimuli at larvae crawling at plate level, a map between world

coordinates (in mm) and DMD pixel locations needs to be created. For each DMD, a

small number of squared spots is projected at fixed DMD pixel locations and visualised

in the camera image at the level of the agarose plate by removing the optical filter from

the camera. The location of the spots in the image in camera coordinates (in pixels) is

manually recorded and used to fit a linear regression model to obtain the parameters

for camera-to-DMD transformation. World-to-DMD transformation is performed using the

existing camera-to-world coordinate transform.

One problem with optogenetic stimulation using DMDs is that illumination using the

default output is not uniform at plate level. The maximum light intensity which can be

achieved around the edge of the plate is only approximately 40% as high as the peak

value at the centre of the arena. Since this can cause very different degrees of optogenetic

stimulation depending on where a given larva is located, I have calibrated the pixel intensity

of the DMD image by normalising it to the level of the highest possible intensity which can

be achieved anywhere on the plate. Based on approximately 100 light intensity values

measured across the plate, a look-up table containing the normalisation factor for each

DMD pixel is calculated using bilinear interpolation.

To accommodate for possible differences in the levels of nonuniformity between the two

DMDs, intensity calibration is performed for both DMDs simultaneously following spatial
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Figure 3.12: Optogenetic stimulation of individual larvae. a. Schematic of the hardware design for optogenetic stimu-

lation. There are two digital micromirror devices (DMDs), only one of which is shown in the illustration for simplicity. The

DMD operates like a red light movie projector (613 or 625 nm) and is positioned such that the entire agarose plate can be

covered. It is configured to project small squares of light with a size of 1 cm2 onto the desired subset of larvae as defined

by the stimulation protocol and the behaviour detection output. b. Protocol of a proof-of-principal experiment for optogen-

etic stimulation. After a 15 s initialisation period to stabilise behaviour detection and to allow the larvae to accommodate

to their environment, the reaction of the larvae to the optogenetic stimulus is tested in three 15 s stimulation cycles. Each

cycle consists of a 5 s open-loop red light stimulus directed at all detected objects on the plate (red light bulb), followed by

a 10 s period without stimulation (grey light bulb). c. For each stimulation cycle, the fraction of larvae for which a roll was

detected in at least six frames during the 15 s period is shown. 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-

CsChrimson larvae (CsChrimson expression in neurons triggering roll behaviour; experimental groups) were compared to

attP2 x UAS-CsChrimson larvae (no CsChrimson expression; control group). Only larvae which received stimulation for

more than 90% of the 5 s stimulation period are included into analysis. Statistical differences between the experimental

groups and the control group are tested with a Fisher’s exact test; *** p < 0.001.
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calibration. With the fully calibrated system, a uniform light intensity of 285 µW/cm2 can be

achieved across the plate.

I have conducted a proof-of-principle experiment to verify that this set-up can be

successfully used for optogenetic stimulation. Ohyama et al. (2015) have identified two

GAL4 lines expressed in neurons whose activation triggers strong rolling behaviour. 69F06-

Gal4 drives expression in command neurons for rolling, whereas 72F11-Gal4 is specific to

the Basin neurons, which integrate mechanosensory and nociceptive stimuli.

In a one-minute experiment, I tested rolling responses upon optogenetic stimulation

of 69F06-Gal4 x UAS-CsChrimson and 72F11-Gal4 x UAS-CsChrimson larvae using the

maximum available light intensity of 285 µW/cm2. In the beginning of the experiment,

larvae were allowed to get used to the arena in a 15 s initialisation period. Excluding this

time window from analysis also increases robustness of the behaviour classifier for roll.

In three 15 s stimulation cycles, all detected larvae on the plate received a 5 s optogenetic

stimulus followed by a 10 s period without a stimulus (Fig. 3.12b).

For each larva, I assessed whether a roll was detected for at least six frames during

a given 15 s stimulation cycle. This threshold was set to eliminate noise in the behaviour

classifier caused by rapid bending in response to the stimulus. Since the frame rate of the

behaviour detection is 20 Hz, it corresponds to a behaviourally relevant total roll duration

of at least 300 ms. Only larvae which received stimulation for more than 90% of the 5 s

stimulation period were included into analysis. For each stimulation cycle, above-threshold

rolling behaviour was observed for over 40% of 69F06-Gal4 x UAS-CsChrimson larvae

and over 70% of 72F11-Gal4 x UAS-CsChrimson larvae. By contrast, less than 6% of

attP2 x UAS-CsChrimson control larvae, which do not express CsChrimson, were rolling

during any given stimulation cycle (Fig. 3.12c).

3.2.8 Thermogenetic stimulation

Thermogenetic stimulation can be controlled for each larva individually based on a custom

protocol which is defined by the user inside the DLL and which operates on the output of

the behaviour detection. For stimulation of up to 16 larvae, four two-axis galvanometers

are installed on the system. Each galvanometer can receive input from a laser source

and contains two mirrors, which can be rotated around orthogonal axes to project a laser

beam onto different spots on the agarose plate with full two-dimensional coverage. A
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single galvanometer can target up to four larvae within a 50 ms frame. Therefore, the delay

between behaviour detection and thermogenetic stimulation does not exceed 100 ms.

The laser source, which was developed by Dr Christopher McRaven and Dr Michael

Winding, operates at 1490 nm. This wavelength is well absorbed by water (Curcio and

Petty, 1951). Because larvae are transparent objects which contain a large amount

of water, they are rapidly heated up by the laser beam. In the present set-up, only a

single laser source has been built, such that only one of the galvanometers is functional.

Therefore, up to four larvae can currently receive the thermogenetic stimulus. However,

the system can easily be expanded to work for all 16 larvae by adding three more lasers.

To achieve thermogenetic stimulation of four larvae with a single galvanometer, four

locations are specified inside the DLL at 20 Hz. The galvanometer mirrors can be rotated

within less than 1 ms to move the laser beam from one location on the plate to another

location. Therefore, the available 50 ms time window is split up as follows: every 12.5 ms,

the galvanometer receives a command to move to a new location. To account for fluctu-

ations in the movement time and to avoid undesired stimulation of other parts of the plate,

the laser input is switched off for 1.5 ms. During the remaining 11 ms, the laser beam is

targeted at the specified location (Fig. 3.13a). For each larva, the laser intensity can be

controlled relative to the maximum laser power which is uniformly available across the

arena after intensity calibration (see below). If less than 16 objects are detected in a given

frame, the remaining target locations for the galvanometers are set to the centre of the

arena and the corresponding laser intensity is set to zero.

The mirror position of the galvanometers is controlled by two integrated motors, which

receive a voltage input through an analogue output device. The combination of the two

voltages clearly defines the location on the agarose plate at which the laser beam is aimed.

To obtain the parameters which are necessary to map larval locations in world coordinates

to input voltages for the galvanometer, I have calibrated the system in collaboration with

Dr Lakshmi Narayan and Elise Croteau-Chonka. First, the existing world-to-camera

transform is used to calculate the location of the larval centroid in camera coordinates.

This location is then mapped to a pair of voltages using two look-up tables (i. e. one

for each voltage value), which are obtained through bilinear interpolation from a set of

measured values. These values are acquired by scanning a visible aiming beam across

different locations on the plate using a fixed set of voltage inputs to the galvanometer. The
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Figure 3.13: Thermogenetic stimulation of individual larvae. a. Schematic of the hardware design for thermogenetic

stimulation. There are four two-axis galvanometers, only one of which is shown in the illustration for simplicity. The

galvanometer receives input from an infrared (IR) laser source (1490 nm) and can be used to target IR beam spots with

a diameter of about 5 mm at a user-defined location on the agarose plate. The mirror angles of the galvanometer can be

updated at 80 Hz to move to a new location. The galvanometer is configured to cycle between up to four larvae at 20 Hz

as defined by the stimulation protocol and the behaviour detection output. The IR beam temporarily heats up the larvae,

enabling thermogenetic stimulation. b. Protocol of a proof-of-principal experiment for thermogenetic stimulation. After a

15 s initialisation period to stabilise behaviour detection and to allow the larvae to accommodate to their environment, the

reaction of the larvae to the thermogenetic stimulus is tested in three 15 s stimulation cycles. Each cycle consists of a 5 s

open-loop stimulation period, in which the galvanometer targets the IR beam at up to four larvae in an alternating way (red

thermometer), followed by a 10 s period without stimulation (blue thermometer). c. For each stimulation cycle, the fraction

of larvae for which a roll was detected in at least six frames during the 15 s period is shown. 69F06-Gal4 x UAS-dTrpA1

and 72F11-Gal4 x UAS-dTrpA1 larvae (dTrpA1 expression in neurons triggering roll behaviour; experimental groups) were

compared to attP2 x UAS-dTrpA1 larvae (no dTrpA1 expression; control group). Only larvae which received stimulation for

more than 90% of the 5 s stimulation period are included into analysis. Statistical differences between the experimental

groups and the control group are tested with a Fisher’s exact test; *** p < 0.001.
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optical filter is removed from the camera, such that the corresponding locations in camera

coordinates can be automatically extracted from the image using binary thresholding.

Since the laser beam is projected at the agarose plate at different angles depending

on the location of the larva, the illuminated spot at plate level takes an elliptical shape

with variable size. As the power of the laser beam is constant, but the area of the spot

changes, the amount of IR light covering the larva is not consistent. To ensure that all

larvae receive the same amount of stimulation regardless of their position in the arena, I

have calibrated the intensity of the laser output in collaboration with Dr Lakshmi Narayan

and Elise Croteau-Chonka. The spot size of a visible aiming beam was measured at

various locations across the plate and used to normalise the desired laser intensity to

achieve constant power per area. Based on these measurements, a look-up table which

contains the required laser power value corresponding to each pixel location of the larval

centroid was calculated using bilinear interpolation. In addition, a map between the input

voltage to the laser source and the total laser power output was created based on manual

measurements by Elise Croteau-Chonka to account for nonlinearity in the voltage-to-power

relationship. By combining these transformations, the voltage input to the laser source

necessary to produce uniform stimulation can be calculated for any location in the arena.

At the location on the plate where the area of the laser spot reaches its minimum, the

maximum laser power of 5.26 W is reduced to 67.3% after this intensity calibration when

using the temporal pattern of galvanometer position updates described above.

I performed a proof-of-principle experiment to verify that the galvanometer set-up can

be successfully used for thermogenetic stimulation. Since currently only one galvanometer

is connected to a laser source and stimulation is hence only available for up to four larvae,

I performed the experiment using three larvae per run. This is necessary because of the

residual risk of detecting one or more non-larval objects. If the total number of detected

objects exceeds four, it is possible that a valid larva is excluded from stimulation.

In a one-minute experiment, I tested rolling responses upon thermogenetic stimulation

of 69F06-Gal4 x UAS-dTrpA1 and 72F11-Gal4 x UAS-dTrpA1 larvae using 40% of the

maximum available laser intensity. The experimental protocol consists of a 15 s initialisation

period without stimulation and three 15 s stimulation cycles. In each stimulation cycle, the

laser beam was cycled between the first four object locations which are output from the
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DLL for 5 s, heating up each larva for an 11 ms period every 50 ms, followed by a 10 s

period without a stimulus (Fig. 3.13b).

For each larva, I assessed whether a roll was detected for at least six frames during a

given 15 s stimulation cycle. Only larvae which received stimulation during more than 90%

of frames in the 5 s stimulation period were included into analysis. For each stimulation

cycle, above-threshold rolling behaviour was observed for over 70% of 69F06-Gal4 x

UAS-dTrpA1 larvae and over 35% of 72F11-Gal4 x UAS-dTrpA1 larvae. By contrast, not

more than 5% of attP2 x UAS-dTrpA1 control larvae, which do not express dTrpA1, were

rolling during any given stimulation cycle, suggesting that larvae do not perceive strong

pain under the heating conditions used in this experiment (Fig. 3.13c).

It should be pointed out that additional increases to the laser power do not necessarily

result in more efficient thermogenetic stimulation. In fact, raising the laser power to

45% while keeping all other conditions unchanged results in irreversible changes in the

behaviour pattern, reflecting tissue damage. Increasing it even further to 50% causes

larvae to die immediately. Similar effects can be observed when extending the duration

of the stimulation period beyond a certain threshold. Three parameters characterise the

temperature increase following illumination with the IR beam: i) the laser power, ii) the

total duration of the stimulus, and iii) the temporal arrangement in which the galvanometer

cycles between locations in its 80 Hz movement pattern. Preliminary experiments suggest

that these parameters can be adjusted in a way which allows simultaneous thermogenetic

stimulation of eight or even twelve larvae with a single galvanometer, which may eliminate

the need to install a total number of four lasers to target all 16 larvae.

3.3 Conclusions

The novel experimental set-up introduced in this chapter can track up to 16 objects

simultaneously. A number of complex behaviours of Drosophila larvae, including left and

right bend, forward crawl, back-up and roll, can be detected in real time. The output of this

detection can be used to independently administer both optogenetic and thermogenetic

stimuli at individual larvae in closed loop, based on customisable criteria and with small

latency. This allows for targeted activation or inhibition of neurons in response to the
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occurrence of an action or action sequence or the position of a larva on the plate in a fully

automated, high-throughput manner.

In the following chapters, I will take advantage of this system to investigate the neural

circuits underlying operant conditioning.
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4.1 Introduction

In the previous chapter, I have introduced a novel multi-animal tracker for Drosophila larvae

with real-time behaviour detection and closed-loop stimulation. In this chapter, I will use

this set-up to introduce a first operant conditioning paradigm in the larva by pairing an

action with optogenetic activation of neurons which are presumed to signal reward.

Perhaps the largest challenge in designing such a paradigm is to choose a suitable set

of reward neurons. Since it has been an open question whether Drosophila larvae are

capable of operant conditioning, there is no information available about the underlying

neural circuits. It is hence unclear which neurons would need to be activated to convey a

reinforcement signal sufficient to induce this type of learning.

Across the animal kingdom, it has been observed that biogenic amines can provide

such a learning signal (Fee and Goldberg, 2011; Giurfa, 2006; Hawkins and Byrne, 2015;

Meneses and Liy-Salmeron, 2012). In flies, the PAM cluster dopaminergic neurons, which

innervate the mushroom body, are both necessary and sufficient to signal reward in

classical conditioning (Cognigni et al., 2018; Liu et al., 2012; Rohwedder et al., 2016; Vogt

et al., 2014; Waddell, 2013). It would be conceivable that the reward circuits of classical

and operant conditioning are shared. However, operant conditioning in adult flies does not

require the mushroom body (Booker and Quinn, 1981; Colomb and Brembs, 2010, 2016;

Wolf et al., 1998).

Therefore, I have decided to try to induce operant conditioning by using optogenetic

stimulation of a rather broad set of dopaminergic and serotonergic neurons as a US.

If valence signalling relevant for operant conditioning is mediated by one of these two

69
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neurotransmitters, activation of this large set of neurons paired with behaviour should be

sufficient to cause learning.

4.2 Results

I have expressed UAS-CsChrimson under the control of the Ddc-Gal4 driver, which

covers the majority of dopaminergic and serotonergic neurons in the CNS (Li et al., 2000;

Sitaraman et al., 2008), including the PAM cluster neurons (Aso et al., 2012; Liu et al.,

2012 for evidence in adult flies; Chapter 6 for evidence in larvae). Although the function of

most of these neurons is unknown, Ddc neurons seem to collectively convey a positive

net valence in at least some learning paradigms, since their activation can substitute for

reward in olfactory conditioning in adult flies (Aso et al., 2012; Liu et al., 2012; Shyu et al.,

2017).

While the high-throughput closed-loop tracker introduced in Chapter 3 was still under

development, I initially tested experimental conditions for operant conditioning in Ddc-Gal4

x UAS-CsChrimson larvae at low throughput using a single-larva closed-loop tracker

(Schulze et al., 2015; Section 2.3). Here, I will introduce a paradigm for inducing a learned

directional preference for bends, which I have developed using this single-larva tracker.

The aim was to condition larvae to bend more often to one predefined side than to the

other side. For simplicity, I will describe the experimental procedure where this predefined

side was chosen to be the left, however, approximately 50% of the experimental animals

were trained to develop a preference for bending towards the right.

For two three-minute training sessions, the larva received an optogenetic stimulus

whenever a left bend was detected, for the entire duration of the behaviour. No stimulus

was given when the larva was bending to the right or when it was in a straight body position.

The two training sessions were separated by a three-minute break, in which the larva did

not receive any optogenetic stimulus, regardless of behaviour. Larvae were not exposed

to any stimulus before or after training (Fig. 4.1).

For each larva, I used two measures as a read-out for bend direction preference: i) the

bend rate, measured as the absolute number of bends per minute performed towards

each side, and ii) the probability for a given bend to be directed towards the stimulated

side. This second measure is obtained by normalising the bend rate with the total number
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Figure 4.1: Experimental protocol for conditioning bend direction using the single-larva closed-loop tracker. The

training protocol consists of one minute of test directly before training, two three-minute training sessions (highlighted in

grey) interrupted by a three-minute break, and one minute of test immediately after training. Behaviours are depicted

as larval contours (black) with head (green). During training, the larva receives an optogenetic stimulus (red light bulb)

whenever it is bending to one predefined side (here depicted as the left for simplicity), and light is switched off during all

other behaviours (grey light bulb).

of bends to both sides. Because there is variation in the overall bend rates across larvae,

these two measures can yield different results at population level.

In the one-minute test directly prior to the beginning of the first training session, there

was no difference in the rates of left and right bends. Bend direction preference was tested

again in a one-minute time window following the end of the second training session. After

training, larvae performed more bends towards the side which was paired with optogenetic

stimulation during training than to the other side (Fig. 4.2a). Similarly, naïve larvae, prior

to training, were equally as likely to bend to the side which would later be paired with Ddc

neuron activation as they were to bend towards the other side. Following training, the

probability of bending towards the previously stimulated side was significantly greater than

50% (Fig. 4.2b). No significant difference could be detected between the bend rates of

larvae which received paired training compared to larvae which received uncorrelated

training (two-sided Mann-Whitney U test; p ≥ 0.05 for all comparisons).

To confirm that this preference for bends to the previously stimulated side after training

is indeed due to the pairing of bends to one direction with light, I conducted a control

experiment, which like the previous experiments consisted of two three-minute training

sessions, with the difference that larvae received random stimulation during 50% of bends

regardless of bend direction. There was neither a difference in absolute left and right

bend rates, nor did larvae show a higher probability for choosing one of the two sides

over the other in the one-minute test period after the end of the second training session

(Fig. 4.2a, b).
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Figure 4.2: Single-larva operant conditioning of bend direction in Ddc-Gal4 x UAS-CsChrimson larvae. Experi-

ments are performed using Ddc-Gal4 x UAS-CsChrimson larvae and the protocol described in Fig. 4.1. Data is shown for

the test before training (left), the test after training (centre) and the test after training for control larvae receiving uncorrel-

ated training with random stimulation during 50% of bends (right). a. The graph shows the bend rate in number of bends

per minute split up by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulb for

simplicity) is shown in red and the bend rate to the other side (depicted as a right bend with a grey light bulb for simplicity)

is shown in grey. For larvae receiving random stimulation during 50% of bends, the bend rates to the left and right (black)

are shown. b. The graph shows the probability that a given bend is directed towards the stimulated side (contingent

training) or towards the left (uncorrelated training with random stimulation of 50% of bends). The grey line indicates equal

probability of 0.5 for bends to either side. a–b. All data is shown as (mean ± s. e. m.). Statistical differences are tested

with a two-sided Wilcoxon signed-rank test; n. s. p ≥ 0.05 (not significant), ** p < 0.01.
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These experiments indicate that larvae are capable of associating the direction in which

they initiate a bend with a US, leading to learned modification of their future behaviour.

Since this shift in behaviour was only observed when the CS, here bends to one predefined

side, and the US, in this case an optogenetic light stimulus, were paired during training, it

is due to operant conditioning. As pairing bends to one side with the US induced a learned

preference for bends to this side, the optogenetic stimulus serves as a rewarding signal.

Upon completion of the high-throughput closed-loop tracker (Chapter 3), I have repro-

duced the paradigm described above using this novel set-up. High-throughput experiments

presented in this chapter were kindly performed by Elise Croteau-Chonka. Design of the

experimental conditions, implementation of the stimulus protocol as part of the tracker

software and analysis of all data were performed by myself.

Due to the design of the high-throughput tracker, the agarose plate on which the larvae

are freely behaving is significantly smaller than the one used in the single-larva tracker

(see Chapter 2 for details). As a consequence, when using the experimental design shown

in Fig. 4.1, the majority of larvae are located very close to the edge of the plate by the

beginning of the second training session. Tracking of animals which touch the edge of the

plate is often disrupted, such that the object is temporarily lost. Although these larvae can

be detected again as new objects when they move back towards the centre of the plate,

they do not receive an optogenetic stimulus while they are not being tracked. Therefore, a

prolonged experiment with freely behaving larvae on a small agarose plate not only causes

the sample size to shrink with increasing experiment time, but also affects the efficiency of

training by decreasing the proportion of animals which are receiving the stimulus.

To circumvent this problem, the experiment was interrupted one minute after the end

of each three-minute training session, and a brush was used to gently move all larvae

back to the centre of the plate. The experiment was then restarted, and the larvae were

given 30 s to recover before the beginning of the next training session (Fig. 4.3). Under

these modified experimental conditions, no operant conditioning was observed after the

end of the second training session (Fig. 4.4). It is possible that this is due to the disruptive

process of moving the larvae. Therefore, I extended the conditioning procedure to four

training sessions to give larvae more time to experience the pairing of the optogenetic

stimulus with the behaviour and to potentially compensate for the disruption (Fig. 4.3).



74 4 Operant Conditioning of Bend Direction

Figure 4.3: Experimental protocol for conditioning bend direction using the high-throughput closed-loop tracker.

The training protocol consists of a one-minute test directly before training, four training sessions (highlighted in grey) a

one-minute test immediately after the end of the last training session. Each training session lasts for three minutes. The

first three training sessions are followed by one minute without stimulation, after which the experiment is stopped and the

larvae are placed back to the centre of the plate. Afterwards, they are allowed a period of one to two minutes for recovery

before the next training session begins. Behaviours are depicted as larval contours (black) with head (green). During

training, the larva receives an optogenetic stimulus (red light bulb) whenever it is bending to one predefined side (here

depicted as the left for simplicity), and light is switched off during all other behaviours (grey light bulb).

In the one-minute test period following the fourth training session, larvae indeed

showed a preference for bends towards the side which had been paired with Ddc neuron

activation during training. No directional preference was observed in naïve animals or in

animals which had received random stimulation during 50% of all left and right bends,

regardless of their direction (Fig. 4.4). The operant conditioning effect observed on the

single-larva tracker could hence be replicated using the high-throughput set-up.

In the training procedure described in this chapter, Ddc-Gal4 x UAS-CsChrimson

larvae receive a red light stimulus paired with the conditioned behaviour. The red light

optogenetically activates Ddc neurons, which express CsChrimson. In order to be able to

conclude that this activation of Ddc neurons and not purely the red light has served as

the rewarding US which induced learning, a control is needed in which larvae of identical

genotype receive a red light stimulus paired with behaviour which does not activate any

neurons.

The light-dependent activation of neurons using CsChrimson requires a cofactor,

retinal, which is supplemented to the food during development (Klapoetke et al., 2014;

Section 2.1). A control group of larvae which were raised on food without retinal showed
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Figure 4.4: High-throughput operant conditioning of bend direction in Ddc-Gal4 x UAS-CsChrimson larvae. Ex-

periments are performed using Ddc-Gal4 x UAS-CsChrimson larvae and the protocol described in Fig. 4.3. Data is shown

for the test before training (left), the one-minute period following the second training session (second from the left) and

the test after training (centre), the test after training for control larvae which receive retinal through their food (second from

the right) and the test after training for control larvae receiving uncorrelated training with random stimulation during 50%

of bends (right). a. The graph shows the bend rate in number of bends per minute split up by bend direction. The bend

rate to the stimulated side (depicted as a left bend with a red light bulb for simplicity) is shown in red and the bend rate to

the other side (depicted as a right bend with a grey light bulb for simplicity) is shown in grey. For larvae receiving random

stimulation during 50% of bends, the bend rates to the left and right (black) are shown. b. The graph shows the probability

that a given bend is directed towards the stimulated side (contingent training) or towards the left (uncorrelated training with

random stimulation of 50% of bends). The grey line indicates equal probability of 0.5 for bends to either side. a–b. All data

is shown as (mean ± s. e. m.). Statistical differences within a group are tested with a two-sided Wilcoxon signed-rank test;

statistical differences between two groups are tested with a two-sided Mann-Whitney U test; n. s. p ≥ 0.05 (not significant),

* p < 0.05, ** p < 0.01.



76 4 Operant Conditioning of Bend Direction

the same absolute rate and probability for bends to the stimulated side and bends to the

other side throughout the experiment, suggesting that the US which triggered a learned

directional preference for bends was indeed the activation of Ddc neurons and not the red

light alone (Fig. 4.4). The collective activation of all Ddc neurons therefore serves as the

reward in this paradigm.

Next, I assessed whether there were differences between the bend rates of the three

groups after training. No change in the bend rate towards the stimulated side could be

detected for larvae which received paired training compared to larvae which did not receive

retinal. The bend rate towards the stimulated side of larvae which received paired training

was also indistinguishable from the bend rates towards the left and right of larvae which

received uncorrelated training. However, the bend rate towards the unstimulated side

of larvae which received paired training was significantly reduced compared to larvae

which did not receive retinal and compared to the right bend rate of larvae which received

uncorrelated training (Fig. 4.4a).

4.3 Conclusions

In this chapter, I have successfully trained larvae to associate bend direction with a US,

using both a single-larva and a multi-larva experimental set-up. After pairing of Ddc

neuron activation with bends to one predefined side, larvae showed a significant learned

preference for bending towards this side, even though no stimulus was given during test.

This provides, to my knowledge, the first evidence that Drosophila larvae are capable of

operant conditioning.

Furthermore, I have shown that activation of Ddc neurons serves as a rewarding US

during this learning process. Ddc-Gal4 drives expression in dopaminergic and serotonergic

neurons (Li et al., 2000; Sitaraman et al., 2008), therefore it can be concluded that a

set of neurons expressing one or both of these neurotransmitters is involved in memory

formation under the given experimental conditions.

In the high-throughput paradigm, larvae which received paired training show a de-

creased bend rate towards the unstimulated side, but no change of bend rate toward the

stimulated side compared to the control groups. This brings up the question whether

larvae learn to prefer the side which is paired with the rewarding US, or rather to avoid
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the side without the stimulus. With an increased sample size, one could test whether

there is also a currently undetectable change in the bend rate towards the stimulated side.

The smaller sample size could also explain why the decreased in bend rate towards the

unstimulated side is not currently observed in the single-larva paradigm.

The conditioned behaviour in the presented paradigm was the direction of bends. In

Chapter 5, I will pair other types of behaviour with activation of Ddc neurons and test

whether operant conditioning can be induced. The aim of Chapter 6 will be to pinpoint

the observed operant conditioning effect to a smaller subset of neurons. Ddc is broadly

expressed across the CNS, including neurons in the brain, the subesophageal zone (SEZ)

and the ventral nerve cord (VNC). Using genetic methods, I will express CsChrimson in

only the brain and SEZ subset of Ddc neurons and test whether operant conditioning can

be induced. I will then investigate the role of the mushroom body in this type of learning.





5 Operant Conditioning of Other Behaviours

5.1 Introduction

In the previous chapter, I have introduced a first operant conditioning paradigm, in which

I have trained larvae to associate bends to one side, but not the other side, with the

activation of Ddc neurons, which served as a rewarding US. As a result, larvae developed

a preference for bending towards the side which was associated with the stimulus. In this

chapter, I will test whether the same US can be used to reinforce other behaviour patterns.

I will train larvae by pairing optogenetic activation of Ddc neurons with actions such as

bending and forward crawling, with the aim to increase the spontaneous rate of these

behaviours after training.

5.2 Results

First, I tested whether the frequency of bends could be increased by pairing bends to both

sides with optogenetic activation of Ddc neurons. I trained Ddc-Gal4 x UAS-CsChrimson

larvae using the high-throughput tracker. The conditioning procedure was similar to the

one of the bend direction paradigm introduced in Chapter 4: the experiment consisted of

an initial one-minute test period, four three-minute training sessions and a final one-minute

test period. The first three training sessions were each followed by a one-minute break,

after which the experiment was stopped and all larvae were gently placed back to the

centre of the plate with a brush. The experiment was then restarted, and the larvae were

given 30 s to recover before the beginning of the next training session. During training, all

larvae for which a bend was detected received an optogenetic stimulus. The light stimulus

stayed on for the entire duration of the bend and was switched off during other behaviours.

No stimulus was given outside training (Fig. 5.1).
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Figure 5.1: Experimental protocol for reinforcing bends using the high-throughput closed-loop tracker. The train-

ing protocol consists of a one-minute test directly before training, four training sessions (highlighted in grey) a one-minute

test immediately after the end of the last training session. Each training session lasts for three minutes. The first three

training sessions are followed by one minute without stimulation, after which the experiment is stopped and the larvae are

placed back to the centre of the plate. Afterwards, they are allowed a period of one to two minutes for recovery before

the next training session begins. Behaviours are depicted as larval contours (black) with head (green). During training,

the larva receives an optogenetic stimulus (red light bulb) whenever it is bending, and light is switched off when it is in a

straight body position (grey light bulb).

The bend rate of larvae which received contingent stimulation during bends as de-

scribed above was compared to a yoked control group, which received an equivalent

stimulus pattern during training, but uncorrelated from behaviour. No difference between

the two groups was detected in the two test periods before and after training (Fig. 5.2a). A

few other measures of behaviour, such as bend duration (Fig. 5.2b) and the number of

forward peristaltic waves over time (Fig. 5.2c) were compared as well, but no difference

could be found. These results suggest that no operant conditioning has occurred in this

paradigm.

In a second set of experiments, I assessed whether larvae could be trained to associate

forward crawling with reward. I used a training procedure analogous to the one described

above, in which larvae received optogenetic activation of Ddc neurons paired with crawls

during training. To ensure that only true forward crawls were rewarded, I restricted

stimulation to those crawls which did not coincide with a bend (Fig. 5.3).

I compared several behaviour measures of larvae which underwent contingent stim-

ulation during forward crawls as described above to a yoked control, which received

stimulation uncorrelated from behaviour. First, I analysed frequency and duration of for-
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Figure 5.2: Analysis of bend rate using the high-throughput paradigm for reinforcing bends in Ddc-Gal4 x UAS-

CsChrimson larvae. Experiments are performed using Ddc-Gal4 x UAS-CsChrimson larvae and the protocol described

in Fig. 5.1. Several characteristics of behaviour are shown for the tests before (left) and after (right) training. A group of

larvae receiving optogenetic stimulation correlated with bends during training (contingent) is compared to a control group

receiving an equivalent stimulus train, but uncorrelated from behaviour (yoked). a. Bend rate in number of bends per

minute, b. average duration of all bends which occurred during the test period for a given larva in seconds, c. number of

forward peristaltic waves per minute. All data is shown as (mean ± s. e. m.). Statistical differences between the contingent

group and the yoked group are tested with a two-sided Mann-Whitney U test; n. s. p ≥ 0.05 (not significant).
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Figure 5.3: Experimental protocol for reinforcing forward crawls using the high-throughput closed-loop tracker.

The training protocol consists of a one-minute test directly before training, four training sessions (highlighted in grey) a

one-minute test immediately after the end of the last training session. Each training session lasts for three minutes. The

first three training sessions are followed by one minute without stimulation, after which the experiment is stopped and

the larvae are placed back to the centre of the plate. Afterwards, they are allowed a period of one to two minutes for

recovery before the next training session begins. Behaviours are depicted as larval contours (black) with head (green).

During training, the larva receives an optogenetic stimulus (red light bulb) whenever it is crawling forward in a straight body

position, and light is switched off when it is bending or not crawling forward (grey light bulb).

ward crawls during which a larva was not bending. Before training, there was no difference

between the contingent group and the yoked control. However, the number of forward

crawls initiated during the test period after training was significantly higher in contingent

group animals (Fig. 5.4a). On average, the duration of individual forward crawl periods

was shorter than for the yoked control (Fig. 5.4b).

Since the number of forward crawl periods over time had increased, while the average

duration of such events had decreased in animals of the contingent group, I analysed

Figure 5.4 (facing page): Operant conditioning using the high-throughput paradigm for reinforcing forward crawls

in Ddc-Gal4 x UAS-CsChrimson larvae. Experiments are performed using Ddc-Gal4 x UAS-CsChrimson larvae and the

protocol described in Fig. 5.3. Several characteristics of behaviour are shown for the tests before (left) and after (right)

training. A group of larvae receiving optogenetic stimulation correlated with bends during training (contingent) is compared

to a control group receiving an equivalent stimulus train, but uncorrelated from behaviour (yoked). a. Forward crawl rate

in number of forward crawl periods which did not coincide with bending per minute, b. average duration of all forward

crawl periods which did not coincide with bending and which occurred during the test period for a given larva in seconds,

c. fraction of time spent crawling forward while not bending, d. number of forward peristaltic waves per minute, e. bend

rate in number of bends per minute, f. velocity in mm/s as defined by the feature v_norm_filtered. All data is shown as

(mean ± s. e. m.). Statistical differences between the contingent group and the yoked group are tested with a two-sided

Mann-Whitney U test; n. s. p ≥ 0.05 (not significant), ** p < 0.01, *** p < 0.001.
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whether a shift in the overall fraction of time which a larva spent in a forward crawling

state while not bending had occurred. No such difference could be detected (Fig. 5.4c).

Furthermore, no difference in the number of forward peristaltic waves over time was

observed (Fig. 5.4d).

The increase in the forward crawl rate could potentially be explained by an increased

number of bends, since forward crawling and bending are the most frequent behaviours in

larvae. If a larvae stops more often to bend, then the number of times where it initiates a

new forward crawl movement will also increase. On average, these forward crawl periods

would become shorter. Therefore, I assessed whether there a change in the bend rate

occurred. No difference in the frequency of bends between the two groups could be

detected both before and after training (Fig. 5.4e).

An alternative explanation for an increased number of detected forward crawls, each

with a shorter duration, would be that the larvae are stopping more often or are generally

moving at a slower speed after training. In order for a forward crawl period to be detected,

the temporally smoothed velocity of the tail needs to exceed a certain threshold. If a larva

is moving slowly, several short crawling events will be detected instead of a single, longer

crawling period. Indeed, the average velocity as defined by the feature v_norm_filtered

(see Section 3.2.5) in the one-minute test period after training was significantly reduced in

larvae which had received contingent training compared to the control group (Fig. 5.4f).

Since differences between the contingent group and the yoked control could be de-

tected for several behaviour characteristics after training, a learned shift in behaviour has

occurred, which is due to the pairing of the US with forward crawls. Therefore, the results

shown here provide evidence of operant conditioning.

5.3 Conclusions

In this chapter, I have explored whether larvae can form operant memory after pairing

bends or forward crawls with Ddc neuron activation. While no change in behaviour was

observed in the bend paradigm, there was evidence for strong operant conditioning in

the forward crawl paradigm. Paired training resulted in an increased forward crawl rate, a

decreased duration of forward crawl periods and a slower velocity of movement.



5.3 Conclusions 85

The results indicate that operant conditioning in Drosophila larvae is not limited to the

bend direction paradigm but can also occur when the US is paired with other behaviours

such as forward crawls. However, I also show that not all behaviours can be reinforced

through pairing with optogenetic activation of Ddc neurons, since the bend rate during test

does not increase when bends to both sides are paired with the US.

The expression pattern of Ddc-Gal4 is broadly expressed in dopaminergic and sero-

tonergic neurons across the CNS (Li et al., 2000; Lundell and Hirsh, 1994). In the following

chapters, I will aim to narrow down which of these neurons are involved in operant memory

formation. Both the bend direction paradigm and the forward crawl paradigm would be

suited to investigate which group of neurons is sufficient to convey valence for operant

conditioning.

However, it is hard to interpret what the larvae have learned in the forward crawl

paradigm: pairing forward crawls with Ddc neuron activation resulted in an increased

number of individual forward crawling events. However, there is no difference in the total

time spent in a forward crawling state during post-training test between the contingent

group and the yoked control. The observed change in behaviour would therefore not

enable the larvae to maximise cumulative reward over time. Furthermore, it is unclear

why larvae from the contingent group learned to move at a lower velocity than the yoked

control. This makes it difficult to understand the immediate effect of optogenetic activation

of Ddc neurons paired with forward crawls.

Therefore, I will focus on the bend direction paradigm to better understand the neural

mechanisms underlying operant conditioning.





6 The Role of the Brain and the Mushroom

Body in Operant Conditioning

6.1 Introduction

In Chapters 4 and 5, I have shown that activation of Ddc neurons is sufficient to act as

a US for operant conditioning. Ddc is expressed in a wide range of dopaminergic and

serotonergic neurons in the brain, the SEZ and the VNC (Lundell and Hirsh, 1994). It is

unclear which of these neurons mediate the observed operant conditioning effect, and

whether two or more distinct subsets of Ddc neurons need to interact in order for memory

to be formed.

In this chapter, I will show that Ddc-Gal4 expression in the larval brain contains

the PAM cluster dopaminergic neurons, which innervate the mushroom body and are

both necessary and sufficient to signal reward in classical conditioning (Liu et al., 2012;

Rohwedder et al., 2016; Vogt et al., 2014). While previous studies in adult flies suggest

that the mushroom body is dispensable for operant conditioning (Booker and Quinn, 1981;

Colomb and Brembs, 2010, 2016; Wolf et al., 1998), it is unclear to what extent this is the

case in larvae. Therefore, I will then focus on the bend direction paradigm introduced in

Chapter 4 to investigate whether i) the Ddc neurons of the brain and the SEZ, and ii) the

PAM cluster dopaminergic neurons innervating the mushroom body are sufficient to induce

operant conditioning.

6.2 Results

In order to get an overview of which neurons may be mediating the formation of an operant

memory, I have analysed the Ddc expression pattern in Ddc-Gal4 x UAS-CsChrimson
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Figure 6.1: Expression pattern of Ddc-Gal4 without and with restriction by tsh-Gal80. Confocal images obtained

after immunohistochemical staining against the mVenus tag of CsChrimson (a, e; green in d and h), BP104 (b, f; red

in d and h) and N-cadherin (c, g; blue in d and h). a–d. Ddc-Gal4 x UAS-CsChrimson larvae, e–h. Ddc-Gal4 x UAS-

CsChrimson; tsh-LexA, LexAop-Gal80 larvae. Plan-Apochromat 20x objective, resolution: 592 x 800 pixels, scale bar:

100 µm. Image courtesy of the HHMI Janelia FlyLight team.

larvae. CsChrimson contains an mVenus tag, which can be targeted by a GFP antibody

(Klapoetke et al., 2014). Dissections, stainings and confocal imaging were performed by

the HHMI Janelia FlyLight team.

I manually counted the cell bodies in the image stacks and found more than 200

GFP-positive neurons, located in the brain, the SEZ and the VNC (n = 2, Fig. 6.1a–d).

The expression pattern includes the dopaminergic neurons of the PAM cluster, which

innervate the mushroom body (Fig. 6.1a, d). This confirms that Ddc-Gal4 is indeed driving

broad expression across the CNS (Li et al., 2000; Lundell and Hirsh, 1994). Since it is

likely that not all Ddc neurons are involved in the operant learning process, I investigated

whether smaller subsets of neurons contained in the Ddc-Gal4 expression pattern can

sufficiently act as a US in the bend direction paradigm.

GAL80 expression under control of the tsh promoter suppresses the expression of

GAL4 in the VNC, but not in the brain or in the SEZ (Clyne and Miesenböck, 2008; Fushiki

et al., 2016; Heckscher et al., 2015). Indeed, no GFP-positive neurons were found in the

VNC of Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae (n = 6, Fig. 6.1e–h).
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Figure 6.2: Single-larva operant conditioning of bend direction with restriction of CsChrimson expression to

subsets of the Ddc-Gal4 expression pattern. Experiments are performed using the protocol described in Fig. 4.1. All

larvae express UAS-CsChrimson under control of the specified driver. Data is shown for the test after training. Data from

Ddc-Gal4 x UAS-CsChrimson larvae is replotted from Fig. 4.2. a. The graph shows the bend rate in number of bends per

minute split up by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulb for

simplicity) is shown in red and the bend rate to the other side (depicted as a right bend with a grey light bulb for simplicity)

is shown in grey. b. The graph shows the probability that a given bend is directed towards the stimulated side. The grey

line indicates equal probability of 0.5 for bends to either side. a–b. All data is shown as (mean ± s. e. m.). Statistical

differences are tested with a two-sided Wilcoxon signed-rank test; n. s. p ≥ 0.05 (not significant), ** p < 0.01.

Furthermore, there were no GFP-positive neurons in the brain or the SEZ which could

be consistently identified in Ddc-Gal4 x UAS-CsChrimson larvae, but not in Ddc-Gal4 x

UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae (each n = 3), indicating that brain and

SEZ expression indeed remained largely unaffected (Fig. 6.1).

To test whether the Ddc neurons of the brain and the SEZ are sufficient to induce

a directional preference for bends to one, but not the other side, I trained Ddc-Gal4 x

UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae using the single-larva closed-loop

tracker and the training protocol developed in Chapter 4 (Fig. 4.1). Contrary to the result

obtained with Ddc-Gal4 x UAS-CsChrimson larvae, in the one-minute test after training

Ddc-Gal4 x UAS-CsChrimson; tsh-LexA, LexAop-Gal80 larvae were equally as likely to

bend towards the side where they had received the optogenetic stimulus during training

as they were to bend towards the other side (Fig. 6.2). This indicates that activation of
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the brain and SEZ subset of Ddc neurons is not sufficient to act as a rewarding US in this

operant conditioning paradigm. Therefore, the VNC subset of Ddc neurons must play a

role in memory formation.

Next, I assessed the role of a group of neurons innervating the mushroom body

in operant conditioning. 58E02-Gal4 drives expression in the majority of PAM cluster

dopaminergic neurons (Rohwedder et al., 2016). 58E02-Gal4 x UAS-CsChrimson larvae

did not develop any directional preference for bend following training (Fig. 6.2), indicating

that activation of the dopaminergic reward neurons innervating the mushroom body is

not sufficient to induce operant conditioning. Since the mushroom body is located in the

brain, this is consistent with the observation that Ddc neurons of the VNC are necessary

to induce the observed bend direction preference.

These experiments were kindly repeated by Elise Croteau-Chonka using the high-

throughput paradigm (Fig. 4.3). Again, neither optogenetic stimulation of the brain and

SEZ subset of Ddc neurons nor activation of the PAM cluster dopaminergic neurons paired

with bends to one predefined side was sufficient to induce a learned preference for bends

to this side (Fig. 6.3). Together, these results suggest that operant conditioning of bend

direction cannot be induced by exclusive activity of the PAM cluster neurons innervating

the mushroom body, as is the case for classical conditioning, but that it instead requires

the dopaminergic or serotonergic neurons of the VNC. At this point, it remains unclear

whether Ddc neurons in the VNC are sufficient to serve as a US or whether combined

activity with a group of neurons in the brain or SEZ is needed.

6.3 Conclusions

Larvae can be operantly conditioned to develop a directional preference for bends using

activation of Ddc neurons as a US. Here, I have shown that this operant conditioning

effect is lost when the optogenetic stimulation is restricted to the brain and SEZ subsets

of Ddc neurons. This indicates that dopaminergic or serotonergic neurons in the VNC

are necessary for the formation of a bend direction preference. However, it cannot be

concluded that they are sufficient, since it is possible that two or more distinct groups of

Ddc neurons need to be collectively activated during bends to the reinforced side in order

for a memory to be formed.
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Figure 6.3: High-throughput operant conditioning of bend direction with restriction of CsChrimson expression to

subsets of the Ddc-Gal4 expression pattern. Experiments are performed using the protocol described in Fig. 4.3. All

larvae express UAS-CsChrimson under control of the specified driver. Data is shown for the test after training. Data from

Ddc-Gal4 x UAS-CsChrimson larvae is replotted from Fig. 4.4. a. The graph shows the bend rate in number of bends per

minute split up by bend direction. The bend rate to the stimulated side (depicted as a left bend with a red light bulb for

simplicity) is shown in red and the bend rate to the other side (depicted as a right bend with a grey light bulb for simplicity)

is shown in grey. b. The graph shows the probability that a given bend is directed towards the stimulated side. The grey

line indicates equal probability of 0.5 for bends to either side. a–b. All data is shown as (mean ± s. e. m.). Statistical

differences are tested with a two-sided Wilcoxon signed-rank test; n. s. p ≥ 0.05 (not significant), * p < 0.05, ** p < 0.01.
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The dopaminergic neurons of the PAM cluster are Ddc-positive neurons located in

the brain (Fig. 6.1a, d). Given the finding that the brain and SEZ Ddc neurons are not

sufficient to induce operant conditioning, it is not surprising that activation of the PAM

cluster neurons alone could not act as a rewarding US in this paradigm. While it is

unclear whether the PAM cluster neurons are involved in the memory formation process

by interacting with other Ddc neurons, the results presented here further support the idea

that operant conditioning in Drosophila may not be mediated by the mushroom body.



7 Neural Circuits of Reward and Punishment

7.1 Introduction

In Chapter 4, I have shown for the first time that Drosophila larvae are capable of operant

conditioning. This experimental paradigm was using optogenetic activation of neurons

under control of the Ddc-Gal4 driver as a US. Since the Ddc-Gal4 expression pattern

is very broad, including more than 200 dopaminergic and serotonergic neurons in the

brain, the SEZ and the VNC (Li et al., 2000; Lundell and Hirsh, 1994; Sitaraman et al.,

2008; Fig. 6.1a–d), I have used activation of smaller subsets of Ddc neurons as a US for

operant conditioning in Chapter 6 to narrow down which neurons are involved in memory

formation.

The PAM cluster dopaminergic neurons have been shown to play an important role in

classical conditioning: when paired with an odour, activation of these neurons is sufficient

to induce strong appetitive olfactory memory. On the other hand, inhibition of these

neurons impairs the formation of appetitive olfactory memory of an odour which is paired

with natural sugar, indicating that they are also necessary for olfactory conditioning (Liu

et al., 2012; Rohwedder et al., 2016; Vogt et al., 2014).

I have found that activation of the PAM cluster neurons is not sufficient to serve as a

US for operant conditioning. This result is remarkable in two ways. First, it shows that the

neural circuits signalling reward for operant conditioning differ from those that mediate

classical conditioning. Second, it further supports the idea that operant conditioning is

independent of the mushroom body.

Little is known about the neural circuits which signal reward or punishment relevant

for associative learning outside the mushroom body. While it is generally accepted that

natural sugar can serve as a reward for olfactory conditioning (Apostolopoulou et al., 2013;
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Honjo and Furukubo-Tokunaga, 2005; Rohwedder et al., 2012; Schipanski et al., 2008;

Schleyer et al., 2015; Weiglein et al., 2019), it has to my knowledge not been attempted

in the larva to deliver the US in form of activation of gustatory neurons. In this chapter,

I will present the results of an olfactory conditioning screen conducted to identify driver

lines for neurons conveying positive or negative valence in a learning context. Because

I was ultimately interested in comparing neurons that could convey positive or negative

valence in classical and operant conditioning paradigms, I started by performing a classical

conditioning screen for their potential to act as a US. In Chapter 8, I will test whether

activation of the valence-conveying neurons identified in this olfactory conditioning screen

is sufficient to substitute for reward or punishment in the operant bend direction paradigm

presented in Chapter 4.

7.2 Results

In the initial screen, I have crossed 26 GAL4 lines to UAS-CsChrimson and tested whether

pairing of optogenetic activation with an odour could induce olfactory memory (Section 2.5).

Learning scores were compared to a negative control, w1118 x UAS-CsChrimson, which

does not contain any GAL4 and did not exhibit a learning phenotype (Fig. 7.1). 58E02-

Gal4, which drives expression in the PAM cluster dopaminergic neurons (Rohwedder et al.,

2016), was used as a positive control. Consistent with previous results (Almeida-Carvalho

et al., 2017; Eichler et al., 2017; Rohwedder et al., 2016), 58E02-Gal4 x UAS-CsChrimson

larvae showed strong appetitive olfactory learning with a significantly higher learning score

than w1118 x UAS-CsChrimson larvae (Fig. 7.1).

All other examined driver lines were classified as labelling either sensory neurons

(Table 7.1), gustatory interneurons (Table 7.2), neuropeptide F (NPF)-positive interneurons

or aminergic interneurons (Table 7.3) based on previous data on function and expression

pattern, and are known to be expressed in larvae unless indicated as adult-specific.

15 GAL4 lines labelling sensory neurons encoding a variety of chemosensory and

thermosensory modalities in larval and adult Drosophila were tested. None of these lines

showed significant appetitive or aversive olfactory learning compared to the negative

control (Fig. 7.2). Similarly, no memory was induced using two lines driving expression
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Figure 7.1: Negative and positive controls for classical conditioning. Performance indices after olfactory conditioning

(raw data points and mean). w1118 x UAS-CsChrimson larvae are used as a negative control (grey, n = 8), 58E02-Gal4

x UAS-CsChrimson larvae are used as a positive control (blue, n = 8). Statistical differences between the two groups

are tested with a two-sided Mann-Whitney U test with Bonferroni correction; ** p < 0.01/26. Significances compared to

zero were tested with a two-sided Wilcoxon signed-rank test with Bonferroni correction; n. s. p ≥ 0.05/2 (not significant),

* p < 0.05/2.

in adult Drosophila sweet taste projection neurons, which process gustatory information

downstream of sugar-sensing neurons (Kim et al., 2017b; Fig. 7.3).

Next, I tested a single line driving expression in peptidergic interneurons, the NPF

neurons (Shen and Cai, 2001). These neurons can relay reward in olfactory conditioning

in adult flies (Shao et al., 2017; Shohat-Ophir et al., 2012), and have been shown to be

involved in reward signalling in the larva as well (Pu et al., 2018; Rohwedder et al., 2015;

Wang et al., 2013). However, in an experiment using larvae performed by Rohwedder

et al. (2015), optogenetic activation of NPF neurons paired with an odour did not result in

memory formation. Consistently, pairing optogenetic activation of NPF neurons with the

odour did not induce learning in this screen (Fig. 7.4).

Finally, I screened a couple of lines specific to neurons expressing biogenic amines

such as octopamine, dopamine or serotonin as neurotransmitters (Fig. 7.5). Tdc2-Gal4 x

UAS-CsChrimson larvae, which express CsChrimson in octopaminergic neurons (Cole

et al., 2005), did not show any learning phenotype. By contrast, pairing the odour

with activation of neurons targeted by Ddc-Gal4, which covers most dopaminergic and

serotonergic neurons (Li et al., 2000; Sitaraman et al., 2008), induced strong appetitive

olfactory memory with a learning score comparable to the positive control (p = 0.1304,

two-sided Mann-Whitney U test). This result is perhaps not surprising, since the Ddc-Gal4
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Table 7.1: Driver lines targeting sensory neurons.

Line Targeted neurons

C1-Gal4 terminal organ neuron C1 (bitter sensing) (Kim et al., 2016; Kwon

et al., 2011)

C5-Gal4 terminal organ neuron C5 (Kwon et al., 2011)

C6-Gal4 terminal organ neuron C6 (CO2 sensing) (Faucher et al., 2006; Jones

et al., 2007; Kwon et al., 2007, 2011)

dp2-Gal4 pharyngeal gustatory receptor neuron DP2 (Choi et al., 2016; Kwon

et al., 2011)

Gr2a-Gal4 adult Drosophila pharyngeal gustatory receptor neuron (high salt

avoidance) (Kim et al., 2017a)

Gr5a-Gal4 adult Drosophila sugar-sensing neurons (Chyb et al., 2003; Daha-

nukar et al., 2001)

Gr43a-Gal4

(two lines)

sugar-sensing neurons (Mishra et al., 2013)

Gr64a-Gal4 adult Drosophila sugar-sensing neurons (Dahanukar et al., 2007; Jiao

et al., 2007)

Gr64f-Gal4 adult Drosophila sugar-sensing neurons (Dahanukar et al., 2007)

Ir25a-Gal4 dorsal organ (cool avoidance) (Ni et al., 2016)

Ir76b-Gal4 terminal organ (amino acid sensing) (Croset et al., 2016; Ganguly

et al., 2017)

Ir94e-Gal4 terminal organ (putative amino acid sensing) (Croset et al., 2016)

ppk11-Gal4 terminal organ (salt taste) (Liu et al., 2003)

ppk19-Gal4 terminal organ (salt taste) (Liu et al., 2003)
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Figure 7.2: Classical conditioning by pairing activation of sensory neurons with an odour. Performance indices

after olfactory conditioning (raw data points and mean). Larvae express UAS-CsChrimson under control of the specified

driver (blue). w1118 x UAS-CsChrimson larvae are used as a negative control (grey). Statistical differences compared to

the negative control are tested with a two-sided Mann-Whitney U test with Bonferroni correction; n = 8, n. s. p ≥ 0.05/26

(not significant).
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Table 7.2: Driver lines targeting gustatory interneurons.

Line Targeted neurons

30A08-Gal4 adult Drosophila sweet taste projection neuron TPN1 (Kim et al.,

2017b)

VT57358 adult Drosophila sweet taste projection neuron TPN2 (Kim et al.,

2017b)

expression pattern includes the PAM cluster neurons (Chapter 6). To get a more detailed

insight into which neurons contribute to this phenotype, I screened a small number of

sparser driver lines which are specific to either dopaminergic or serotonergic neurons.

TH-Gal4 is a broad driver which covers most dopaminergic neurons, but not the PAM

cluster neurons (Rohwedder et al., 2016). Consistent with previous studies (Schroll et al.,

2006), TH-Gal4 x UAS-CsChrimson larvae exhibited significant aversive olfactory learning

in this paradigm. This effect may be explained by punishment-signalling dopaminergic

neurons which project to the vertical lobes of the mushroom body and are contained in

the TH-Gal4 expression pattern (Eschbach et al., 2019; Selcho et al., 2009). There is

a lack of sparse driver lines targeting dopaminergic neurons which do not innervate the

mushroom body in the larva. To assess the potential role of dopaminergic neurons in other

brain regions, I tested c346-Gal4. In adult Drosophila, this line drives expression in the

dopaminergic neurons of the PPM3 cluster, which innervate the central complex (Kong

et al., 2010). However, the expression pattern in larvae has not been thoroughly studied.

In this classical conditioning paradigm, no learning phenotype was observed using this

line.

No learning phenotype was observed when expressing CsChrimson under control of

egMz360-Gal4. eagle (eg) is a differentiation factor of serotonergic neurons (Dittrich et al.,

1997; Lundell and Hirsh, 1998), and egMz360-Gal4 has been reported to drive expression

in serotonergic and corazonergic neurons in early larval stages (Dittrich et al., 1997; Sykes

and Condron, 2005).

Next, I tested Trh-Gal4 and Tph-Gal4, two driver lines which are known to drive

expression in the majority of serotonergic neurons in third-instar larvae (Huser et al.,

2012). Larvae expressing CsChrimson under control of either of these driver lines formed
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Figure 7.3: Classical conditioning by pairing activation of gustatory interneurons with an odour. Performance

indices after olfactory conditioning (raw data points and mean). Larvae express UAS-CsChrimson under control of the

specified driver (blue). w1118 x UAS-CsChrimson larvae are used as a negative control (grey). Statistical differences

compared to the negative control are tested with a two-sided Mann-Whitney U test with Bonferroni correction; n = 8,

n. s. p ≥ 0.05/26 (not significant).

Figure 7.4: Classical conditioning by pairing activation of NPF neurons with an odour. Performance indices after

olfactory conditioning (raw data points and mean). Larvae express UAS-CsChrimson under control of NPF-Gal4 (blue).

w1118 x UAS-CsChrimson larvae are used as a negative control (grey). Statistical differences compared to the negat-

ive control are tested with a two-sided Mann-Whitney U test with Bonferroni correction; n = 8, n. s. p ≥ 0.05/26 (not

significant).
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Table 7.3: Driver lines targeting aminergic interneurons.

Line Targeted neurons

c346-Gal4 adult Drosophila PPM3 dopaminergic neurons (Kong et al., 2010)

Ddc-Gal4 dopaminergic and serotonergic neurons (Li et al., 2000; Lundell and

Hirsh, 1994; Sitaraman et al., 2008)

egMz360-Gal4 serotonergic and corazonergic neurons during early larval develop-

ment (Couch et al., 2004; Dittrich et al., 1997; Lundell and Hirsh,

1998)

Tdc2-Gal4 octopaminergic and tyraminergic neurons (Cole et al., 2005)

TH-Gal4 dopaminergic neurons (Friggi-Grelin et al., 2003)

Tph-Gal4 serotonergic neurons (Huser et al., 2012; Park et al., 2006)

Trh-Gal4 serotonergic neurons (Alekseyenko et al., 2010; Huser et al., 2012)

very strong appetitive olfactory memory. Since the expression pattern of these two driver

lines is very similar, but Tph-Gal4 is more specific to serotonergic neurons and drives

expression in a smaller number of neurons than Trh-Gal4, I decided to use Tph-Gal4 for

the next experiment.

There are approximately 51 neurons per hemisphere covered by Tph-Gal4, out of

which 29 are located in either the brain or the SEZ (Huser et al., 2012). To narrow down

which serotonergic neurons signal reward relevant for associative learning, I restricted

CsChrimson expression under Tph-Gal4 using tsh-Gal80, which eliminates all GAL4

expression in the VNC, but not in the brain or in the SEZ (Clyne and Miesenböck, 2008;

Fushiki et al., 2016; Heckscher et al., 2015). Activation of the brain and SEZ subset of

Tph neurons was sufficient to induce stable appetitive memory (Fig. 7.6). This result

is remarkable, because in larvae, the mushroom bodies are not directly innervated by

serotonergic neurons (Huser et al., 2012). It hence brings up the question whether

there are alternative learning mechanisms bypassing the mushroom body, or whether

serotonergic neurons are indirectly connected to dopaminergic neurons which innervate

the mushroom body.

To my knowledge, no sparse driver lines specific to serotonergic neurons in the brain

have been identified so far. One previously described serotonergic brain neuron which is
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Figure 7.5: Classical conditioning by pairing activation of aminergic interneurons with an odour. Performance

indices after olfactory conditioning (raw data points and mean). Larvae express UAS-CsChrimson under control of the

specified driver (blue). w1118 x UAS-CsChrimson larvae are used as a negative control (grey). Statistical differences

compared to the negative control are tested with a two-sided Mann-Whitney U test with Bonferroni correction; n = 8,

n. s. p ≥ 0.05/26 (not significant), ** p < 0.01/26.

part of the Tph-Gal4 expression pattern (Huser et al., 2012) is the contralaterally projecting

serotonin-immunoreactive deutocerebral (CSD) neuron (Roy et al., 2007). This neuron

is known to closely innervate the antennal lobe, and only a few indirect pathways to the

mushroom body exist (Berck et al., 2016). Based on anatomical features from previous EM

reconstruction (Berck et al., 2016), available lineage information (Jim Truman) and thanks

to the assistance of Dr Michael Winding, I have identified a split-GAL4 line (SS01989)

which exclusively drives expression in the CSD neuron (Fig. 7.7). Pairing activation of

the CSD neuron with an odour was not sufficient to induce olfactory memory (Fig. 7.6),

suggesting that the observed learning phenotype is mediated by a least one other group

of serotonergic neurons in the brain or SEZ.

7.3 Conclusions

In total, 26 GAL4 lines were assessed for their potential to convey positive or negative

valence in this classical conditioning screen. None of the drivers targeting sensory neurons

or interneurons processing sweet taste showed any evidence of acting as a rewarding or

punishing US. This is surprising, since there is firm evidence for gustatory stimuli serving

as a reinforcer in associative learning. Previous studies have shown that a variety of

natural sugars can signal reward in larval olfactory conditioning (Neuser et al., 2005;
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Figure 7.6: Classical conditioning by pairing activation of different subsets of serotonergic neurons with an odour.

Performance indices after olfactory conditioning (raw data points and mean). Larvae express UAS-CsChrimson under

control of the specified driver (blue). w1118 x UAS-CsChrimson larvae are used as a negative control (grey). Statistical

differences between two groups are tested with a two-sided Mann-Whitney U test with Bonferroni correction; n = 8,

n. s. p ≥ 0.05/5 (not significant), *** p < 0.001/5.

Figure 7.7: SS01989 exclusively drives expression in the CSD neuron. a. Confocal image of the CNS of a third-

instar SS01989 x UAS-GFP larva obtained after immunohistochemical staining against GFP. C-Apochromat 40x objective,

resolution: 975 x 651 pixels, scale bar: 100 µm. Image courtesy of the HHMI Janelia FlyLight team. b. Electron microscopy

reconstruction of the CSD neuron from the CNS of a first-instar larva (Berck et al., 2016). Scale bar: 50 µm. Image

courtesy of Dr Michael Winding.
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Rohwedder et al., 2012; Scherer et al., 2003; Schipanski et al., 2008). In addition, salt

can serve as a US for both appetitive and aversive olfactory memory depending on the

concentration (Niewalda et al., 2008), and amino acids are known to be rewarding in

larval olfactory conditioning (Kudow et al., 2017). In adult flies, activation of sugar-sensing

neurons substitutes for reward in classical conditioning (McGinnis et al., 2016). Gr43a

neurons, which are the only known sugar-sensing neurons in larvae, are both necessary

and sufficient for mediating innate sugar preference (Mishra et al., 2013). Two different

Gr43a-Gal4 drivers were tested in this screen, but none of them displayed a learning

phenotype. Similarly, no learning was observed using the activation of driver lines targeting

other chemosensory neurons, cold-sensing neurons or gustatory interneurons as a US.

Eschbach et al. (2019) have shown that optogenetic activation of nociceptive neurons

or interneurons which integrate nociception and mechanosensation paired with an odour

is sufficient to induce aversive olfactory memory. This indicates that larvae are in principal

capable of sensing valence through the activity of a distinct set of sensory neurons or

interneurons combining information from multiple sensory modalities. However, a large

number of gustatory and chemosensory receptors exist in the larva (Kwon et al., 2011).

It is thus possible that synergistic activity of multiple classes of chemosensory neurons

as induced by natural gustatory stimuli is needed to provide a signal relevant to learning,

which could explain why optogenetic activation of small groups of chemosensory neurons

was insufficient to trigger learning in this screen.

Optogenetic excitation of NPF neurons paired with the odour did not induce any

memory in this screen. This result is consistent with a similar experiment previously

performed in larvae, where one of two odours was paired with activation of NPF neurons

(Rohwedder et al., 2015). Notably, in the same study, appetitive olfactory conditioning in

larvae was impaired when NPF signalling was disrupted (Rohwedder et al., 2015). By

contrast, in adult Drosophila, activation of NPF neurons paired with an odour is sufficient

for the formation of appetitive memory (Shao et al., 2017; Shohat-Ophir et al., 2012). A

possible explanation is that NPF neurons in larvae are necessary, but not sufficient to

convey reward in classical conditioning, and hence carry a different function than in adult

flies.

No olfactory memory was induced when pairing the odour with activation of octopamin-

ergic neurons. This result stands in contrast to previous studies using different paradigms
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for odour associative learning in both larval (Honda et al., 2014; Schroll et al., 2006) and

adult (Burke et al., 2012) Drosophila, in which stimulation of octopaminergic neurons was

sufficient to act as a rewarding US. This inconsistency suggests that variations in the

experimental procedures for olfactory conditioning can lead to different learning scores.

In addition to the positive control, only four GAL4 lines exhibited appetitive or aversive

memory in this screen. All of these lines drive expression in a subset of the dopaminergic

and the serotonergic neurons. Strong appetitive olfactory memory was detected when

pairing activation of neurons covered by Ddc-Gal4 with the odour, confirming previous

results from adult flies (Aso et al., 2012; Liu et al., 2012; Shyu et al., 2017). These are the

same neurons which were also sufficient to induce the operant learning phenotype shown

in Chapter 4. This result therefore confirms that dopaminergic and serotonergic neurons

can together mediate both classical and operant conditioning in larvae.

Another driver covering a large group of dopaminergic neurons, TH-Gal4, showed

strong aversive learning. This is consistent with previous substitution experiments for

classical conditioning in the larva (Schroll et al., 2006), but also in adult Drosophila (Aso

et al., 2012; Claridge-Chang et al., 2009; Liu et al., 2012).

This screen has shown for the first time that activation of serotonergic neurons paired

with a CS is sufficient to induce memory in flies. This result was obtained using two

different driver lines, Trh-Gal4 and Tph-Gal4, which target very similar groups of sero-

tonergic neurons, but no dopaminergic neurons (Huser et al., 2012). Further restriction of

CsChrimson expression revealed that this effect can sufficiently be explained by the brain

and SEZ subset of the serotonergic neurons but is not mediated by the CSD neuron alone.

Serotonergic signalling has been shown to be required for associative learning in

both larval (Huser et al., 2017) and adult (Johnson et al., 2011; Sitaraman et al., 2012)

Drosophila. In the sea slug Aplysia, serotonin can substitute for the US in classical

conditioning (Hawkins and Byrne, 2015). However, to my knowledge, it has not been

previously observed in Drosophila that activity of serotonergic neurons is sufficient to act

as a US. This result suggests an interesting previously undiscovered role of serotonin.

Also, since the mushroom bodies in larvae do not receive direct serotonergic inputs (Huser

et al., 2012), it suggests that serotonergic neurons may signal reward elsewhere in the

brain or SEZ.
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Unfortunately, sparse driver lines targeting small subsets of serotonergic neurons do

not yet exist. To further investigate the proposed novel role of serotonin in signalling

reward in a learning context, expression patterns of the serotonergic driver lines used in

this screen would need to be thoroughly analysed and sparse lines targeting small subsets

of serotonergic neurons would need to be generated.

In the next chapter, I will address the role of dopaminergic and serotonergic neurons in

operant conditioning of bend direction by expressing CsChrimson under control of some

of the drivers which were associated with strong learning phenotypes in this screen.





8 The Role of Dopaminergic and Serotoner-

gic Neurons in Operant Conditioning

8.1 Introduction

In Chapters 4 and 5, I have shown that pairing of an action with activation of a large group

of dopaminergic and serotonergic neurons is sufficient to induce operant conditioning.

My results from Chapter 6 imply that the VNC subset of these neurons is essential for

memory formation in the paradigm for conditioning a bend direction preference. However,

it remains an open question whether this type of learning is mediated by dopaminergic

neurons, serotonergic neurons or a combination of both.

In Chapter 7, I have shown for the first time that activation of serotonergic neurons

using the Tph-Gal4 driver is sufficient to act as a rewarding US for classical conditioning

in flies, suggesting a previously undescribed role of serotonin in learning. I have further

confirmed results from previous studies indicating that dopaminergic neurons covered by

the broad TH-Gal4 driver can provide a learning signal.

In this chapter, I will use these two drivers to independently investigate the roles of

dopaminergic and serotonergic neurons in operant conditioning of bend direction.

8.2 Results

To investigate whether activation of the dopaminergic neurons covered by the TH-Gal4

driver in correlation with behaviour is sufficient to induce operant conditioning, I trained TH-

Gal4 x UAS-CsChrimson larvae using the high-throughput training protocol for conditioning

a bend direction preference developed in Chapter 4 (Fig. 4.3). No difference between the

bend rates to the stimulated side and to the other side was detected in the one-minute
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Figure 8.1: High-throughput operant conditioning of bend direction with restriction of CsChrimson expression

to dopaminergic or serotonergic neurons. Experiments are performed using the protocol described in Fig. 4.3. All

larvae express UAS-CsChrimson under control of the specified driver. Data is shown for the test after training. a. The

graph shows the bend rate in number of bends per minute split up by bend direction. The bend rate to the stimulated side

(depicted as a left bend with a red light bulb for simplicity) is shown in red and the bend rate to the other side (depicted as

a right bend with a grey light bulb for simplicity) is shown in grey. b. The graph shows the probability that a given bend is

directed towards the stimulated side. The grey line indicates equal probability of 0.5 for bends to either side. a–b. All data

is shown as (mean ± s. e. m.). Statistical differences are tested with a two-sided Wilcoxon signed-rank test; n. s. p ≥ 0.05

(not significant), * p < 0.05.

test period following training (Fig. 8.1a). Furthermore, the probability for any given bend to

be directed towards the side which was associated with the optogenetic stimulus during

training was not significantly different from 50% (Fig. 8.1b). Together, these results suggest

that activation of the TH-positive dopaminergic neurons paired with bends to one side is

not sufficient to induce operant conditioning.

Next, I expressed CsChrimson under control of the Tph-Gal4 driver and tested whether

operant conditioning of bend direction can be induced exclusively by serotonergic neurons.

Indeed, activation of Tph neurons paired with bends to one side resulted in a significantly

higher rate of bends to the stimulated side than towards the side without the stimulus

during test. The probability of choosing to bend in the direction which was previously

paired with the stimulus was also significantly elevated (Fig. 8.1). Therefore, activation of
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the Tph-positive serotonergic neurons paired with bends to one side is sufficient for the

formation of a learned directional preference.

In Chapter 6, I have shown that operant conditioning using Ddc neuron activation

is impaired when CsChrimson expression is restricted to the brain and SEZ subsets of

Ddc neurons. The result that activation of Tph neurons is sufficient to induce operant

conditioning suggests that the serotonergic neurons of the VNC are necessary for memory

formation in this paradigm. Since both Ddc-Gal4 and Tph-Gal4 are very broad driver

lines, I cannot exclude the possibility that the expression pattern of Tph-Gal4 contains

brain or SEZ neurons which are not included in the Ddc-Gal4 expression pattern, which

could potentially induce learning through a second mechanism independent from the one

which explains memory formation following Ddc neuron activation. To assess whether the

serotonergic neurons of the VNC are necessary for the observed operant conditioning

effect, I restricted the expression pattern of Tph-Gal4 to the brain and the SEZ using

tsh-Gal80. Indeed, pairing the optogenetic stimulus with bends to one direction was

not sufficient to induce operant conditioning in Tph-Gal4 x UAS-CsChrimson; tsh-LexA,

LexAop-Gal80 larvae (Fig. 8.1).

8.3 Conclusions

Here, I have shown that activation of serotonergic, but not dopaminergic neurons paired

with bends to one side is sufficient to induce operant conditioning. Furthermore, my results

indicate that the VNC subset of serotonergic neurons is necessary to produce this effect.

The expression pattern of Tph-Gal4 contains two neurons per hemisegment in the

VNC, all of which are serotonergic with the exception of a single neuron in each A8

abdominal hemisegment (Huser et al., 2012). The remaining number of candidate neurons

for operant conditioning in the VNC is therefore relatively small. However, based on

the data presented here, it cannot be concluded whether the effect only relies on the

VNC serotonergic neurons or whether synergistic activity from both VNC neurons and

brain or SEZ neurons is needed. To my knowledge, there are currently no sparse driver

lines available which exclusively target serotonergic neurons of the VNC to test these

hypotheses.
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In Chapter 7, I have used a classical conditioning paradigm to show for the first time

that there exist learning pathways in Drosophila which rely on serotonergic instead of

dopaminergic neurons and which do not directly innervate the mushroom body. In this

chapter, I show that serotonergic neurons are also sufficient to induce operant conditioning.

While activation of the brain and SEZ subset of serotonergic neurons is sufficient to act

as a US for classical conditioning, the VNC neurons are essential for operant condition-

ing. Therefore, different circuit mechanisms underlie classical and operant conditioning

mediated by serotonergic neurons.



9 Discussion

9.1 High-throughput tracker

In this thesis, I have introduced a novel high-throughput tracker for multiple Drosophila

larvae, with real-time detection of behaviours such as left and right bend, forward crawl,

roll and back-up, as well as closed-loop control of optogenetic and thermogenetic stimuli.

Tracking algorithms for multiple Drosophila larvae have already existed before (Ohyama

et al., 2013; Swierczek et al., 2011), and simple real-time behaviour detection methods

have been available and applied to administer optogenetic stimuli to single larvae in

closed loop (Schulze et al., 2015). However, the tracker presented in Chapter 3 combines

for the first time FPGA-based real-time tracking with robust online detection of complex

behaviours in multiple freely moving animals.

Furthermore, existing multi-animal experiment designs require heating up or illumin-

ating all animals simultaneously to achieve thermogenetic or optogenetic stimulation,

respectively (Honda et al., 2016; Klein et al., 2015; Ohyama et al., 2015; Vogelstein et al.,

2014). Using the novel high-throughput tracker, optogenetic red light stimuli can be reliably

targeted at individual larvae by projecting small spots onto the plate with DMDs. Two-axis

galvanometers, which were used in previous studies to project a laser beam onto a single

adult fly (Bath et al., 2014; Wu et al., 2014), were controlled to rapidly cycle between

several larvae on this tracker, eliminating the need of installing one two-axis galvanometer

per animal. Both additional DMDs and galvanometers would be suitable to potentially

upgrade the tracker for future use with light stimuli of different wavelengths, e. g. blue light

for activation of neurons expressing Channelrhodopsin-2-XXL (Dawydow et al., 2014) or

Chronos (Klapoetke et al., 2014).
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This novel set-up allows to efficiently address complex scientific questions. In this

project, I have demonstrated that it is useful to investigate the neural circuits of operant

conditioning at high throughput, since rewarding stimuli can be delivered to multiple larvae

directly in response to behaviour. Other research topics which could benefit from this

system include, but are not limited to, chemotaxis (Gomez-Marin et al., 2011; Schulze

et al., 2015), decision making (DasGupta et al., 2014; Krajbich, 2019) or spatial navigation

and memory (Haberkern et al., 2019; Neuser et al., 2008).

9.2 Operant conditioning in Drosophila larvae

Here, I have shown for the first time that Drosophila larvae are capable of operant con-

ditioning. I have found that larvae can learn a bend direction preference when bends to

one side are paired with activation of dopaminergic and serotonergic neurons. There are

strong parallels between this paradigm and the experimental design used by Nuwal et al.

(2012) to study operant conditioning in adult Drosophila. Flies were fixed onto a metal

stick to walk on a rotating ball and turning movements to one direction were rewarded with

optogenetic activation of sugar-sensing neurons. As a consequence, the animals learned

to increase the number turning movements to this side.

An important difference between the larval and the adult fly paradigms for conditioning

a directional preference lies in the nature of the US. I have made initial unsuccessful

attempts to operantly condition larvae using activation of sugar-sensing neurons as a US.

It is conceivable that sugar cannot serve as a rewarding US for operant conditioning in

larvae. However, pairing activation of sugar-sensing neurons, as defined by two different

Gr43a-Gal4 drivers, with an odour was also not sufficient for memory formation in my

olfactory conditioning screen, despite extensive evidence that natural sugar can serve

as a rewarding US for classical conditioning in larvae (Neuser et al., 2005; Rohwedder

et al., 2012; Scherer et al., 2003; Schipanski et al., 2008). A possible explanation for these

discrepancies would be that multiple groups of sensory neurons need to be active at the

same time in order to relay a meaningful reward signal. Alternatively, adjustments to the

temporal pattern or intensity of the optogenetic stimulus may be needed.

I have also introduced a second operant conditioning paradigm, in which larvae modify

their behaviour pattern after receiving stimulation paired with forward crawls. However,
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attempts to modulate the overall bend rate by pairing bends to both sides with the US

failed. This brings up the question whether there are other behaviours which can be paired

with reward or punishment to induce operant conditioning.

A challenge when operantly conditioning larval actions such as roll, hunch or back-up

is that these actions do not occur frequently in naïve, freely behaving animals. Rolls only

ever occur in the presence of a noxious stimulus (Ohyama et al., 2013, 2015; Robertson

et al., 2013; Tracey et al., 2003). Similarly, back-up and hunch can only be observed

at very low rates (Jovanic et al., 2017, 2016; Ohyama et al., 2013). The amount of the

US which animals experience during paired training is therefore very small, making the

formation of detectable memory much harder.

The high-throughput tracker could make it possible to study additional operant condi-

tioning paradigms: actions such as back-up or roll could be evoked probabilistically by

activating command neurons using thermogenetics (Carreira-Rosario et al., 2018; Ohyama

et al., 2015). An optogenetic reward would be administered to those larvae which respond

to the stimulus by performing the desired action.

There are several issues which need to be resolved in order to be able to test such

paradigms. To achieve independent optogenetic and thermogenetic stimulation of two

different sets of neurons, another binary system such as the LexA system (Lai and Lee,

2006) or the Q system (Potter et al., 2010) would need to be employed in addition to the

GAL4-UAS system. Therefore, suitable driver lines in the respective systems would need

to be created, and one would need to ensure that the effectors can be driven at sufficient

strength.

Preliminary tests with thermogenetic stimulation through the LexA system using

pJFRC25-13xLexAop2-IVS-dTrpA1 (Pfeiffer et al., 2010, 2012) suggest that heat-driven

activation of LexAop-dTrpA1 is much weaker compared to UAS-dTrpA1. In order to evoke

an action, either the intensity of the IR stimulus has to be dramatically increased, to an

extent where permanent tissue damage is caused, or the time period of heating has to

be extended considerably. However, in this case it is unclear how a reinforcing US is

perceived in the context of a prolonged period of heat-induced pain. On the other hand,

when using weaker effectors for optogenetics, activation levels could be enhanced by

raising the light intensity without harming the animals. This could either be achieved by
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adding more DMDs to the set-up or by increasing the amount of light which is fed into

each of the existing DMDs.

Due to the available genetic tools and the emerging connectome, the Drosophila larva

has unique advantages as a model system for neuroscience. The bend direction and

forward crawl paradigms presented in this thesis provide a foundation for studying the

neural mechanisms underlying operant conditioning. They facilitate both the experiments

presented in this thesis, aimed at identifying the neurons which are sufficient to signal

reward, as well as future studies to better understand processes such as memory formation

and retrieval at both circuit and cellular level.

9.3 Neural circuits of operant conditioning

With a high-throughput operant conditioning paradigm at hand, the neural circuits involved

in memory formation could be investigated. I have found that activation of all serotonergic

neurons across the CNS can serve as a reinforcing US in operant conditioning. Further-

more, the effect is lost when restricting stimulation to the brain and the SEZ. Therefore,

serotonergic neurons of the VNC play a critical role in operant conditioning of bend

direction.

From the available data, it cannot be concluded whether the brain and the SEZ are

dispensable for operant conditioning in Drosophila larvae. There are examples from

both vertebrate (Grau et al., 1998) and invertebrate (Booker and Quinn, 1981; Horridge,

1962) species where the spinal cord or the VNC is sufficient for learning, suggesting that

there exist conserved mechanisms for brain-independent operant conditioning across

species. However, this does not exclude the possibility that there are alternative learning

pathways using the brain. In mammals (Balleine et al., 2009; Redgrave et al., 2011)

and birds (Fee and Goldberg, 2011), brain correlates of operant conditioning have been

identified. It is unclear where in the brain such pathways would be located in insects. Both

the experiments presented here and previous studies in adult flies (Booker and Quinn,

1981; Colomb and Brembs, 2010, 2016; Wolf et al., 1998) support the idea that operant

conditioning is independent of the mushroom body, such that other learning centres might

exist. To determine whether operant conditioning can be fully mediated by the VNC in

the larva or whether the brain or SEZ are necessary, new driver lines would need to be
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created. A collection of sparse split-GAL4 lines, each specific to a small distinct group of

serotonergic neurons, could help to identify the minimum subset of neurons necessary for

conveying the US in the bend direction paradigm.

Even if the learning signal for operant conditioning can be mapped to a small num-

ber of serotonergic neurons, there will still remain many open questions regarding the

mechanisms by which these neurons drive learning. They could act on their immediate

output sites by driving synaptic plasticity or modulating the intrinsic excitability of their

postsynaptic partners. Another possibility would be that the learning signal is propagated

further downstream, such that learning correlates could be found elsewhere in the network.

Furthermore, in order for a memory to be formed, the US needs to be integrated with

information about the occurrence of the reinforced action. This movement signal could be

transmitted to higher-level circuits by motor feedback, e. g. through efference copy (Fee,

2014; Webb, 2004), where it could converge with the valence-encoding US. Alternatively,

proprioceptive inputs could convey information about body posture, which is related to the

animal’s behaviour. Finally, if memory formation occurred at the level of motor output, the

action-specific signal could be integrated with valence locally inside the motor or premotor

neuron without the need for feedback loops.

Indeed, Lorenzetti et al. (2008) have proposed intracellular mechanisms for modulating

the intrinsic excitability of the premotor neuron B51 in Aplysia, which is mediated by

the highly conserved PKC. Work by Colomb and Brembs (2016) suggests that operant

self-learning in adult flies relies on PKC signalling in motor neurons. If evidence for PKC-

induced motor neuron plasticity could be detected in the larva as well, reconstruction of

the pathways between the serotonergic neurons of the VNC and the PKC-positive motor

neurons from the larval EM volume (Ohyama et al., 2015) could provide further insight

into the mechanisms of memory formation and retrieval.

9.4 Serotonin as a learning signal

This project has revealed that serotonergic neurons can convey a learning signal in Dro-

sophila. In the case of olfactory conditioning, optogenetic stimulation of the serotonergic

neurons in the brain and the SEZ paired with an odour was sufficient to induce strong

appetitive learning. On the other hand, the serotonergic neurons of the VNC are neces-
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sary for the formation of operant memory, although it is possible that the serotonergic

neurons of the brain and the SEZ are also involved. This indicates that different groups of

serotonergic neurons play a role in classical and operant conditioning.

Serotonin was previously shown to be involved in associative learning in Drosophila.

Sitaraman et al. (2012) have shown that synaptic transmission from serotonergic neurons

is essential for appetitive olfactory conditioning in adult flies. Formation of aversive olfactory

memory is impaired in flies which are fed with a tryptophan hydroxylase inhibitor, which

blocks serotonin biosynthesis (Lee et al., 2011). Furthermore, serotonin receptor signalling

is required for memory formation in classical conditioning tasks (Johnson et al., 2011). In

larvae, ablation of serotonergic neurons during development or mutations in a serotonin

receptor gene impair aversive olfactory conditioning (Huser et al., 2017).

Not many studies exist in which serotonergic signalling was found to be sufficient to

induce learning. Optogenetic stimulation of serotonergic neurons in the dorsal raphe

nucleus serves as reinforcement in both an olfactory learning and an associative nose-

poking task in mice (Liu et al., 2014). In the sea slug Aplysia, serotonin can serve

as a punishing US in classical conditioning (Hawkins and Byrne, 2015). To the best

of my knowledge, there is no prior evidence of serotonergic neuron activation being

sufficient as a US in insects. However, dopamine and serotonin receptors are necessary

for different types of classical conditioning tasks in honeybees, suggesting that the two

neurotransmitters may carry out separate functions (Wright et al., 2010).

The mechanisms by which serotonin mediates learning in larvae are not clear. The

mushroom body plays a central role in classical conditioning in Drosophila (Aso et al.,

2014a; de Belle and Heisenberg, 1994; Heisenberg, 2003; Heisenberg et al., 1985; Owald

and Waddell, 2015; Rohwedder et al., 2016; Saumweber et al., 2018; Vogt et al., 2014). In

adult flies, the serotonergic dorsal paired medium (DPM) neuron, which innervates the

mushroom body, is necessary for memory consolidation in olfactory learning (Keene et al.,

2006, 2004; Yu et al., 2005). However, this neuron does not exist in larvae (Pauls et al.,

2010), and there are no other serotonergic neurons which innervate the mushroom body

(Huser et al., 2012). Activation of the serotonergic CSD neuron, which has projections to

the mushroom body calyx in adult flies but not in larvae (Roy et al., 2007), paired with the

odour was on its own not sufficient for olfactory memory formation (Chapter 7), indicating

that the activity of other serotonergic neurons in the brain or SEZ is needed.
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Furthermore, olfactory conditioning requires expression of serotonin receptors in the

Kenyon cells of the mushroom body (Lee et al., 2011). There is only limited expression of

some serotonin receptors in the larval mushroom body (Huser et al., 2017). The serotonin

receptor 5-HT2A, which is not expressed in the mushroom body, has been shown to be

involved in the formation of olfactory memory (Huser et al., 2017). Together, these findings

support the idea that there exist serotonergic mechanisms for classical conditioning outside

the mushroom body.

To further assess the role of serotonin in olfactory learning, it would be useful to

develop new sparse driver lines specific to serotonergic neurons to identify the minimal

subset of neurons which provide the serotonergic learning signal. In a next step, these

neurons and their connective pathways to the mushroom body could be identified from the

larval connectome. One could then test whether learning as induced by the serotonergic

US remains intact when these pathways are silenced. In addition, the expression pattern

of serotonin receptors could give a clue about how the serotonergic signal triggers learning.

Furthermore, one should consider the possibility that learning is not induced by serotonin

itself, but by other neurotransmitters which could be coexpressed by certain serotonergic

neurons. This could be assessed by suppressing serotonin biosynthesis in the desired

subset of neurons.

Because operant conditioning relies on activation of the VNC subset of the serotonergic

neurons, it is mediated by mechanisms which differ from the ones underlying classical

conditioning. However, since it is unclear to what extent serotonergic neurons in the brain

and SEZ are involved in the observed operant conditioning effect, it is possible that some

neurons play a role in both forms of associative learning. More investigation would be

needed to better understand the function of serotonin in memory formation.

9.5 Concluding remarks

This thesis has uncovered novel circuit mechanisms of operant and classical conditioning

in Drosophila, with a common role of serotonergic signalling as a reinforcing US in

both types of learning. However, it is important to keep in mind that the single one

mechanism defining learning may not exist. While distinct types of learning may share
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many similarities, including the same neurotransmitters or even circuit components, there

may still be fundamental differences at functional and circuit level.

Finally, it is not unlikely that even a single instance of learning leads to a variety of

changes across the nervous system. In the case of operant conditioning, higher brain

centres, motor command neurons, premotor circuits and motor neurons would all qualify as

potential learning sites. Much work remains to be done to fully comprehend the processes

which are involved in operant memory formation. The work presented here may contribute

to our understanding of some of these mechanisms.
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