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Highlights:

• A folded ridge-spring has different physical dependencies than a tape-spring.

• Simple energy models consider cylindrical bending with boundary layer edge effects.

• Predictions of folded radius and bending moment compare well to finite elements.

• A folded ridge-spring can be designed more effectively than a tape-spring.

Abstract

A ridge-spring is a thin-walled bent strip with flat side panels. It may be folded elastically along its

length, to create a localised hinge region of mostly uniform cylindrical curvature and bending moment,

which do not vary with the fold angle of hinge. A simple analysis shows a common grouping in closed-

form expressions; α4/3
· (b/t)1/3, where α is the pitch angle of the ridge line, b is the strip width and t

its thickness. More accurate calculations of the hinge curvature and moment confirm the robustness of

simpler expressions, which are compared to data obtained from finite element simulations. It is shown

that, for many initial geometries, theoretical predictions of curvature and moment are typically within

10% of the computational results—which project the same dimensional performance. We also compare

a ridge-spring to a more familiar tape-spring of equal cross-sectional proportions. For moderate pitch

angles and relatively small thicknesses, it is shown that a ridge-spring has a higher folded hinge curvature

and bending moment, comparatively, which may prove attractive for certain applications.

Keywords: buckling, elastic material, structures, finite elements, energy methods

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/286187726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Major nomenclature

α: pitch angle

θ: hinge fold angle

κ∗: hinge curvature (= 1/r∗)

κ̄∗: dimensionless hinge curvature (= b/r∗)

µ: cylinder bending term (= (r · t)1/2/[3(1− ν2)]1/4)

ν: Poisson’s ratio

ξ: cylinder bending term (= b/2µ)

φ: dimensionless edge rotation (= µψ)

χx,y: changes of curvature

ψ: edge rotation

A: constant equal to [3(1− ν2)]1/4

b: arc-width of ridge-spring

D: flexural rigidity (= Dt3/12(1− ν2))

E: Young’s modulus

Mx,y: bending moments

M0,1,2: edge bending moments

M∗: hinge bending moment

M̄∗: dimensionless hinge moment (=M/Dα)

m: dimensionless edge moment (= µM/2D)

r: general hinge radius

r∗: folded hinge radius

R: tape-spring transverse radius

t: through-thickness

UT: tape-spring strain energy

UR: ridge-spring strain energy

UM: ridge-spring modified strain energy

UE: ridge-spring exact strain energy

x: transverse coordinate

y: longitudinal coordinate
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1 Introduction

Figure 1(a) shows a variety of straight, thin-walled strips, of lengths at least five times their width. They

are made from metal or paper card, and their cross-sections have one of three types of symmetrical profile.

The familiar carpenter’s tape, or “tape-spring”, has a uniform transverse curvature. The paper strips

are made by folding originally flat strips along a middle line, to form a sharp ridge line of a particular pitch

angle, connected to inclined side panels. The copper-beryllium (CuBe) strip—complete with end blocks—

has a more rounded ridge separating its side panels, after age-hardening a flat strip in a mould of the same

profile.

When the metal strips are bent along their lengths, they buckle into localised, folded regions—hinges—of

approximately the same extent, see Fig. 1(b): the strips are held in place by equal and opposite collinear

forces applied (out of view) to the straight ends.

The paper ridges in Fig. 1(c) fold similarly but their hinges have different sizes. In all cases, the central

dorsal line along the strip is in tension; if bending proceeds in the opposite sense, each ridged strip collapses

into a sharp, often damaged vertex—not of interest here; see [1] for more details. A tape-spring, however,

folds the same, whatever the bending direction.

A finite element analysis of folding is carried out in Fig. 2 for a tape-spring and a concentrated ridge of

the same arc-width and “angularity” as indicated, inset; they both have the same length and wall thickness.

Equal and opposite end-wise couples, M , are applied to the ends of each strip, to cause pure bending.

The early deformation is discussed in Section 2 but notice how M remains constant once each hinge

has formed, and does not depend on the angle of inclination, θ, between the strip ends. Both hinges are

clearly cylindrical in side-view; their curvatures do not change with θ—only the arc-length they envelope;

and outside the hinge, the strips are practically straight.

Such uniform response is well known for a carpenter’s tape; and bespoke tape-springs have been used for

designing elastically-driven deployable structures [2].

Furthermore, the curvature of a tape-spring hinge is (approximately) the same as its natural cross-section,

when bent in either direction. A first calculation of this remarkable property was performed by Rimrott [3],

who assumed a developable hinge shape of uniform changes in curvature, within a simple energetic framework.

The origin of the uniformity of hinge properties is less obvious. The author suggested the hinge to be a

type of propagating instability [4] in which only the arc-length of hinge along the strip changes i.e. propagates,

as θ is changed.

The application of the Maxwell Construction [5] provides further validation, and enables the calculation

of the fixed propagating load i.e. end-wise (thus hinge) moment and fixed deformation i.e. constant hinge

curvature, from the general bending response under uniform moments—the complete equilibrium load path.

This proposition was tested for ridged specimens in [6, 7]. Their cross-sections assumed an ever-decreasing
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width of ridge, from full (tape-spring) to nearly singular width, but not quite “reaching” the geometry in

Fig. 2.

Propagation in the sense of Maxwell’s Construction was formally validated within a numerical scheme

because of the lengthy closed-form expressions for the general bending response [6, 7]: and the systematic

variation of hinge properties from concentrating the original transverse curvature was found to correlate well

with experimental- and computational results.

Inspired by Rimrott’s approach, they also determined closed-form expressions for the uniform hinge

properties in [6, 7], assuming, as Rimrott did for tape-springs, a developable deformation: their compactness

stems from the constancy of hinge performance, where the load-path details can be ignored now that the hinge

has formed. The accuracy of their expressions however diminishes as the ridge becomes more concentrated:

moreover, in the limit of zero width, the expressions become undefined.

The developable assumption insists that, whatever the width of the ridge, the cross-section must flatten

entirely when a cylindrical hinge forms. But in [6, 7] they observe from careful experiments (and to the

contrary) that a narrow ridge remains pronounced; there is virtually no change in the original pitch angle

despite most of the cross-section being flat.

We aim to find accurate expressions for the hinge properties, but we consider only cross-sections with a

singular ridge—our ridge-spring. A fully curved cross-section is a tape-spring, of course, and the performance

of strips with intermediate widths of ridges—as for the CuBe strips in Fig. 1, will lie somewhere between

these extrema.

We assume from the observation in [6, 7] that the ideal pitch angle remains fixed, and that cylindrical

bending of each side panel must comply with this transverse, kinematic boundary condition. Consequently,

a narrow strip along the ridge line becomes doubly curved.

There is thus a concentrated (and positive) change in Gaussian curvature within the hinge, which causes

in-plane stretching—quite different from inside a tape-spring hinge. Stretching and (out-of-plane) bending

must be considered together, whose competition sets the characteristic properties of the hinge. Furthermore,

the deformation state does not vary along the hinge viz. does not depend on the folded arc-length if the

hinge is assumed to be a propagating instability.

Our layout is as follows. More accurate measurements of shape and loads are first obtained from finite

element analysis of different ridge-springs. For completeness, we repeat Rimrott’s analysis [3] for determining

tape-spring hinge properties. This inspires three energetic formulations describing the properties of a folded

ridge-spring hinge with increasing detail, which are compared to data from finite element analysis. We also

compare the hinge radius and its propagation moment to those from a tape-spring for the sake of efficacy.

In our final discussion we show, informally, that local energy minima are not always guaranteed; that hinge

propagation depends on the initial geometry.
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2 Finite element analysis

Figure 2 shows the bending responses of a ridge-spring and a tape-spring using the commercial finite element

analysis package, ABAQUS [8]. As noted, equal and opposite moments, M , are applied to their long ends

to cause the tension along the strip centre-line and compression of the free edges: θ is the total rotation

between them along the strip.

Both strips are rendered from linear S4R5 shell elements capable of large displacements and rotations

[8]. Small strains prevail under a linear elastic material, with the properties of copper beryllium—one of

the materials used in Fig. 1. The mesh density for the ridge-spring increases towards its discontinuous ridge

line, in order to capture well the rate of rapidly changing local deformation.

The cross-sections of the loaded ends are held rigidly, which simulates their encasement in end blocks

c.f. Fig. 1. They are free only to rotate in the direction of applied moments and to displace along the strip

axis; the rest of strip is otherwise free, and originally free of any stresses.

Geometrical non-linearity is enabled and large displacements follow. A built-in stabilisation option is

used in order to “push past” the early unstable buckling phases common in both strips. Their emergence,

and settling, corresponds to sharp peaks and troughs in the bending response in Fig. 2.

The initial linear bending quickly softens when the long edges locally buckle symmetrically, close to the

ends. These buckles migrate asymmetrically on the free edges when the end rotations are increased, to give

torsional displacements before coalescing centrally and symmetrically to form a nascent hinge.

The steady-state hinge moment—our propagation moment—is clearly constant and independent of θ,

and is denoted by M∗ later. The side views in Figs 2(a) and (b) show, informally, how the arc-lengths of

both hinges increase with θ at constant radius of curvature. Their uniform shapes also suggest that the

effects of the rigid end constraints are not felt, provided the strips are long enough.

In particular, the natural transition regions that form on either side of the hinge can be accommodated

freely within the overall length of strip. Their lengths are non-trivial to find: Rimrott [9], again, estimated

as such for a tape-spring, which was recently extended by the author for orthotropic materials [10].

There is no equivalent prediction for a ridge-spring. Therefore, we increased the length of spring for each

cross-sectional geometry until the applied moment was observed to be independent of θ and thus unaffected

by the rigid ends. If either spring type is too long initially, the analysis may not converge because more edge

buckles form, which thwart their eventual coalescence.

Both strip proportions are nominally the same: the ridge and tape have the same length and material

thickness, t, and the ridge-spring arc-width, b, is equal to the product of transverse radius, R, and subtended

angle, 2α, for the tape-spring, Fig. 2(c). The pitch angle of the ridge line is α, giving a change of inclination

of 2α, which expresses the same angularity as the tape-spring cross-section; their structural depths however

differ, which sets a larger initial stiffness for the ridge-spring.
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The ridge-spring propagation moment is larger by around 3.7 times; conversely, its radius of curvature in

side-view is smaller compared to the tape-spring. The inset figures also show, informally, how the in-plane

axial stresses vary within each strip. The extent of both hinge shapes is clearly demarcated from the straight

side lengths, and a narrow central region of high stresses is present in the ridge-spring.

The analysis was repeated for other ridge-springs with geometries similar to those in Fig. 1: b in the

range 10 mm to 40 mm, t from 0.1 mm to 0.4 mm, and pitch angles as 5◦, 10◦ or 15◦. Changing the Poisson’s

ratio exerts little variation and was maintained at a typical value of 0.3 throughout.

Not all geometries, however, afforded convergent solutions, usually when the thickness was smallest or

the pitch angle largest; conversely, thicker and shallower strips tended to curve uniformly along their lengths

without localising into distinct hinges. Intermediate and, thus, successful geometries are listed finally in

Fig. 9.

The folded hinge curvature, κ∗, was measured by averaging the shell curvature along two strips of

elements either side of the ridge line: this value is then multiplied by b to give dimensionless κ̄∗. The

propagation moment, M∗, is equal to the end moment and is divided by the product of flexural rigidity,

D = Et3/12(1 − v2), and α, to give M̄∗ (henceforth, the “moment”): the Young’s modulus is E and the

Poisson’s ratio is ν.

Given that all hinges form without axial constraint, their properties only depend on b, t and α of the

cross-section: α is itself dimensionless (and its inclusion for M̄∗ will be clarified soon), thus b/t is the only

other dimensionless grouping.

Values of κ̄ and M̄∗, in groups of the same pitch angle, are thence plotted on logarithmic axes in Fig. 3

against the ratio b/t. Each group clearly clusters along individual straight lines, suggesting a power-law

relationship to b/t.

The index for each group was determined using a least-squares fit using the software package MATLAB

[11]. Accurate values are listed in Fig. 3 but we note that for κ̄ the range is 0.25 to 0.31, and for M̄∗, 0.34

to 0.38. The incremental spacing between successive pairs of fitted lines is also similar for both κ̄∗ and M̄∗,

suggesting, informally, a power-law in α.

3 Tape-spring hinge

We repeat the well-known theoretical analysis of a tape-spring hinge [3, 12] in preparation for a ridge-spring.

The folded tape in side-view in Fig. 4(a) shows a hinge radius, r, subtending angle θ. The straight parts

on either side do not distort any further once formed in shape, as θ changes. Furthermore, only developable

changes in curvature occur within the hinge, for corresponding moments, M∗, applied equally to the ends.

Coordinates x and y are in the transversal and longitudinal directions of the mid-plane of the hinge shell

surface, giving changes in curvature, χ, of χx = −1/R and χy = 1/r for the bending direction shown in
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Figs 4(b) and (c). This is equal-sense bending [4] because the initial and deformed hinge curvatures have

their centres on the same side of tape; there is also no twisting curvature.

From [13], the strain energy density per unit surface area of shell can be expressed in terms of the

curvature changes as:

D

2
·
[

χ2

x + χ2

y + 2νχxχy

]

(1)

Multiplying by the surface area of hinge, b · rθ (with b = 2Rα), the total energy stored is UT, where:

UT =
D

2
· brθ ·

[

1

R2
+

1

r2
−

2ν

rR

]

(2)

This is minimised by setting dU/dr = 0, which returns r = ±R: the minus sign indicates a valid result when

the tape is bent also in the opposite sense [4], in accordance with Rimrott’s findings. Substituting r, we find

U equal to (Dbθ/R) · (1− ν), for equal-sense.

Finding M∗ recalls from finite element analysis its invariance with θ. When the subtended fold angle of

the hinge increases by δθ, each end rotates by δθ/2. The external work performed by both applied moments

is thus 2 · (M∗ · δθ/2), which foists an increase in stored energy, δU : in other words, dU/dθ = M∗, which

produces

M∗ =
Db

R
· (1− ν) = 2Dα(1− ν) → M̄∗ = 2− 2ν (3)

after replacing b by R · 2α.

The same result for M∗ can be found by directly substituting χx and χy into the generalised Hooke’s

law for the bending moment (per unit width) along the hinge i.e. My = D(χy + νχx) [13] and multiplying

by b for M∗—because the changes in curvature are uniform (the y subscript can be dropped).

4 Ridge-spring hinge: simple model

The initial cross-section is shown again in Fig. 5(a). When the hinge forms, most of the cross-section has

become flattened except for the ridge line where the pitch angle, α, is preserved.

In schematic side-view, the folded ridge-spring is practically identical to the earlier tape-spring, Fig. 4(a).

The hinge, on average, has a uniform radius r and connects to straight, transition regions that do not distort

with hinge angle, θ; the same in-plane coordinates (x, y) and their directions prevail, see Fig. 5(a).

The elastic shape of hinge can be formed in two stages—after separating each side panel from the ridge

line and rotating them to the horizontal plane by equal and opposite angles, α, Fig. 5(b).

Each panel is uniformly bent to a radius r (downwards), Fig. 5(c.i); their inside edges are then locally

bent upwards by an applied transverse moment, M0, per unit length, in order to restore the original pitch
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angle, α, whilst the longitudinal radius, r, is maintained, Fig. 5(c.ii).

We are thus separating the bending which dominates the global shape from the mid-plane stretching aris-

ing from enforcing the correct boundary condition on the ridge. The latter introduces additional transverse

bending only when the longitudinal curvature changes are small compared to the thickness and when the

ridge-spring is originally straight.

Each effect thus stands alone in terms of the viability of superposing them. The same argument applies,

for example, in describing the deformed shape of a bent circular tube which has now ovalised in the so-called

Brazier effect, see [13]. Moreover, the order of process here ensures that bending and stretching are decoupled

straightforwardly.

The first stage only has a change of longitudinal curvature, χy = 1/r, giving a strain energy density,

(D/2)·(1/r2), from Eqn 1. The relationship between α andM0 is a familiar one from the study of end-loaded

cylinders [13]:

α =
µM0

D
(4)

where

µ =
(r · t)1/2

[3(1− ν)]1/4
(5)

Gradients are assumed to be shallow, giving relatively small displacements compared to r, which, neverthe-

less, accord generator bending across the panel and in-plane hoop-wise stretching along. Practically speaking,

this sets maximal gradients to be about 15◦, which is our limit for α in the simulations from Section 2.

The corresponding strain energy density per unit arc-length of ridge line is equivalent to the work per-

formed by M0 when rotated by α, i.e. (1/2) ·M0 ·α, hence, Dα
2/2µ using Eqn 4—a calculation step inspired

from [14].

The total strain energy, UR, multiplies each component by the folded hinge area and the ridge length (on

both sides), respectively, to yield:

UR =
D

2
·
1

r2
· brθ +

Dα2

2µ
· 2rθ =

Dbθ

2r
+Dα2θ · [3(1− ν2)]1/4 ·

(r

t

)1/2

(6)

Minimising UR with respect to r sets the radius of hinge, r∗, whence:

κ̄∗ =
b

r∗
= [3(1− ν2)]1/6 · α4/3 ·

(

b

t

)1/3

(7)

The expression for r∗ is substituted back in to UR, in order to find M∗ from dUR/dθ, which is also equal to

UR/θ (because UR is linear in θ). After tidying up and dividing by Dα, we arrive at

M̄∗ =
M∗

Dα
=

3

2
· [3(1− ν2)]1/6 · α1/3 ·

(

b

t

)1/3

(8)
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The one-third index of (b/t) in κ̄∗ and M̄∗ matches the general trends in Fig. 3 and will be explored

formally later: the surmised power-law variation in α terms is 4/3 and 1/3, respectively (both indices are

4/3 if we do not divide by α for M̄∗).

The dimensional performance is clear, which enables a tractable comparison later to a tape-spring. Their

compactness stems from the straightforward two-stage bending process, which, however, is incomplete in

two ways—which may diminish their accuracy.

Uniform cylindrical bending of each side panel sets the transverse curvature, χx, equal to zero and its

commensurate bending moment, Mx, equal to D(χx + νχy) = Dν/r, everywhere, including the inside and

outside edges, see Fig. 6(a).

The free (outside) edges of the hinge are thus loaded by fictitious moments, which constrain the overall

deformation and artificially increase the total strain energy; these moments must be nullified, thereby releas-

ing strain energy. All edge rotations, on the inside and out-, cannot now be zero; as a corollary, the rotation

furnished by M0 is no longer equal to α.

Secondly, the expression for µ, Eqn 5, assumes that the transverse displacements from M0 have decayed

away to zero on the free outer edges. In theory, the width of each panel is infinite but its normal displacements

w, Fig. 5(d), are known from [13] to attenuate rapidly over distances of the order µ i.e. over approximately

(r · t)1/2 compared to b/2.

A relatively thin panel ensures that major displacements are focused near the edges in narrow boundary

layers, even though we do not know the value of µ, a priori. The matter, however, is compounded when

the cylindrical edge moments are nullified, for they produce their own boundary layers. The potential for

any coupling across a panel between the applied moments, and their influence upon edge rotations, therefore

increases.

Dealing with the fictitious edge moments as proposed is inspired by the approach adopted in [14] for

calculating the hinge radius of a folded tape-spring more accurately than Rimrott’s result. We assume here,

first, that there is no coupling between any of the edge moments, fictitious or not—that boundary layers are

narrow; we follow up by not making this assumption.

5 Ridge-spring hinge: enhanced models

The fictitious free edge moments, Mx, are shown in the positive sense of r in Fig. 6(a). Opposing moments,

M1, are applied to the same edges, Fig. 6(b.i), causing all four of them to rotate in the upwards sense by

angle ψ: clearly, M1 =Mx (= Dν/r) for the outside edges to be free.

The work performed by M1 is (1/2) ·M1 · ψ per unit length of panel edge, which causes an equal release

of stored strain energy. From Eqn 4, ψ = µM1/D equal to µν/r: thus, we subtract from the total strain

energy an amount of
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1

2
M1ψ · 4rθ =

Dψ2

2µ
· 4rθ (9)

The two inside edges are now rotated from angle ψ to α by the action of M2, Fig. 6(b.ii). Positive work

is performed in this stage whether α > ψ, when M1 off-loading produces a smaller edge rotation than α, or

vice versa, when the pitch angle is very small.

Shallow gradients, nevertheless, are assumed to remain, resulting in a linear relationship betweenM2 and

the change in edge rotation, governed similarly to Eqn 4: M2 = (D/µ) · |α− ψ|. The amount of work from

M2 is equal to (1/2) ·M2 · |α− ψ| and equal to an uptake of stored strain energy.

The modified total strain energy, UM, is therefore

UM =
D

2
·
1

r2
· brθ +

D

2µ
· (α− ψ)2 · 2rθ −

Dψ2

2µ
· 4rθ (10)

where the first component is the same cylindrical bending term from Eqn 6.

Substituting for µ from Eqn 5 and re-arranging, we find:

UM =
Dθ

2

[

b

r
+ 2A

√

r

t

(

α2 − ψ2 − 2αψ
)

]

(11)

with A = [3(1− ν2)]1/4. Replacing ψ with µν/r

UM =
Dθ

2

[

b

r
+ 2A

(

α2

√

r

t
−
ν2

A2

√

t

r
−

2αν

A

)]

(12)

Setting dUM/dr = 0 and tidying up, it can be shown that

Aα2 ·
(r

t

)3/2

+
ν2

A
·
(r

t

)1/2

=
b

t
(13)

This cubic polynomial in the group (r/t)1/2 is exactly soluble. The closed-form expression for r = r∗ is

however lengthy and accords an even longer expression for M∗ when r∗ is substituted in dUM/dθ (= UM/θ):

both expressions are not immediately useful.

Alternatively, a typical value of A is 1.29 for ν = 0.3, making Aα2 and ν2/A of similar size. The second

left-side term is smaller than the first by a factor of r/t and is negligible if r is much larger than t—when

the ridge-spring is thin. Consequently:

r = r∗ =

[

b2t

A2α4

]1/3

→ r∗ =
b2/3 · t1/3

[3(1− ν2)]1/6 · α4/3
(14)

which is precisely our standard (dimensioned) result from Eqn 7.

Substituting r = r∗ into dUM/dθ (equal to UM/θ), we find, after some algebra:

M̄∗ =
M

Dα
= −2ν +

3

2
· A2/3 · α4/3 ·

(

b

t

)1/3

−
ν2

α1/3 ·A2/3
·

(

t

b

)1/3

(15)
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Formal predictions are given later but the range of ridge-spring geometries used in Section 2 sets the

second term to be the largest in value (which is also equal to M̄∗ from the simpler model, Eqn 8). The

third term is much smaller, evidently because it varies with t/b not b/t. The size of −2ν is, however, not

negligible, and the term is retained.

The term −2ν also features in M̄∗ for a tape-spring, recall Eqn 3. Here it is due to M2 rotating by α−ψ

(and not by α alone), even if ψ itself is very small; accounting for the fictitious edge moments is ultimately

responsible. Thus, with reasonable accuracy, we may set M̄∗ equal to:

M̄∗ = −2ν +
3

2
· [3(1− ν2)]1/6 · α1/3 ·

(

b

t

)1/3

(16)

The actions of M1 and M2 stipulate independent rotations α and ψ when their displacements decay

rapidly; or when the panel width, b/2, is much larger than (r · t)1/2. Because we are solving for r, we do not

know if this condition is upheld; if not, the moments and rotations couple to each other across the panel,

where now M1 affects α and ψ, as does M2.

The general case and their positive directions, from [13], is shown in Fig. 6(c). The dimensionless

moments, m, and rotations, φ, are related to the full quantities, M and ψ, by [13]

m =
µ2M

2D
, φ = µψ (17)

with µ defined originally by Eqn 5. Labelling the ends of the cylinder by A and B, the particular relationships

from [13] can be verified as

mA =
1

2
· (−pφA + qφB], mB =

1

2
· [−qφA + pφB) (18)

where

p = (sinh 2ξ + sin 2ξ)/k, q = 2(cosh ξ sin ξ + sinh ξ cos ξ)/k (19)

with

k = cosh 2ξ − cos 2ξ and ξ = (b/2)/µ (20)

The parameter, ξ, is the ratio of the side-panel width to boundary-layer width; when the coupling between

edge moments is weak, the boundary layers are narrow and ξ >> 1.

Returning to the case of Fig. 6(b.i), we set mA = mB = m1 and φA = −φB = −φ1. Substituting into

Eqns 18, we find

m1 =
1

2
· (p+ q)φ1 → M1 =

Dψ1

µ
· (p+ q) (21)
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For the case of Fig. 6(b.ii), mB = 0, which sets φB = (q/p) · φA. Substituting back into mA, noting

mA = m2, re-arranging and re-normalising:

M2 =
Dψ2

µ
·

(

p−
q2

p

)

(22)

The previous work arguments can now be applied.

Fictitious edge moments, M1, equal to Dν/r, are released and cause both ends of each panel to rotate

by ψ, equal to ψ1. The ridge line moments, M2, enable the inside edges to rotate further by ψ2 equal to

ψ − α, and perform positive work. The now exact stored strain energy, denoted as UE, can be written as

(c.f. Eqn 10):

UE =
D

2
·
1

r2
· brθ +

D

2µ
· (ψ − α)2 · 2rθ ·

(

p−
q2

p

)

−
Dψ2

2µ
· 4rθ · (p+ q) (23)

The (p, q) terms inside parenthesis can be expanded and simplified marginally to give

p−
q2

p
=

cosh 2ξ + cos 2ξ − 2

sinh 2ξ + sin 2ξ
, p+ q =

sinh ξ + sin ξ

cosh ξ − cos ξ
(24)

UE is highly nonlinear (because µ, viz. r, is “embedded” in ξ inside hyperbolic functions). We do not attempt

to simplify further, and values of r that minimise UE are found numerically.

For confirmation, note that p− q2/p and p+ q both tend to unity when ξ is much greater than unity (for

narrow boundary layers). The moments effectively decouple from each other, and UE reads the same as UM

in Eqn 10.

6 Results

The predictions for κ̄∗ and M̄∗ are compared with each other in Fig. 7 before we compare to finite element

data.

The ordinate axis for κ̄∗ is set to α4/3 · (b/t)1/3: the simplest prediction from Eqn 7 therefore plots as

a straight line. The ordinate range is set by ridge-spring geometries from finite element analysis, which are

individually detailed in Fig. 9; throughout ν = 0.3.

Numerical solutions of κ̄∗ are found by using the approximate value of r∗ from Eqn 14 to specify a range

of (fine) values for r about r∗. The corresponding variation of UM, Eqn 10, (which is independent of θ) is

searched for a stationary value using a standard routine in MATLAB [11]: r∗ is then adjusted from Eqn 14,

whence κ̄∗ = b/r∗.

Values of κ̄∗ for each ridge-spring geometry are plotted in Fig. 7 and follow Eqn 7 almost identically;

such closeness justifies solving Eqn 13 approximately, as described previously.
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The solution process is repeated for UE and the plotted results are, again, close to Eqn 7. However, two

of the initial geometries given by (b, t, α) = (10, 0.2, 5◦) and (10, 0.4, 10◦) yield no stable minima and hence

no solutions. These points are absent compared to them from UM at ordinate values of 0.14 and 0.29.

The variations of M̄∗ are plotted against ordinate axis of α1/3 · (b/t)1/3 given Eqn 8, which forms the

dashed line in Fig. 7: the parallel line offset by 2ν below is Eqn 16.

From earlier, dUM/dθ is equivalent to UM/θ. Thus, the stationary values of UM found numerically directly

specifies values of M∗; we may do the same with UE in Eqn 23. Both variations are practically equal to

Eqn 16 with the missing result points both occurring when the ordinate reads 1.63.

There is practically no difference between the simple estimates of κ̄∗ and M̄∗ and their more elaborate

solution values, so we may use Eqn 7 (κ̄∗) and Eqn 16 (M̄∗) confidently in order to compare to the finite

element data. The absent data points, however, demand discussion—see later.

The same ordinate groups are maintained in Fig. 8. The curvature results tend to show more scatter but

both sets of finite element data evidently cluster in linear fashion. The importance of the 2ν offset is also

clear for M̄∗.

The differences between the finite element data and theory are quantified directly in Fig. 9 by re-plotting

their ratios as discrete data points in vertical silos pertaining to the same shape of strip. The thickness of

strip increases from left to right in each silo, and we plot two sets of ratios, using the exact solutions and

the simplified closed-form expressions.

The curvature ratios mostly lie between unity and 1.1, with some values above but not exceeding 1.22;

one exceptional ratio below unity is 0.92. The moment ratios are broadly contained between unity and 1.06,

with no values above 1.1.

The differences arising from the two theoretical approaches are slight with the simplified curvature pre-

dictions showing more variation within a narrower band, 0.92 to 1.18. On average, the simplified moment

behaves better than the exact solution, giving moment ratios closer to unity in general.

7 Comparison to tape-spring

The hinge properties do not depend on the strip lengths for both a tape- and ridge-spring. When comparing

them, we conserve the amount of cross-sectional material, which sets b equal to R ·2α, for the same thickness,

t. The subtended angularity is the same, which, as noted, leads to a higher bending stiffness initially for the

ridge-spring—for interest elsewhere see e.g. [6].

A direct comparison is facilitated by expressions in closed form. The case for hinge curvature is thus

straightforward using Eqn 7. Denoting each curvature as κ∗
RS

and κ∗
TS

(RS: ridge-spring; TS: tape-spring),

it can be verified that
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κ∗
RS

κ∗
TS

=
[3(1− ν2)]1/6

22/3
·

(

R

t

)1/3

· α2/3 (25)

For ν = 0.3, the pre-factor above is very close to 3/4. The ridge-tape hinge curvature is greater (viz. radius

is smaller) than that of the tape-spring when (R/t) · α2 > (4/3)3 (=2.37). A tape-spring has a typical ratio

of R/t = 100, thus a ridge-spring is more tightly folded when α > 9◦.

Similarly, the ratio of moments M∗

RS
(Eqn 16) and M∗

TS
(Eqn 3) can be verified as

M∗

RS

M∗

TS

=
3

4
·
21/3 · [3(1− ν2)]1/6

(1− ν)
·

(

R

t

)1/3

· α2/3 −
ν

(1− ν)
(26)

A ratio greater than unity sets the condition

(3/4) · 21/3 · [3(1− ν2)]1/6 · (R/t)1/3 · α2/3 > 1 (27)

which returns (R/t) · α2 > 0.72 when ν = 0.3, i.e. a lower threshold compared to the curvature case: when

R/t = 100 (again), α > 5◦ specifies a larger hinge moment for the ridge-spring. In the case of Fig. 2, Eqn 26

returns 3.33 for the moment ratio, which is around 11% smaller than the finite element comparison of 3.7.

8 Discussion

A ridge-spring focuses the transverse curvature of a tape-spring into a pitched ridge line. It can be folded

into a fixed radius of curvature which propagates the arc-length of hinge, similar to a tape-spring.

The hinge properties of the latter, however, are much simpler in their variation. The hinge radius is equal

to the original transverse radius, and the dimensionless hinge moment depends only on the angle subtended

by the cross-section (for a fixed Poisson’s ratio), as proposed by Rimrott [3].

A folded ridge-spring hinge behaves non-linearly with b, t and α, where its dimensionless curvature and

absolute moment depend on α4/3 · (b/t)1/3. Compared to a tape-spring, there is more variety in ridge-

spring dependencies, with more freedom to tailor hinge properties and, hence, to improve performance for

applications.

As the tape-spring hinge radius compares to its original cross-sectional value, we might ask when the

hinge radius of a ridge-spring is equal to, for example, the flattened width i.e. when κ̄∗ = 1. Reading from

Fig. 7, α4/3 · (b/t)1/3 ≈ 0.85, which sets α ≈ 16◦ when b/t takes a typical value of 100.

A wide range of finite element simulations have correlated well with predictions of hinge curvature and

moment, especially for the latter. We note, however, that the accuracy of predictions decreases when the

material thickness increases: in each silo in Fig. 9 the departure from unity appears to increase in general,

moving left to right.
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The geometry of the hinge is expected to be mostly cylindrical i.e. developable, except near the ridge

line. This is truer in relatively thinner shells that inhibit the build-up of in-plane forces [15]. Thicker shells

are, conversely, less developable, which erodes the uniform extent of the cylindrical hinge shape. Its radial

shape may vary, and appreciably so, across the width, producing the scatter we see in the finite element

data—for κ̄∗ at least.

However, this argument also depends on the pitch angle c.f. the deformed cross-sectional profiles in

Fig. 10. Even though both strips have the highest thickness of t = 0.4 mm, the hinge cross-section with

the larger pitch angle (α = 15◦) has mostly flattened; a smaller pitch angle (α = 5◦) leads to a conical

cross-section. Both ridge lines, however, are much stiffer than the panels, with no discernible opening across

them; for different loading cases when this is no longer a valid assumption see [16].

This figure also shows that there is, potentially, a reasonable height difference between the ridge centre-

line, where κ̄∗ is measured from finite element analysis, and the outside edges, which trace the side profile

of the hinge in our schematic view, when measured relative to the side-panel widths. A better estimate of

an “average” hinge radius may be to measure this radius of curvature directly in side view.

Most remarkably, the enhanced models give very similar results to them from the basic model. But recall

that there are (two) absent results in Fig. 9 (and Fig. 7) where energy minima are not found for two strip

geometries.

We examine the strain energy behaviour for one of them in Fig. 11, from silo C, where b = 10 mm,

α = 5◦ and t = 0.2 mm. Two other nearby thicknesses are considered, t = 0.1 mm and 0.15 mm, and the

corresponding dimensionless variations (Ū = U/Dθ) of UR (Eqn 6), UM (Eqn 10) and UE (Eqn 23) around

their minima are plotted.

The minima from UR and UM are clearly stable for all thicknesses: analytically, we may validate, for

example, that the discriminant of Eqn 13 is positive whatever the cross-sectional properties, which signifies

a positive real root—always.

The behaviour from UE, however, is highly sensitive to thickness, with the minimum profile disappearing

altogether when t = 0.2 mm. Even though there is little “lateral” movement in the value of r∗ beforehand

(which assures the concurrencies of Fig. 7), edge effects now dominate and overwhelm any stable hinge

formation.

The broader behaviour is given in Fig. 12 which first shows a contour map of the hinge radius that

minimises UE, for the indicated axes ranges of b/t and α. We normalise the radius by dividing by r∗ from

Eqn 14 and thus observe, largely, a ratio of unity.

There is, however, a region of insoluble initial geometries (that do not form hinges) separated by a

boundary front from radii ratios that dip below unity, rise above and settle down, over a short range moving

into the map from the origin outwards. Remarkably, this boundary is well described by α = 350/(b/t); and it

would be interesting to see if the same division also applies to performances from (many more) finite element
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analysis.

Figure 12 also shows the equivalent contour map via UM from Eqn 10. None of the normalised radii

are larger than unity although the contours have a similar shape and, importantly, the map is populated

everywhere; UM always has a local minimum. Even though there are no significant differences in the hinge

radii predicted either by UM or UE, their stability can be quite differently assured.

We have deliberately avoided varying the Poisson’s ratio, for the sake of brevity. It is important for M̄∗

to be accurate c.f. the difference of 2ν between Eqns 8 and 16, but its contribution in Eqn 13 is dominated

by the pitch angle term when proper edge moments are considered.

The recent tape-spring study [14] shows that the Poisson’s ratio significantly alters the folded hinge

radius expected from Rimrott’s prediction. Without delving details, one reason is the simultaneous changes

in curvature along the hinge and across the tape during cylindrical bending. Our singular ridge-spring does

not experience this, but if another ridge-spring has a finite central ridge, as tested in [7], the Poisson effect

may be significant. We leave this to further study.
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Figures

(a) (b) (c)

Figure 1: (a) Strip with three types of cross-sectional shape: sharply bent paper ridges (white) and flat side

panels; bent copper beryllium strip (50 mm arc-width, 0.125 mm thickness) with distributed ridge width, set in end

blocks; uniformly curved, standard carpenter’s tapes. (b) Metal strips from (a) bent longitudinally to form localised

cylindrical hinge of approximately constant radius of curvature. (c) Paper strips from (a) also bent to form central

hinge. The original strips only differ in their widths: note their different cylindrical radii.
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Figure 2: Finite element analysis of moment-rotation (M , θ) response of (a) ridge-spring and (b) tape-spring using

ABAQUS [8]. For inset geometry: b = 10 mm, R = 19.10 mm, α = 15◦ and t = 0.1 mm. Strip lengths are

L = 100 mm and material properties have E = 131 GPa and ν = 0.3 (of copper beryllium). Deformed geometries

correlate with the highlighted dots (red); blue curves are initial linear phases followed by non-linear buckling with

torsion; constant moment responses are green lines where each central circular hinge region maintains constant radius

as their hinge fold angles θ increase.
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Figure 3: Numerical fitting (dashed lines) of dimensionless results (dots) from finite element analysis. Each data

set is a different pitch angle; α = 5◦ (blue), α = 10◦ (green), α = 15◦ (red). Values of power-law indices for (b/t)

variation are: (κ̄∗) 0.2551 (b), 0.2928 (g), 0.3108 (r); (M̄∗) 0.3463 (b), 0.3634 (g), 0.3813 (r). Fitting uses a standard

least-squares function in MATLAB [11].
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Figure 4: (a) Schematic of bent tape-spring in side view with central hinge of radius r and subtended fold angle θ:

equal and opposite moments M∗ applied to the far ends. (b) Initial cross-sectional geometry; in-plane coordinates

(x, y) are transverse and longitudinal; (c) cylindrical hinge region.
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Figure 5: Formation sequence of (nearly) cylindrical hinge for ridge-spring. (a) Initial and final cross-sectional

shapes. (b) Separation of side panels and their rigid-body rotation to horizontal. (c.i) Uniform cylindrical bending

of side panels to radius r; (c.ii) application of moment M0 on inside edges to restore the original pitch angle α. (d)

Cylindrical bending analogue for effect of M0 on single panel; w are radial displacements.
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Figure 6: Correction of hinge equilibrium in Fig. 5. (a.i) Uniformly bent side panels with non-zero edge moments

Mx; (a.ii) cross-sectional views. (b.i) Correcting moments M1 applied in reverse on panel edges (only the right

side-panel is shown) and their symmetrical edge rotations ψ; (b.ii) further bending of inside edges by M2 to pitch

angle α. (c) Bending of narrow cylinder by general edge moments, mA and mB, and their corresponding rotations,

φA and φB.
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Figure 7: Comparison of theoretical predictions: left, hinge curvature; right, hinge moment. Thick red lines are

closed-form solutions from Eqn 7, left, and Eqn 16, right; both lines extrapolate through each origin. Dashed line,

right, is Eqn 8. Smaller green dots (dealing with exact free edges) from solving Eqn 10 numerically; larger blue dots

(on coupling of edge moments) from Eqn 23. Ordinate ranges set by geometries used in Fig. 9.
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Figure 8: Comparison of hinge curvature, left, and moment, right, from finite element analysis, dots, to theoretical

predictions, Eqns 7 and 16 (solid lines): dashed line is Eqn 8. Respective ordinate axes are the same as in Fig. 7 and

initial geometries are given in Fig. 9.
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Figure 9: Comparison of finite element analysis and theory for hinge curvature, top, and moment, bottom. Larger

blue dots use exact strain energy, UE; smaller green dots from Eqns 7 and 16. Vertical silos, A . . . L, for different

ridge-spring cross-sections (b, α, t, L) of units (mm, ◦, mm, mm): L is length of each finite element specimen. In

each silo, the thickness increases (→) in steps of 0.1 mm except for silos I, K and L, where the step is 0.05 mm. A

(10, 15, 0.1 → 0.4, 100); B (10, 10, 0.2 → 0.4, 150); C (10, 5, 0.1 → 0.2, 300); D (20, 15, 0.1 → 0.3, 100); E (20, 10,

0.1 → 0.3, 200); F (20, 5, 0.1 → 0.3, 400); G(30, 15, 0.2 → 0.3, 150); H (30, 10, 0.2 → 0.3, 250); I (30, 5, 0.15 →

0.3, 600); J (40, 15, 0.2 → 0.4, 200); K (40, 10, 0.2 → 0.35, 300); L (40, 5, 0.2 → 0.4, 750).

(a) (b)

Figure 10: Deformed hinge cross-sections (green) in folded ridge-springs: initial cross-section (blue). (a) b = 10 mm,

t = 0.4 mm and α = 15◦. (b) b = 10 mm, t = 0.4 mm and α = 5◦.
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Figure 11: Variation in (dimensionless) strain energy with hinge radius for the same ridge-spring (b = 10 mm,

α = 5◦, ν = 0.3) with increasing thickness; t = 0.1 mm, 0.15 mm, 0.2 mm, left to right. Local minima are shown

as dots for UR (Eqn 6, red), UM (Eqn 10, green) and UE (Eqn 23, blue). Final minimum point from UE is not

stationary.
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Figure 12: Contour maps of viable hinge radius (divided by r∗, Eqn 14) via UE (left) and UM (right): minimum

values of α and b/t ranges are 1◦ and 10, respectively. No solutions exist below and to the left of the purple boundary

for UE, which is approximately given by α = 350/(b/t) (when ν = 0.3).
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