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Abstract

We describe a method for generating graphs that provide difficult ex-
amples for practical Graph Isomorphism testers. We first give the theoret-
ical construction, showing that we can have a family of graphs without any
non-trivial automorphisms which also have high Weisfeiler-Leman dimen-
sion. The construction is based on properties of random 3XOR-formulas.
We describe how to convert such a formula into a graph which has the
desired properties with high probability. We validate the method by ex-
perimental implementations. We construct random formulas and validate
them with a SAT solver to filter through suitable ones, and then convert
them into graphs. Experimental results demonstrate that the resulting
graphs do provide hard examples that match the hardest known bench-
marks for graph isomorphism.
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1 Introduction

Graph Isomorphism (GI) is the problem of deciding, given two graphs G and
H whether there is a bijection between their sets of vertices V (G) and V (H)
respectively, that takes edges of G to edges of H and non-edges of G to non-edges
in H. In short, it asks if G and H are the same, up to a renaming of vertices.
The problem is of great interest in the field of complexity theory as it is among
the few natural problems in NP that are not known to be in P nor known to be
NP-complete. Babai’s recent result [9] places the problem in quasi-polynomial
time, further cementing its status as a candidate NP-intermediate problem.

While the complexity of GI is interesting from the theoretical standpoint,
in practice the problem is largely solved. That is, there exist programs which
efficiently deal with instances of graph isomorphism that arise in practice, for
instance in searching through chemical databases or in image processing. Signif-
icant among these effective graph isomorphism testers are the programs Traces
and nauty, available in a common distribution (see [20]). It remains a challenge
for the theoretician to examine the algorithms behind these programs and de-
termine their worst-case behaviour. Indeed, in the long version of his paper,
Babai asks the question [8, Sec. 13.5]:

The question is, does there exist an infinite family of pairs of graphs
on which these heuristic algorithms fail to perform efficiently? The
search for such pairs might turn up interesting families of graphs.

We address this question and provide a means of constructing just such a family
of graphs, including an implementation and experimental results.

Computationally, the graph isomorphism problem is equivalent to the prob-
lem of determining the orbits of the automorphism group of a graph G. That is,
given a graph G, we wish to partition V (G) into the minimum number of classes
so that for any pair of vertices u, v in the same class there is an automorphism of
a graph G that takes u to v. We call this the orbit partition of the graph G. The
fundamental algorithm underlying nauty as well as Traces, like many practi-
cal approaches to the graph isomorphism problem, relies on steadily refining a
partition to arrive at the partition into orbits. It does this through a process
of (i) vertex refinement combined with (ii) individualization and (iii) factoring
of automorphisms of the graph. The process of vertex refinement, also known
as colour refinement, is a highly efficient method that is known to achieve the
orbit partition on almost all graphs [10] but fails on regular graphs, for example.
Where vertex refinement fails, the programs use individualization, which is the
process of selecting (i.e. individualizing) a particular vertex and placing it in its
own class and then repeating vertex refinement until evenutually a partition into
singleton sets is obtained. With backtracking, the structure of the parition into
orbits is revealed. The main differences between the various graph isomorphism
solvers (not only nauty and Traces but also bliss and conauto) are precisely
in how the vertices are selected. This process is inherently exponential in the
number of selections that need to be made. However, the search space is rad-
ically cut down if we can identify non-trivial automorphisms of the graph and
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factor the graph suitably, which Traces, in particular, does effectively. More
details are given in Section 2 below.

In theory, the vertex refinement algorithm is subsumed by the k-dimensional
Weisfeiler-Leman (k-WL) method, which works by refining a partition of the k-
tuples of the vertices of a graph G (see [16, Sec. 2] for a good account of the
history of this method). Taking k to be large enough (of the order of the number
of vertices in G), the k-WL method gives exactly the orbit partition, but this
is (for k ≥ 2) not a practical method and rarely used in solvers. However, what
is interesting from the point of view of worst-case analysis is that the k-WL
method serves as a way of bounding the number of individualizations we need
to determine the orbit partition in a graph G. To be precise, suppose G has
k vertices v1, . . . , vk such that when each of them is individualized, the vertex
refinement procedure converges to the discrete partition of G, then we can also
determine the orbit partition by the (k + 2)-WL method. Since it is known,
through the construction of Cai, Fürer and Immerman [16] (called CFI graphs
below), that there are, for every k, graphs on which the k-WL method fails
to give the orbit partition, it follows that there is no constant bound on the
number of individualizations needed, in combination with vertex refinement, to
obtain the orbit partition of a graph. Hence, there is no polynomial bound
on the running time of a graph isomorphism algorithm based solely on vertex
refinement and individualization.

However, Traces has another element in its armoury, in that it detects au-
tomorphisms while constructing the orbit partition, using these to factor the
graph and therefore cut down the search space. This means that the running
time is not exponential in the number of individualizations but is potentially
divided by the size of the automorphism group of the graph. Indeed, the CFI
graphs are among the standard benchmarks considered in [20] and they prove
to be not too difficult for the program to handle as they have many auto-
morphisms. This led the first author of the present paper to suggest (at the
December 2015 Dagstuhl seminar on Graph Isomorphism) that the way to con-
struct hard families of graphs and answer Babai’s quetsion, is to find graphs
whose Weisfeiler-Leman dimension is large but which have no non-trivial au-
tomorphisms. A construction of structures satisfying this property, known as
multipedes is given in the work of Gurevich and Shelah [17]. These structures
can be easily turned into graphs to yield the desired family. However, while
the theoretical construction guarantees the existence of such graphs, it turns
out that constructing actual instances, even for small values of k, leads to very
large graphs. Thus, in order to construct families that can be used for practical
benchmarking of GI solvers, a refined analysis is required. One such approach
was taken by Neuen and Schweitzer in [22] where the multipede construction
was combined with size reduction techniques.

In the present paper, we give an alternative construction of such graphs
which proves very effective. Instead of the multipedes of Gurevich and Shelah,
we start with random systems of equations over the 2-element field. This is
based on the insight from [4] that the construction of CFI graphs really codes
such systems in the graph construction. We use a way of lifting these sys-
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tems to graphs which have the property that as long as the original system has
no non-trivial solutions, the resulting graph has no non-trivial automorphisms.
Moreover, as long as the original system is k-locally satisfiable (a precise defi-
nition will follow), the orbit partition of the graph cannot be obtained by the
l-WL method for some large l. It turns out that a random system has both
properties: of having no non-trivial solutions and being k-locally satisfiable for
sublinear values of k. The theoretical basis of this construction is given in Sec-
tion 3. The main conclusion is Theorem 1 which shows that we can construct
families of graphs which are asymmetric, i.e. have no non-trivial automorphisms,
but have linear Weisfeiler-Leman dimension. Moreover, we define a randomized
construction that produces such graphs with high probability.

It is instructive to compare our theoretical result with that of Neuen and
Schweitzer [21, 22]. They also give a construction of families of graphs which
provably require exponential time on a solver based only on individualization
and refinement. Here, they take refinement to be any class of procedures that
respect k-WL equivalences for some fixed k. Their construction is based on the
multipede construction of Gurevich and Shelah, converted into graphs. This
construction guarantees that the graphs are asymmetric, and have unbounded
Weisfeiler-Leman dimension. While the dimension is unbounded, the multi-
pede construction does not yield linear dimension. Indeed, as noted above, the
graphs obtained for small values of k are rather large. Therefore, in order to
obtain exponential lower bounds Neuen and Schweitzer employ size reduction
techniques and explicitly consider the shape of the individualization search tree.
By contrast, we directly establish a linear lower bound on the WL-dimension
of the graphs and this immediately leads to an exponential lower bound on
the search tree size under any target cell selection strategy. The experimental
results reported in [21] are comparable with the ones we obtain.

To implement our theoretical construction, we leverage a highly developed
SAT solver. This enables us to search for systems of equations which have
no non-trivial solutions by coding them as 3SAT instances. While we do not
directly check for k-local satisfiability, we use a proxy which is checking the
speed improvement in the SAT solver that is obtained by the use of Gaussian
elimination methods. This filter allows us to select those systems which are most
likely to be locally satisfiable. We present details of the method in Section 4.
Finally, we present some experimental results in Section 5 which show that the
method does, indeed, yield instances which are hard, especially for Traces, but
also for other isomorphism solvers. We have created some benchmark sets of
such graphs, and one of these is now available through the webpage for nauty

and Traces: http://pallini.di.uniroma1.it/Graphs.html. However, we
consider the main contribution of the present work to be the method, using a
SAT solver, which gives the ability to generate such large and hard example
graphs at will.

The experimental work reported here was carried out in three stages. The
first set of experiments were performed in April-June 2017 as part of the sec-
ond author’s Master’s project. The full code of the implementation, all data
generated in the experiments, as well as a project write-up can be found here:

http://pallini.di.uniroma1.it/Graphs.html
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https://github.com/kkcam/graph-ismorphism. In particular, a number of
graphs in dreadnaut format can be downloaded from the site to run directly
with nauty/Traces as well as in the DIMACS format for other solvers. A sec-
ond set of experiments on the same graphs, involving a wider range of solvers,
was carried out in January-February 2019, in response to a request from a ref-
eree. The results are available from the same website. Finally, another set of
graphs using this protocol was created by Yui Chi Richie Yeung. Those graphs
and the results are available at https://github.com/y-richie-y/sat_cfi/.
A selection of results from all three sets of experiments is given in Section 5.

The theoretical work detailed in Section 3 is based on the first author’s
project suggestion, given as an appendix in the Master’s thesis available at
https://github.com/kkcam/graph-ismorphism.

2 Background

Partitions and Isomorphisms. Given a set S and two partitions P =
{P1, . . . , Ps} and Q = {Q1, . . . , Qt} of S, we say that P is a refinement of
Q (or equivalently, that Q is coarser than P) if for every P ∈ P there is a
Q ∈ Q such that P ⊆ Q. It is a proper refinement if s > t. We say that a
partition P is discrete if every part is a singleton.

We always consider undirected, loopless, simple graphs. That is, a graph
G is a set of vertices V (G) along with a set of edges E(G) where each edge
e ∈ E(G) is a two-element set e = {u, v} ⊆ V (G), with u 6= v. Where G
is clear from context, we simply write V and E for the vertex and edge set
respectively. For a set C, a C-coloured graph is a a graph G together with a
function χ : V → C. For a C-coloured graph (G,χ), we refer to the partition of
V given by {{v | χ(v) = c} | c ∈ C} as the χ-partition of V .

Given two C-coloured graphs (G,χ) and (H, δ), an isomorphism from the
first to the second is a bijection ι : V (G)→ V (H) such that for each u, v ∈ E(G),
{u, v} ∈ E(G) if, and only if, {ι(u), ι(v)} ∈ E(H) and χ(v) = δ(ι(v)). An
automorphism of (G,χ) is an isomorphism from (G,χ) to itself. The orbit
partition of (G,χ) is the coarsest partition of V (G) such that if u and v are
in the same part of the partition, there is an automorphism ι of (G,χ) such
that ι(u) = v. Consider the three computational problems: (1) given a pair
of graphs G and H, decide if there is an isomorphism from G to H; (2) given
a pair of coloured graphs (G,χ) and (H, δ) decide if there is an isomorphism
between them; and (3) given a coloured graph (G,χ), output its orbit partition.
It is known that these three problems are polynomially-equivalent, which is to
say that there are polynomial-time reductions between any pair of them (see,
for instance [24]). As such, we treat them as equivalent and mostly concentrate
on the third.

A graph G, or a coloured graph (G,χ), is called asymmetric if its only
automorphism is the identity map. Some authors call such graphs rigid, but
we employ the terminology of Babai [7] who reserves the latter term for graphs
without non-trivial endomorphisms.

https://github.com/kkcam/graph-ismorphism
https://github.com/y-richie-y/sat_cfi/
https://github.com/kkcam/graph-ismorphism
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Refinement and Individualization. The vertex refinement procedure is an
algorithm that produces, given a C-coloured graph (G,χ), the coarsest partition
P of V refining the χ-partition such that if u, v ∈ P ∈ P, then for every Q ∈ P,
u and v have the same number of neighbours in Q. Note that the partition of V
produced by the vertex refinement procedure is coarser than the orbit partition.
For many graphs G it is, in fact, the orbit partition but, for example for regular
graphs with no colouring, it can be properly coarser (see [10]).

Given a C-coloured graph (G,χ) and a vertex v ∈ V , let c be a new colour
that does not appear in C and let χ′ : V → C ∪ {c} be defined as the colouring
with χ′(v) = c and χ′(u) = χ(u) for u 6= v. Then, the partition of V obtained
by vertex refinement from (G,χ′) is called the vertex refinement of (G,χ) with
individualization of v. More generally, given a sequence I = (v1, . . . , vk) of
vertices in V , the vertex refinement with individualizations of I is the algorithm
that produces the vertex refinement of (G,χ′) where χ′ is a C ∪ {c1, . . . , ck}-
colouring of V (G) with χ′(vi) = ci and χ′(v) = χ(v) for v 6∈ I; and c1, . . . , ck 6∈
C. This partition is not in general coarser than the orbit partition. The aim of
the individualization-refinement procedure is to find the smallest (in a precise
sense) I such that the refinement with individualizations of I yields a partition
into singleton sets. From this, it is possible to produce the orbit partition of
(G,χ). For details, we refer the reader to [20, Sec. 2].

High-dimensional Weisfeiler-Leman. The k-dimensional Weisfeiler-Leman
algorithm, for any k ≥ 2, gives a partition of V k that is the coarsest partition
P satisfying the following stability condition: if u,v ∈ V k are tuples in the
same part of P and (P1, . . . , Pk) is a k-tuple of parts of P, then the order-
preserving map from u to v is an isomorphism of the induced subgraphs of G
and |{x | u[x/i] ∈ Pi for 1 ≤ i ≤ k}| = |{x | v[x/i] ∈ Pi for 1 ≤ i ≤ k}|.
Here, u[x/i] denotes the tuple obtained by substituting x for the ith element
of u and |S| denotes the cardinality of a set S. We write ≡k to denote the
equivalence relation corresponding to this partition. Again, this partition is
necessarily coarser than the partition of V k into orbits under the action of the
automorphism group of G, since the orbit partition clearly satisfies the stabil-
ity condition. Also, for sufficiently large values of k, in particular certainly for
k ≥ n − 1, the partition given by ≡k is the orbit partition. So, for any graph
G, we define the Weisfeiler-Leman dimension of G, denoted WL(G), to be the
least k such that the partition induced by ≡k on V k coincides with the orbit
partition.

Cai, Fürer and Immerman [16] showed that there is no fixed k such that
WL(G) < k for all graphs G. Indeed, they show a linear lower bound on WL(G).
To be precise, they construct for each k a pair G and H of non-isomorphic
graphs with O(k) vertices such that G and H cannot be distinguished by the
isomorphism test based on k-dimensional Weisfeiler-Leman equivalence. This
implies that WL(G ] H) > k, where G ] H is the disjoint union of G and
H. Through this operation of disjoint union, the problem of testing graph
isomorphism reduces to that of constructing the orbits of the automorphism
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group and, as stated in the introduction, here we adopt the latter perspective.
The k-dimensional Weisfeiler-Leman isomorphism test has been extensively

analyzed in theoretical studies of the graph isomorphism problem. It has many
equivalent and strikingly different characterizations, arising in algebra, combi-
natorics, logic and optimization. In particular, it is known that in a graph G,
u ≡k v if, and only if, there is no formula of Ck+1 (first-order logic with counting
quantifiers using at most k + 1 distinct variables) that distinguishes u from v.
This relation was given a useful characterization in terms of a k-pebble bijective
game by Hella [18]. The game is played by two players called Spoiler and Dupli-
cator on a graph G. The position of the game at any moment in time consists of
two k-tuples of vertices u and v. In each move, Spoiler chooses a value of i ∈ [k]
and Duplicator responds with a bijection π : V → V . Spoiler then chooses a
vertex x ∈ V and the new position is u[x/i] and v[π(x)/i]. Spoiler wins in any
position if the ordered subgraph of G induced by the tuple u is not isomorphic
to the ordered subgraph induced by v. The result of Hella [18] essentially tells
us that Duplicator has a strategy to play forever without Spoiler winning in the
(k + 1)-pebble bijective game starting at position u,v if, and only if, u ≡k v.

The connection between the Weisfeiler-Leman dimension of a graph and
the refinement and individualization procedure is the following. If a graph G
contains k vertices v1, . . . , vk such that individualizing them results in the vertex
refinement procedure on G producing the discrete partition, then WL(G) ≤ k+
2. This is most easily seen through the characterization of the Weisfeiler-Leman
dimension in terms of counting logic. That is, when such a set of k vertices exist,
we can show that any pair x and y of vertices that are not distinguished by any
formula of Ck+3 are in the same orbit of the automorphism group of G. The
argument is as follows. We know that the vertex refinement procedure yields
a partition into C2-equivalence classes. By the assumption that individualizing
v1, . . . , vk results in the discrete partition, we have that for each vertex x, there
is a formula φ(x) of C2 using constants for v1, . . . , vk that is only true of x and
of no other vertex in G. Write φx for the formula of Ck+2 where the constants
in φ have been replaced with new variables (which we will also denote v1, . . . , vk
for convenience). Now consider the formula

θ(v1, . . . , vk) :=
∧

x∈V (G)

∃=1xφx ∧ ∀x, y
(
E(x, y)↔

∨
{x,y}∈E(G)

(φx ∧ φy)
)
.

Note, here, while we have a different formula φx for each x ∈ V (G), we assume
that we re-use the variable x. However, where we write φy, we replace it with
the new variable y. This ensures that the total number of variables used is at
most k + 3. It can then be verified that the formula ∃v1, . . . , vkθ describes the
graph G uniquely, up to isomorphism. Moreover, ∃v1, . . . , vk(θ∧φx) is a formula
of Ck+3 that is only satisfied in G by vertices in the orbit of x.

Multipedes. Gurevich and Shelah [17] show how to construct a class of finite
structures which is (1) axiomatized by a sentence of first-order logic; (2) contains
only structures with no non-trivial automorphisms; and (3) such that no formula
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of fixed-point logic defines a linear order on all structures in this class. From our
point of view, the relevant aspect of this construction is that it gives, for each
value of k, an asymmetric structure Mk, that is one which has no non-trivial
automorphisms, but on which the partition into ≡k-classes is non-trivial. That
is to say, even though every element of the orbit partition of Mk is a singleton,
there are pairs of distinct elements a, b in Mk such that a ≡k b. The structures
in question are called 3-multipedes in [17].

It seems at first sight that this provides suitable hard examples for graph
isomorphism testers such as Traces. Strictly speaking, the 3-multipedes are not
graphs, but they can be translated to graphs by standard methods (see [19, The-
orem 5.5.1]), preserving the relevant properties: unbounded Weisfeiler-Leman
dimension and no non-trivial automorphisms. The absence of non-trivial auto-
morphisms means that factoring by automorphisms cannot be used to speed up
search by trimming the tree, while the unbounded dimension guarantees that
there is no upper bound on the number of individualization steps needed to make
the vertex refinement procedure yield the discrete partition. However, actually
constructing instances of such multipedes turns out to be difficult. The proof
in [17] does not actually show how to construct the structures Mk. Rather, it
shows that for all large enough values of n, a random structure on n elements,
under a suitable skew probability distribution µn, has the right properties. How-
ever, the probability grows rather slowly with n. Indeed, the smallest value of
n at which the probability is non-zero is possibly exponential in k. An experi-
mental attempt to sample from the distribution µn failed to produce interesting
examples at values of n up to a few thousand [2].

In the present paper, we consider an alternative construction, based on simi-
lar principles, of graphs whose Weisfeiler-Leman dimension is linear in the num-
ber of vertices (as with the CFI graphs), and which have no non-trivial auto-
morphisms. The construction is again randomized, but based on a simple and
well-understood probability distribution. Furthermore, a use of a SAT solver
enables the quick generation of examples by filtering graphs that are sampled
from the distribution.

3 The Construction

In this section, we describe a construction that yields, for each k, a graph Gk
with O(k) vertices with the property that Gk is asymmetric and has Weisfeiler-
Leman dimension at least k. The proof that such graphs exist is derived from
known results in the literature, and here we show how to derive it, giving the
necessary definitions to understand the background. The starting point of the
construction is the observation that we can define instances of 3-xor that are
k-locally consistent but unsatisfiable.

XOR formulas. Fix a countable set X of Boolean variables. We use capital
letters X,Y, . . . to range over this set. A 3-xor-formula is a finite set of clauses,
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where each clause contains exactly 3 literals, each of which is either a variable
X or a negated variable X̄.

We say that a 3-xor-formula φ is satisfiable if there is an assignment T :
X → {0, 1} of truth values to the variables X such that in each clause of φ, an
even number of literals is made true.

Given a 3-xor-formula φ, we can construct a system of linear equations
over the two-element field F2. That is, for each clause C of φ we construct the
equation x + y + z = c where x, y, z are the variables occurring in the literals
of C and c is 1 if an odd number of them appear negated and 0 otherwise. It
is easily verified that this system of equations has a solution if, and only if, φ is
satisfiable. Note that two distinct clauses may give rise to the same equation.
Say that two clauses are equivalent if they give rise to the same equation. In the
sequel, we will use the terminology of 3-xor formulas and of systems of linear
equations interchangeably, according to which is convenient.

So, we can think of a 3-xor formula with n variables and m clauses as a
system of equations Hx = b where H is an m × n matrix, x the tuple of n
variables and b ∈ Fm2 the m-tuple of right-hand sides of the equation. We
say the system is homogeneous if the right-hand side of every equation is 0.
This corresponds to a 3-xor formula in which no variable appears negated. A
homogeneous system is always satisfiable, as it is satisfied by the assignment of
0 to every variable. Note that a homogeneous system is completely specified
by a collection of 3-element sets of variables, with one set for each equation,
containing the three variables that appear in it.

Random XOR formula. For fixed positive integers m,n we write F (m,n)
for the set of all 3-xor-formulas over the variables X1, . . . , Xn containing ex-
actly m inequivalent clauses. We also write F(m,n) for the uniform probability
distribution over F (m,n). It is known that, for large enough values of m and
n, with m > n, a random formula drawn from this distribution is unsatisfiable
(see [23]). That is to say that as n increases, for all m > n, the probability that
a formula drawn from the distribution F(m,n) is satisfiable tends to 0.

We are interested in 3-xor-formulas that are unsatisfiable but k-locally con-
sistent, for suitable integer k. For our purposes, we define k-local consistency
by means of the following pebble game, played by two players called Spoiler and
Verifier. The game is played on a 3-xor-formula φ with k pebbles p1, . . . , pk.
At each move Spoiler chooses a pebble pi (either one that is already in play, or
a fresh one) and places it on a variable X appearing in φ. In response, Verfier
has to choose a value from {0, 1} for the variable X. If, as a result, there is a
clause C such that all literals in C have pebbles on them and the assignment of
values to them given by Verifier results in C being unsatisfied, then Spoiler has
won the game. Otherwise the game can continue. If Verifier has a strategy to
play the game forever without losing, we say that φ is k-locally consistent.

It is also known that for all k, the probability that a random formula drawn
from F(m,n) (with m > n) is k-locally consistent tends to 1 as n increases.
This was proved for formulas of 3sat rather than 3-xor in [3], but a similar
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analysis shows the result also for 3-xor. Such an analysis can be found in [5,
Lemma 4].

Unique Satisfiability. As noted above, a homogeneous system of equations
is always satisfiable, as it is satisfied by the assignment of 0 to every variable.
We say that the system is uniquely satisfiable if this is the only solution to the
system. It is easy to see that the set of solutions to Hx = 0 is exactly the null
space of the matrix H, as a subset of the vector space Fn2 . In particular, the
system is uniquely satisfiable if, and only if, H has rank n.

Define H(m,n) to be the set of all homogeneous systems of equations with
m clauses and n variables, and H(m,n) for the uniform probability distribution
over this set. We use the following fact about this distribution, established
in [11]

Lemma 1 There is a threshold t > 1 such that, for any α > t, the probability
that a random system drawn from H(αn, n) is uniquely satisfiable tends to 1 as
n increases.

A homogeneous system is necessarily satisfiable, and so also k-locally con-
sistent for all k. If it is uniquely satisfiable, it has no solutions when we require
some fixed variable Xi to take value 1. However, for a randomly chosen such
system, adding the condition Xi = 1 leaves it k-locally consistent for small val-
ues of k. To be precise, there is a constant γ such that if φ is a system Hx = 0
chosen at random fromH(αn, n), then with high probability there is some i such
that if φi is the system obtained from φ by adding the equation Xi = 1 then
φi is γn-locally consistent. This is a much weaker statement than proved in [5,
Lemma 4] where it is shown that changing the right-hand sides of a random
subset of the vertices to 1 still leaves the system γn-locally consistent.

CFI construction The construction of Cai, Fürer and Immerman [16] pro-
vides us with examples of pairs of non-isomorphic graphs which are not dis-
tinguished by the k-dimensional Weisfeiler-Leman test. Inspired by this, a con-
struction described in [1, Prop. 32] shows how to convert any k-locally consistent
system of equations in H(m,n) to one that cannot be distinguished by the k-
dimensional Weisfeiler-Leman test from its homogeneous companion. Here, the
homogeneous companion of a system Hx = b is Hx = 0 (see also [5, Lemma
3] for a similar argument). Here we adapt the construction, to turn an arbi-
trary system φ into a graph Gφ with the property that the local consistency
of φ translates into a lower bound on the Weisfeiler-Leman dimension of Gφ.
Moreover, the unique satisfiability of φ guarantees that Gφ is asymmetric.

For any 3-xor-formula φ, we define the graph Gφ by the following con-
struction. If φ has m inequivalent clauses and n variables, Gφ has a total of
4m+ 2n+ 3(n− 1) vertices.

Let X1, . . . , Xn be the n variables in some fixed order. For each clause C
of φ, we define the four clauses C000, C011, C110, and C101 by letting C000 = C
and C011, C110, C101 be the three clauses equivalent to C obtained by negating
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exactly two of the literals of C. In particular, C011 is obtained from C000 by
negating the second and third variables in the clause, C110 by negating the first
and second and C101 by negating the first and third. Here, the terms “first”,
“second” and “third” refer to the numberical order of the variables chosen above.

We then have a vertex in Gφ for each of these clauses. Also, for each variable
X in φ, we have two vertices X0 and X1. In addition, for each i with 1 ≤ i < n
we have three vertices il, ir, is.

C000 C011 C110 C101

X0 X1 Y 0 Y 1 Z0 Z1

Figure 1: Clause gadget in Gφ corresponding to the clause X ⊕ Y ⊕ Z

The edges are described as follows. For each clause C, if the literal X occurs
in C, we have an edge from C to X1 and if the literal X̄ occurs in C, we have an
edge from C to X0. There is an edge between X0 and X1. These are depicted
in Figure 1. These capture the essence of the CFI-like construction. In addition,
for each i we also have the edges: (il, ir), (ir, is) and (il, X

0
i ), (il, X

1
i ), (ir, X

0
i+1)

and (ir, X
1
i+1). These additional edges are depicted in Figure 2. The purpose

of the additional gadget involving the vertices il, ir and is is to remove some
symmetries on the graph by imposing the chosen order on the set of variables.

X0
i X1

i X0
i+1 X1

i+1

il ir

is

Figure 2: Asymmetry gadget in Gφ

Now, fix a homogeneous system of equations φ, and let Gφ be the graph
obtained by the above construction. Also, let φi be the system obtained by
adding the equation Xi = 1 to φ.

Lemma 2 If φi is 3(k + 1)-locally consistent, then X0
i ≡k X1

i in Gφ.

Proof: The proof follows along the lines of [5, Lemma 3] by showing a winning
strategy for Duplicator in the bijective (k+1)-pebble game played onGφ starting
in the position u,v where u is the tuple consisting of the vertex X0

i repeated
k+ 1 times and v is the tuple consisting of the vertex X1

i repeated k+ 1 times.
We give a brief outline.
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Duplicator’s strategy will always be to play a bijection that is the identity
on the vertices il, ir, is. For each variable X it maps the set {X0, X1} to itself
(though it may swap these two vertices) and for each clause C it maps the
set {C000, C011, C110, C101} to itself (though it may permute these elements).
Moreover the permutation induced on {C000, C011, C110, C101} must be either
the identity or a permutation induced by swapping X0 and X1 for exactly
two variables X appearing in the clause C. Call a bijection meeting these
requirements well-defined.

Given a position u,v in the bijective game, we say that it is consistent if
there is a well-defined bijection β taking u to v and such that for any Ci ∈ u if
β(Ci) = Cj where Cj is obtained from Ci by swapping X0, X1 and Y 0, Y 1 then
β(X0) = X1 if either of X0 or X1 is in u and similarly β(Y 0) = Y 1 if either of
Y 0 or Y 1 is in u.

Consider now a consistent position u,v and let β be a well-defined bijection
witnessing this. Let U be the set of variables of φ containing all variables X
such that either X0 or X1 appears in u or X appears in some clause C such that
one of C000, C011, C110, C101 appears in u. Note that U has at most 3(k + 1)
elements. Now, we define the map T : U → {0, 1} given by T (X) = 0 if
β(X0) = X0 and T (X) = 1 if β(X0) = X1. Duplicator’s strategy is to ensure
that T is a winning position for Verifier in the 3(k + 1)-local consistency game
on the formula φ. That is to say, starting in the position where pebbles are
placed on the variables in U , and Verifier’s responses are given by T , Verifier
can continue and play forever.

This condition is satisfied by the initial position, as u is just the element X0
i

repeated k + 1 times, so U = {Xi}, and T is the map taking Xi to 1. But, the
fact that φi is k+ 1-locally consistent implies that this is a winning position for
Verifier. Now, to see that the Duplicator can maintain the position, suppose at
some stage in the bijective game, Spoiler moves pebble j. Duplicator needs to
construct a well-defined bijection such that anywhere Spoiler places the pebble
will result in a consistent position. Spoiler’s move can be translated into a move
in the local consistency game from the current position T . Duplicator’s possible
responses in that game define a function from the variables X to {0, 1} and this
can be turned into a well-defined bijection. �

Asymmetry Finally, we want to argue that if the homogeneous system φ is
uniquely satisfiable, then Gφ is asymmetric. Before giving the proof, we give
some intuition. The graph Gφ has two vertices X0 and X1 for each variable X of
φ. Consider first a permutation π of these vertices which fixes each set {X0, X1}.
This gives rise to a map T from the variables of φ to {0, 1} such that T (X) = 1
if, and only if, π exchanges X0 and X1. To extend π to an automorphism of Gφ
would require us to permute the vertices corresponding to clauses in such way
that fixed each set {C000, C011, C110, C101}. This can only happen if for exactly
two of the variables X appearing in the clause C do we have T (X) = 1. In
other words, this requires T to be an assignment satisfying φ. Are there other
automorphisms of Gφ that do not fix the sets {X0, X1}? The presence of the
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vertices il, ir, is ensures that these sets are effectively linearly ordered and no
other automorphisms are possible. This is formally proved below.

Lemma 3 If φ is homogeneous, then it is uniquely satisfiable if, and only if,
Gφ is asymmetric.

Proof: Let α be any automorphism of Gφ. Note that every clause vertex C has
degree 3. Every variable vertex X0 or X1 has degree at least 4. Every vertex
is has degree 1. Thus, each of the following sets is fixed (set-wise) by α:

• the set S = {is | 1 ≤ i < n}: this is the set of vertices of degree 1;

• the set R = {ir | 1 ≤ i < n}: this is the set of vertices adjacent to a vertex
in S;

• the set of clause vertices C : this is the set of vertices of degree 3 that are
not within distance 2 of a vertex in S;

• the set of variable vertices X : this is the set of neighbours of C; and

• the set L = {il | 1 ≤ i < n}: this is everything else.

Indeed, we can say more. Each of the sets S, L and R is fixed pointwise by
α. If this were not so, there would be some i, j with i < j such that α(is) = js
(since the set S is fixed). Then, α(ir) = jr (since these are the sole neighbours),
α({X0

i , X
1
i }) = {X0

j , X
1
j } (since these are the only neighbours in X of ir and jr

respectively), and so α((i+1)l) = (j+1)l and α((i+1)r) = (j+1)r. Proceeding
by induction, we have for all k α((i+ k)r) = (j+ k)r. Taking k large enough so
that j + k > n ≥ i+ k, we get a contradiction.

It also follows that, for each variable X, α({X0, X1}) = {X0, X1}. That
is, α either fixes each of the two vertices or it interchanges them. Note that
if α fixes all the variable vertices, then it is the identity everywhere, since no
two vertices in C have the same neighbours in X . Let T be the assignment that
maps X to 0 if α is the identity on {X0, X1} and 1 otherwise. We can check
that T satisfies φ.

In the other direction, suppose there is a truth assignment T that satisfies
φ. Now consider the map on X that exchanges the vertices X0 and X1 just in
case T (X) = 1 and is the identity everywhere else. We extend this to a map on
C as follows. For any clause C of φ, there are either 0 or 2 variables X in C for
which T (X) = 1, since T is a satisfying assignment. In the first case, we let our
map be the identity on {C000, C011, C110, C101} and in the latter case it is the
unique permutation of this set induced by exchanging X0 and X1 for the two
variables such that T (X) = 1. Finally, we also define the map to be the identity
on the set L ∪ R ∪ S. It is now easy to see that this map is an automorphism.

�

We can conclude the description of the construction with the statement of
a theorem.
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Theorem 1 There is a family of asymmetric graphs Gk with O(k) vertices and
Weisfeiler-Leman dimension k.

Proof: By Lemma 1, there is an α such that for sufficiently large n, a randomly
chosen homogeneous system of equations φ from H(αn, n) is uniquely satisfiable
with positive probability. By Lemma 3, Gφ is then asymmetric. On the other
hand, by [5, Lemma 5], φi is γn-locally consistent for any i with high probability,
which implies by Lemma 2 that Gφ has WL-dimension at least 1

3γn− 1. �

Note that we really have proved, not only the existence of such a family, we have
described a random process that produces such graphs with high probability.

Size Bounds While Theorem 1 tells us that the graphs Gk have size linear
in k, the actual size bounds are somewhat less clear. Specifically, there is a
probabilistic element to the construction that relies on constructing a uniquely
satisfiable formula φ such that for some i, φi is k-locally consistent. What we
know is that for any k, and any large enough n, a randomly constructed formula
with n variables and m = αn clauses (α > 1) will have these properties with
high probability. How big does n have to be before the probability becomes
significant? A direct calculation does not give much cause for optimism.

Our argument for why a random formula is k-locally consistent with high
probability is based on [5, Lemma 3], which in turn relies on the argument for ex-
pansion of a random 3-uniform hypergraph given in [13]. The key combinatorial
bound in on width is [13][Lemma 6.6], attributed to [12]. A simple calculation
shows that we need m to be around 107 in order to be guaranteed a width
lower bound of 2 (i.e. that a formula will be 2-locally consistent with probabil-
ity greater than 1/2). With m around 109, we get reasonably high bounds on
width, but these would be much larger graphs than we wish to consider. What
we show in the rest of the paper is experimental results which show that even
for much smaller values of n and m, a random sample produces graphs that
are difficult for isomorphism testers. We combine random generation of 3-xor
formulas with a filtering process which is aimed at improving the likelihood of
getting locally-consistent instances. We describe this in the next section.

4 Experimental Setup

Section 3 established a theoretical result that shows that a random graph con-
structed in a particular way has the properties of being asymmetric and having
high Weisfeiler-Leman dimension. In outline, we want to start with a random
homogeneous 3-xor formula on n variables with αn clauses, i.e. a random 3-
uniform hypergraph on n vertices and convert it into the graph Gφ. This graph
is asymmetric if φ is uniquely satisfiable (which occurs with high probability).
Moreover Gφ has Weisfeiler-Leman dimension at least k if φ is 3k-locally sat-
isfiable, an event that also occurs with high probability. We now describe an
experimental setup for producing such graphs (with up to a few thousand nodes)
by starting with a random formula and applying a succession of filters. In the
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process we apply a number of heuristics in addition to the theoretical approach
outlined above. To motivate and justify these heuristics, we now break up the
construction in a slightly different way.

Asymmetry Consider φ, a homogeneous 3-xor formula with n variables X =
{X1, . . . , Xn} and m clauses C = {C1, . . . , Cm}. We identify this system with
a bipartite graph Φ with vertices C on the left and X on the right and an
edge between X and C if X appears in the clause C. Note that because φ
is homogeneous, the graph determines φ completely. The construction of the
graph Gφ described above can now be broken up into two steps. In the first
step, we produce a graph G1

φ by replacing each X ∈ X by two vertices X0 and

X1 and each C ∈ C with four vertices {C000, C011, C110, C101} and connecting
them as described above and illustrated in Figure 1. In the second step, we
augment the graph G1

φ with additional vertices il, ir, is for i ∈ {1, . . . , n}.
Note that the reason for the second step is effectively to impose a linear

order on the set of variables X and thereby ensure that the only automorphisms
of Gφ are the ones generated by satisfying assignments to φ. Thus, if the graph
Φ is itself asymmetric, the second step is unnecessary as it is easily seen that in
this case the only automorphisms of G1

φ are generated from a satisfying truth

assignment to φ by swapping X0 and X1 for all variables that are set to true.
How likely is it that a random Φ (i.e. a random left-3-regular bipartite graph
with m nodes on the left and n on the right) is asymmetric?

We can think of Φ as a 3-uniform hypergraph on n nodes, with m edges.
It is easy to show (using the same methods that show that a random graph
is asymmetric (see [15, Chap. 9])) that if m is roughly n log n, then a random
3-uniform hypergraph is, indeed, asymmetric with probability going to 1 as n
increases. This is not the case when m = αn for constant α. However, our
experiments show that in the range of values of n we worked with (n up to
about 3000, and m between 1 and 5), there was a reasonably high probability
of coming up with an asymmetric hypergraph. Moreover, if Φ is asymmetric,
this is reasonably quick to check with a tester such as nauty/Traces as it is
also highly probable that vertex refinement gives the orbit partition. It is only
when Φ is converted to G1

φ that we get high Weisfeiler-Leman dimension. Thus,
for the purpose of the experiments, instead of generating the graphs Gφ from
Φ, we run a test on Φ to check if it has any non-trivial automorphisms. If it
does, we discard it. Otherwise, we construct the graph G1

φ and use that.

Unique Satisfiability Having generated a random homogeneous formula φ,
we wish to check that it is uniquely satisfiable. For this, we use a highly devel-
oped SAT solver (CryptoMiniSat 5). This SAT solver is specifically optimized
for cryptographic applications where the input often contains clauses that are
formed by taking the XOR, rather than the disjunction, of a set of literals.
CryptoMiniSat combines standard SAT solving methods (based on DPLL) with
the selective use of Gaussian elimination to attack such problems quickly.

In our filter, we express φ as a conjunction of clauses where each clause is
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the XOR of three variables. We then test the satisfiability of φ′ ≡ φ∧
∨
X∈X X.

That is, we add a clause that is the disjunction of all variables in X . Of course,
φ′ is satisfiable if, and only if, φ has a satisfying assignment other than the all
zeroes solution. In other words, φ′ is satisfiable if, and only if, φ is not uniquely
satisfiable.

Local Consistency We also want to ensure that the φ we select is k-locally
consistent for a sufficiently large value of k. This is difficult to check directly.
The problem of checking k-local consistency is known to be hard, requiring time
exponential in k (see [14]) and we do not know of any good implementations.
Instead, we used a simple heuristic that leverages the specific capabilities of
CryptoMiniSat. Specifically, this package allows us to turn the use of Gaussian
elimination on and off with an option. We check the satisfiability of the formula
φ′ by running CryptoMiniSat twice, once with Gaussian elimination on and
once with it off. If the former is significantly faster than the latter, we expect
that the φ we have is a good candidate. Note, however, that this does not give
us any bounds on the value of k for which φ might be k-locally consistent.

To justify this heuristic, note that the DPLL methods (with clause-learning
and restarts) as employed in modern SAT solvers are subsumed by bounded-
width resolution (see [6]). And formulas that are highly locally consistent but
not globally consistent are exactly the ones that are difficult for bounded-width
resolution [3]. On the other hand, Gaussian elimination is a method that specif-
ically is fast for solving systems of linear equations which may well be locally
consistent [4]. Thus, a formula on which Gaussian elimination is quick to deter-
mine satisfiability but DPLL-based methods are slow is a prime candidate for
us.

Summary of Methodology In summary, our methodology for generating
hard examples for isomorphism testers is the following.

1. For a fixed value of n andm (roughly about 2n), take a set X of n variables.

2. Randomly select m 3-element subsets of X to form the left-3-regular bi-
partite graph Φ.

3. Check (using Traces) to see if Φ has any non-trivial automorphisms. If
so, discard it.

4. If Φ has no non-trivial automorphisms, form the formula φ′ by taking the
conjunction of the clauses

⊕
X∼C X for each left-node C of Φ along with

the clause
∨
X∈X X.

5. Check if the formula φ′ is satisfiable using the SAT solver CryptoMiniSat
with Gaussian elimination option on. If it is satisfiable, discard Φ.

6. Run CryptoMiniSat on φ′ a second time, with the Gaussian elimination
option turned off. If this takes significantly longer to determine φ′ is
unsatisfiable, then Φ is a prime candidate for the construction.
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7. From Φ, obtain the graph G1
φ by replacing each node C on the left-hand

side with four nodes, and each node X in the right-hand side with two
nodes and connecting them as described earlier.

5 Experimental Results

We can report on three sets of experimental results, using the construction
described in the previous section. It should be noted that the main parameter
that can be varied in the construction is the ratio m/n where m is the number
of clauses and n the number of variables in the 3-xor formula. The ratio
needs to be at least 1 to guarantee that the constructed formula is uniquely
satisfiable. The closer it is to 1, the less likely it is to be uniquely satisfiable.
Indeed, experimental runs show that at smaller values we had to sample from
the distribution H(m,n) many times over to find a uniquely satisfiable instance.
On the other hand, the larger the value of m/n, the harder it is to find locally
satisfiable instances. While the theoretical results guarantee that the probability
of finding such instances increases with n, it clearly does so more slowly for large
values of m/n. Hence, in practice, one needs to fine tune the right value of the
ratio to get good results.

It should also be noted that our construction does not determine the actual
WL-dimension of the graphs. This seems to be a much harder computational
problem than testing isomorphism itself (see [14] for bounds on the related
problem of determining k-local consistency). Thus, while the heuristic filters
we use are likely to produce graphs of large WL-dimension, we are unable to
actually state the dimension of the graphs produced.

First Set. The procedure for constructing graphs described in the previous
section was run on a cloud server, with the specification given in Table 1, during
April-June 2017. The results show that graphs of a few hundred nodes produced
using this procedure are very difficult for Traces in the sense that in most cases,
at this size, the system timed out (with a timeout set at 3 hours) and failed to
identify the automorphism orbits.

Table 1: Test Environment 1

Feature Description

Host DigitalOcean
Operating System Ubuntu 16.10 64-bit
Memory 2GB
Disk 20GB SSD
CPU 2 CPUs

Some results of test runs on graphs produced by our construction are shown
in Figure 3. These plot the time taken to run Traces on graphs with n nodes
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(n being the horizontal axis). The plot on the left of the figure is for graphs
produced from 3-xor formulas with n variables and m = n clauses. The plot
on the top right gives similar times for graphs produced from 3-xor formulas
with m = 2n. Here, virtually all graphs we were able to produce with over 5000
nodes timed out on Traces.

0 200 400 600 800

0

100

200

300

nodes

t
se

c

0 0.2 0.4 0.6 0.8 1

·104

0

200

400

600

800

timeout

nodes

t
se

c

Figure 3: Left: n=m (con n).
Right: n=2m (con 2n).

The complete data, including the graphs constructued, from this set of exper-
iments is available at https://github.com/kkcam/graph-ismorphism. Some
explanation of the nomenclature might be helpful. The graphs are classified
according to the ratio m/n used in their construction. For instance con 2n is
the collection of graphs with m = 2n, and con n is the collection of graphs
with m = n. There is also a package con sml which contains for each n the
graph with the smallest ratio m/n for which we were able to obtain a uniquely
satisfiable 3-xor formula, which also gives an asymmetric bipartite graph Φ.

Second Set In February 2019, we ran a second set of experiments. These
used the same database of graphs produced by the construction for the first set.
This time the virtual machine setup was as described in Table 2. Again, with
Traces, most of the larger graphs timed out. However, we also ran the same
set of graphs through nauty, bliss and conauto, and all of these showed much
better performance than Traces on the large graphs in this collection.

As a sample, we produce in Figure 4 the timing results on the graphs in
the package con 2n for each of the four isomorphism solvers. The timeout is
set at 120 minutes and which can be seen to occur frequently for Traces. It
should be noted that most of the timeouts occurred due to memory limitations.
It seems Traces requires large amounts of memory to process these graphs and
the swapping required is what leads to the process timing out. While the other
solvers (in particular bliss) were able to resolve the graphs quickly, they do
show fast growth in run times as the graphs get larger. This is explored further
in the third set of experiments.

https://github.com/kkcam/graph-ismorphism
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Table 2: Test Environment 2

Feature Description

Host B2s Azure VM
Operating System Ubuntu 18.04 LTS
Memory 8GB
Disk 20GB SSD
CPU 2 CPUs
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Figure 4: Test run of first set of graphs on four different isomorphism solvers.

Third Set We can report on a third set of experiments performed by Richie
Yeung in January-March 2019. The full data on this can be found at https://
github.com/y-richie-y/sat_cfi/. This generated a new collection of graphs
using the same protocol as described in Section 4. These were run again through
Traces, nauty, bliss and conauto. Graphs with up to 8000 nodes were gen-
erated with values of m/n in the range of 1.5-2. Once again, Traces frequently
(almost invariably) times out on the larger graphs. The performance of the other

https://github.com/y-richie-y/sat_cfi/
https://github.com/y-richie-y/sat_cfi/
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Figure 5: running times on nauty and bliss

three solvers is better, but exhibits fast growth in running time. For example we
exhibit the results for nauty and bliss in Figure 5, with a logarithmic scale on
the y-axis for running time. This is highly indicative of exponential growth in
running time. Once again, bliss proved to be the fastest of the solvers. How-
ever, the performance depends heavily on which target cell selection heuristic
is used. As bliss allows the use of different heuristics by setting parameters,
results three different heuristics are displayed in Figure 5, in different colours.
The best performance is for fl, which is “first largest non-singleton cell”.
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Discussion There are some important points one should highlight from the
experimental results. The first is that Traces performs significantly worse on
the graphs we construct than any of the other solvers. One possible explanation
for this is the fact that the fundamental algorithm in Traces is a breadth-first
search procedure of the individualization tree. Such a procedure may require
shallowe trees but may, in principle, be more memory-intensive than a depth-
first search. An important way that Traces avoids this drawback is the early
identification of symmetries in the graph and using this to prune the search
space. It is possible that the lack of symmetries in our graphs makes this
pruning impossible leading to the solver running out of memory and timing
out as a result. The construction described by Neuen and Schweitzer [21] is
also aimed at constructing graphs which are asymmetric and have high WL-
dimension. They also, similarly, report that Traces is rather slower on their
graphs than other solvers. In contrast, Yeung reports that his implementation
of the Neuen-Schweitzer construction yields graphs on which Traces performs
faster than nauty. This warrants further investigation.

Apart from Traces, an important distinction between the other solvers
tested is their cell selection strategy. One of them, bliss, explicitly allows
the user to choose the strategy in a call to the system. As we have seen, the
choice of strategy can have a significant effect on the performance of the solvers.
The results of the third set of experiments, especially on bliss, demonstrate
the effect starkly. It would be instructive to understand how these cell selection
strategies interact with the construction we have presented.

Our theoretical construction shows that there exists a family of graphs on
which any solver based on individualization and refinement, along with factoring
by symmetries, will take exponential time, no matter what cell selection strategy
is used. Furthermore, it shows that sampling graphs at random from the distri-
bution we describe will produce such graphs with high probability. We cannot
verify that the graphs we select do indeed have high WL-dimension, which is
why we need experimental validation, and the results do strongly suggest that
the growth rate, on any solver, is exponential. In the first set of experiments,
we constructed graphs with parameter m/n ≤ 2 only up to about 5000 nodes.
For larger graphs, larger ratios were used. The third set of experimental results
extended the construction of graphs with small ratio up to about 8000 nodes
(e.g. n = 800, m = 1600), and the increase in running time is striking. The
main reason for using larger ratios to generate the larger graphs in the first case
was that at small ratios, finding large 3-xor formulas that are uniquely satisfi-
able becomes difficult, requiring large numbers of re-trials with fresh sampling.
When this is combining with two runs of a SAT solver for each sampled formula,
the time becomes prohibitive. Also, as we are not using the asymmetry gadgets
described in Section 3, we are relying on checking that the random 3-left-regular
hypergraph we select is itself asymmetric, and this may also involve repeated
trials. Here the probability of success decreases with n for a constant ratio.
The protocol was improved in the third set by checking unique satisfiability by
a direct rank computation. Then, the SAT solver check was only performed for
those formulas already known to be uniquely satisfiable, merely to record the
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difference caused by the use of Gaussian elimination.

6 Conclusion

We have described a theoretical construction of graphs that are provably difficult
for a isomorphism solvers such as nauty and Traces. We have examined the
construction experimentally and the results indicate that the graphs produced
do indeed show exponential growth rates in running time on these solvers.

The main theoretical result combines known lower bounds for local consis-
tency of 3-xor formulas with a construction inspired by the graphs of Cai-
Fürer-Immerman and the related multipede construction to give a family of
graphs which are provably asymmetric and of linear Weisfeiler-Leman dimen-
sion. This ensures that the running time grows exponentially with the size of
the graphs. Our result also shows that a randomly constructed 3-xor instance
is likely to yield a difficult graph with high probability. That is, the probability
tends towards 1 as the graphs get larger.

The experimental setup uses SAT solver technology to create a series of filters
which, combined with the random generation of 3-xor formulas produces graphs
to follow the theoretical procedure. For the experimental set-up, we dropped
some of the theoretical guarantees on asymmetry and local consistency and
replaced them with heuristic tests. This is because we are unable to verify
directly the WL-dimension of the graphs constructed.

The results show that our method quickly and consistently produces graphs
that are difficult for Traces. Experiments with other solvers also support the
conclusion that the growth rate of the time taken is exponential. This is com-
parable with the construction of hard graphs in [21].
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